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Abstract

We present two- and three-dimensional numerical simulations of the natural convection
flow within an artificial underground cavity. We consider a realistic geometry reconstructed
from measurements (3D point cloud obtained with a photogrammetric method) of the Barcq
cavity existing in Normandy region, France. The numerical model solves the Navier-Stokes
equations coupled with the unsteady heat equation using a finite-element method for the
space discretization. Time integration is based on a semi-implicit method and the Newton
method to solve the resulting non-linear equation. To implement the method, we use the free
software FreeFem++ offering efficient mesh refinement/adaptivity tools. The parallelization
of the simulations relies upon the PETSc software library, to which FreeFem++ offers an
easy-to-use interface. We analyze the onset of the natural convection and characterize the
convective cells developing within the Barcq cavity for five Rayleigh (Ra) numbers (from
105 to 109). Dimensionless temperatures, velocities and Nusselt numbers are presented for
each Ra number. We discuss how these results can be used to understand the thermal
behavior of small artificial cavities. We address in particular the influence of the value of
the Rayleigh number on the flow inside the well, which is essential for designing detection
methods based on surface temperature observations.

1 Introduction

Underground cavities of anthropogenic or natural origin are often undetected. Their erosion
can lead to land subsidence and may generate sinkholes, threatening people, buildings and
infrastructures. Underground cavities can be related to natural environments such as karsts
and thus induce collapse processes in soluble rocks like limestone, salt or gypsum, but
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also to man-made structures like quarries, cellars, sewers and tunnels. Sinkholes occur in
Europe, USA, Saudi Arabia (Youssef et al., 2020), or South Korea (Lee et al., 2016) and
thus represent an important threat worldwide. Besides, in the context of climate change,
modifications in precipitations and temperature also have an impact on the stability of
underground cavities, due to the increased variability of soil water content (Xiao et al.,
2016). The early detection of cavities is thus of particular importance for public and
infrastructure safety.

Geophysical imaging methods are usually used to detect underground cavities, such as
micro-gravimetry (Closson et al., 2005), ground penetrating radar (GPR) (Kruse et al.,
2006), electrical methods (Carbonel et al., 2014), seismic methods (Tran et al., 2013) or
radar interferometry (Kulshrestha et al., 2021). Very recently, cosmic ray muons detectors
(Saracino et al., 2017) were successfully used to detect hidden cavities in the great pyramid
of Kheops in Egypt (Morishima et al., 2017). In situ, the choice of the method depends
on the nature of the soil encountered, the complexity of the topography and the degree
of urbanization. Eventually, in situ drilling complete the measurements to confirm the
observed geophysical anomalies (Philippe et al., 2022).

Experiments have also been conducted with aerial remote sensing techniques to detect
underground cavities or sinkholes. Laser technology (namely LiDAR) and photogrammet-
ric methods are two techniques used to identify potential subsurface cavities by assessing
the surface geometry of the soil (Benito-Calvo et al., 2018; Antoine et al., 2020). Near in-
frared imagery can also be helpful to investigate the presence of subsurface cavities through
variations in vegetation activity and soil reflectance (Cooper, 1989). The thermal infrared
method (TIR) provides measurements of the surface temperature. This technique was par-
ticularly successful to detect caves (Wynne et al., 2008), shallow caves ducts (Perez-Garcia
et al., 2018), buried pipes (Carreño-Alvarado et al., 2014), sinkholes (Lee et al., 2016) and
lava tubes (Lopez et al., 2012).

In the 2000s, numerous remote sensing experiments were performed in the Normandy re-
gion, known to have an important density of artificial cavities (10 per km2). Such structures
are located several meters/tens of meter underground and are connected to the surface by
a 1m-diameter well. They are usually small (few m3 to tens of m3), empty, and their wells
may be filled (or not) with rough materials (Adam et al., 2008). Their collapse thus repre-
sents a serious hazard for people and infrastructures. Aerial thermal data made it possible
to detect the thermal signature of several buried wells (Fauchard and Pothérat, 2004; Adam
et al., 2008). Temperature contrasts of several degrees Celsius were detected between the
wells and their surrounding environment by TIR cameras, making this method promising
for future detection, in particular when the wells are buried within the soil (invisible from
the surface). To our knowledge, the physical processes at the origin of these observations
have never been investigated and represent a challenge for the development of detection
methodologies. Numerical modeling of the heat and mass transfer between the atmosphere
and underground cavities is crucial and may constitute an interesting approach to perform
sensitivity studies and understand how thermal anomalies develop in such structures.

The objective of the present work is to develop a numerical system that is efficient
and easy-to-use for simulating the thermal behavior of a realistic artificial cavity fully
connected to the atmosphere by a well. We take into account the transport of air and
the heat transfer associated with this flow, relative to temperature and pressure gradients,
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which are known to influence the subsurface cavity micrometeorology (Buecher et al., 1999;
Wilson et al., 2008). We also consider a realistic three-dimensional (3D) geometry obtained
in situ using the photogrammetric method. Previous studies (Wigley and Brown, 1971;
Dwivedi, 2010) emphasized the importance of the morphology of the cavity on the flow
patterns and temperature gradients

The structure of the paper is as follows. In Sec. 2 we describe and validate against
academic tests the finite-element method developed to simulate natural convection flows in
cavities. Numerical simulations using the actual (Barcq) cavity geometry are presented in
Section 3. We show 2D and 3D results and discuss the influence of main parameters on the
flow morphology. Finally, the main features of the study are summarized in Sec. 4, where
we additionally offer some of its potential extensions.

2 Modeling of natural convection flows in cavities

Natural convection is the spontaneous fluid motion that arises when variations in temper-
ature cause denser, cooler fluid to sink while lighter, warmer fluid rises, creating a natural
circulation pattern. Natural convection (driven only by the buoyancy force) becomes forced
convection when additional external forces act on the fluid.

2.1 Mathematical model

In natural convection, fluid mechanics and heat transfer equations are strongly coupled and
must be solved in the same time. We consider the motion of the air flow generated inside a
closed domain Ω by the temperature difference δT = Thot − Tcold between a hot and a cold
wall. We use the following system of equations, written in the dimensionless form:

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∇2u− fB(θ) ey = 0, (2)

∂θ

∂t
+∇ · (θu)− 1

RePr
∇2θ = 0, (3)

Equations (1) and (2) are the Navier-Stokes equations describing the motion of the fluid
of an incompressible flow (conservation of mass and momentum, respectively). Buoyancy
effects are modeled using the Boussinesq approximation, assuming that the density of the
fluid is constant (ρ = ρ0) in all equations, excepting the expression of the buoyancy force
fB (see below). Equation (3) is the energy conservation equation, written in the form of
an advection-diffusion equation for the temperature.

In Eqs. (1)-(3), non-dimensional space x, velocity u, temperature θ, pressure p and
time t variables were obtained from physical ones after applying the following scaling:

x =
X

H
, u =

U

Vref
, θ =

T − Tref

δT
, p =

P

ρ0V 2
ref

, t =
tφ

H/Vref
, (4)

where H, Vref and Tref are length, velocity and temperature reference values. The ref-
erence length H is usually the height of the cavity. Temperature difference δT defines
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a temperature scale, and Tref can be taken as either Tref = Tcold (i. e. 0 ≤ θ ≤ 1) or
Tref = (Tcold + Thot)/2 (i. e. −1/2 ≤ θ ≤ 1/2).

Using the general scaling (4), the following expressions are obtained for the Reynolds
(Re) and Prandtl (Pr) numbers:

Re =
VrefH

ν
, Pr =

ν

α
, (5)

where ν is the kinematic viscosity and α the thermal diffusivity of the fluid. The Boussi-
nesq force fB is obtained by linearizing the density variation ρ(θ) in the expression of the
buoyancy force:

fB(θ) =
Ra

PrRe2
θ, (6)

where the Rayleigh (Ra) number is defined as:

Ra =
gβH3δT

να
, (7)

with β the thermal expansion coefficient and g the gravitational acceleration. For natural
convection problems, it is common to simplify the expression of the Boussinesq force by
choosing a particular velocity scale:

Vref =
ν

H

√
Ra

Pr
=⇒ Re =

√
Ra

Pr
=⇒ fB(θ) = θ. (8)

Note that our numerical system is written using the general scaling (4). For the natural
convection simulation presented in this paper, we apply the particular choice (8) for the
velocity scale.

2.2 Numerical model

Finite-element methods for solving Navier-Stokes type systems of equations are generally
based on a separate discretization of the temporal derivative (using finite differences, split-
ting or characteristics methods) and the generalization of the Stokes problem for the result-
ing system (Temam, 1983; Girault and Raviart, 1986; Quarteroni and Valli, 1994). Note
that a more general form of the system of equations (1)-(3), including liquid-solid phase
change, was solved recently using sequential algorithms in (Rakotondrandisa et al., 2020)
and parallel finite element algorithms in (Sadaka et al., 2020).

We use for this study a time integration method based on the second-order Gear (BDF2)
finite-difference scheme (see also Belhamadia et al., 2012):

dη

dt
≃ 3ηn+1 − 4ηn + ηn−1

2δt
= c1η

n+1 + c2η
n + c3η

n−1. (9)

The solution ηn+1 at time instant tn+1 = (n+1)δt is thus computed by using two previous
states (ηn, ηn−1). We use this scheme to advance in time both velocity (η = u) and
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temperature fields (η = θ). The other terms in equations (1)-(3) are treated implicitly. We
obtain the following implicit semi-discretization in time:

∇ · un+1 + γpn+1 = 0, (10)

c1u
n+1 + (un+1 · ∇)un+1 +∇pn+1 − 1

Re
∇2un+1 − fB(θ

n+1) ey + c2u
n + c3u

n−1 = 0, (11)

c1θ
n+1 +∇ ·

(
un+1θn+1

)
− 1

RePr
∇2θn+1 + c2θ

n + c3θ
n−1 = 0. (12)

Note that we introduced in Eq. (10), which is the discrete version of the mass conservation
equation (1), a penalty term using the pressure. This term will provide a regularization of
the solution by ensuring a pressure field with zero average and, at the algebraic level, filling
the diagonal of the pressure term (see Legrand et al., 2023). Compared to classical penalty
methods, we use here a very low value γ = 10−7 for the penalty parameter.

To solve the system of equations (10)-(12) we use a classical Galerkin finite-element
method. We consider homogeneous Dirichlet boundary conditions for the velocity, i. e.
u = 0 on ∂Ω. As a consequence, we set the following Hilbert spaces for the velocity and
pressure:

V = V × V, V = H1
0 (Ω), Q =

{
q ∈ L2(Ω)

∣∣∣∣ ∫
Ω

q = 0

}
. (13)

Following the generalization of the Stokes problem Temam (1983); Girault and Raviart
(1986); Quarteroni and Valli (1994), the weak formulation of the system (10)-(12) can be
written after integrating by parts as: find (un+1, pn+1, θn+1) ∈ V ×Q× V , such that:

b
(
un+1, q

)
− γ(pn+1, q) = 0, ∀ q ∈ Q, (14)(

c1u
n+1,v

)
+ c

(
un+1;un+1,v

)
+

1

Re
a
(
un+1,v

)
+ b

(
v, pn+1

)
−
(
fB(θ

n+1) ey,v
)
+ (c2u

n,v) +
(
c3u

n−1,v
)

= 0, ∀v ∈ V, (15)(
c1θ

n+1 + un+1 · ∇θn+1, φ
)
+

1

RePr

(
∇θn+1,∇φ

)
− 1

RePr

(
∂θn+1

∂n
, φ

)
1

+
(
c2θ

n + c3θ
n−1, φ

)
= 0, ∀φ ∈ V, (16)

where (u, v) =

∫
Ω

u · v denotes the scalar product in L2(Ω) or
(
L2(Ω)

)2
, (u, v)1 =

∫
∂Ω

u ·

v; the bilinear forms a, b and trilinear form c are defined as (Girault and Raviart, 1986;
Quarteroni and Valli, 1994):

a : V ×V → R, a(u,v) =

∫
Ω

∇tu : ∇v =

2∑
i,j=1

∫
Ω

∂juj · ∂jvi,

b : V ×Q → R, b(u, q) = −
∫
Ω

∇ · u q = −
2∑

i=1

∫
Ω

∂iui · q,

c : V ×V ×V → R, c(w; z,v) =

∫
Ω

[(w · ∇) z] · v =

2∑
i,j=1

∫
Ω

wj(∂jzi)vi.
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For the space discretization of the system (14)-(16) it is important to use for the velocity
and pressure finite-elements that are stable (i. e. satisfy the inf-sup condition). Generally,
Taylor-Hood (i. e. P2 for the velocity and temperature and P1 for the pressure) finite ele-
ments are preferred (see Rakotondrandisa et al., 2020; Sadaka et al., 2020), since they offer
stability and quadratic accuracy. Another possible choice is the mini-element introduced by
Arnold, Brezzi and Fortin (see Arnold et al., 1984; Brezzi and Fortin, 1991): the P1 piece-
wise linear approximation functions are enriched with a bubble function (i. e. vanishing on
the edges of the element) using an inner point (the barycenter). This is the simplest element
for Stokes-type problems, offering inf-sup stability and global linear convergence. To save
computational time, we use in this work the mini-element Pb

1 (P1-bubble) for velocities and
P1 for the pressure. For the temperature, we use either P1 or P2 finite elements. Note that
FreeFem++ offers the possibility to use a large variety of finite elements. It is very easy
to switch from one finite element to another by changing only one line in the script, that
defining the finite element space. The corresponding definitions of the discrete spaces we
used in this work are the following: P1b for the velocity (Vh space), P1 for the pressure
(Qh space) and P1 or P2 for the temperature (Vh space):

Vh =
{
v ∈ H1(Ω)2

∣∣∣ ∀K ∈ Th,vK ∈
(
P1 ⊕ Span{λK

0 λK
1 · · ·λK

d }
)d}

, (17)

Qh =
{
v ∈ H1(Ω)

∣∣ ∀K ∈ Th, v|K ∈ P1

}
, (18)

Vh =
{
v ∈ H1(Ω)

∣∣ ∀K ∈ Th, v|K ∈ P1 or P2

}
, (19)

where λK
i , i = 0, · · · , d are the d + 1 barycentric coordinate functions of the element K of

the triangulation Th, where d = 2, 3 is the space dimension. The characteristic mesh size is
denoted by h.

The implicit time-discretization resulted in the non-linear system of equations (14)-(16).
To apply Newton’s method, we write this system as F(w) = 0, with w = (un+1, pn+1, θn+1) ∈
W = V×Q×V and F : W → W a differentiable mapping. The classical Newton algorithm
is then used to advance the solution from time tn to tn+1: starting from an initial guess
w0 = (un, pn, θn) (which is the solution at tn), construct Newton sequence wk = (uk, pk, θk)
by solving for each inner iteration k:

DwF(wk)(wk − wk+1) = F(wk), (20)

whereDwF is the linear operator representing the differential of F . Denoting by (uw, pw, θw) =
wk−wk+1 and after differentiating (14)-(16), the system of equations (20) can be explicitly
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written as:

b (uw, q)− (γpw, q) = b (uk, q)− (γpk, q), (21)

(c1uw,v) + c (uw;uk,v) + c (uk;uw,v)

+
1

Re
a (uw,v) + b (v, pw)−

(
dfB
dθ

(θk) θw ey,v

)
=

(
c1uk + c2u

n + c3u
n−1,v

)
+b (v, pk) +

1

Re
a (uk,v) + c (uk;uk,v)− (fB(θk) ey,v) , (22)(

c1θw + (uw · ∇θk + uk · ∇θw) , φ

)
+

(
1

RePr
∇θw,∇φ

)
−

(
1

RePr

∂θw
∂n

, φ

)
1

=

(
c1θk + uk · ∇θk + c2θ

n + c3θ
n−1, φ

)
−
(

1

RePr

∂θk
∂n

, φ

)
1

+

(
1

RePr
∇θk,∇φ

)
. (23)

The Newton loop (following k) has to be iterated until convergence for each time step δt
following the algorithm:

set w0 = (un, pn, θn)
Newton iterations following k

solve (21)-(23) to get (uw, pw, θw)
actualize wk+1 = wk − (uw, pw, θw)

stop when ∥(uw, pw, θw)∥ < ξN
actualize (un+1, pn+1, θn+1) = wk+1,

(24)

where the tolerance ξN is usually set to ξN = 10−10.
We present in Appendix A the space and time convergence rates, estimated using man-

ufactured solutions. This technique (e. g. Roache (1998)) consists in modifying the original
system of equations by introducing an extra source term, such that the new system admits
an exact solution given by a convenient analytic expression. Exact solutions constructed
in this way are not always physically realistic, but this approach allows one to rigorously
verify computations. The results presented in Appendix A show the expected orders of
accuracy: for the space accuracy we obtain first order (O(h)) convergence for velocity and
first or second order (O(h2)) convergence for the temperature (depending if P1 or P2 are
used); for the time accuracy, the method is proved to be second order in time (O(δt2)).

3 Numerical simulation of natural convection inside the
Barcq cavity

To test our code on a realistic domain, we consider the artificial cavity located at Barcq
town in Normandy, France.

3.1 Mesh generation and adaptive mesh refinement

The geometry of the cavity was obtained in situ using the photogrammetric method: it
consists in generating 3D points of the contour of an object using photographs taken from
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different angles. This method offers a cost-effective and non-contact method for creating
accurate 3D models (Fauchard et al., 2013).

Starting from the 3D-points cloud, we combined different numerical tools from (Meshlab1,
open3d2, Python3, Gmsh4, Freefem++5 and finally Gimp6) to generate 3D and 2D meshes
shown in Fig. 1. These initial meshes are dynamically adapted/refined during the simula-

G1

G2

G3 G4

Figure 1: Initial finite element meshes generated using the 3D-points cloud from photogram-
metric measurements: (up) full 3D mesh (tetrahedra) and (down) 2D mesh (triangles). The
2D mesh is the graphical parallel projection of the 3D mesh on the meridian plane. Gauges
G1, G2, G3 and G4 are also represented on the 2D mesh.

tion (every time step in 2D). For the 2D geometry, we use the standard function (adaptmesh)
which is a very convenient tool offered by FreeFem++ to efficiently adapt 2D meshes by
metrics control (Hecht, 2012). The key idea implemented in this function is to modify the
scalar product used in the automatic mesh generator to evaluate distance and volume. The
scalar product is based on the evaluation of the Hessian H of the variables of the prob-
lem. A new mesh with equilateral elements is thus generated using the new metric. This
algorithm is very fast and can be used to refine the mesh every time step. For the cases
presented in this paper, the mesh was adapted using the values of the two velocity compo-
nents and the temperature. As a consequence, the mesh density was increased in regions
of high velocity or temperature gradients, depending on the value of the Rayleigh number
(see below). For 3D simulations, we used similar mesh refinement algorithms implemented

1https://www.meshlab.net
2https://github.com/isl-org/Open3D
3https://www.python.org/
4https://gmsh.info//
5https://freefem.org
6https://www.gimp.org
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in the libraries mshmet and mmg (Dapogny et al., 2014) to which FreeFem++ provides an
easy-to-use interface.

3.2 Boundary and initial conditions

The flow inside the Barcq cavity is simulated by solving the system of equations (21)-(23)
with boundary conditions as follows.

• We impose homogeneous Dirichlet boundary conditions on the velocity (u = 0) on all
walls (i. e. the surface of the well is also a wall).

• For the other underground walls of the cavity, we impose the value of the temperature
(Dirichlet boundary conditions), assuming the following variation with the depth y of
the cavity:

Twall(y) =
TB − TA

yB − yA
(y − yA) + TA, TA > TB , (25)

where B the highest point of the cavity (i. e. yB = max(y)), corresponding to the
position of the gauge G1 in Fig. 1). Point A is the lowest point of the cavity (i. e.
yA = min(y)).

• At the surface of the well (y = yB), the temperature is also imposed and varies in
time as:

Twell(t) = TB cos

(
2π

t

λ

)
. (26)

This enables important variations of the temperature (δTwell = 2TB) over the period
λ. Note that initially (at t = 0) Twell(t) = TB , which is a necessary condition for a
proper start of the simulation.

• By taking
Tref = (TB + TA)/2, δT = TA − TB , (27)

the nondimensional temperature θ (see Eq. (4)) in the whole underground domain will
vary from 0.5 (at the bottom) to −0.5 (at the top). For a graphical representation
of the time variation of the nondimensional temperature at the surface of the well
(corresponding to the gauge G1), see Fig. 5a below.

All simulations start from a initial condition modeling the fluid at rest: at t = 0, u = 0,
θ = 0 (i. e. T = Tref ).

3.3 Results and discussion

The (2D and 3D) simulations presented in this section are performed on parallel computers
using the interface of FreeFem++ with PETSc7 open source library (Balay et al., 2022)
(Portable, Extensible Toolkit for Scientific Computation). The details of the selected PETSc

solvers for linear systems, necessary computational resources (CPU time, memory, number
of processors, size of the mesh, etc.) and code performance are provided in Appendix B.

7https://www.mcs.anl.gov/petsc/
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The key parameter in allotting computational resources is the Rayleigh number. Con-
sidering g, β, ν and α as constants, Ra is dependent of the volume H3 and δT (see Eq.
(7)). For instance, taking values of H3 in the range [10-100] m3 and δT as low as 0.1◦,
the Ra number ranges from 108 to 109. To explore all possible regimes of natural convec-
tion in the cavity, we show in this section results for five values or the Rayleigh number:
Ra = 105, 106, 107, 108, 109. Simulations are covering an entire time period λ for the oscil-
lation of the boundary condition at the surface of the well (see Eq. 26).

For high values of the Ra number the velocity gradients at walls become more intense
and thus need higher mesh resolutions. These cases are computationally challenging, since
the dynamical mesh refinement rapidly results in a very dense mesh. For the cases presented
below, we preferred to keep the high accuracy of the simulation instead of coarsening the
mesh. This explains why the most difficult case, the 3D simulation for Ra = 109 was
stopped before reaching the final time tf = λ = 50.

3.3.1 Results for the 2D configuration

We start by analyzing the topology of the natural convection flow by presenting the velocity
vectors in Fig. 2. The velocity magnitude increases from 0.2 for Ra = 105 (Fig. 2a) to 0.5
for Ra = 109 (Fig. 2e).

Surprisingly, the number of convective 2D cells remain quasi-constant as Ra increases
(5-7 major cells observed). This implies that the heat transfer is not enhanced by the
multiplication of the number of convection cells, but rather by an increase of velocity
gradients, mainly close to the walls (see the red regions in Fig. 2). For Ra = 108 and
109, we notice the fragmentation of large convection cells in smaller structures, indicating
the transition towards a turbulent flow. Starting with Ra = 107, a recirculating convective
flow becomes noticeable in the well of the cavity.

The observation on velocity fields correlate well with the temperature contours displayed
in Fig. 3. As Ra increases, the temperature gradient become stronger as the upward/down-
ward plumes become thinner. We note that temperature gradients considerably increase
in some areas and in particular within the well, where the movements are very rich due to
the presence of upward/downward plumes with different shapes (Fig. 3 panels c-e) corre-
sponding to recirculating flows seen in Fig. 2 (panels c-e). We infer that complex cold or
hot temperature anomalies may be induced within the well. For Ra = 107, a cold plume
is triggered at the top of the well, inducing the movement of an upward flow. A flow with
increased complexity is observed for Ra = 108, where the generation of a hot upward flow
at the left wall of the well is balanced by a cold downward flow at the right wall.

To illustrate how the adaptive mesh refinement follows the evolution of the increasing
complexity of the flow with the Ra number, we show in Fig. 4 the adapted meshes for
the final time tf = 50. The mesh is denser in regions of high velocity and temperature
gradients (at the walls and also at the interface between convection cells). The maximum
number of the degrees of freedom varies from 85 226 for Ra = 108 to 117 240 for Ra = 109

(see Tab. 1 in Appendix B).
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Figure 2: 2D configuration of the Barcq cavity. Snapshots of the natural convection flow at
t = tf = 50 for five values of the Rayleigh number. Velocity vectors and contours of the velocity
magnitude (colors) showing the presence of convection cells.
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Figure 3: 2D configuration of the Barcq cavity. Snapshots of the natural convection flow at
t = tf = 50 for five values of the Rayleigh number. Temperature contours.
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Figure 4: 2D configuration of the Barcq cavity. Adapted finite element mesh at final time
tf = 450 and for five values of the Rayleigh number.13



To get a better insight on the flow evolution, we show in Fig. 5 the time evolution of
the temperature measured at gauges G1 to G4. The gauge G1 is placed at the surface of
the well, G2 in the intersection plane between cavity and well, while G3 and G4 are inside
in the middle plane of the cavity (see Fig. 1). The curve in Fig. 5a illustrates the time-
variation of the temperature at the surface of the well, imposed by the boundary condition
(26). Figure 5b, corresponding to the gauge at the bottom of the well, suggests that the
convection process initiates at the top of the well by the fall of a cold plume induced by the
temperature variation at the surface of the well (gauge G1). This is observed in particular
for Ra = 105 to Ra = 107, with a minimum of temperature around t = 5; the minimum
is observed at t = 10 for Ra = 108. During the increase of the top (G1) temperature, the
convection tends to weaken within the well: all the curves at G2 follow the same evolution,
with similar slopes until the occurrence of the maximum of the top G1 temperature. During
the cooling of the well surface, between t = 25 and t = 50 (see Fig. 5a), more unstable
conditions occur within the well (generation of a cold plume at the top). Starting with
t = 25, the convection evolves differently for each Ra number: as Ra increases, the top
cold plume becomes thinner and thinner (see Fig. 3c compared to 3e) and is located along
the wall of the well, while a thicker upward flow is induced (see Fig. 2c compared to 2e).
As a consequence, the temperature at G2 increases with the Ra number for t > 25.

We also note that, starting from Ra = 107, high frequencies appear within the thermal
field, showing the unsteadiness of the convective process. The same observation may be
done for gauges G3 and G4 at the interior of the cavity where a large amount of high
frequencies are present in the thermal field and high amplitude thermal oscillations are
observed. These frequencies are induced by the oscillation of the convective cells that
deform during the temperature cycle.

To better quantify the heat transfer at the surface of the well, we show in Fig. 6 the
time evolution of the Nusselt number computed at this boundary:

Nu = −
∫
Lwell

(
∂θ

∂y

)
y=yB

dx. (28)

We note an evolution similar to that one obtained in (Sahi, 2016) for the case of natural
convection without radiation, which is our case. The heat transfert follows the temperature
of gauge G1 placed on top of the well. The Nusselt number usually differs from 1, meaning
that a convective flux (either positive or negative) is always present within the well. The
lowest values of the Nusselt number are observed for t = 25 and for all Ra numbers, i. e. in
the most unfavourable conditions for the convection process (high temperature at the top).
The highest value of Nu = 15 is observed for Ra = 109. The observed peaks highlight
significant thermal gradients corresponding to a change in the thermal boundary layer of
the cold wall. This phenomenon intensifies with the increase of the Rayleigh number. As an
illustration, considering a mean geothermal flux of 60 mWm−2 in Normandy, the convective
flux associated to the upward flow for Ra = 109 is equal to 900 mW m−2, which is a high
value for the thermal flux.
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Figure 5: 2D configuration of the Barcq cavity. Time evolution of the temperature measured
at gauges G1 to G4 for five values of the Rayleigh number.

3.3.2 Results for the 3D configuration

Computation of the 3D configuration of the Barcq cavity is challenging. As can be seen
from Fig. 1, the topology of the cavity is complex, with a narrow part linking the two
halves of the cavity. Visualization of the flow is also more involved that in the 2D case.
We choose to show in Figs. 7 to 11 four iso-surfaces of temperature and velocity vectors
projected on these iso-surfaces. Since the angle of view is slightly varied from one case to
another, we present separately the results for the five values of the Rayleigh number.

We first notice that the convective cells are still present, but more disorganized: roll-like
cells are visible for Ra = 105 to 107, but are very difficult to characterize for Ra = 108

to 109. Besides, the temperature contrasts observed within the cavity are smaller than
for the 2D cases, meaning that the thermal field is more homogeneous. This is due to
three-dimensional effects, that also trigger more rapidly a quasi-turbulent state of the flow.
High temperature gradients still exist within the well with the presence of hot/cold plumes
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Figure 6: 2D configuration of the Barcq cavity. Time evolution of the Nusselt number computed
at the surface of the well (y = yb) for five values of the Rayleigh number.

(Figs. 8, 9 and 10), with a thinning of the top cold plumes as the Ra increases (in a similar
way to that observed for the 2D case). For instance, very thin cold plumes can be observed
along the wall of the well for Ra = 108.

As for the 2D configuration, we show in Fig. 12 temperature time-series measured at
gauges G1 to G4. In 3D, three gauges are placed in the middle of the horizontal section
of the cavity at different depths and one in the middle of the cavity. The temperature at
gauge G2 in Fig. 12b do not follow the evolution of the surface signal, as it is located more
below the well. The cold plume triggering the convection at the beginning of the calculation
(around t = 10) and falling down within the cavity is seen by this gauge: its temperature
remains quite-stable during the thermal cycle.

Temperatures are higher for Ra = 107 and 108 than for 105 and 106, but with higher
frequencies (in particular forRa = 108). Concerning gauges G3 and G4 (Figs. 12c and 12d),
high frequencies still occur within the temperature field and the amplitude of the thermal
oscillations is lower than for the 2D cases. The Nusselt number (Fig. 13) also follows the
temperature cycle for the 3D case. However, its values are much lower than for the 2D
case, with the Nusselt number reaching the value of 2 for Ra = 108. Since the simulation
was stopped earlier, the value of the Nusselt number is unknown for Ra = 109, but we
can expect that it will be even higher. Nevertheless, for a Nusselt of 2 and Ra = 108, the
convective flux would be 120 mW m−2, which is a correct value for the flux of geothermal
active areas on Earth.

In summary, from a dynamical point of view, the 3D cases share some similarities with
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2D calculations: the occurrence of important thermal gradients in the well, the thinning of
the top/interior cold plumes inducing large hot air flows. However, important differences
appear: i) the 3D geometry tends to disorganize the convective cells from Ra = 108; ii)
3D effects homogenize the temperature field within the cavity; iii) the value of the Nusselt
number is much lower, meaning that the heat released by the convective process at the
surface is much lower.

Figure 7: 3D configuration of the Barcq cavity. Snapshot of the natural convection flow at
t = tf = 50. a) Mesh and four isosurfaces of temperature, b) velocity vectors. Ra = 105.
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Figure 8: Same caption as for Fig. 7, but for Ra = 106.
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Figure 9: Same caption as for Fig. 7, but for Ra = 107.
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Figure 10: Same caption as for Fig. 7, but for Ra = 108.
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Figure 11: Same caption as for Fig. 7, but for Ra = 108 and t = 16 < tf .
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Figure 12: 3D configuration of the Barcq cavity. Time evolution of the temperature measured
at gauges G1 to G4 for five values of the Rayleigh number.

4 Summary and conclusions

We presented a numerical model for the thermal behavior of artificial underground cavities.
The natural air convection flow was simulated for 2D and 3D geometries corresponding to
an actual artificial cavity located at Barcq, in Normandy, France. We first generated the
geometry from the 3D points obtained with a photogrammetric method. We then solved the
full system of Navier-Stokes equations with Boussinesq approximation for thermal effects.
The numerical method is based on a finite element space discretization (triangles in 2D and
tetrahedra in 3D) and implemented in FreeFem++ , a free software offering many useful
tools (mesh adaptivity, interface with up-to-date libraries like PETSc).

The numerical algorithm is original: we used the mini-element Pb
1 (P1-bubble) for ve-

locities and P1 for the pressure (as opposed to the Taylor-Hood element, commonly used
for such problems). For the temperature, we used either P1 or P2 finite elements. This
discretization allowed us to save computational time, especially for 3D configurations. For
the time integration, the Gear scheme offered a second order precision in time. The numer-
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Figure 13: 3D configuration of the Barcq cavity. Time evolution of Nusselt number computed
at the surface of the well (y = yb).

ical method was first validated by assessing the space and time convergence rates, using
theoretical benchmarks (manufactured solutions). Then we reported 2D and 3D results
for the natural convection flow evolution in the Barcq cavity, proving the efficiency of the
developed FreeFem++ code.

Numerical simulations were performed for Rayleigh numbers ranging from 105 to 109.
We presented snapshots of the velocity and temperature fields, and also time series of
temperature measures at four gauges. The results showed that: i) the natural convection
of air in an empty cavity can be triggered by important variations of the temperature at
the surface of the well; ii) the number of convection cells is geometry dependent and the
thermal gradients play the most important role in the heat transfer; iii) the airflow velocity
and of the temperature gradients within the well become intense for high Rayleigh numbers
(Ra > 107), which makes possible the detection of the wells by spotting temperature
contrasts at the surface; iv) the computed values of the Nusselt number at the well surface
suggest that natural convection potentially absorb or release heat from the atmosphere.

We also simulated 3D cases, which are computationally challenging. For the 3D geome-
try and Ra > 108, the convection is much more disorganized and the temperature tends to
be more homogeneous than in the 2D geometry. However, the well is still affected by tem-
perature gradients generated by the time-oscillating surface temperature. We also observed
that, although it takes much lower values than in the 2D case, the Nusselt number for the
3D case is still important, if compared to usual values of the heat flux range on Earth.

Further work will concern a more realistic model for the study of the thermal behavior
of cavities by: i) including a porous medium model describing the geological environment
around the cavity; ii) considering the presence of solid materials blocking the well; iii)
taking into account the radiation at the surface of the well. The final purpose of this study
is to use thermal infrared images taken by drones to detect cavities with blocked wells by
identifying thermal anomalies at the surface.
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Appendix A Space and time accuracy of the method.
Tests using manufactured solutions.

A.1 Rate of convergence in space

To compute the convergence in space of our numerical method we used the Burggraf manu-
factured solution. This exact solution corresponds to a time-independent recirculating flow
inside a square cavity [0, 1]× [0, 1]. This flow is similar to the well-known entrained cavity
flow, with the difference that the velocity singularity at the top corners of the cavity is
avoided. The cavity is transformed in a differentially heated cavity (see also Rakotondran-
disa et al., 2020) by imposing the temperatures of lateral walls (Thot and Tcold, respectively);
the upper and lower walls are adiabatic. The expressions for the two components of the
velocity, the pressure and temperature are as follows:

u1(x, y) = σg′(x)h′(y),

u2(x, y) = −σg′′(x)h(y),

p(x, y) =
σ

Re
(h(3)(y)g(x) + g′′(x)h′(y)) +

σ2

2
g′(x)2(h(y)h′′(y)− h′2(y),

θ(x, y) = Tcold + (Thot − Tcold)y + a(x)b(y),

with σ ≥ 0 am amplitude parameter and functions:

g(x) =
x5

5
− x4

2
+

x3

3
,

h(y) = y4 − y2,

a(x) = cos(πx),

b(y) = y(1− y).

Note that θx(x, y) = a′(x)b(y), θy(x, y) = Thot−Tcold+a(x)b′(y), θxx(x, y) = a′′(x)b(y) and
θyy(x, y) = a(x)b′′(y).

If we plug this solution in the system of equations (1)-(3), we obtain the following
right-hand-side terms:

fu1 = 0

fu2 = σ2h(y)h′(y)(g′′2(x)− g′(x)g(3)(x)) +
σ

Re
(h(4)(y)g(x) + 2g′′(x)h′′(y) + g(4)(x)h(y))

+
σ2

2
g′2(x)(h(y)h(3) − h′(y)h′′(y))− fB(θ) (29)

fθ = u1θx + u2θy −
1

RePr
(θxx + θyy) (30)
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We thus solve the system (1)-(3) with right-hand-side terms (30) to assess on the conver-
gence rate of the method in space. Errors are measured in natural norms: H1-norm for the
velocity components u1, u2 and temperature θ, and L2-norm for the pressure p. Figures
A.1(a,b) correspond to the simulation using P1 finite elements for the temperature, while
in Fig. A.1(c,d) P2 finite elements were used for the temperature. We recover the expected
orders of convergence: first order (O(h)) convergence for velocity and first or second order
(O(h2)) convergence for the temperature (depending if P1 or P2 are used). Theoretical
second order convergence is obtained for pressure (recall that this is measured using the
L2-norm). Space convergence rates were confirmed for the 3D configuration of the same
Burggraf solution, as shown in Fig. A.1.

A.1.1 Rate of convergence in time

To compute the convergence in time for the natural convection without radiation, we used
the Nourgaliev Nourgaliev et al. (2016) exact solution (see also Rakotondrandisa et al.,
2020):

u1(x, y, t) = (δU0 + αusin(t))cos(x+ γ1t)sin(y + γ2t),

u2(x, y, t) = −(δU0 + αusin(t))sin(x+ γ1t)cos(y + γ2t),

p(x, y, t) = P̄ + (δP0 + αpsint(t))sin(x+ γ1t)cos(y + γ2t),

θ(x, y, t) = θ̄ + (δt0 + αtsint(t))cos(x+ γ1t)sin(y + γ2t).

with:

γ1 = γ2 = 1, P̄ = 0, θ̄ = 1, δt0 = δU0 = 1, δP0 = 0.1, αP = 0.05, αu = 0.4, αt = 0.1.

For the right-hand-side member of the system of equations (1)-(3) we obtain:

fu1
= αucos(t)cos(a)sin(b)− Ucγ1sin(a)sin(b) + Ucγ2cos(a)cos(b)

−Ucu1(x, y, t)sin(a)sin(b) + Ucu2(x, y, t)cos(a)cos(b) + Pcsin(a)sin(b)

+
2

Re
u1(x, y, t),

fu2 = −αucos(t)sin(a)cos(b)− Ucγ1cos(a)cos(b) + Ucγ2sin(a)sin(b)

−Ucu1(x, y, t)cos(a)cos(b) + Ucu2(x, y, t)sin(a)sin(b)− Pcsin(a)sin(b)

+
2

Re
u2(x, y, t)− fB(θ),

fθ = αtcos(t)cos(a)sin(b)− Tcγ1sin(a)sin(b) + Tcγ2cos(a)cos(b)

−Tcu1(x, y, t)sin(a)sin(b) + Tcu2(x, y, t)cos(a)cos(b)

+
2

RePr
T2c(x, y, t)cos(a)sin(b).

where a = (x+ γ1t), b = (y+ γ2t) and Uc = (δU0 + αu sin(t)), Tc = (δT0 + αu sin(t)), Pc =
(δP0 + αu sin(t)).
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Using the study for the time accuracy, we first ixed the grid size to h = δx = 0.01 in
2D and h = δx = 0.02 in 3D to ensure small spatial discretization errors. We then used
P1 or P2 finite elements for the temperature. For diminishing values of the time step δt,
the solution was evolved in time up to the time instant tmax = π at which the error was
computed. For the 2D cavity, the time convergence rates for temperature and the total
velocity u =

√
u2
1 + u2

2 are displayed in Figs. 16(a, b). For both computations, using
for the temperature either P1 or P2 finite elements, the expected second order in time is
obtained. Figure 17 shows the same second-order convergence rate for the 3D case.

Appendix B Computation details and performance of
the solver

B.1 PETSc solvers

The performance of the code was assessed by simulating the natural convention in the Barcq
cavity. Linear systems in the Newton method were solved with the PETSc library. For all
simulations we used the following parameters:

• for the 2D case we used a direct LU method with parameters in PETSc: "-pc type

lu -ksp type preonly";

• for the 3D problem, we used the following options: "-ksp converged reason -pc type

asm -pc asm overlap 1 -ksp pc side left -ksp type gmres -ksp gmres restart

50 -ksp max it 100 -ksp atol 1e-5 -sub pc type lu -sub pc factor mat solver type

mumps -ksp rtol 1e-6".

B.2 Computational resources for 2D and 3D simulations

Tables 1 and 2 show that necessary computational resources strongly depend on the value
of the Rayleigh Ra number. With increasing value of the Ra number, the gradients of
velocity and temperature are more important and the mesh refinement procedure produces
denser meshes. The variation in time of the number of degrees of freedom due to mesh
adaptivity/refinement is presented in Fig. 18. The mesh is dynamically refined in regions
of high gradients and coarsened in regions of low gradients.

Using a medium-size parallel computer, 2D simulations are affordable for all range of
Ra numbers, with a reasonable computational time (see Tab. 1). For the 3D configuration
at the highest value Ra = 109 the flow generates smaller and smaller structures and the
mesh refinement results in a very dense mesh requiring a huge amount of memory and CPU
time to solve associated linear systems. This is the reason why this 3D case was stopped
at t = 16 < λ = 50 (see Tab. 2). Further optimizations on the use of the PETSc solvers
(finding good preconditionners) and larger computers are necessary to simulate this case
over an entire time period.
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Case CPU (min) max number of triangles number of time steps

Ra = 105 1 4 305 133

Ra = 106 3 6 564 421

Ra = 107 11 12 499 1 332

Ra = 108 57 20 965 4 213

Ra = 109 240 28 888 4 364

Table 1: Computational resources for 2D simulations. For all simulations, we used 6 processors
and stopped the calculation at the final time tf = 50. We report the total CPU time (in
minutes), the maximum number of triangles after the mesh adaptation and the number of time
steps.

Case tf CPU (h) processors memory (GB) max number of triangles number of time steps

Ra = 105 50 2 28 22 320 623 133

Ra = 106 50 10 56 85 685 503 421

Ra = 107 50 72 108 279 2 507 179 1 332

Ra = 108 50 314 209 1790 8 685 939 4 213

Ra = 109 16 263 207 4540 18 959 948 4 364

Table 2: Computational resources for 3D simulations. We report the final time tf , the total
CPU time (in hours), the number of processors used for the computation, the amount of
necessary memory (in GB), the maximum number of triangles after the mesh adaptation and
the number of time steps. Note that the 3D simulation for the case Ra = 109 was stopped
earlier.
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Figure 14: Space convergence of the numerical method tested using the 2D Burggraf manufac-
tured solution. The global error was computed using natural norms: L2-norm for the pressure
p and H1-norm for velocity components u1, u2 and temperature θ. P1b/P1 finite elements are
used for the velocity and pressure respectively. Discretization of the temperature using P1

(plots a and b) and P2 (plots c and d) finite elements.
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Figure 15: Same caption as for Fig. A.1, but for the 3D Burggraf manufactured solution.
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Figure 16: Time convergence of the numerical method tested using the 2D Nourgaliev man-
ufactured solution. a) P1 finite element for the temperature, b) P2 finite element for the
temperature.
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Figure 17: Same caption as for Fig. 16, but for the 3D Nourgaliev manufactured solution. P1

finite element for the temperature.
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Figure 18: Variation in time of the number of degrees of freedom (ndof) due to mesh adaptiv-
ity/refinement. a) 2D simulations, b) 3D simulations.
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P. Marjerie, P.-F. Thérain, J.-P. Dupont, M. Pierrot-Deseilligny, Assessment of an ancient
bridge combining geophysical and advanced photogrammetric methods: Application to
the Pont De Coq, France, Journal of Applied Geophysics 98 (2013) 100–112.

F. Hecht, New developments in Freefem++, Journal of Numerical Mathematics 20 (2012)
251–266.

C. Dapogny, C. Dobrzynski, P. Frey, Three-dimensional adaptive domain remeshing, im-
plicit domain meshing, and applications to free and moving boundary problems, Journal
of Computational Physics 262 (2014) 358 – 378.

S. Balay, S. Abhyankar, S. Benson, J. Brown, P. R. Brune, K. R. Buschelman, E. Constan-
tinescu, A. Dener, J. Faibussowitsch, W. D. Gropp, et al., PETSc/TAO users manual,
Technical Report, Argonne National Lab.(ANL), Argonne, IL (United States), 2022.

34



A. Sahi, Modélisation et simulation numérique des transferts thermiques dans les cavités
fines avec parois complexe en présences d’un fluide classique, Ph.D. thesis, Université
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