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Abstract

In this article we give a simple construction of strong solutions to hyperbolic corner problems. The
main idea of the method is to reduce the analysis to the study of transport equations and to treat the
coupling between the transport phenomena as a source term. Then we solve inductively with a loss of
one derivative at each step. Such losses being compensated if one considers infinitely regular sources.
This simple approach gives strong solutions to hyperbolic corner problems and thus answer a natural
question. Indeed in a general setting such existence results are frequently not considered in the literature
(we are here thinking to the seminal work of [10]). As an application of the existence of strong solutions,
we study the viscous approximation of hyperbolic corner problems and we show that the boundary layers
localized along the two sides of the boundary do not interact the one with the other.
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1 Introduction

This article follows [3] and aims to study the strong well-posedness of hyperbolic boundary value problems
defined in domains with a corner. We will be particularly interested in strong solutions. We restrict our
attention to the problem in the quarter-space. The considered problem in the following reads: for d ≥ 2 and
T > 0,

L(∂)u := ∂tu+A1∂1u+A2∂2u+
∑d

j=3 Aj∂ju+Du = f for (t, x) ∈ ]−∞, T ]× R2
+ × Rd−2 := ΩT ,

B1u|x1=0 = g1 on ]−∞, T ]× R+ × Rd−2 = ∂Ω1,T ,

B2u|x2=0 = g2 on ]−∞, T ]× R+ × Rd−2 = ∂Ω2,T ,

ut≤0 = 0 on R2
+ × Rd−2 := Γ,

(1)

where the unknown u has its values in RN , for some fixed N ≥ 1 and where f, g1, g2 are given source terms
in a suitable functional space. The interior coefficients are given matrices Aj , D ∈ MN×N (R), while the
boundary matrices B1 ∈ Mp1×N (R), B2 ∈ Mp2×N (R) encode the good number of boundary conditions.
Namely in the above, pj stands for the number of (strictly) positive eigenvalues of Aj . We will also consider
the variable coefficients case and the initial boundary value problem associated to (1) (that is to say the
problem defined on ]0, T [× Γ, T > 0, with a non homogeneous initial condition).

Before to describe with more details the results of this article, let us point that even if the study of
the well-posedness of problem (1) is a rather old question which appears in the 70’s in the litterature with
the works of Osher, Sarason and Smoller (we refer to [10] and [14]), and despite the fact that this problem
encounters some renewed interest recently with the contributions of Huang-Temam [7], Halpern-Rauch [6],
Métivier-Rauch [9] and the author (see [2] and [3]), then a little is known about such a well-posedness theory.
Without enter into technical details, let us say that, at present time, a full characterization of the boundary
matrices B1 and B2 ensuring the strong well-posedness of the problem in the basic hilbert space L2 seems
to be a hard problem and constitutes a widely open question. It does not have a lot of advances since the
pioneer work of Osher [10]. However, in some particular cases (we are thinking to the natural subcase of
symmetric operators with (strictly) dissipative boundary conditions) we have some (non optimal, but simple)
results of well-posedness, see for example [6] or [3].

In [3], we studied the persistence of regularity of the solution to (1). Crudely speaking, we addressed
the question ”if the sources of the problem are in some (high order) Sobolev space Hs, then what about the
solution u ?”. We will not describe the results of [3] in all details, let us just indicate that, because corner
problems look like characteristic (half-space) problems, we obtained a good persistence of regularity in some
tangential Sobolev spaces. These spaces are defined by the differentiation operators (x1∂1)

α1 and (x2∂2)
α2 ,

with α1, α2 ≥ 0, instead of the classical derivatives ∂α1
1 and ∂α2

2 . In particular, in such spaces, because
of the vanishing weights, we do not have a precise control of the traces of the solution u at the boundary
∂Ω1,T ∪ ∂Ω2,T .
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It is fair to say that the proof exposed in [3] is rather long and technical. So one of our goal in the
present article was to find some persistence of regularity result, but with a simpler proof. Moreover, it will
be motivated below, we also aim to obtain a persistence of regularity result ensuring a good control of the
traces of the solution at the boundary.

In the following to simplify the methods of proof, we first choose to restrict our attention to sources with
infinite regularity, and we thus want to construct a strong solution u to (1). Let us here point, for future
purposes, that because, at the end of the day, the solution u ∈ H∞, then the definitions of the traces u|x1=0,
u|x2=0 and u|x1=x2=0 are straightforward.

The main idea of the method of construction of such a strong solution is to look for some decomposition
of the space RN := E1⊕E2, in such a way that if we decompose u = u1+u2 with uj ∈ Ej , then uj essentially
solves the kind of ”transport equation”

∂tuj + λj∂juj + Ã3−j∂3−juj +

d∑
k=3

Ãj,k∂kuj + D̃uj = fj − Fj(∂u3−j) in ]−∞, T ]× R2
+ × Rd−2, (2)

where λj are some strictly negative real numbers, where ∂ denotes the collection of the ∂j with j ∈ J1, dK
and finally where the Ãj,k, Ã3−k stand for some modifications of the coefficients Ak. Similarly, D̃j stands
for some modification of the zero order term D.

Let us here insist on the fact that the existence of the above decomposition ensuring property (2) does
not come from the hyperbolicity assumption. It is a structural assumption made on the interior coefficients
of (1). However, the above assumption is satisfied by many examples with physical interest (we refer to
Section 5 for a study of some of them).

The keystone remark in the following is that the transport phenomenon in (2) is outgoing for the side

∂Ωj,T . So instead to solve (2) in the quarter-space, we can solve it on the half-space Ω̃2,T := ]−∞, T ] ×
Rx1

×R+,x2
×Rd−2

x′ (or Ω̃1,T := ]−∞, T ]×R+,x1
×R1+d−2

x2,x′ ). In particular in such a decomposition, because
the transport equation is outgoing, then only one boundary condition needs to be considered. This leads us
to solve the couple of transport equations

∂tu1 + λ1∂1u1 + Ã2∂2u1 +
∑d

k=3 Ã1,k∂ku1 = f1 − F1(∂u2) in Ω̃2,T ,

boundary conditions on ∂Ω̃2,T ,

u1|t≤0
= 0,

(3)

and 
∂tu2 + λ2∂2u2 + Ã1∂1u2 +

∑d
k=3 Ã2,k∂ku2 = f2 − F2(∂u1) in Ω̃1,T ,

boundary conditions on ∂Ω̃1,T ,

u2|t≤0
= 0,

(4)

equations where we treat the coupling F1(∂u2) and F2(∂u1) as sources. We then solve (3) and (4) by an
iterative scheme which at each step uploads the coupling source term by taking the value obtained at the
previous iteration. Because such coupling terms depend on the derivatives of the solution, we loss one deriva-
tive at each step. Consequently to make sure that the iterative scheme is well-defined at each step, we use
in a non trivial way that the sources are infinitely regular so that the obtained solutions are. Moreover, in
order to show that the sequence converges we will also need to ask some ”nice” behaviour for the derivatives
of the sources. We refer to equations (7) for a precise definition.

Consequently as indicated before our result is not optimal at least in two different directions:

� It necessarily requires infinitely many derivatives on the sources. In particular, it is not a true persis-
tence of regularity result where the sources are expected to be ”only” in some Hs for fixed s ∈ N.

� We can not obtain the whole generality of the space H∞ because of the requirement imposed on the
derivatives of the data. We however justify in Section 5 that with such a restriction we manage to
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recover some interesting source terms such as the gaussian. More generically, to be in our goal subspace
we essentially require some decrease at infinity but we are rather generic near the boundary. Let us
remark here by the way that the application of the existence of strong solution, namely, the viscous
perturbation approximation constitute in a study near the boundary. As a consequence the above
functional subspace of resolution for the sources is pertinent for such a study.

In the future, to have a totally satisfactory persistence of regularity theory, we will improve the result
of [3]. But, in the author’s opinion, in spite of its restrictions, the result exposed here has the advantage to
show that strong solutions to (1) can effectively be constructed. Moreover, the proof exposed here also has
the advantage of simplicity.

Let us emphasize that the question of existence of solutions for the hyperbolic corner problem (1) is not
well-understood in the literature. Indeed, the pioneer work of Osher [10] does not give any information about
the existence of (weak) solution(s). In the author’s knowledge the only existence results in the literature are
the ones of [6] and [3]. However these results are restricted to strictly dissipative boundary conditions. Here
we do not have such an assumption for existence. It will however be convenient to make it secondarily to
recover the uniqueness property, because of the energy estimate (see Corollary 2.2).

To conclude this introduction let us also point that the existence of a strong solution has, in the author’s
opinion, a very interesting corollary. We can describe this solution as the limit of the solutions to a corner
problem perturbed by a small viscosity coefficient, 0 < ε ≪ 1. More precisely, if we consider the viscous
perturbation of (1) given by 

L(∂)uε − εEuε = f in ΩT ,

uε
|x1=0 = 0 on ∂Ω1,T ,

uε
|x2=0 = 0 on ∂Ω2,T ,

uε
t≤0 = 0 on Γ,

(5)

where E is an elliptic operator, so that the system (5) can be seen as a more physically meaningful system of
partial differential equation than (1) because it now takes in account viscosity. We will be able to describe,
u the solution to (1) (with suitable boundary conditions) as the limit of uε when ε ↓ 0.

This kind of result is not new. It has been deeply studied when the domain of resolution is the half-space
(or equivalently if it admits a flat boundary), we refer for instance to the works of Guès [5] or Sueur [16] for
such kind of geometric optics expansions. The above works deal with non-linear characteristic problems, so
they cover a wider generality than the one we are considering here. Let us also mention the works of Rousset
[12] and [11] where the perturbation is authorized to degenerate (question that will not be considered in the
following).

To describe what has been our main motivation for studying (5), we should give some more details about
the obtained results in the half-space geometry. We refer the interested reader to the articles of [1], [5] or
[16]. The main point in the study of such problems is the simple and naive (but crucial) remark that the
problem (5) is parabolic while its (expected) limit is hyperbolic. So that, something must come into play in
order to correct the (totally prescribed) traces of uε into the (partially prescribed) traces of u. A boundary
layer localized near the boundary is generated to correct the traces. More precisely, we can show that we
have the asymptotic expansion1:

uε(t, x) ∼ u(t, x) + U (t, x;
xd

ε︸︷︷︸
:=Xd

) + h.o.t,

where u H∞(ΩT ) is the solution to the hyperbolic problem in the half-space with suitable boundary condi-
tions and where U ∈ SXd

(R+;H
∞
t,x(ΩT )) is a boundary layer localized in the strip {0 < xd ≲ ε} so that it

has fast decay with respect to xd.

Going back to the geometry of the quarter space it is thus rather natural to postulate for a first approx-
imation:

uε(t, x) ∼ u(t, x) + U (t, x;
x1

ε
) + V (t, x;

x2

ε
), (6)

1To fix the ideas, we here work in the half-space indexed by xd > 0.
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that is to say that we expect the appearance of two layers, each one localized around one side of the boundary.
The question in which we were interested in is: ”do these two layers can interact the one with the other ? If
yes, do we have to incorporate to (6) a new term W (t, x; x1

ε , x2

ε ) to take this interaction into account, and
do this interaction produces some new interesting behaviours ?”

”Unfortunately” the answer of the above question will generically be no. As a consequence, we will show
that the two layers do not interact the one with the other and thus that (6) stands for a good approximation
of the solution to the corner problem (1). It is an interesting result in itself, but the fact that the two layers
do not interact the one with the other is a little disappointing.

The reason is however rather simple. Indeed, because of the fast decays, the two layers can only interact
near the corner in the area {0 < x1, x2 ≲ ε}. However in this neighbourhood of the corner the layers are
determined by the corner value u|x1=x2=0, but from the boundary conditions and compatibility conditions
such a double trace is in fact zero.

The paper is organized as follows: Section 2 describes the several assumptions made on problem (1) and
states the main results of the article namely Theorem 2.1 for pure boundary value problems and Theorem
2.2 for initial boundary value problems. The proof of the main results occupies Section 3. This section is
divided into three paragraphs. The first one, namely Paragraph 3.1, gives the proof of Theorem 2.1. Then
Paragraph 3.2 gives the main ideas in the proof of Theorem 2.2. To facilitate the exposition these detailed
proofs are given for constant coefficients. Then Paragraph 3.3 exposes the required modifications to deal
with variable coefficients problems. Section 4 deals with the viscous perturbations of (1). The main result
of the section establishing the existence of the expansion and its error analysis is Theorem 4.1. Finally, the
last section, namely Section 5 discusses the functional spaces where we have shown the existence of a strong
solution and gives some examples of physical interest satisfying the structural assumptions that we have
done to construct strong solutions and to construct its vanishing viscosity expansion.

2 Main results

2.1 Some notation and assumptions

Let us start by the following generic notation. For a, b ∈ R, we denote Ja, bK := [a, b] ∩ Z and we use the
shorthand notation a ≲ b for ”there exists C > 0 such that a ≤ Cb”. Such a constant C is assumed to be
independent of all the considered parameters. If such a dependency occurs and is meaningful we go back to
the classical notation. For x ∈ Rd we will sometimes use the decomposition x = (x1, x2, x

′) with x′ ∈ Rd−2.
For T > 0, when dealing with initial boundary value problems, we will use the notations

ΩT := [0, T ]× Γ, ∂Ω1,T ∼ ∂Ω2,T := [0, T ]× R+ × Rd−2.

For X ⊂ ΩT and s ∈ N, Hs(X) stands for the usual Sobolev space of order s. Classically we will denote
H∞(X) := ∩s∈NH

s(X).

For fixed s ∈ N, to state our existence result properly, we shall introduce the following subspaces of
Hs(ΩT ):

Ws
T := {u ∈ C 0(]−∞, T ] ;Hs(Γ)) \ ∀ j ∈ J0, sK, ∂j

t u ∈ C 0(]−∞, T ] ;Hs−j(Γ))} and

Ws,♭
T := {u ∈ C 0(]−∞, T ] ;Hs(R+ × Rd−2)) \ ∀ j ∈ J0, sK, ∂j

t u ∈ C 0(]−∞, T ] ;Hs−j(R+ × Rd−2))}

equipped with the norms, for t ≤ T

|||u(t)|||s :=
s∑

j=0

∥∂j
t u(t)∥Hs−j(Γ) and |u(t)|s :=

s∑
j=0

∥∂j
t u|∂Ω·,T (t)∥Hs−j(R+×Rd−2)

We define W∞
T := ∩s∈NW

s
T (resp. W∞,♭

T := ∩s∈NW
s,♭
T ) and we finally introduce X∞

T,K (resp. X∞,♭
T,K) as the
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subspace of W∞
T (resp. W∞,♭

T,K) of functions satisfying that

X∞
T,K := {u ∈ W∞

T \ ∃K > 0, ∀ s ∈ N, |||u(t)|||s ≲ Kss!} and (7)

X∞,♭
T,K := {u ∈ W∞

T \ ∃K > 0, ∀ s ∈ N, |u(t)|s ≲ Kss!}.

In the above there is no loss of generality by assuming that K ≥ 1.

Because we are interested in regular solutions to (1), compatibility conditions on the sources f, g1, g2 are
expected. Because the initial datum vanishes in (1), these sources must be flat at {t = 0}. Consequently,
for some functional space F we denote by F♮ the subspace of F formed by functions f ∈ F satisfying the

flatness condition for all j ∈ N, (∂j
t f)|t≤0 = 0.

The two following assumptions2 are classical in the study of hyperbolic boundary value problems.

Assumption 2.1 (Constantly hyperbolic operator) The operator L(∂) is assumed to be hyperbolic with
constant multiplicity. More precisely, there exist an integer M , homogeneous of degree one with respect to ξ,
analytic functions λ1, ..., λM on ΩT × Rd \ {0} and integers µ1, ..., µM such that

∀ (t, x) ∈ ΩT , ∀ ξ = (ξ1, ..., ξd) ∈ Rd \ {0}, det
(
τI +

d∑
j=1

ξjAj(t, x)
)
=

M∏
k=1

(τ − λk(t, x, ξ))
µk .

The eigenvalues λ1, ..., λM are semi-simple and they satisfy λ1(·, ξ) < ... < λM (·, ξ), for all ξ ∈ Rd \ {0}.

For simplicity, we assume that the two sides of the boundary are uniformly not characteristic. More precisely,
we assume that

Assumption 2.2 (Non characteristic boundary conditions) For all (t, x) ∈ ΩT the matrices A1(t, x)
and A2(t, x) corresponding to normal coefficient for the sides ∂Ω1 and ∂Ω2 respectively are invertible. More-
over, we assume that p1 (resp. p2), the number of positive eigenvalues of A1 (resp. A2) does not depend on
(t, x).

With these assumptions in hand, we have the following decomposition of the space RN :

∀ (t, x) ∈ Ω, RN = Es
1(t, x)⊕Eu

1 (t, x) = Es
2(t, x)⊕Eu

2 (t, x),

where for j ∈ J1, 2K, Es
j(·) (resp. Eu

j (·)) stands for the eigenspace associated to negative (resp. positive)
eigenvalues of Aj . In the following, we will frequently write Es,u

j instead of Es,u
j (t, x).

The following assumption is a reinforcement of the one of Sarason [13]. It has also been used in [3] in the
study of persistence of regularity of the solution. We do not known if this assumption is necessary or not,
for the existence of a strong solution. But as we will see, it has the advantage to simplify some points of the
proof. Let us point here that the counter-example to uniqueness of [9] seems to indicate that a pathological
behavior of Sarason’s matrix A−1

1 A2 implies a pathological behavior of the solution.

Assumption 2.3 For all (t, x) ∈ ΩT , the real eigenvalues of (A−1
1 A2)(t, x) (if they exist) are negative3.

Our main assumption in this article is the following. It is a structural assumption ensuring that the
previous eigenspaces are compatible the one with the other. More precisely:

Assumption 2.4 We assume that the two following points are satisfied:

2Our main results are stated for constant coefficients problems, see Theorems 2.1 and 2.2. However, because it can be
extended to variable coefficients problems, see Theorem 2.3, we prefer to state the assumptions in the variable framework only
in order to save some material.

3In [13], Sarason only requires this sign property for the eigenvalues associated to Jordan blocks of A−1
1 A2.
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1. For all (t, x) ∈ ΩT , we have the decomposition

RN = Es
1(t, x)⊕Es

2(t, x) = ⊕λk<0 ker(A1 − λkI)(t, x)⊕λk<0 ker(A2 − λkI)(t, x). (8)

In particular, it implies that the number of lines in the boundary conditions satisfy N = p1 + p2. We
define P k

1 := P k
1 (t, x) (resp. P k

2 = P k
2 (t, x)) the projection on ker(A1−λkI) (resp. ker(A2−λkI)) with

respect to decomposition (8).

2. Let j ∈ J1, 2K, then for all (t, x3−j , x
′) ∈ ∂Ωj,T we have that

kerBj(t, x
′, x3−j) ∩Es,♭

3−j(t, x3−j , x
′) = {0} , (9)

where Es,♭
3−j := Es

3−j|xj=0
.

Let us point here that when N = 2, then the first statement of Assumption 2.4 is a consequence of
Assumption 2.3. Indeed, in such a setting, in order to have a ”true” boundary value problem, we should
assume that p1 = p2 = 1. So we just have to justify that Es

1 ∩ Es
2 = {0}. By contradiction, let u ̸= 0 be

in Es
1 ∩ Es

2. Then, on the one hand, we have A1u = λ1u, with λ1 < 0 and, on the other hand, we have
A2u = λ2u, with λ2 < 0. Consequently, we have A−1

1 A2u = λ2

λ1
u which contradicts Assumption 2.3.

In the general framework, we do not know if the first statement of Assumption 2.4 can be deduce from
Sarason’s Assumption 2.3.

To conclude this preliminary paragraph, we recall the following terminology for boundary conditions.

Definition 2.1 (Strictly dissipative boundary conditions) Let j ∈ J1, 2K, we say that the boundary
condition Bj is strictly dissipative if for all (t, x3−j , x

′) ∈ ∂Ωj,T , we have the inequality

∀ v ∈ kerBj(t, x3−j , x
′), ⟨Aj|xj=0

(t, x3−j , x
′)v, v⟩ < 0,

and if kerBj is maximal for the above property. We here mean that kerBj is not properly included in any
subspace having the above property.

Strictly dissipative boundary conditions have the advantage to be easy to check algebraically. They
constitute a particular class of boundary conditions for which the well-posedness of the corner problem (1)
can be established (see [6] and [3]). It is known that in the half-space geometry, except when N = 2 (see
[15], they do not constitute the most generic possible boundary conditions leading to strong well-posedness.
From the result of [8] in the half-space, the most generic conditions in such a geometry are characterized by
the so-called uniform Kreiss-Lopatinskii condition.

In the quarter space, the work of Osher [10] indicates that imposing the uniform Kreiss-Lopatinskii
condition on each side is not sufficient for strong well-posedness. In [10] a new necessary invertibility
condition is identified. It is, however, still not so clear that with this extra invertibility condition in hand,
we can show an a priori energy estimate without losses of derivatives. Moreover the result of [10] does not
give any result about the existence of L2 solution. Here, by constructing a strong solution we try to fill this
lacuna (at least partially).

2.2 Simple construction of strong solutions to hyperbolic corner problems

The main results of this article state the existence of regular strong solutions to the hyperbolic corner problem
reading under the form (1) or to its associated initial boundary value problem. They occupy the following
paragraph.

2.2.1 Statement of the main results

Let us first consider the boundary value problem, for T > 0
L(∂)u = f in ΩT ,

B1u|x1=0 = g1 on ∂Ω1,T ,

B2u|x2=0 = g2 on ∂Ω2,T ,

u|t≤0 = 0 on Γ,

(10)
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then we have the following result:

Theorem 2.1 Assume that the coefficients of (10) are constant and satisfy Assumptions 2.1, 2.2, 2.3 and
2.4. Assume moreover that there exist K ≥ 1 and T > 0 such that the sources f ∈ X∞

K,T,♮ and (g1, g2) ∈
(X∞,♭

K,T,♮)
2. Then for K ′ large enough and 0 < T ′ ≤ T small enough, there exists u ∈ X∞

K′,T ′,♮ solution to
(10).

So that, if the sources live in the spaces X∞
T,K,♮ and X∞,♭

T,K,♮ that is to say that we have a control on the
growth of the derivatives, then we have the existence of a regular strong solution and we also have the same
kind of control on the derivatives of the solution.

Let us stress that the above result holds locally in time. The maximal time of resolution depends on the
coefficients of L(∂) and on the control parameter K. Such a maximal time of resolution already appears for
any operator L(∂) with D ̸= 0, so that we recover the same behaviour of the solutions. The maximal time
of resolution can be decreasing compared to the problem in the half-space, but the behaviour of the solution
is qualitatively the same.

Our second result deals with the initial boundary value problem. By linearity there is no loss of generality
by assuming that f, g1, g2 ≡ 0. We thus consider for T > 0:

L(∂)u = 0 in ΩT ,

B1u|x1=0 = 0 on ∂Ω1,T ,

B2u|x2=0 = 0 on ∂Ω2,T ,

u|t=0 = u0 on Γ.

(11)

We introduce the following functional space for the initial datum:

Y∞
K :=

{
u ∈ H∞(Γ) \ ∃K ≥ 1, ∀ s ∈ N, ∥u∥Hs(Γ) ≲ Kss!

}
.

Then the result is the following:

Theorem 2.2 Under the assumptions of Theorem 2.1, let the initial datum u0 ∈ Y∞
K satisfies the compati-

bility conditions (31) at any order, then there exists K ′ > 0 large enough and 0 < T ′ ≤ T small enough such
that u ∈ X∞

K′,T ′ is a solution to (11).

We would like to insist on the fact that in Theorems 2.1 and 2.2, we do not made any assumptions on
the type of the boundary conditions. We do not require the boundary conditions to be dissipative or to
satisfy the uniform Kreiss-Lopatinskii condition. It is also the case in the half-space geometry where the
construction of a solution can be made if one has some dual energy estimate. Such a dual energy estimate
is of course a consequence of a good choice for the (primal) boundary condition. But it could also be stated
independently of the boundary condition. Here the only point which is required about theses boundary
conditions is that they satisfy the second point of the structure Assumption 2.4.

2.2.2 Consequences

If we ask a little more about the boundary conditions, more precisely that they gives rise to a well-posed
problem having an a priori energy estimate in L2, then the constructed strong solution of Theorems 2.1 and
2.2 becomes necessarily unique. We thus have the following corollary

Corollary 2.1 Under assumptions of Theorem 2.1, if the boundary value problem (10) (resp. (11)) comes
with the a priori energy estimate, there exists 0 < T ′ ≤ T such that for all 0 < t ≤ T ′,

∥u(t, ·)∥2L2(Γ) + ∥u|x1=0∥2L2(∂Ω1,t)
+ ∥u|x2=0∥2L2(∂Ω2,t)

(12)

≲
∫ t

0

∥f(s, ·)∥2L2(Γ) ds+ ∥g1∥2L2(∂Ω1,t)
+ ∥g2∥2L2

γ(∂Ω2,t)(
resp. the l.h.s of (12) ≲ ∥u0∥L2(Γ)

)
,

then the strong solution to (10) (resp. (11)) given by Theorem 2.1 (resp. 2.2) is unique.
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A complete characterization of the boundary conditions leading to L2-well-posedness is, in the author’s
knowledge, a widely open question. However, in the particular framework of symmetric operators with
strictly dissipative boundary conditions, then such an estimate can be shown. We refer for instance to [2] or
[3]. As a consequence, in this particular interesting setting we can show that

Corollary 2.2 Under the assumptions of Theorem 2.1, if we also assume that the coefficients of L(∂) are
symmetric and that the boundary conditions are strictly dissipatives in the sense of Definition 2.1, then from
[3] the problem is L2-well-posed. Consequently, the strong solution to (10) (resp. (11)) given by Theorem
2.1 (resp. Theorem 2.2) is unique.

2.2.3 Variable coefficients in a nutshell

To conclude our statement of the results of this article we give some extensions to variable coefficients
boundary value problems or initial boundary value problems. Classically for s ∈ N, we consider W s,∞(X)
the usual Sobolev space of functions which have bounded derivatives up to the order s, and we denote
W∞,∞(X) := ∩s∈NW

s,∞(X). Then the result is the following:

Theorem 2.3 Assume that the coefficients of the problem (10) (resp. (11)), namely Aj, D, B1 and B2

admit the regularity

Aj ∈ C (ΩT ) ∩W∞,∞(ΩT )(resp.Aj ∈ C (ΩT ) ∩W∞,∞(ΩT )), D ∈ W∞,∞(ΩT ) (resp. W∞,∞(ΩT ))

and for k = 1, 2, Bk ∈ W∞,∞(∂Ωk,T ) (resp. W∞,∞(∂Ωk,T )).

To simplify the following4, we assume that there exists a universal constant C > 0 such that

∀ j ∈ J1, dK, ∀α ∈ N1+d, ∥∂αAj∥L∞(X), ∥∂αD∥L∞(X) ≤ Cand for k ∈ {1, 2}, ∀βk ∈ N1+d−1, ∥∂βkBk∥L∞(Yk)

where X = ΩT or X = ΩT , Yk = ∂Ωk,T or ∂Ωk,T and where the derivatives are defined by ∂α := ∂α0
t · · · ∂αd

d ,

∂β1 := ∂
β1,0

t ∂
β1,2

2 · · · ∂β1,d

d and ∂β2 := ∂
β2,0

t ∂
β2,1

1 ∂
β2,3

3 · · · ∂β2,d

d . Finally, we assume that the coefficients satisfy
the assumptions of Theorem 2.1 (resp. Theorem 2.2). Then the conclusion of Theorem 2.1 (resp. Theorem
2.2) still holds.

3 Proof of the main results

This section gives a detailed proof of Theorem 2.1 (see Paragraph 3.1). The proof of Theorem 2.2 follows
essentially the same lines, or it can be deduced from Theorem 2.1 and the use of some Borel extension lemma.
We refer to Paragraph 3.2 for more details. Finally Paragraph 3.3 contains the required modifications to
apply the previously described methods in the variable coefficients framework.

3.1 Proof of Theorem 2.1

The proof of Theorem 2.1 is made in three steps, we reformulate the problem in terms of outgoing transport
equations by using Assumption 2.4, see Paragraph 3.1.1. We then treat the coupling between these transport
phenomena by an iterative scheme. The well-posedness of such a scheme is studied in Paragraph 3.1.2, while
its convergence is investigated in Paragraph 3.1.3.

3.1.1 Reformulation of the equations

First let us stress that in this paragraph the coefficients Aj , j ∈ J1, dK, D and B1, B2 are assumed to be
constant. We recall that from Assumption 2.4 we can decompose any u ∈ RN as

u =

M1∑
k=1

P k
1 u+

M2∑
ℓ=1

P ℓ
2u (13)

where ∀ k ∈ J1,M1K, A1P
k
1 u = λ1,kP

k
1 u and ∀ ℓ ∈ J1,M2K, A2P

ℓ
2u = λ2,ℓP

ℓ
2u, (14)

4We have good reasons to believe that such a uniform bound for the derivatives can be weakened in estimates reading · ≤ Cs,
with s = |α|. The main obstructions in the present proofs are however pointed in the core of the proofs.
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with λ1,·, λ2,· < 0.
We simply denote for k ∈ J1,M1K and ℓ ∈ J1,M2K, u1,k := P k

1 u and u2,ℓ := P ℓ
2u. We also introduce for

given k and ℓ

u∗
1,k :=

∑
k′ ̸=k

u1,k′ , u∗
2,ℓ :=

∑
ℓ′ ̸=ℓ

u2,ℓ′ and u1 :=

M1∑
k=1

u1,k, u2 :=

M2∑
ℓ=1

u2,ℓ.

If we use the decomposition (13) in the interior equation of (1), then we obtain the equations

∂t(u1 + u2) +

M1∑
k=1

λ1,k∂1u1,k +

M2∑
ℓ=1

λ2,k∂2u2,k +A1∂1u2 +A2∂2u1 +

d∑
j=3

Aj∂j(u1 + u2) +D(u1 + u2) = f.

We apply P k
1 (resp. P ℓ

2 ) for all k ∈ J1,M1K (resp. ℓ ∈ J1,M2K) to obtain the equations

∀ k ∈ J1,M1K, ∂tu1,k + λ1,k∂1u1,k + P k
1 A2∂2u1,k + P k

1

d∑
j=3

Aj∂ju1,k + P k
1 Du1,k

= f1,k − P k
1 A1∂1u2 − P k

1 A2∂2u
∗
1,k −

d∑
j=3

P k
1 Aj∂j(u2 + u∗

1,k)− P k
1 D(u∗

1,k + u2)

and

∀ ℓ ∈ J1,M2K, ∂tu2,ℓ + λ2,ℓ∂2u2,ℓ + P ℓ
2A1∂1u2,ℓ + P ℓ

2

d∑
j=3

Aj∂ju2,ℓ + P ℓ
2Du2,ℓ

= f2,ℓ − P ℓ
2A1∂2u1 − P ℓ

2A1∂1u
∗
2,ℓ −

d∑
j=3

P ℓ
2Aj∂j(u1 + u∗

2,ℓ)− P ℓ
2D(u∗

2,ℓ + u1)

where we defined f1,k := P k
1 f and f2,ℓ := P ℓ

2f .
In the following we will thus consider equations reading under the form (we write uk = u1,k and uℓ = u2,ℓ

to save some notation)

∂tuk + λ1,k∂1uk + Ã2,k∂2uk +

d∑
j=3

Ãj,k∂juk +Dkuk (15)

= f1,k − Fk(∂1u2)−Gk(∂2u
∗
1,k)−Hk(∂j(u2 + u∗

1,k))−Dk(u
∗
1,k + u2) in ΩT ,

∂tuℓ + λ2,ℓ∂2uℓ + Ã1,ℓ∂1uℓ +

d∑
j=3

Ãj,ℓ∂juℓ +Dℓuℓ

= f2,ℓ − Fℓ(∂2u1)−Gℓ(∂1u
∗
2,ℓ)−Hℓ(∂j(u1 + u∗

2,ℓ))−Dℓ(u
∗
2,ℓ + u1) in ΩT ,

where we defined Ãj,· = P ·AjP
· and D· = P ·D and where the terms in the right-hand sides can be made

explicit. Note that in the right-hand side we make the slight abuse of notation ∂j for the collection of the ∂j
for j ∈ J1, dK.In the following we will just have to keep in mind that they depend linearly on their variables.
We thus obtain transport equations where the transport are coupled the one to the others via the terms in
the right-hand sides of (15).

Then we make the simple (but crucial) remark that because we have λ1,k < 0 (resp. λ2,ℓ < 0), the
transport in the first (resp. second) equation of (15) is outgoing for the side ∂Ω1,T (resp. ∂Ω2,T ). As a
matter of fact, we can then solve the first (resp. second) equation for (x1, x2) ∈ R × R+ (resp. R+ × R)
instead of R2

+. Moreover no boundary condition on ∂Ω1,T (resp. ∂Ω2,T ) is required because of the fact that
the transport is outgoing.
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Consequently, we now have to solve two boundary value problems in the upper and right half-spaces. Let
us have a look to the boundary conditions, we have using the decomposition (13):{

B1u2|x1=0
= g1 −B1u1|x1=0

on ∂Ω1,T ,

B2u1|x2=0
= g2 −B2u2|x2=0

on ∂Ω2,T ,
(16)

and in order to solve these conditions we shall be more precise about the eigenvalues of the coefficients Ã1,ℓ

and Ã2,k. Firstly, let us point that from [[4]-Theorem 1.6] the subsystems (15) inherit the hyperbolicity of

the one of L(∂). In particular, the eigenvalues of Ã1,ℓ and Ã2,k are real. The following lemma precises the
sign of the eigenvalues:

Lemma 3.1 Under Assumption 2.3, for any k ∈ J1,M1K and any ℓ ∈ J1,M2K, let µ ∈ R be such that there

exists v ∈ RN \ {0} satisfying Ã1,ℓv = µv or Ã2,kv = µv, then µ > 0.

Proof of Lemma 3.1 We show the result for Ã1,ℓ. The proof being analogous for Ã2,k. Let v be as

specified. By definition of Ã1,ℓ we have P ℓ
2A1P

ℓ
2v = µv. We apply P ℓ

2 on the left-hand side and we use that
fact that Ran P ℓ

2 = ker(A2−λ2,ℓI). Consequently, we have P
ℓ
2 (A1− µ

λ2,ℓ
A2)P

ℓ
2v = 0. As a consequence, µ

λ2,ℓ

is a (real) eigenvalue of A−1
2 A1, but λ2,ℓ < 0, so that from Assumption 2.3, we necessarily have µ > 0.

□

Consequently, all the eigenvalues of the normal coefficients in the systems (15) are positive, we thus have
to prescribe all the components of the trace of u1,k (resp. u2,ℓ) on ∂Ω2,T (resp. ∂Ω1,T ). But because of the
second statement of Assumption 2.4, we have kerB1 ∩ Es

2 = {0}, so that we can invert the matrix B1 in
the first equation of (16). We proceed similarly for the second equation and we thus obtain the couple of
boundary conditions:u1,k|x2=0

= P k
1 ϕ2

(
g2 −B2u2|x2=0

)
:= g2,k − g2,k(u2|x2=0

) on ∂Ω2,T ,

u2,ℓ|x1=0
= P ℓ

2ϕ1

(
g1 −B1u1|x1=0

)
:= g1,ℓ − g1,ℓ(u1|x1=0

) on ∂Ω1,T ,

where ϕj := B−1
j|Es

3−j

.

So that, finally we have to solve the couple of systems
∂tuk + λ1,k∂1uk + Ã2,k∂2uk +

∑d
j=3 Ãj,k∂juk +Dkuk = f1,k − Fk(u

∗
k) for (x1, x2) ∈ R× R+,

uk|x2=0
= g2,k − g2,k(u2|x2=0

),

uk|t≤0
= 0,

(17)

and 
∂tuℓ + λ2,ℓ∂2uℓ + Ã1,ℓ∂1uℓ +

∑d
j=3 Ãj,ℓ∂juℓ +Dℓuℓ = f2,ℓ − Fℓ(u

∗
ℓ ) for (x1, x2) ∈ R+ × R,

uℓ|x1=0
= g1,k − g1,ℓ(u1|x1=0

),

u|ℓt≤0
= 0,

(18)

where u∗
· stands for the collection of the (u1,a, u2,b) with a, b ̸= ·, and where we introduced

Fk(u
∗
k) :=Fk(∂1u2)−Gk(∂2u

∗
1,k)−Hk(∂j(u2 + u∗

1,k))−Dk(u2 + u∗
1,k),

Fℓ(u
∗
ℓ ) :=Fℓ(∂2u1)−Gℓ(∂1u

∗
2,ℓ)−Hℓ(∂j(u1 + u∗

2,ℓ))−Dℓ(u1 + u∗
2,ℓ).

3.1.2 The iterative scheme

In order to solve systems (17) and (18) we treat the coupling in the right-hand sides inductively. We thus
consider (un)n∈N := (un

k , u
n
ℓ )n∈N, the sequence of functions defined by:

∂u0
k + λ1,k∂1u

0
k + Ã2,k∂2u

0
k +

∑d
j=3 Ãj,k∂ju

0
k +Dku

0
k = f1,k in Ω̃2,T ,

u0
k|x2=0

= g2,k for x2 = 0,

u0
k|t≤0

= 0 for t ≤ 0,

(19)
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and 
∂u0

ℓ + λ2,ℓ∂2u
0
ℓ + Ã1,ℓ∂1u

0
ℓ +

∑d
j=3 Ãj,ℓ∂ju

0
ℓ +Dℓu

0
ℓ = f2,ℓ in Ω̃1,T ,

u0
ℓ|x1=0

= g1,ℓ for x1 = 0,

u0
ℓ|t≤0

= 0 for t ≤ 0,

(20)

and then for n ∈ N, we define (un+1)n∈N := (un+1
k , un+1

ℓ )n∈N as the solutions to the problems
∂tu

n+1
k + λ1,k∂1u

n+1
k + Ã2,k∂2u

n+1
k +

∑d
j=3 Ãj,k∂ju

n+1
k = f1,k − Fk(u

n,∗
k ) in Ω̃2,T ,

un+1
k|x2=0

= g2,k − g2,k(u
n
2|x2=0

) on x2 = 0,

un+1
k|t≤0

= 0 for t ≤ 0,

(21)

and 
∂tu

n+1
ℓ + λ2,ℓ∂2u

n+1
ℓ + Ã1,ℓ∂1u

n+1
ℓ +

∑d
j=3 Ãj,ℓ∂ju

n+1
ℓ = f2,ℓ − Fℓ(u

n,∗
ℓ ) in Ω̃1,T ,

un+1
ℓ|x1=0

= g1,k − g1,ℓ(u
n
1|x1=0

) on x1 = 0,

un+1
ℓ|t≤0

= 0 for t ≤ 0.

(22)

The following lemma gives the necessary well-posedness result and the energy estimates for the problems
(21). The result for the problem (22) being analogous.

Lemma 3.2 Let s ∈ N, T > 0 and λ < 0 be given, let two sources f ∈ Ws
T,♮ and g ∈ Ws,♭

T,♮ then the
boundary value problem:

Lu := ∂tu+ λ∂1u+ Ã2∂2u+
∑d

j=3 Ãj∂ju+Du = f in Ω̃2,T ,

u|x2=0 = g on ∂Ω̃2,T ,

u|t≤0 = 0 on R1+d−2,

(23)

admits a unique solution u ∈ Ws
T,♮ satisfying the energy estimate: there exist 0 < T ′ := T ′(D) ≤ T such

that for all 0 < t ≤ T ′ we have:

|||u(t)|||s + |u|x1=0(t)|s ≲
∫ t

0

|||f(t′)|||s dt
′ + ∥g∥Hs(∂Ω̃2,t)

. (24)

In fact, to have a more convenient energy estimate for our convergence analysis, it will be useful to modify
a little the energy estimate (24) in order to express the right-hand side as an integral term. In order to do
so, we remark that we can bound the term ∥g∥Hs(∂Ω̃2,t)

by |g(t)|s. Then we write

|g(t)| ≤ |g(0)|s︸ ︷︷ ︸
=0

+

∫ t

0

|∂tg(t′)|s dt′ ≤
∫ t

0

|g(t′)|s+1 dt
′,

if we restrict our attention to sources in Ws,♭
T,♮. As a consequence, we pay a derivative on the boundary in

order to recover the integral factor. However as we will see, because of the definitions (21) and (22) such a
loss in the interior is automatic. The advantage to have an integral term in the right-hand side of (24) will
be clarified in the convergence analysis. We end up with the following well-posedness result:

Corollary 3.1 Let s ∈ N and T > 0 be given, let two sources f ∈ Ws
T,♮ and g ∈ Ws+1,♭

T,♮ then the boundary
value problem (23) admits a unique solution u ∈ Ws

T satisfying the energy estimate: there exists 0 < T0 < T
such that for all 0 < t ≤ T0 we have:

|||u(t)|||s + |u|x1=0(t)|s ≲
∫ t

0

|||f(t′)|||s + |g(t′)|s+1 dt
′. (25)

Proof of Lemma 3.2 We just give here the main lines in the proof of the a priori energy estimate (24).
The construction of a solution can be made classically by duality (see for instance [[4]-Section 4.4 and Para-
graph 4.5.3]). Finally, the fact that this solution satisfies (24) follows by a regularization procedure by some
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mollifier depending on the tangential variables (t, x1, x
′).

We first show (24) for s = 0. Let t < T we test the evolution equation of (23) against u and we integrate
over Ωt. We thus have

∥u(t, ·)∥2L2(Γ) − λ︸︷︷︸
<0

∥u|x1=0∥2L2(∂Ω1,t)
−t∥D∥ × sup

t′≤t
∥u(t′, ·)∥2L2(Γ)

≤
∫ t

0

∫
Γ

⟨f, u⟩dxdt+
∫
∂Ω2,t

⟨(A2u)|x2=0, u|x2=0⟩dtdx1 dx
′.

We conclude to (24) by using the fact that the full trace u|x2=0 is prescribed, it equals g. So that the second
term in the right-hand side is bounded by C∥g∥L2

γ(∂Ω̃2,t)
. Let n(t) := supt′≤t ∥u(t′, ·)∥L2(Γ), if we take the

supremum for t′ ≤ t we can replace the term ∥u(t, ·)∥2L2(Γ) appearing in the left-hand side by n2(t).
We use Young inequality for the first term in the right-hand side∫ t

0

∫
Γ

⟨f, u⟩dxdt ≤ n(t)

∫ t

0

∥f(t′, ·)∥L2(Γ) dt
′ ≤ 1

2
n2(t) +

1

2

(∫ t

0

∥f(t′, ·)∥L2(Γ) dt
′
)2

and we absorb the term 1
2n

2(t) by the one appearing in the left-hand side. Finally we choose T ′ small
enough such that (for instance) T ′ ≤ 1

4∥D∥ to ensure that the left-hand side is bounded by below by 1
4n

2(t).

Estimate (24) for s = 0 follows.

We now turn to the proof for s ∈ N. Clearly, the tangential derivatives (x1, x
′) commute with the

boundary condition of (23). Similarly, the time derivatives commute with the boundary condition. For the
initial condition we use the interior equation to write

(∂tu)|t≤0 = −
(
D +

d∑
j=1

Aj∂j

)
u|t≤0︸ ︷︷ ︸
=0

+ f|t≤0︸ ︷︷ ︸
=0

= 0,

because f is flat at the origin. A simple induction shows that we have for all 0 ≤ α0 ≤ s, (∂α0
t u)|t≤0 = 0. So

that if ∂α := ∂α0
t ∂α1

1 ∂α3
3 · · · ∂αd

d , with α ∈ N1+d−2 satisfying |α| = s, then we have the system of equations:
L∂αu = ∂αf in Ω̃2,T ,

(∂αu)|x2=0 = ∂αg on ∂Ω̃2,T ,

(∂αu)|t≤0 = 0 on Γ,

and the study of the case s = 0 applies. It gives the a priori energy estimate (24) up to the fact that we have to
control the normal derivatives with respect to the normal variable x2. More precisely if we denote by Ws

T,tan

the set of functions u defined by the condition |||u(t)|||′s < ∞ with |||u(t)|||′s :=
∑s

j=0 ∥∂
j
t u(t)∥Hs−j

tan (Γ), where

the tangential Sobolev space Hs
tan is the Sobolev space of order s generated by the tangential derivatives,

that is to say the ones with respect to t, x1, x3,..., xd. Then we have the estimate:

|||u(t)|||′s + |u(t)|s ≤
∫ t

0

|||f(t′)|||′s dt
′ + ∥g∥Hs(∂Ω̃2,t)

.

We are in a non characteristic framework so that we can use the interior equation to isolate ∂2u and express
this derivative in terms of the tangential derivatives. More precisely we write

∂2u = Ã−1
2

[
f − ∂tu−

d∑
j=3

Ãj∂ju− λ∂1u−Du
]
,

so that by induction we obtain:

|||u(t)|||s ≲ |||u(t)|||′s + |||f(t)|||s−1 ≲ |||u(t)|||′s + |||f(0)|||s−1︸ ︷︷ ︸
=0

+

∫ t

0

|||∂tf(t′)|||s−1︸ ︷︷ ︸
≤|||f(t′)|||s

dt′,

where we use the flatness of f at the origin. This completes the proof of the energy estimate (24).
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□

As a consequence, from Corollary 3.1 we can justify that the sequence (un)n∈N is well-defined with values in
Ws

T0
if 0 < T0 ≤ T is sufficiently small compared to ∥D∥. Indeed we have the following proposition:

Proposition 3.1 For all n ∈ N, for all s ∈ N, there exists 0 < T ′(D) ≤ T such that we have the energy
estimates: for all 0 ≤ tn ≤ T , for all k ∈ J1,M1K, ℓ ∈ J1,M2K∣∣∣∣∣∣un

1,k(tn)
∣∣∣∣∣∣

s
+ |un

1,k|x1=0
(tn)|s ≲

∫ tn

0

· · ·
∫ t1

0

(
|||f(t0)|||s+n + |g(t0)|s+n

)
dt0 · · · dtn−1, (26)

∣∣∣∣∣∣un
2,ℓ(tn)

∣∣∣∣∣∣
s
+ |un

2,ℓ|x2=0
(tn)|s ≲

∫ tn

0

· · ·
∫ t1

0

(
|||f(t0)|||s+n + |g(t0)|s+n

)
dt0 · · · dtn−1. (27)

In particular we note that to define the sequence (un)n∈N for all n ∈ N we use in a non trivial way the fact
that the initial data f , g1 and g2 are infinitely regular. Our analysis clearly breaks down if the sources are
chosen with a finite (but large) regularity Hs.

Proof of Proposition 3.1 We proceed by induction. For n = 0, from the definitions (19) and (20), the
estimates (26) and (27) follow from Corollary 3.1.

Assume that the estimates (26) and (27) hold for some n ∈ N. We fix T ′ small enough to apply Corollary
3.1, we thus have the inequalities: for all k ∈ J1,M1K, for all ℓ ∈ J1,M2K and for all tn+1 ≤ T0∣∣∣∣∣∣∣∣∣un+1

1,k (tn+1)
∣∣∣∣∣∣∣∣∣

s
+|un+1

1,k|x1=0
(tn+1)|s

≲
∫ t

0

|||f(tn)|||s + |g(tn)|s+1 +
∣∣∣∣∣∣Fk(u

n,∗
k )(tn)

∣∣∣∣∣∣
s
+ |g2,k(u

n
2|x2=0

)(tn)|s+1 dtn,

and ∣∣∣∣∣∣∣∣∣un+1
2,ℓ (tn+1)

∣∣∣∣∣∣∣∣∣
s
+|un+1

2,ℓ|x2=0
(tn+1)|s

≲
∫ t

0

|||f(tn)|||s + |g(tn)|s+1 +
∣∣∣∣∣∣Fℓ(u

n,∗
ℓ )(tn)

∣∣∣∣∣∣
s
+ |g1,ℓ(u

n
1|x1=0

)(tn)|s+1 dtn.

Because the F·, g1,· and g2,· are linear5 we have:∣∣∣∣∣∣∣∣∣un+1
1,k (tn+1)

∣∣∣∣∣∣∣∣∣
s
+ |un+1

1,k|x1=0
(tn+1)|s ≲

∫ t

0

|||f(tn)|||s + |g(tn)|s+1 +
∣∣∣∣∣∣un,∗

k (tn)
∣∣∣∣∣∣

s+1
+ |un

2|x2=0
(tn)|s+1 dtn,∣∣∣∣∣∣∣∣∣un+1

2,ℓ (tn+1)
∣∣∣∣∣∣∣∣∣

s
+ |un+1

2,ℓ|x2=0
(tn+1)|s ≲

∫ t

0

|||f(tn)|||s + |g(tn)|s+1 +
∣∣∣∣∣∣un,∗

ℓ (tn)
∣∣∣∣∣∣

s+1
+ |un

1|x1=0
(tn)|s+1 dtn,

we conclude by using (26) and (27) to estimate the last terms in the right-hand sides of the previous equations.

□

3.1.3 Convergence analysis

The aim of the following paragraph is to show that the sequence (un)n∈N defined in Paragraph 3.1.2 is a
Cauchy sequence in Ws

T ′,♮ for all s ∈ N when we choose T ′ small enough. This can be ensured if we restrict

our study to source terms in the functional spaces X∞
K,T,♮ for the interior source term and X∞,♭

K,T,♮ for the
boundary ones. We recall the definition for convenience:

X∞
K,T := {u ∈ H∞ \ ∃K ≥ 1, ∀ s ∈ N, |||u(t)|||s ≲ Kss!},

more comments about this space are given in Paragraph 5.1.
In order to show that the sequence (un)n∈N is a Cauchy sequence we will use the following propositions6:

5We recall that the F· are evaluated in ∂ju, j ∈ J1, dK.
6It is here where it is convenient to work with the energy estimate of Corollary 3.1 instead of the one of Lemma 3.2. If one

uses (24), then the basic energy estimate admits a right-hand side reading tF + G, where F (resp. G) depends on the norm
of the source f (resp. g). When we iterate such a bound in the induction some binomial coefficients appear and we can not
absorb them at the end of the day because we have one extra factorial (see (28))
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Proposition 3.2 For all s ∈ N, for all n ∈ N and for all T ′ ≤ min(1, T0) small enough, we have the
inequalities: for all k ∈ J1,M1K and for all ℓ ∈ J1,M2K,∣∣∣∣∣∣∣∣∣(un+1

1,k − un
1,k)(tn+1)

∣∣∣∣∣∣∣∣∣
s
≤ Cn+1

∫ tn+1

0

Es+n+1(tn) dtn,∣∣∣∣∣∣∣∣∣(un+1
2,ℓ − un

2,ℓ)(tn+1)
∣∣∣∣∣∣∣∣∣

s
≤ Cn+1

∫ tn+1

0

Es+n+1(tn) dtn

where we defined for p ∈ N:

Ep(tn) :=

∫ tn

0

· · ·
∫ t2

0

∫ t1

0

(
|||f(t0)|||p + |g(t0)|p

)
dt0 dt1 · · · dtn−1.

As a direct consequence we obtain:

Proposition 3.3 For all s, n, p ∈ N, for all T ′ ≤ min(1, T0) small enough, we have the inequalities: for all
k ∈ J1,M1K and for all ℓ ∈ J1,M2K,∣∣∣∣∣∣∣∣∣(un+p

1,k − un
1,k)(t)

∣∣∣∣∣∣∣∣∣
s
≤

p∑
q=1

Cn+q

∫ t

0

Es+n+q(t′) dt′ and
∣∣∣∣∣∣∣∣∣(un+p

2,ℓ − un
2,ℓ)(t)

∣∣∣∣∣∣∣∣∣
s
≤

p∑
q=1

Cn+q

∫ t

0

Es+n+q(t′) dt′.

With these propositions in hand, we can easily show that (un)n∈N is a Cauchy sequence when we choose
T ′ small enough, specified below and when the sources are restricted to the space X∞

K,T,♮ i.e. f ∈ X∞
K,T,♮,

g1, g2 ∈ X∞,♭
K,T,♮. We show the result for the terms (un

k )n∈N,k∈J1,M1K, the arguments being analogous for the
(un

ℓ )n∈N,ℓ∈J1,M2K.
Using Proposition 3.3, we have∣∣∣∣∣∣∣∣∣(un+p

1,k − un
1,k)(tn+p)

∣∣∣∣∣∣∣∣∣
s
≤ CpC

n

∫ tn+p

0

Es+n+p(tn+p−1) dtn+p−1,

where we used the bounds, for q ≤ p, Es+n+q ≤ Es+n+p, and bound in the first integral |||f(t0)|||s+n+p +

|g(t0)|s+n+p ≤ Ms+n+p := supt′∈[0,T ′] |||f(t′)|||s+n+p + |g(t′)|s+n+p.

However if the sources f ∈ W∞
K,T,♮, g1, g2 ∈ W∞,♭

K,T,♮ then we have

Ms+n+p ≲ Ks+n+p(n+ s+ p)!.

As a consequence, we end up with∣∣∣∣∣∣∣∣∣(un+p
1,k − un

1,k)(tn+p)
∣∣∣∣∣∣∣∣∣

s
≤ Cs,pC

n (tn+p)
n

(n+ p)!
Kn(n+ s+ p)! ≤ Cs,pC

n(tn+p)
nKn(K ′)n, (28)

where K ′ > 0 is chosen large enough to have (n + s + p)s ≲ (K ′)n. We restrict the final time variable
tn+p ≤ T ′ := 1

2CK′K , so that the right-hand side goes to zero when n ↑ ∞. The space Ws
T ′ being a Banach

space we obtain that (un
1,k) converges to some u1,k ∈ Ws

T ′ . The result being true for all s ≥ 0, we deduce
that u1,k ∈ W∞

T ′ . Moreover, passing to the limit in (17) we obtain that u1,k is a solution to (17). We proceed
similarly for the sequence (un

2,ℓ)n∈N and we show that it converges to some u2,ℓ a solution to (18). Finally,

we define u :=
∑M1

k=1 u1,k +
∑M2

ℓ=1 u2,ℓ which thus define a solution to (10) in W∞
T ′ .

To conclude the proof of Theorem 2.1, we have to justify that u ∈ W∞
K′,T ′ . It is sufficient to show the

result for one of the u1,k. Recall that we assumed K ≥ 1, we fix n0 ∈ N such that
∣∣∣∣∣∣∣∣∣(un0

1,k − u1,k)(t)
∣∣∣∣∣∣∣∣∣

s
≤ 1

2 ,

the triangle inequality combined with the estimate (26) and the definition of the space X∞
K,T gives

|||u1,k(t)|||s ≤
1

2
+ CKn0Kss! ≲ (K ′)ss!.

The proof of Theorem 2.1 is complete.

We end up with the proof of Proposition 3.2.
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Proof of Proposition 3.2 By linearity of the systems (21) and (22) we have that for all n ∈ N, vnk :=
un+1
1,k − un

1,k (resp. vnℓ := un+1
2,ℓ − un

2,ℓ), verifies the equation
∂tv

n
k + λ1,k∂1v

n
k + Ã2,k∂2v

n
k +

∑d
j=3 Ãj,k∂jv

n
k +Dkv

n
k = −Fk(v

n−1,∗
k ) in Ω̃2,T ,

vnk|x2=0
= −g2,k(v

n−1
2|x2=0

) on ∂Ω̃2,T ,

vnk|t≤0
= 0,

resp.


∂tv

n
ℓ + λ2,ℓ∂2v

n
ℓ + Ã1,ℓ∂1v

n
ℓ +

∑d
j=3 Ãj,ℓ∂jv

n
ℓ +Dℓv

n
ℓ = −Fℓ(v

n−1,∗
ℓ ) in Ω̃1,T ,

vnℓ|x1=0
= −g1,ℓ(v

n−1
1|x1=0

) on Ω̃1,T ,

vnℓ|t≤0
= 0.

 (29)

We choose T0 small enough to apply Corollary 3.1. The energy estimate gives that for all n ≥ 1 and for all
0 ≤ tn ≤ T0:

|||vnk (tn)|||s + |vnk|x1=0
(tn)|s ≲

∫ tn

0

∣∣∣∣∣∣∣∣∣vn−1,∗
k (tn−1)

∣∣∣∣∣∣∣∣∣
s+1

+ |vn−1
2|x2=0

(tn−1)|s+1 dtn−1,

|||vnℓ (tn)|||s + |vnk|x2=0
(tn)|s ≲

∫ tn

0

∣∣∣∣∣∣∣∣∣vn−1,∗
ℓ (tn−1)

∣∣∣∣∣∣∣∣∣
s+1

+ |vn−1
1|x1=0

(tn−1)|s+1 dtn−1,

and for n = 0,

∣∣∣∣∣∣v1k(t1)∣∣∣∣∣∣s + |v1k|x1=0
(t1)|s ≲

∫ t1

0

Es+1(t0) dt0 and
∣∣∣∣∣∣v1ℓ (t1)∣∣∣∣∣∣s + |v1ℓ|x2=0

(t1)|s ≲
∫ t1

0

Es+1(t0) dt0.

A direct induction then gives the desired result.

□

3.2 Proof of Theorem 2.2

Because we authorize losses of derivatives in our estimates, a simple way to treat non homogeneous initial
condition is to extend the initial condition u0 on the whole time line by some function let us say U ∈ X∞

K,T

such that U|t=0 = u0, from Borel lemma, and then to consider the new unknown ũ := u − U which solves
a boundary problem reading under the form (1), so that if the new sources (depending on the extension U)
are regular we can apply Theorem 2.1.

In order to have regular sources, compatibility conditions are expected and required. Let us assume that
the solution to 

L(∂)u := ∂tu+Au = 0 in ΩT ,

B1u|x1=0 = 0 on ∂Ω1,T ,

B2u|x2=0 = 0 on ∂Ω2,T ,

u|t=0 = u0 on Γ,

(30)

is regular enough so that all the following traces make sense. We should then first have

(B1u|x1=0)|t=0 = 0 = (B2u|x2=0)|t=0 so that

{
u0|x1=0

∈ kerB1|t=0
,

u0|x2=0
∈ kerB2|t=0

,

the so-called compatibility condition of order zero.
Then, we introduce the sequence (un)n∈N defined for all n ≥ 1 by un := (∂n

t u)|t=0 and u0 = u0. We
isolate the time derivative in the evolution equation of (30), we apply ∂n

t and we use Leibniz formula to
obtain the induction relation

un+1 = −
n∑

k=0

(
n
k

)
(∂n−k

t A)|t=0u
k = −Fn(u

0, u1, ..., un).
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So that we have by a straightforward induction un := −Fn−1(u
0) for all n ≥ 1. We then apply ∂n

t to the
boundary conditions of (30), we use Leibniz formula and evaluate at t = 0 to obtain

G1,n(u0) := (∂n
t B1)|t=0u0|x1=0

−
∑n

k=1

(
n

k

)
(∂n−k

t B1)|t=0(Fk−1(u0))|x1=0 = 0,

G1,n(u0) := (∂n
t B2)|t=0u0|x2=0

−
∑n

k=1

(
n

k

)
(∂n−k

t B2)|t=0(Fk−1(u0))|x2=0 = 0.

(31)

The above relations being the so-called compatibility condition of order n ≥ 1.

As pointed before with these conditions in hand then the proof of Theorem 2.2 can be deduced from
Theorem 2.1 by using some Borel lemma.

An other proof, which is more in the spirit of the present article is to reiterate the proof exposed in
Paragraph 3.1, but within the space ΩT . Clearly, the reformulation part of Paragraph 3.1.1 still holds and
the convergence analysis of Paragraph 3.1.3 operates if the energy estimates of Paragraph 3.1.2 are suitably
modified.

Clearly when we have initial sources the energy estimate Corollary 3.1 becomes

|||u(t)|||s + |u|x1=0(t)|s ≲ ∥u0∥Hs(Γ) +

∫ t

0

(
|||f(t′)|||s + |g(t′)|s

)
dt′. (32)

One can worry that in the above estimate we can not express (in a nature way) the term ∥u0∥Hs(Γ) as a time
integral form. Let us however point that in such a setting we require the iterative scheme to be exact one
initial conditions. More precisely, we will consider the solutions to (19), (21) (resp. (20) and (22)) with the
initial condition un

k|t=0
= P k

1 u0 (resp.u
n
ℓ|t=0

= P ℓ
1u0) for all n ≥ 0. As a consequence, the extra term appearing

in the right-hand side of (32) vanishes in the proof of Proposition 3.2 and the rest of the analysis is unchanged.

To be totally precise, let us indicate that the proof of the energy estimate (32) requires the compatibility
conditions (31). Indeed, the proof of the energy estimate requires the fact that, when the sources are flat,
we have |||f(0)|||s = |g(0)|s = 0. This is not true any more but the compatibility conditions (31) ensure that
these norms can be estimated in terms of ∥u0∥Hs(Γ).

3.3 Modifications of the proofs for variable coefficients

In the following paragraph we end up our construction of strong solutions by considering the case of variable
coefficients. We thus consider from now on that the interior coefficients Aj , D depend on the variable (t, x)
and that the boundary matrix B1 (resp. B2) depends on (t, x2, x

′) (resp. (t, x1, x
′)).

Such a modification of the framework of resolution does not modify the proof exposed in Paragraph 3.1
for constant coefficients and instead of reproduce the whole proof let us indicate the main modifications to
take into account.

To modify the proof of Paragraph 3.1 to variable coefficients we have to be careful about the following
new facts:

1. First, let us mention that the reformulation part of system (1) into the family of transport equations
(21) and (22) still holds with variable coefficients because the spectral properties of Assumption 2.4 are
now assumed to hold pointwise in (t, x). Let us however mention that in the reformulation procedure
of Paragraph 3.1.1, all the objects (in particular the projection) inherit the dependence with respect to
(t, x), so that some commutators (typically the derivatives of the projections) appear and act as zero
order terms. We here ask regularity upon the coefficients Aj to make sure that such derivatives are
understood in a strong sense. Let us however point that because (1) and consequently, the reformulated
systems (21) and (22), already include such a zero order term, the above reformulation hold up to a
suitable modification of D. So that at this step of the proof we have to solve (21) and (22) with
variables coefficients.
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2. In order to do so, we have to modify Lemma 3.2 and Corollary 3.1 suitably. We point that the basic
energy estimates (24) and (25) (for s = 0) still hold in a variable coefficient setting because the sign
property on the eigenvalue λ(t, x) < 0 holds for all (t, x) ∈ ΩT . The only modifications appear in
order to obtain the persistence of regularity result (that is to say when s ≥ 1). Once again because
the coefficients of L now depend on (t, x) some commutators appear. Let us precise how we can now
recover the regularity of the first order derivatives, then the persistence of regularity follows by some
induction procedure. Let ∂k, k ∈ J3, dK∪{1, t} denote a tangential derivative. We have that ∂ku solves
the transport equation

L∂ku+ (∂kλ)∂1u+

d∑
j=2

(∂kÃj)∂ju+ (∂kD)u︸ ︷︷ ︸
Mu

= ∂kf,

(∂ku)|x2=0 = ∂kg,

(∂ku)|t≤0 = 0,

(33)

where we used the flatness of the interior source in the initial condition. Note that because Mu
contains the normal ∂2u, we can not express it as a zero order operator with respect to the collection
of tangential derivatives. We can however reproduce the analysis performed in the constant coefficient
setting and show that up to choose t small with respect to ∥∂kÃk∥L∞(ΩT ) and ∥∂kD∥L∞(ΩT ) we have
the energy estimate78:

∥∂ku(t, ·)∥2L2(Γ)−t∥∂kλ∥L∞(ΩT ) sup
t≤T

∥∂1u(t, ·)∥2L2(Γ) (34)

− t∥∂kÃ2∥L∞(ΩT ) sup
t≤T

∥∂2u(t, ·)∥2L2(Γ) − t
∑
j ̸=k

∥∂kÃj∥L∞(ΩT ) sup
t≤T

∥∂ju(t, ·)∥2L2(Γ)

≲
∫ t

0

∥∂kf(s, ·)∥2L2(Γ) ds+ ∥∂kg∥2L2(∂Ω̃2,T
+ t∥∂kD∥L∞(ΩT ) sup

t≤T
∥u(t, ·)∥2L2(Γ).

We use the preceding energy inequality to estimate the last term in the right-hand side in terms of
the L2-norm. We sum the above estimates for all k ∈ J3, dK ∪ {1, t} for the lowest possible time of
resolution we thus have

∥u(t, ·)∥2H1
tan(Γ)

− t∥∂kÃ2∥L∞(ΩT ) sup
t≤T

∥∂2u(t, ·)∥2L2(Γ) ≲
∫ t

0

∥f(s, ·)∥2H1
tan(Γ)

ds+ ∥g∥2
H1(∂Ω̃2,t)

, (35)

where we recall thatH1
tan denotes the Sobolev space of order one generated by the tangential derivatives

only. So that it remains to deal with the term depending on the normal derivative in the right-hand
side in order to do so we express

∂2u = Ã−1
2

[
f − ∂tu− λ∂1u−

d∑
j=3

Ãj∂ju,
]
, (36)

so that ∥∂2u∥ can be expressed in terms of the tangential derivatives and up to choose t small enough
the second term in the left-hand side of (35) can be absorb by the first one. We thus have the tangential
estimate and (36) gives the missing normal estimate.

3. Because the convergence analysis only required the energy estimate (24) which has been shown to hold.
We can reproduce the analysis of Paragraph 3.1.3 to conclude the proof of Theorem 2.3.

7Note that the regularity of the traces is here again obvious so that we will not incorporate it in the following estimates.
8It is here that a uniform bound on the derivatives of the coefficients is convenient to ensure that such a t can be made

independent of the order of the derivation s. This point is convenient because at the end of the day the above energy estimate
will be used at order s+ n, so that we have to make sure that the maximal time of resolution does not go to zero when n goes
to infinity.
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4 Application to viscous perturbations

In the following paragraph we give a direct consequence of the existence of strong solutions to hyperbolic
corner problems. More precisely, we will consider a viscous approximation of the hyperbolic problem (1):
for T > 0 

L(∂)uε − εEuε = f for (t, x) ∈ ΩT ,

uε
|x1=0 = 0 on ∂Ω1,T ,

uε
|x2=0 = 0 on ∂Ω2,T ,

uε
|t≤0 = 0 on Γ,

(37)

where E is some given elliptic operator. The aim of the following is to describe the limit of the solution uε

when the viscosity parameter ε goes to zero.

Such problems have been intensively studied in the geometry of the half-space (we refer to the consequent
works of [1], [5] and [16]). Because, ε goes to zero, the considered problem changes of type (it is parabolic
for ε > 0 and hyperbolic for ε = 0). So some boundary layers localized around the boundary are expected
in order to correct the modification of the prescribed boundary conditions.

Consequently in a quarter space geometry, two boundary layers, localized around the border ∂Ω1 and
∂Ω2 are expected and the main question that we are addressing here is : ”do the two boundary layers interact
together ?”.

To answer this question, let us be more precise about the functional space used to construct the boundary
layer in the half-space.

4.1 Half-space viscous perturbation in a nutshell and heuristic for the quarter
space

If we consider the half-space viscous approximation
L(∂)uε − εEuε = f in ]0, T ]× Rd−1 × R+,

uε
|xd=0 = 0 on ]0, T ]× Rd−1,

uε
|t≤0 = 0 on Rd−1 × R+,

(38)

then the classical analysis (see for instance [1]) shows the existence of some elements U ∈ SXd
(R+;H

∞
t,x(]0, T ]×

Rd
+), u

0 ∈ H∞(]0, T ]× Rd
+) such that the function

uε
app(t, x) := u0(t, x) + εU (t, x;

xd

ε
), (39)

is an approximation of the solution uε in the sense that ∥uε − uε
app∥L2(ΩT ) ≲ εα, for some α ∈ N. In the

previous formula, let us point that the terms U and u0 are explicitly constructive. In particular, u0 is the
solution to a hyperbolic boundary value problem with suitable boundary conditions.

As a consequence, for the quarter space problem (37) we expect two boundary layers: U localized in the
strip {0 < x1 ≲ ε} and V localized in the strip {0 < x2 ≲ ε}. At first glance, we can not exclude that the
two layers interact the one with the other near the corner in the square {0 < x1, x2 ≲ ε}. So that we shall
a priori look for an approximation of the exact solution uε reading under the form

uε
app(t, x) := u0(t, x) + ε

(
U (t, x;

x1

ε
) + V (t, x;

x2

ε
) + W (t, x;

x1

ε
,
x2

ε
)
)
,

where W is localized in {0 < x1, x2 ≲ ε} and takes into account such an interaction.
The aim of the following is to justify rigorously that such an interaction corrector is not necessary if the

elliptic perturbation is suitably chosen. The reason is that near the corner, the boundary layers U and V
behave like the corner value u|x1=x2=0 which is zero for compatibility reasons on the boundary conditions of
the limiting hyperbolic problem.
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4.2 Notation and assumptions

First, let us be more precise about the elliptic perturbation. It reads E := E(x) :=
∑d

i,j=1 ∂i(Ei,j(x)∂j), and
we require that for all x ∈ Γ, the coefficients Ei,j(x) ∈ MN×N (R) satisfy the following assumption:

Assumption 4.1 We assume that for all i, j ∈ J1, dK2, for all x ∈ Γ, the matrix Ei,j(x) ∈ MN×N (R) is
symmetric. The map x 7→ Ei,j(x) is regular. Moreover the operator E is assumed to be coercive in the sense
that there exists α > 0 such that

∀x ∈ Γ, ∀ ξ ∈ Sd−1,

d∑
i,j=1

ξiξjEi,j(x) ≥ αI.

Finally to simplify the exposition we require a universal bound for the derivatives of these coefficients. More
precisely, we assume that there exists C > 0 such that for all γ ∈ Nd, we have for all i, j ∈ J1, dK

∥∂γEi,j∥L∞(Γ) ≤ C, where ∂γ := ∂γ1

1 · · · ∂γd

d .

Following the analysis in the half-space geometry, it will be convenient to consider some matrices Λ1 and

Λ2 which are well-adapted to describe the boundary layers. We define Λ1 := Λ1(t, x) = E
−1/2
1,1 A1E

−1/2
1,1 and

Λ2 := Λ2(t, x) = E
−1/2
2,2 A2E

−1/2
2,2 . For j ∈ {1, 2}, also introduce Ẽs

j (resp. Ẽu
j ) the eigenspace associated to

the negative (resp. positive) eigenvalues of Λj . Finally, we define Π̃s
j (resp. Π̃u

j ) the projection upon Ẽs
j

(resp. Ẽu
j ) with respect to the decomposition RN = Ẽs

j ⊕ Ẽu
j .

Our main assumption about the ”admissible” perturbation coefficients is the following. It requires some
structural assumptions which are made to ensure that Theorem 2.1 applies to determine the slow amplitude
u0 and that the obtained amplitude vanishes at the corner.

Assumption 4.2 We assume that the perturbation coefficients E1,1 and E2,2 satisfy the following structural
assumptions:

1. For j ∈ {1, 2}, for all (t, x3−j , x
′) ∈ ∂Ωj,T we have the non intersecting conditions:[

(E
−1/2
j,j Ẽs

j)|xj=0 ∩ (Es
3−j)|xj=0

]
(t, x3j , x

′) = {0} .

2. We have
(E

−1/2
1,1 Ẽs

1)|x1=x2=0 ∩ (E
−1/2
2,2 Ẽs

2)|x1=x2=0 = {0}.

3. Finally we have

(A−1
2 A1E

−1/2
2,2 Ẽs

2)|x1=x2=0∩(E
−1/2
1,1 Ẽs

1)|x1=x2=0 = (A−1
1 A2E

−1/2
1,1 Ẽs

1)|x1=x2=0∩(E
−1/2
2,2 Ẽs

2)|x1=x2=0 = {0}.

Let us point that in the particular case where E1,1 = E2,2 = I, then Assumption 4.2 is a trivial consequence
of Assumption 2.1. In particular, Assumption 4.2 is automatically satisfied in the (physically) interesting
particular case where the viscous perturbation E = ∆.

4.3 The proof in the quarter-space

We look for an approximate solution of uε the solution to (37) under the form:

uε(t, x) ∼
∑
n≥0

εnUn
(
t, x;

x1

ε︸︷︷︸
:=X1

,
x2

ε︸︷︷︸
:=X2

)
(40)

where the amplitudes Un will be constructed in the following set of profiles:
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Definition 4.1 (Set of profiles) Let T > 0 and K ≥ 1, a function U is said to be in the set of profiles
PK,T if U ∈ X∞

K,T ⊕SX1(R+;X
∞
K,T )⊕SX2

(R+;X
∞
K,T ). For such a function U , we use the decomposition:

U(t, x;X1, X2) := u(t, x) + U (t, x;X1) + V (t, x;X2).

Inject the ansatz (40) in the interior equation of (37) gives the cascade of equations:

(A1 − E1,1∂X1
)︸ ︷︷ ︸

:=X1

∂X1
U 0 + (A2 − E2,2∂X2

)︸ ︷︷ ︸
:=X2

∂X2
V 0 = 0 for the coefficient ε−1, (41)

then

X1U
1+X2V

1 + L(∂)U0 −
d∑

j=1

(E1,j + Ej,1)∂j∂X1U
0 −

d∑
j=1

∂j(Ej,1)∂X1U
0

︸ ︷︷ ︸
:=E1U 0

(42)

−
d∑

j=1

(E2,j + Ej,2)∂j∂X2
V 0 −

d∑
j=1

∂j(Ej,2)∂X2
V 0

︸ ︷︷ ︸
:=E2V 0

= f for the coefficient ε0, (43)

and, finally, for all n ≥ 1,

X1U
n+1+X2V

n+1 + L(∂)Un −E1U
n −E2V

n − EUn−1 = 0 for the coefficient εn. (44)

When we inject the ansatz (40) in the boundary conditions of (37), we obtain the couple of conditions
(to save some notation, we only keep the dependence with respect to the couples (x1, X1) and (x2, , X2)):

∀n ≥ 0,

{
un
|x1=0(x2) + U n

|x1=X1=0(x2) + V n
|x1=0(x2,

x2

ε ) = 0,

un
|x2=0(x1) + U n

|x2=0(x1,
x1

ε ) + V n
|x2=0(x1) = 0.

(45)

Finally, injecting the ansatz (40) in the initial condition of (37) give us after decoupling the variables

∀n ≥ 0, un
|t≤0 = U n

|t≤0 = V n
|t≤0 = 0. (46)

The main result of this current section is the following theorem describing the asymptotic of the solutions
to (37) when ε ↓ 0.

Theorem 4.1 Under Assumptions 2.1,2.2,2.3, 4.1 and 4.2, we moreover assume that the coefficients of
L(∂) are symmetric. Then we can choose γ large enough, such that if the source f ∈ H∞

K,γ,♮(Ω) then for
all n ∈ N there exist T ′ small enough, K ′ large enough and Un ∈ PK′,T ′ a sequence of profiles satisfying
the cascade of equations (41)-(44), (45) and (46). For given N0 ∈ N, if we define the truncated asymptotic
expansion:

uε
app,N0

:=

N0∑
n=0

εnUn, (47)

and if uε stands for the solution to (37), then we have the error estimate

∥uε − uε
app,N0

∥L2(ΩT ′ ) ≲ εN0+1.

In particular, because the first layers U 0(t, x; x1

ε ) and V 0(t, x; x2

ε ) are O(
√
ε) in L2(ΩT ′) we have the estimate

∥uε − u0∥L2(ΩT ′ ) ≲
√
ε.

In the following paragraph, we describe the construction of the leading order term. A sketch of proof
for the construction of the higher orders correctors is given in Paragraph 4.3.2. It is illustrated on the first
correctors. Once all the amplitudes appearing in the ansatz (40) are constructed, the error analysis used to
conclude to Theorem 4.1 is given in Paragraph 4.3.3.
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4.3.1 The leading order term

It will be more interesting to study the construction of the boundary layers U 0 and V 0 before the one of
the leading order slow variables amplitude u0. However, let us stress that at the end of the day, the slow
amplitude u0 will be determined before the boundary layers U 0 and V 0.

First, we decouple the fast variables in (41). Then, we integrate each equation with respect to its fast
variable Xj and use the condition limX1→∞ U 0 = limX2→∞ V 0 = 0 to transform (41) into a first order
ordinary differential equation. Consequently, to determine the first boundary layers, we have to solve

X1U 0 = 0 in ΩT × R+,

boundary condition on {X1 = 0} ,
U 0

|t≤0 = 0,

(48)

and 
X2V 0 = 0 in ΩT × R+,

boundary condition on {X2 = 0} ,
V 0
|t≤0 = 0,

(49)

In the following we will only describe the resolution of (48), the construction of the solution to (49)
follows the same lines. In order to do so, we first look for a solution to the interior equation and then we aim

to determine the suitable boundary value. Define W 0 := E
1/2
1,1 U 0, then the interior equation of (48) reads:

−∂X1
W 0 +Λ1W

0 = 0, (50)

where we recall that Λ1 := E
−1/2
1,1 A1E

−1/2
1,1 and where the slow variables (t, x) act as parameters. The L2

solution to (50) is explicitly given, using Duhamel formula, by

W 0(t, x;X1) := eX1Λ1(t,x)Π̃s
1(t, x)W

0
|X1=0, (51)

where we recall that Π̃s
1 stands for the projection upon the eigenspace associated to the negative real eigen-

values of Λ1. We note that from the explicit formula (51), it is clear that W 0 ∈ SX1(R+;X
∞
K,T ) if the trace

W 0
|X1=0 ∈ X∞

K,T . Indeed W0 reads under the form W 0 = F(t, x)W 0
|x1=0, where F is a product function so

that from Leibniz formula combined with the uniform bounds for the derivatives of the coefficients, we have

∥∂αF∥L∞(ΩT ) ≲ (K ′)|α|α! for some largeK ′.

So that using once again Leibniz formula we obtain

∥∂αW 0(t)∥L2(Γ) ≤
∑
n≤α

(
α
n

)
∥∂nF∥L∞(ΩT )∥∂α−nW 0

|X1=0(t)∥L2(Γ)

≲ K |α|K ′|α|
∑
n≤

α!

(α− n)! · n!
n!(α− n)! ≲ (K ′′)|α|α!,

as desired for some large K ′′, if W 0
|X1

∈ X∞
K,T .

Finally, let us note the important point that from (51), the leading order boundary layer W 0 satisfies the
polarization type condition

W 0 = Π̃s
1W

0. (52)

Consequently to determine the whole boundary layer, it is sufficient to determine its trace upon {X1 = 0}.
In order to do so, we consider the first equation of (45) written for n = 0. We recall this equation for
convenience:

u0
|x1=0(x2) + U 0

|x1=X1=0(x2) + V 0
|x1=0(x2;

x2

ε
) = 0. (53)

To determine the value of the required trace from (53), the first idea may be to say that because of an
analogous explicit formula (51) for the second layer V 0, the last term in (53) is O(ε∞) so that it should be
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neglected and thus (53) should give the desired trace in terms of u0
|x1=0. Let us however stress that this

argument breaks downs in the area {0 < x2 ≲ ε} that is to say near the corner, where V 0
|x1=0(x2;

x2

ε ) is O(1).

Consequently, a good way to consider (53) is to decouple once again the variables. As a consequence, we
will need to solve the couple of equations:{

W 0
|x1=X1=0 = −E

−1/2
1,1 u0

|x1=0,

V 0
|x1=0 = 0.

(54)

We proceed similarly for the second equation of (45), written for n = 0, to obtain a second couple of boundary
conditions {

X 0
|x2=X2=0 = −E

−1/2
2,2 u0

|x2=0,

U 0
|x2=0 = 0,

(55)

where we introduced X 0 := E
1/2
2,2 V 0. The rest of the construction is rather clear: to construct W 0

|X1=0 (resp.

X 0
|X2=0, we use the first boundary condition in (54) (resp. (55)). We then use the explicit formula (51) to

show that the second boundary condition in (54) (resp. (55)) is satisfied under Assumption 4.1.
From the polarization condition (52), the first equation of (54) amounts to solve:

(Π̃s
1W

0)|x1=X1=0 = −(Π̃s
1E

1/2
1,1 u

0)|x1=0 and (Π̃u
1E

1/2
1,1 u

0)|x1=0 = 0. (56)

Because x1 acts as a parameter in (50) it is sufficient to consider a lifted trace by introducing some
localization function χ ∈ D(]−1,∞[) satisfying χ(0) = 1. We thus define

U 0(t, x;X1) := −χ(x1)E
1/2
1,1 e

X1Λ1(Π̃s
1E

1/2
1,1 u

0)|x1=0(t, x2). (57)

We proceed similarly for the first equation of (55) to obtain the boundary condition on u0:

(Π̃u
2E

1/2
2,2 u

0)|x2=0 = 0, (58)

and the explicit formula

V 0(t, x;X2) = −χ(x2)E
1/2
2,2 e

X2Λ2(Π̃s
2E

1/2
2,2 u

0)|x2=0(t, x1). (59)

Consequently, to complete the construction we have to determine u0 in a unique way, then verify that
the second boundary condition in (54) and (55) are verified by the expressions given by (56) and (59), and
conclude by checking that the amplitudes satisfy the initial condition 46 at order zero.

To determine the evolution equation satisfied by u0, we consider the second equation in the interior,
namely (42). When we decouple the variables, we obtain that u0 solves L(∂)u0 = f in Ω. Using the
boundary conditions (56) and (58) we thus have to solve the following hyperbolic corner problem in order
to determine u0: 

L(∂)u0 = f in ΩT ,

B1u
0
|x1=0 = 0 on ∂Ω1,T ,

B2u
0
|x2=0 = 0 on ∂Ω2,T ,

u0
|t≤0 = 0 on Γ,

(60)

where we defined B1 := (Π̃u
1E

1/2
1,1 )|x1=0 and B2 := (Π̃u

2E
1/2
2,2 )|x2=0.

The next lemma justifies that we can apply Theorem 2.1 in order to obtain a unique solution u0 ∈ X∞
K′,T ′,♮

to (60).

Lemma 4.1 Under Assumption 4.2, then Assumption 2.4 for the system (60) is satisfied. Assume that
f ∈ X∞

K,T,♮, then Theorem 2.1 applies and (60) admits a solution u0 ∈ X∞
K′,T ′,♮. Moreover, the boundary

conditions of the boundary value problems (60) are strictly dissipative and the coefficients are symmetric, so
that Corollary 2.2 applies and we have a unique solution u0 ∈ X∞

K′,T ′,♮.

In particular, the corner value u0
|x1=x2=0 makes sense.
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Proof : The first condition of Assumption 2.4 is readable. For the second one, let us point that by definition

kerBj = (E
−1/2
j,j Ẽs

j)|xj=0, so that the second requirement of Assumption 2.4 is equivalent to Assumption 4.2.
The fact that the boundary conditions of problem (60) are strictly dissipative is a well-known fact from

the literature in the half-space. We reproduce the proof here for a sake of completeness. Let u ∈ kerB1, we

write u = E
−1/2
1,1 v, with v ∈ Ẽs

1. We have, using the symmetry of the matrix E1,1,

⟨A1u, u⟩ = ⟨Λ1v, v⟩ < 0,

because of the definition of Ẽs
1.

□

Now that the slow amplitude u0 is constructed in a unique way, to conclude the construction of the
leading order amplitude, it remains to justify that with the definitions (57) and (59), the boundary layers
satisfy the second condition of (54) and (55). From the explicit formula (57) we have

U 0
|x2=0(x1;X1) = χ(x1)

(
E

1/2
1,1 e

X1Λ1
)
|x2=0

(Π̃s
1E

1/2
1,1 )|x1=x2=0u

0
|x1=x2=0.

Consequently it is sufficient to determine the value of the double trace u0
|x1=x2=0. To conclude, we

consider the compatibility conditions of (60). We have

B1u
0
|x1=0 = 0 = B2u

0
|x2=0 =⇒ u0

|x1=x2=0 ∈ kerB1|x2=0
∩ kerB2|x1=0

.

We note that under the second structural requirement in Assumption 4.2 the last intersection reduces to
the null vector. At last from the explicit formulas (57) and (59) it is readable that U 0

|t≤0 = V 0
|t≤0 = 0, if

u0
|t≤0 = 0. It concludes the construction of the leading order term.

For later purposes, let us here indicate that the traces U 0
|x1=X1=0 and V 0

|x2=X2=0 inherit the regularity

X∞
K,T . Indeed, it is readable on the explicit formulas (57) and (59).

4.3.2 Construction of the correctors

For convenience, we describe the construction of the first correctors u1, U 1 and V 1. The construction of
the higher orders correctors follows exactly the same lines.

To obtain the interior equations, we decouple the fast variables in (42) and isolate the slow variable in

(44) (written for n = 1). We thus have after the change of unknowns, U 1 := E
−1/2
1,1 W 1 and X 1 := E

−1/2
2,2 V 1:

−∂X1W
1 +Λ1W 1 = E

−1/2
1,1 F1 for X1 > 0,

−∂X2
X 1 +Λ2X 1 = E

−1/2
2,2 F2 for X2 > 0,

L(∂)u1 = Eu0 for (t, x) ∈ ΩT ,

(61)

where we defined

F1(X1) := F1(t, x;X1) = −
∫ ∞

X1

(E1U
0)(y1) dy1 and F2(X2) := F2(t, x;X2) = −

∫ ∞

X2

(E2V
0)(y2) dy2. (62)

To solve the two firsts equations of (61) we use Duhamel formula (with a non vanishing source term
compared to Paragraph 4.3.1). The solution of the last equation of (61) is given as the solution of a
hyperbolic corner problem with suitable boundary conditions.

From Duhamel formula we can decompose W 1 = Π̃s
1W

1+Π̃u
1W 1, where the terms in the right-hand side

are explicitly given by:

Π̃s
1W

1(X1) :=eX1Λ1Π̃s
1W

1
|X1=0 +

∫ X1

0

e(X1−y1)Λ1Π̃s
1E

−1/2
1,1 F1(y1) dy1, (63)

Π̃u
1W 1(X1) :=−

∫ ∞

X1

e(X1−y1)Λ1Π̃u
1E

−1/2
1,1 F1(y1) dy1.
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We have analogous formulas for X 1 up to a change in the index. The important thing to remark here is that
because F1 is an explicit function of the constructed amplitude U 0, then to determine U 1 it is sufficient
to determine the trace W 1

|X1=0. For later purposes, let us keep in mind that the unstable part of the trace,

namely Π̃u
1W 1

|X1=0, can be determined in a unique way. This can be done before to determine the stable

part, just by evaluating (63) at X1 = 0.

Reiterating the same kind of decoupling as in the previous paragraph, the boundary condition (45) written
for n = 1, gives 

W 1
|x1=X1=0 = −(E

1/2
1,1 u

1)|x1=0,

V 1
|x1=0 = 0,

X 1
|x2=X2=0 = −(E

1/2
2,2 u

1)|x2=0,

U 1
|x2=0 = 0.

(64)

Because the layers W 1 and X 1 are not ”polarized” anymore, a decomposition in the first and third lines of
(64) gives 

(Π̃s
1W

1)|x1=X1=0 = −(Π̃s
1E

1/2
1,1 u

1)|x1=0,

(Π̃s
2X

1)|x2=X2=0 = −(Π̃s
2E

1/2
2,2 u

1)|x2=0,

(Π̃u
1E

1/2
1,1 u

1)|x1=0 = −(Π̃u
1W 1)|x1=X1=0 := g1,

(Π̃u
2E

1/2
2,2 u

1)|x2=0 = −(Π̃u
2X 1)|x2=X2=0 := g2,

(65)

where we recall that the right-hand sides in the third and fourth lines are explicitly determined from U 0

and V 0 by using (63). Consequently, we define u1 as the unique solution to the corner problem:
L(∂)u1 = Eu0 in ΩT ,

B1u
1
|x1=0 = g1 on ∂Ω1,T ,

B2u
1
|x2=0 = g2 on ∂Ω2,T ,

u1
|t≤0 = 0 on Γ,

(66)

where we recall that we defined B1 := (Π̃u
1E

1/2
1,1 )|x1=0 and B2 := (Π̃u

2E
1/2
2,2 )|x2=0.

To justify the existence of such a u1, we need to apply Theorem 2.1. In order to do this, we have to
justify that the sources lie in the spaces X∞

K′,T ′,♮ and X∞,♭
K′,T ′,♮. For example for the interior source, it is clear

that it is flat at the origin because u0 is. Then, with a slight abuse of notation,

d∑
j=0

∥∂j
t ∂

γ(Eu0)(t)∥L2(Γ) ≲
d∑

j=0

∥∂j
t ∂

γ+2u0(t)∥L2(Γ) ≲ K ′(K ′)s(s+ 2)! ≲ (K ′′)ss!,

for K ′′ large enough.
Similarly the source terms are flat at t = 0 and the behaviour of the derivatives follows the same lines

as the one described for the leading order term W 0 (see equation (??)) but applied to the unstable explicit
formula (63). When this problem is solved, it determines the right-hand sides in the first and second equation
of (64). Finally, we lift the double trace and define:

U 1(t, xX1) =− χ(x1)E
1/2
1,1 e

X1Λ1Π̃s
1E

1/2
1,1 u

1
|x1=0 +

∫ X1

0

E
1/2
1,1 e

(X1−y1)Λ1Π̃s
1E

1/2
1,1 F1(y1) dy1 (67)

−
∫ ∞

X1

E
1/2
1,1 e

(X1−y1)Λ1Π̃u
1E

1/2
1,1 F1(y1) dy1,

and we have a totally similar expression for V 1 up to change the index one into two.

To conclude the construction, we have to justify that the second and the fourth lines of (64) are verified.
We give the proof for the second line that is to say that we want to verify that U 1

|x2=0 = 0. Using the explicit

expression (67), where we can not expect some cancellation between the different terms, it amounts to verify
that u1

|x1=x2=0 = 0 and F1(t, x1, 0;X1) = 0. We treat each term separately:
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� To show that u1
|x1=x2=0 = 0, using the boundary conditions of (66) we obtain that

B1u|x1=x2=0 = g1|x2=0
and B2u|x1=x2=0 = g2|x1=0

.

So that if we can justify that g1|x2=0
= g2|x1=0

= 0, we end up with u1
|x1=x2=0 ∈ kerB1 ∩ kerB2 = {0}

thanks to Assumption 4.2. From the definition of the boundary sources, to show that g1|x2=0
= 0 we

only have to justify that F1(t, x1, 0;X1) = 0 which is performed in the following step.

� To show that F1(t, x1, 0;X1) = 0, we recall that F1 is the integral with respect to the fast variable X1

of E1U 0. For convenience let us also recall that by definition

E1U :=

d∑
j=1

(E1,j + Ej,1)∂j∂X1
U −

d∑
j=1

∂j(Ej,1)∂X1
U ,

so that the trace on {x2 = 0} commutes (compared to U ) with all the terms except the term for
j = 2 in the first sum. Because we have already justified that U 0

|x2=0 = 0 it is sufficient to show that

(∂2U 0)|x1=x2=0 = 0.

From its definition (see (57)), U 0 reads under the form U 0(t, x,X1) := F (t, x;X1)u
0
|x1=0(x2) so that

from Leibniz rule, using that u0
|x1=x2=0 = 0, it is sufficient to show that (∂2u

0)|x1=x2=0 = 0. To do

so we differentiate the boundary condition on ∂Ω1,T of (60) with respect to x2, and we evaluate at
x2 = 0. We obtain

(∂2B1)|x2=0 u
0
|x1=x2=0︸ ︷︷ ︸

=0

+B1(∂2u
0)|x1=x2=0 = 0 so that (∂2u

0)|x1=x2=0 ∈ (kerB1)|x2=0 = (E
−1/2
1,1 Ẽs

1)|x1=x2=0.

Proceeding similarly for the other boundary condition gives (∂1u
0)|x1=x2=0 ∈ (kerB2)|x1=0 = (E

−1/2
2,2 Ẽs

2)|x1=x2=0.

However because we are in a non-characteristic framework we can isolate the ∂2 derivative in the
evolution equation of u0. We thus have

∂2u
0 = −A−1

2

∂tu
0 +A1∂1u

0 +

d∑
j=3

Aj∂ju
0

 ,

so that if we evaluate at the corner, we obtain

(∂2u
0)|x1=x2=0 = −(A−1

2 A1)|x1=x2=0(∂1u
0)|x1=x2=0 ∈ (A−1

2 A1)|x1=x2=0 kerB1.

Consequently we obtain at the end of the day (∂2u
0)|x1=x2=0 ∈ (kerB2)|x1=0∩(A−1

2 A1)|x1=x2=0(kerB1)|x2=0 =
{0} from the last requirement of Assumption 4.2.

This concludes the construction of the first correctors u1, U 1 and V 1. To justify the regularity we insist
on the fact that the one for u1 comes from Theorem 2.1 and then the ones for the layers is readable from
the explicit formula (63). At last the amplitudes U 1 and V 1 vanish at initial time because u0 and u1 do.

4.3.3 Error estimate

In this paragraph we will use the following well-posedness result for the solution to (37). The proof of this
result is admitted here

Lemma 4.2 Let ε > 0 and T > 0 be given and f ∈ L2(ΩT ) be given. We assume that the coefficients of L(∂)
are symmetric and that the perturbation E satisfies Assumption 4.1, then there exists 0 < T0 := T0(D) ≤ T
such that (37) admits a unique solution uε ∈ C 0(]−∞, T0] ;L

2(Γ)). It satisfies the energy estimate: for all
0 ≤ t ≤ T0 we have the inequality

∥uε(t, ·)∥2L2(ΩT ) + αε∥∇xu
ε∥2L2(ΩT ) ≲

∫ t

0

∥f(t′, ·)∥L2(ΩT ) dt
′. (68)
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Let N0 ∈ N be given, for T ′ small enough, we consider the amplitudes (Un)n∈N defined in Paragraphs 4.3.1
and 4.3.2. We consider the truncated expansion

uε
app,N0+1 :=

N0+1∑
n=0

εnUn.

By construction uε − uε
app,N0+1 satisfies the parabolic problem:
(L(∂)− εE)(uε − uε

app,N0+1) = −εN0+1ferr in ΩT ,

(uε − uε
app,N0+1)|x1=0 = 0 on ∂Ω1,T ,

(uε − uε
app,N0+1)|x2=0 = 0 on ∂Ω2,T ,

(uε − uε
app,N0+1)|t≤0 = 0 on Γ,

where fεerr is explicitly given by

fεerr := L(∂)uN0+1 − EuN0+1 + (L(∂)− E)(U N0+1 + V N0+1)−E1U
N0+1 −E2V

N0+1 + εEUN0+2. (69)

In particular we have ferr = O(1) in L2(ΩT ′) (the limiting terms being the two first ones in the right-hand
side of (69)). So that, using the energy estimate (68) we obtain ∥uε − uε

app,N0+1∥L2(ΩT ′ ) ≲ εN0+1. The
triangle inequality ends the proof of Theorem 4.1.

5 Discussions and examples

In this concluding section, we show that Assumption 2.4 holds for some examples coming from the Physic,
see Paragraph 5.2. We also give some examples of functions lying in the space X∞

K,T in Paragraph 5.1.

5.1 Discussion about the functional spaces of resolution

To simplify a little the exposition let us assume without loss of generality that d = 2. Clearly the set X∞
T,K

is not empty, because f(t, x) := e−te−(x1+x2) is in X∞
T,0. Similarly, we can show that any function reading

f(t, x1, x2) := P (t, x1, x2)e
−(t+x1+x2)(ν+iθ), with ν > 0, θ ∈ R and where P if some polynomial is also in

X∞
T,K . Because such functions behave like P in the neighbourhood of the corner, it give rather generic

examples of sources for which we can justify that the two layers studied in Section 4 do not interact the one
with the other.

At last let us mention that the gaussian lies in W∞
2,T . Indeed for n ≥ 0 and y ≥ 0, let Hn(y) :=

(−1)ney
2 dn

dyn e
−y2

denotes the Hermite polynomial. Then it is a well-known result that such polynomial

form an orthogonal basis for L2(R, e−x2

√
π

dy). So that we deduce

∫ ∞

0

(
dn

dyn
e−y2

)2

dy ≤
∫ ∞

0

e−y2

(Hn(y))
2 dy =

√
π2n−1n!,

which shows the claim.

5.2 Discussion about Assumption 2.4

In this last paragraph we discuss the structure assumptions (Assumptions 2.4 and 4.2) for some examples
coming from the Physics. We here recover the examples of [7], so that Assumption 2.4 seems to be rather
generic, at least from a physical point of view.
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5.2.1 The wave equation

We consider the 2d wave equation in the quarter space R2
+. This equation can classically be written under

the form of a first order system. We thus consider for T > 0
∂tu+A1∂1u+A2∂2u = f in ]−∞, T ]× R2

+,

B1u|x1=0 = 0 on ]−∞, T ]× R+,

B2u|x2=0 = 0 on ]−∞, T ]× R+,

u|t≤0 = 0 on R2
+,

(70)

where the interior coefficients A1 and A2 are given by

A1 :=

[
1 0
0 −1

]
and A2 :=

[
0 1
1 0

]
.

We thus have Es
1 := vect{(0, 1)T } and Es

2 := vect{(1, 1)T }. Clearly R2 := Es
1 ⊕ Es

2. To study the second
requirement of Assumption 2.4, we need to specify the boundary conditions in (70). They can be parametrized
by two real numbers α, β by defining

B1 :=
[
1 −α

]
and B2 :=

[
1 −β

]
.

The parameters leading to strictly dissipative boundary conditions (and thus to L2 well-posed problems
in the two half-spaces, from the result of [15]) are given by:

|α| < 1 and β < 0.

However, in order that kerB1 ∩ Es
2 = {0} = kerB2 ∩ Es

2 we will have to avoid the exceptional case α = 1
and β = 0. So that in particular, Assumption 2.4 is satisfied by all parameters leading to strictly dissipative
boundary conditions.

As a consequence, Theorem 2.1 applies and we have existence and uniqueness of a strong solution to (70).

We now want to study Assumption 4.2 characterizing admissible viscous perturbations. In the following
to please the reading, we consider a viscous perturbation E whose diagonal coefficients are given by

for j ∈ {1, 2}, Ej,j :=

[
αj 0
0 βj

]
with αj , βj > 0.

We thus have

Λ1 =

[ 1
α1

0

0 − 1
β1

]
and Λ2 =

1√
α2β2

A2.

So that independently of the coefficients αj , βj , we have Ẽs
1 = Es

1 and Ẽs
2 = Es

2. It is then a simple exercise
to show that Assumption 4.2 is satisfied unconditionally on the parameters αj and βj . As a consequence,
Theorem 4.1 applies.

5.2.2 Shallow water equation

For this second example we consider the inviscid shallow water equation. For g > 0 the acceleration, φ0 > 0
the typical height and a state (u0, v0) ∈ R2, we consider the linearization9

∂tu+A1∂1u+A2∂2u+ C = F, in ]−∞, T ]× R2
+,

B1u|x1=0 = 0 on ]−∞, T ]× R+,

B2u|x2=0 = 0 on ]−∞, T ]× R+,

u|t≤0 = 0 on R2
+,

(71)

9Let us point here that in this formulation, the shallow water equation (71) does not constitute a symmetric corner problem.
It is however symmetrizable, moreover the study of Assumptions 2.4 and 4.2 does not require the fact that the system is
symmetric.
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where the interior coefficient are given by:

A1 :=

u0 0 g
0 u0 0
ϕ0 0 u0

 , A2 :=

v0 0 0
0 v0 g
0 ϕ0 v0

 and C :=

0 f 0
f 0 0
0 0 0

 ,

f ∈ R being the Coriolis parameter.
The eigenvalues of A1 and A2 are respectively given by

λ1,± := u0 ±
√
gϕ0, λ1,0 := u0 and λ2,± := v0 ±

√
gϕ0, λ2,0 := v0.

In the following, we consider the case dimEs
1 = 1 and dimEs

2 = 2 (the other one being analogous), so
that we impose the following restriction on the state of linearization (u0, v0):

u0 > 0, u0 <
√

gϕ0 and v0 < 0, v0 > −
√

gϕ0. (72)

We then compute easily Es
1 = vect{(−√

g, 0,
√
ϕ0)

T } and Es
2 := vect{(0, 1, 0)T ; (0,−√

g,−
√
ϕ0)

T }, so that
it is clear that the first point of Assumption 2.4 holds.

About the second point of Assumption 2.4, we have B1 ∈ M2×3(R) so that we can characterize kerB1 =
vect{(α, β, γ)T }. Thus ∣∣∣∣∣∣

α 0 0
β 1 −√

g
γ 0

√
ϕ0

∣∣∣∣∣∣ = α
√
ϕ0 ̸= 0 if and only if α ̸= 0.

So that the condition kerB1 ∩Es
2 holds for all α ̸= 0.

For the second requirement, we parametrize kerB2 := vect{(α1, β1, γ1)
T ; (α2, β2, γ2)

T )}. We see that
kerB2 ∩Es

1 ̸= {0} if β1 = β2 = 0. If β1 ̸= 0 and β2 = 0, to have kerB2 ∩Es
1 = {0} it is sufficient to impose√

gγ1 −
√
ϕ0α1 ̸= 0. We have an analogous characterization for β1 = 0 and β2 = 0. Finally if β1 = β2 = 1,

it is sufficient to have −√
g(γ2 − γ1)−

√
ϕ0(α1 − α2) ̸= 0.

Consequently Assumption 2.4 is satisfied for a ”large number” of boundary conditions.

Assumption 2.3 has been considered in [3]. The obtained result is that it holds if and only if |(u0, v0)|2 <
gϕ0 or if |(u0, v0)| ≥ gϕ0 but with u2

0v
2
0 > ϕ0g(u

2
0 + v20 − ϕ0g).

To conclude we consider Assumption 4.2 in the particular case where E1,1 = E2,2 = I, consequently the
two first points of Assumption 4.2 follow from Assumption 2.4. For the last point we compute:

A−1
2 A1 =

1

detA2

detA2

v0
0 detA2

g
v0

−gϕ0 u0v0 −gu0

v0ϕ0 −ϕ0u0 u0v0

 .

Let α, β1, β2 ∈ R be such that

α

 −√
g

0
−
√
ϕ0

 = β1A
−1
2 A1

01
0

+ β2A
−1
2 A1

 0
−√

g√
ϕ0


then solving this system in terms of α, β1, β2 gives

α = −detA2

v0

√
gϕ0β2,

β1 = (
√
gu0v0 + gu0

√
ϕ0)

β2

v0
,

β2(
√
gu2

0 + g
u2
0

v0

√
ϕ0 −

√
gϕ0u0 + u0v0

√
ϕ0 +

detA2

v0

√
gϕ0︸ ︷︷ ︸

<0

) = 0.

But from (72) we have
√
gu2

0+ g
u2
0

v0

√
ϕ0 < 0, so that α = β1 = β2 = 0. Consequently we have A−1

2 A1E
s
2∩

Es
1 = {0} unconditionally. We proceed similarly to show that A−1

1 A2E
s
1 ∩ Es

2 = {0} unconditionally. Here
again Theorem 4.1 applies (to the symmetrized formulation of (71)).
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5.2.3 Linearisation of Euler equation

As a last example, we will give a partial study of Assumptions 2.4 and 4.2 for the linearisation of Euler
equations. Let us consider the classical Euler equation on the quadruple (ρ,u = (u, v), e) ∈ R4, describing the
density ρ, the velocity u and the internal energy e. After linearisation around a constant state (ρ0,u0, e0) ∈
R4, we will consider the system of equations (1) with coefficients

A1 :=


u0 0 1

ρ0
∂ρp0

1
ρ0
∂ep0

0 u0 0 0
ρ0 0 u0 0
1
ρ0
p0 0 0 u0

 and A2 :=


v0 0 0 0
0 v0

1
ρ0
∂ρp0

1
ρ0
∂ep0

0 ρ0 v0 0
0 1

ρ0
p0 0 v0

 ,

where p = p(ρ, e) stands for the pressure and where ∂·p0 is a short-hand notation for the evaluation of the
derivative of p with respect to · evaluated at the linearisation state. To have a hyperbolic system we make

the classical assumption that ∂ρp0 +
1
ρ2
0
p0∂ep0 > 0 and we thus will denote by c :=

√
∂ρp0 +

1
ρ2
0
p0∂ep0 the

local speed of sound.

The eigenvalues λ1,· (resp. λ2,·) of A1 (resp. A2) are given by:

λ1,0 = u0, λ1,± = u0 ± c (resp. λ2,0 = v0, λ2,± = v0 ± c) .

Moreover, in order to have Assumption 2.3, see [3], we need to assume that u0v0 < 0 and that the
linearisation state is subsonic |u0| < c. To fix the ideas, we assume that u0 > 0 and v0 < 0, the analysis
being similar in for the opposite signs. In order that we have the suitable dimensions of the subspaces
constituting Assumption 2.4, we assume that u0 < c and v0 > −c. Consequently A1 has a single negative
eigenvalue, namely λ1,− and A2 has three negative eigenvalues, namely λ2,0 (with multiplicity two) and λ2,−.

It is then a simple exercise to parametrize the stable subspaces Es
1 and Es

2. We have

Es
1 := vect{(c, 0,−ρ0,−

p0
ρ0

)T } and Es
2 := vect{(1, 0, 0, 0)T ; (0, 0,−∂ep0, ∂ρp0)

T ; (0, c,−ρ0,
−p0
ρ0

)T },

Thanks to these explicit formulas it is easy to verify that the first requirement of Assumption 2.4 holds. It
seems to indicate that such decomposition is rather generic, at least for systems with a physical meaning.

It is also simple to see that generically kerB1 ∩Es
2 = {0}. However, because kerB2 is three dimensional

is it complicated to verify for all possible choices of matrix B2 that the last requirement of Assumption
2.4, namely kerB2 ∩ Es

1 = {0}, holds generically. However for a given boundary condition B2 check if
kerB2 ∩Es

1 = {0} or not is just a straightforward algebraic computation.
Similarly, because the dimension of of one of the subspaces constituting Assumption 4.2 is now of dimen-

sion three, having a generic verification of the viscous perturbations fulfilling Assumption 4.2 is not so clear.
However, once again verify that a given viscous perturbation checks or not Assumption 4.2 can be made by
an algebraic computation.
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