
HAL Id: hal-04702018
https://hal.science/hal-04702018v1

Submitted on 19 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Computing Manifold Next-Event Estimation without
Derivatives using the Nelder-Mead Method

Ana Granizo-Hidalgo, Nicolas Holzschuch

To cite this version:
Ana Granizo-Hidalgo, Nicolas Holzschuch. Computing Manifold Next-Event Estimation without
Derivatives using the Nelder-Mead Method. EGSR 2024 - 35th edition of Eurographics Symposium
on Rendering, Jul 2024, London, United Kingdom. pp.1-9, �10.2312/sr.20241156�. �hal-04702018�

https://hal.science/hal-04702018v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Eurographics Symposium on Rendering 2024
E Garces and E. Haines
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 4

Computing Manifold Next-Event Estimation without Derivatives
using the Nelder-Mead Method

Ana Granizo-Hidalgo and Nicolas Holzschuch

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK

Figure 1: Our algorithm, running on three different test scenes. It computes complex caustics, with the same quality as the state of the art.

Abstract
Specular surfaces, by focusing the light that is being reflected or refracted, cause bright spots in the scene, called caustics.
These caustics are challenging to compute for global illumination algorithms. Manifold-based methods (Manifold Exploration,
Manifold Next-Event Estimation, Specular Next Event Estimation) compute these caustics as the zeros of an objective function,
using the Newton-Raphson method. They are efficient, but require computing the derivatives of the objective function, which in
turn requires local surface derivatives around the reflection point, which can be challenging to implement. In this paper, we
leverage the Nelder-Mead method to compute caustics using Manifold Next-Event Estimation without having to compute local
derivatives. Our method only requires local evaluations of the objective function, making it an easy addition to any path-tracing
algorithm.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

By focusing light, specular surfaces in a scene cause bright spots,
called caustics. These caustics play an important role in our per-
ception of the scene and in photorealistic simulation of light trans-
port, but they are challenging to compute. They correspond to high-
intensity radiance transfer over a small surface area, where a spe-
cific path connects to the light source through specular reflections
or refractions.

This makes caustics difficult to compute: they are caused by a
small set of light paths, which have a null or small measure in
path space; randomly sampling path space, for example using naive

Monte-Carlo methods, will likely miss the paths responsible for the
caustics, or under-sample them.

Several global illumination algorithms have been developed
to efficiently compute caustics; Manifold Next-Event Estimation
algorithms [HDF15] are efficient methods to compute caustics
caused by direct reflection or refraction on a specular surface. They
compute the light paths connecting a receiver point to the light
source through this specular interaction by computing the zeroes
of an objective function. This computation uses Newton-Raphson
method and requires the derivatives of the objective function. To
compute these, we need the local surface derivatives which can be
difficult to implement, especially in an existing code base.

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

https://orcid.org/0009-0004-1325-6600
https://orcid.org/0000-0002-5673-6960

2 of 9 Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method

In this paper, we present a new approach for Manifold Next-
Event Estimation, computing the zeros of the objective function us-
ing the Nelder-Mead method [NM65] instead of Newton-Raphson.
Our method only requires local computation of the objective func-
tion, not of the derivatives, making it easier to combine with exist-
ing global illumination implementations. Nelder-Mead method is
less efficient than Newton-Raphson; it requires more computation
steps to converge. As a result, our algorithm is two times slower
than Specular Manifold Sampling [ZGJ20]. However, it has poten-
tial in situations where the simplicity and compactness of the code
base would be more important than raw speed.

In the next section, we review previous algorithms for comput-
ing caustics in global illumination. We then detail the basics of the
Nelder-Mead method in Section 3. In Section 4, we present our al-
gorithm for solving Manifold Next-Event Estimation. In Section 5,
we present results and compare our algorithm with previous works,
then we discuss limitations in Section 6. We conclude and present
potential avenues for future work in Section 7.

2. Previous Works

Most recent works on global illumination solve the rendering equa-
tion [Kaj86] using random sampling of the set of light paths con-
necting the camera to the light source, via Monte-Carlo sampling.
Within this framework, caustics are a difficult case: they represent
a small subspace of the space of light paths, so randomly sampling
the space is very likely to miss this subset.

Jensen [Jen96] introduced Photon Mapping, a two-step generic
method to compute global illumination, including caustics: in a first
step, photons are scattered through the scene. In the second step,
they are gathered to reconstruct illumination effects. Photon map-
ping is very versatile: it can render almost all illumination effects.
Photon mapping separates caustics from other illumination effects,
allocating a separate set of photons for them. The quality of caustics
reconstruction depends on the number of caustics photons.

Metropolis Light Transport [VG97] explores the path of light
spaces using random mutations. The algorithm is good at finding
difficult paths connecting the camera and the light source, but still
has difficulties for reflections on pure specular surfaces.

Mitchell and Hanranhan [MH92] computed reflective caustics
on curved surfaces using the surface derivatives. They identify re-
flected paths as paths with extremal length, based on Fermat’s prin-
ciple, and use Newton-Raphson’s method to find these paths.

Walter et al. [WZHB09] compute refracted paths inside surfaces
defined by triangles with interpolated normals. They identify re-
fracted paths as paths through points where the half-vector is equal
to the opposite of the normal, and search for these points using
Newton-Raphson’s method.

Jakob and Marschner [JM12] extend Metropolis Light Trans-
port [VG97] for reflection on specular surfaces, by restricting the
space of perturbations to a manifold, which can be explored sys-
tematically. It is very efficient to find specular paths into the scene,
but not so efficient when we need to connect the last point of a path
to the light source.

Practical path guiding [MGN17] gradually learns the incoming

radiance distribution using an adaptive spatio-directional hybrid
data structure, resulting in stable performance in scenes with dif-
ficult geometry, including caustics. This performance stability is a
strong advantage of the method, making it compatible with produc-
tion environments.

Classical Path-Tracing usually relies on Next-Event Estimation:
computing direct illumination by connecting the current point to
the light source using a shadow ray. Next-Event Estimation dra-
matically improves convergence speed, but it is not available when
there is a refractive surface on the way. Hanika et al. [HDF15] com-
bine Next-Event Estimation and Manifold exploration into Mani-
fold Next-Event Estimation: they use manifold exploration to find
the refracted path through the surface, connecting the light source
with the last point on the path.

Zeltner et al. [ZGJ20] improve this technique with Specular
Manifold Sampling, using a different objective function and sys-
tematic search for multiple solutions. Loubet et al. [LZHJ20] used
slope-space integrals for fast computation of specular next-event
estimation.

Our work uses a similar approach as [HDF15,ZGJ20], but we do
not compute derivatives in our search for solutions, using instead
Nelder-Mead algorithm [NM65].

3. The Nelder-Mead algorithm

3.1. Principles

The Nelder-Mead algorithm [NM65] is an algorithm to find a local
minimum of a function, like gradient descent. Unlike gradient de-
scent, it does not compute the local derivatives, but only the value
of the function at certain sample points. At each step, it maintains
a simplex of sample points, and either extends or contracts the sim-
plex based on computations.

For a function defined over a parameter space of dimension d, the
Nelder-Mead algorithm maintains a simplex of d+1 sample points.
In our case, we are interested in a function defined on a surface, of
dimension 2, so we maintain a triangle of sample points.

At each step, the sample point with the largest value is replaced
by another point, with a smaller value, ensuring that the average
value for all points on the simplex is decreasing.

3.2. Algorithm

In this section, we are working with an objective function f defined
over a space of dimension d. We maintain a set of sample points
{x0,x1, ...,xd}, ordered by the value of the function:

f (x0)≤ f (x1)≤ ...≤ f (xd) (1)

At each iteration, our goal is to replace xd (the point with the
highest value) with another sample point, with a lower value for
f . We start by computing y, the centroid of the remaining points,
{x0,x1, ...,xd−1}. We then compute xr, the symmetric of xd around
y, and the value of the function at xr, f (xr) (see Figure 2a). The
algorithm then depends on the value of f (xr) compared to the other
values of f already computed:

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method 3 of 9

𝑥2

𝑥1

𝑥0

𝑦
𝑥𝑟

𝑥𝑒

(a) Reflect and Expand

𝑥2

𝑥1

𝑥0

𝑦𝑥𝑚

(b) Contract

𝑥2

𝑥1

𝑥0

𝑥′1

𝑥′2

(c) Shrink

𝑥2

𝑥1

𝑥0

𝑦
𝑥𝑟𝑥𝑞

(d) Middle expand

Figure 2: The different cases in the Nelder-Mead method.

• If f (xr) is the best value so far (f (xr)< f (x0)), then we try going
even further, computing xe as an expanded version of xr (see
Figure 2a):

xe = y+−→yxr (2)

We then replace xd by the point with the smallest value between
xr and xe: If f (xe) ≤ f (xr), then we replace xd with xe. Other-
wise, we replace xd with xr.

• If f (xr) is the worst value so far (f (xr) > f (xd)), then we try
contracting the triangle by computing xm, the middle of [yxd]
(see Figure 2b). If that point is better than xr (f (xm) < f (xr)),
then we use it as a replacement for xd . Otherwise, we shrink the
entire simplex around x0, replacing all points xi except x0 by the
middle of the segment [xix0] (see Figure 2c).

• If xr is better than the second worst point, xd−1, but not better
than the best point x0 (f (x0) ≤ f (xr) ≤ f (xd−1)), then we re-
place xd with xr.

• If xr is between the second worst point and the worst point
(f (xd−1)≤ f (xr)≤ f (xd)), then try expanding the triangle a lit-
tle less, by computing xq, the middle of [yxr] (see Figure 2d). If
xq is better than xr then we replace xd by xq, otherwise we shrink
the entire simplex around x0, replacing all points xi except x0 by
the middle of the segment [xix0] (see Figure 2c).

At the end of an iteration, we have either replaced xd with a new
sample point that has a lower value for the objective function or
shrunk the entire simplex around the point with the lowest value.
We then re-order our d + 1 sample points and compute the next
iteration.

3.3. Analysis

Most of the time, Nelder-Mead replaces the sample point with the
largest value with one sample point with a lower value, so the av-
erage error over the simplex decreases. In some cases, the simplex
contracts towards the sample point with the lowest value. The latter
is not guaranteed to improve the objective, but heuristically it does.

Each iteration requires between 1 and d + 2 computations of f .
The best-case scenario (1 computation of f) happens when we re-
place the worst point xd with the reflected point xr. The worst-case
scenario happens when we have to shrink the simplex and recom-
pute values of f at all the new points.

In low dimensions, for example in our case with d = 2, the worst
case is more expensive than computing the gradient of f . The main
interest of Nelder-Mead is the ease of implementation, as it does

P

M

L

n̂M

−→MP

−→ML

Figure 3: A specular path through a reflective interface.

η1
η2

θ1θ1

n̂nn

−→PM −→ML

(a) Reflection

η1
η2

θ1

θ2

n̂nn

−→PM

−→ML

(b) Refraction

Figure 4: Snell-Descartes law.

not require implementing the data structures required to compute
the local derivatives of the path.

4. Our algorithm

4.1. Problem position

We place ourselves with the same setting as Manifold Next-Event
Estimation [HDF15] and Specular Manifold Sampling [ZGJ20]: we
have computed a path from the camera to a diffuse or glossy re-
ceiver, and we want to connect the last point on this light path to the
light source (see Figure 3). Direct connections to the light source

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 9 Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method

are usually called Next-Event Estimation. Connecting the last point
to the light source through one interaction on a specular surface,
either reflection or refraction, is Manifold Next-Event Estimation.

We assume that our scene contains surfaces with varying nor-
mals, either triangles with interpolated normals or surfaces with
normal maps.

A specular path connecting the last point on the light path P to
the light source L, through a point on the specular surface M, must
obey the law of Snell-Descartes:

• The two vectors −→MP, −→ML and the normal at M, n̂nnM must be copla-
nar.

• For reflection, −→MP and −→ML must be symmetric around the normal
nnnM (see Figure 4a).

• For refraction, the sines of the angles between −→MP or −→ML and
the normal nnnM are connected with the index of refraction in each
material ηi (see Figure 4b):

η1 sinθ1 = η2 sinθ2 (3)

We express these conditions using an objective function f , based
on the half-vector ĥhh, as in [WZHB09,HDF15]. For specular reflec-
tion, the half-vector is:

ω̂P =
−→MP

∥−→MP∥
(4)

ω̂L =
−→ML

∥−→ML∥
(5)

ĥhh =
ω̂P + ω̂L

∥ω̂P + ω̂L∥
(6)

For specular refraction:

ĥhh =− η2ω̂P +η1ω̂L

∥η2ω̂P +η1ω̂L∥
(7)

The objective function in both cases is:

f (M) = norm(ĥhh− n̂nnM) (8)

In both cases, we used the convention that the normal n̂nnM is
pointing towards outside the object. The specular paths we are look-
ing for correspond to zeroes of these objective functions f .

4.2. Algorithm description

Our algorithm follows the Nelder-Mead method:

• First we select a starting simplex, a set of three points where we
compute the value of the objective function (see Section 4.3).

• Then we recursively refine this simplex using Nelder-Mead
method (see Section 4.4).

• We stop the search when the value of the objective function falls
below a certain threshold, when the size of the triangle is too
small or after a preset number of iterations (see Section 4.5).

• For faster convergence, we try to reject early paths where the
search will not converge (see Section 4.7).

• Following Zeltner et al. [ZGJ20], we do this search with multiple
starting points on the surface, as there can be several specular
paths connecting the receiving point to the light source through
a specular interaction.

The main differences with the original Nelder-Mead method de-
scribed come from the fact that our simplexes are mapped onto a
curved surface instead of a flat plane, so we need to reproject each
point back to the surface, using ray-casting.

4.3. Selection of the starting simplex

For the Nelder-Mead method, we need three starting points instead
of a single starting point. We select three random points on the
surface and form our starting simplex with these. From our experi-
ments, we determined that using three random points on the surface
is the most efficient initialization method; even if the points are too
far apart, the method converges to a solution. We tried other meth-
ods, such as using the vertices of a random triangle in the surface
tesselation, but found this to be less efficient.

4.4. Searching for the minimum

We apply the basic Nelder-Mead algorithm, as detailed in Sec-
tion 3, with one key difference: Nelder-Mead assumes we have a
global parametric space, and our surfaces are not parameterized.
Whenever we compute a new point for the method, we first com-
pute this point in the plane defined by the current simplex, then
reproject it on the surface using ray-casting.

After each refinement step, we have a simplex of three points
lying on the surface.

4.5. Stopping criteria

We stop the refinement when either of the following criteria is met:

• the value of the objective function at the vertices of the simplex
is below a certain threshold,

• or the length of the largest edge of the simplex is smaller than
another threshold,

• or if we have reached a predefined maximum number of itera-
tions.

In each case, we compute the center of gravity of the simplex, then
reproject it on the surface and compute the value of the objective
function. If it is smaller than our threshold, we consider that this
point makes a valid specular path. We then check its visibility from
the light source using a shadow ray and connect it to the light source
if it is visible, creating a complete light path from the camera to the
light source.

4.6. Contribution of a path

Once we have found the path connecting point P to the light, we
need to calculate the contribution of this path. For this, we use the
same approach as Specular Manifold Sampling [ZGJ20] in their
unbiased version. First, we evaluate the path contribution by com-
puting the reflectance at the specular point f s(M), the generalized
geometry factor G(P ↔ M ↔ L), and the emitter weight wL.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method 5 of 9

....

Figure 5: Average values of the objective function at each iteration,
in a case when it does not converge to 0. In green: extrapolation
between the average at iterations 3 and 4; at this rate, the algorithm
could get to 0 before the 30th iteration. In orange: extrapolation
between the average at iterations 5 and 6, at this rate we need more
than 50 iterations to get to 0, so we cancel the search.

S = f s(M) ·G(P ↔ M ↔ L) ·wL (9)

where f s(M) is computed using the Fresnel term and the solid
angle compression. The generalized geometry factor [JM12] uses
the derivatives at each point of the path to relate different solid
angles at both ends of the path.

Once we have the specular contribution, we need to account for
the probability of sampling that path. This is estimated separately
by repeatedly calling the function to find a specular path and count-
ing the number of trials required to sample the same path again. The
final contribution is given by:

contribution = S · ⟨1/pk⟩ (10)

where ⟨1/pk⟩ is the estimated inverse probability of sampling
point M.

4.7. Preliminary rejection

We are searching for zeros of the objective function. The Nelder-
Mead algorithm converges to a local minimum, which might not
be a zero of the function. We detect whether the algorithm is con-
verging to a non-zero local minimum by looking at the slope of the
error function, and stop the refinement in those cases.

After each refinement step, we compute the average error for
the current simplex by averaging the values of the objective func-
tion at the vertices. This average error is a monotonous decreasing
function by design of the Nelder-Mead algorithm. At each step, we
extrapolate the error curve using the newly computed average error
and the average error computed at the previous step (see Figure 5).
We stop the refinement early if the extrapolated error does not reach
zero within the maximum number of iterations.

As the error function can behave erratically over the first itera-
tions, we only apply this criterion after 20 iterations.

5. Results

We implemented our algorithm on the CPU inside Mitsuba 2 [ND-
VZJ19]. Unless otherwise specified, all the numbers and figures in
this paper are computed on an Intel Xeon with 2.40 GHz, 32 cores.

We ran our algorithm on three different test scenes (see Fig-
ure 1): a specular bumpy sphere, a specular Stanford bunny, and
a scene with two specular vases. We use the following hyperpa-
rameters, that are the same for all our test scenes: 100k trials to
compute the probability of each path, 50 iterations for the Nelder-
Mead method, 1e-4 as the threshold for the objective function, and
0.1 as the threshold for the simplex edges.

5.1. Algorithm behaviour

Figure 6 shows the successive simplex computed by the method
during two specific searches. The different steps in the search ap-
pear clearly: first the search area moves across the surface, then the
simplex contracts around the solution.

Figure 7 shows the average value of the objective function for the
vertices of the simplex, computed at each iteration for two different
searches (one that is successful, the other that is not). This average
value decreases at each step: the algorithm is converging towards a
local minimum.

5.2. Validation: comparison with Specular Manifold Sampling

Figure 8, shows a comparison between our algorithm and Specular
Manifold Sampling (SMS), the unbiased version, [ZGJ20] on all
our test scenes, with the same number of samples per pixel (spp)
at each scene. Our algorithm is slower for the same number of
samples per pixel but reaches similar quality levels. In addition to
the visual comparison, we calculate the structural similarity index
measure (SSIM) between each image and a reference image. The
structural similarity indicates the resemblance between two images,
considering the degradation of the image as a perceived change in
structural information. The result of this measurement provides us
with an index that represents how similar the images are, as well as
a new image on a greyscale, in which white means that those parts
of the images are similar, and black means they are different. In the
bumpy sphere scene in Figure 8, we can see that our method has
trouble finding some of the paths that are in the border between the
sphere and the ground, which is clearly represented in the struc-
tural similarity image. This happens because we always check the
visibility between each new simplex point and either the light or
the diffuse point. When we are close to the edge, the Nelder-Mead
method can take us to a point on the other side of the floor, which
prevents us from reaching that point and discarding the sample. On
the other hand, our method can find more paths on the ground than
SMS, which is also visible in the structural similarity image in all
the test scenes. Both algorithms reach a comparable percentage of
image similarity.

Table 1 shows, for each test scene, the computation time using

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 9 Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method

(a) (b) (c)

Figure 6: Trajectory of our search function. (a) and (b) show the successive values of the simplex for two different searches, and (c) shows a
zoom in of (b). The color of the triangles represents the value of the average of the objective function over the vertices.

(a) Case when the value converges to 0. (Found a valid path). (b) Case when the value does not converge to 0.

Figure 7: Average value of the objective function at each iteration for two different searches.

Ours SMS
time % time %

Bumpy sphere 8spp 18.94 s 57.51 8.79 s 47.15
Vases 32spp 10.15 mn 23.56 4.25 mn 20.06
Stanford bunny 64spp 18.14 mn 29.31 8.32 mn 27.22

Table 1: Comparison of computation time and percentage of suc-
cessful searches between our method and Specular Manifold Sam-
pling.

our algorithm and the percentage of searches initiated that were
successful. It also shows the same number for Specular Manifold
Sampling, for comparison. With the same number of samples per
pixel, our algorithm runs two times slower than Specular Manifold
Sampling. The search algorithm converges slightly more often.

5.3. Comparison with a Newton-Raphson method that uses
gradients computed using Finite Differences

Finite differences is a way of approximating the derivatives of the
objective function, which is slightly simpler than actually comput-
ing the derivatives. We compared our method with an implementa-

tion that uses finite differences in the same setup. Figure 9 shows
this comparison, where we can see that this method performs up to
3 times faster than ours, but does not manage to find all the solu-
tions.

5.4. Comparison with Path Guiding and Photon Mapping

We also compared our algorithm with Photon Mapping [Jen96] and
Practical Path Guiding [MGN17], both implemented inside Mit-
suba 0.5 [Jak10]. All timings in this section are computed on a 2
GHz Quad-Core Intel Core i5 MacBook Pro with 32 GB of mem-
ory. Figure 10 shows the visual comparison of our method with
Practical Path Guiding and Photon Mapping. Both scenes use sim-
ilar computation times for all three methods (95 s for the Bumpy
Sphere scene and 57 mn for the Vases scene).

For these scenes, where sharp reflective caustics are prominent,
our algorithm produces better-quality images than Practical Path
Guiding with the same time budget, as Photon Mapping achieves
smoother images.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method 7 of 9

Ours Image Similarity: 96.75% Ours: 8spp, 18.94s SMS: 8spp, 8.79s SMS Image Similarity: 96.24%

Ours Image Similarity: 84.81% Ours: 32spp, 10.15mn SMS: 32spp, 4.25mn SMS Image Similarity: 84.76%

Ours Image Similarity: 95.97% Ours: 64spp, 18.14mn SMS: 64spp, 8.32mn SMS Image Similarity: 95.73%

Figure 8: Comparison between our algorithm and Specular Manifold Sampling. On a bumpy sphere (top), using 8 samples per pixel; on a
scene containing 2 specular vases (middle), with 32 samples per pixel; and on a Stanford bunny scene (bottom), using 64 samples per pixel.
We can see that both algorithms present similar visual results. On the leftmost and rightmost columns, the image similarity (SSIM) shows us
the difference between each image and a reference image. The darker the region, the more difference there is with the reference image.

6. Limitations and discussion

Our method is slower than Specular Manifold Sampling, and runs
at comparable speed with Photon Mapping. Its key advantage, more
than speed, is the ease of implementation: it only requires sampling
the objective function at individual points on the surface; while
computing the derivatives of the objective function requires hav-
ing a local parameterization and local derivatives.

Our method is currently too slow to allow interactive rendering
on the GPU, especially for specular reflections. Complicated caus-
tics such as those in Figure 1 have several paths connecting each
point to the light source. To compute all of these paths, we need to
try using multiple random starting points, which impacts the total
computation time. It could be possible to run interactively with one
sample per pixel, but the results are of very low quality.

7. Conclusion and Future Works

We have presented an implementation of Manifold Next-Event Es-
timation that does not require computing the derivatives of the ob-
jective function. Our method uses the Nelder-Mead method to find
the specular paths connecting receiver points to the light source.
Even though it does not use the derivatives, it has a similar perfor-
mance compared to Specular Manifold Sampling. This method can
be extended to refractive caustics and multiple specular interfaces.

In future works, we want to extend this derivative-free approach
to finding minima for other problems, such as inverse render-
ing.

References
[HDF15] HANIKA J., DROSKE M., FASCIONE L.: Manifold Next Event

Estimation. Computer Graphics Forum 34, 4 (July 2015), 87–97. doi:

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.12681

8 of 9 Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method

Finite Difference Image Similarity: 92.35% Finite Difference Image Similarity: 72.85% Finite Difference Image Similarity: 90.42%

Finite Difference: 8spp, 7.53s Finite Difference: 32spp, 3.74m Finite Difference: 64spp, 6.97m

Ours: 8spp, 18.94s Ours: 32spp, 10.15mn Ours: 64spp, 18.14mn

Figure 9: Comparison between our method and Finite Differences on our three test scenes, with the same number of samples per pixel (spp)
at each scene. The top row contains the image similarity (SSIM) between the Finite Difference method and a reference image. For the bumpy
sphere and the vase scene, Finite Difference is not able to find all of the paths, while with the bunny scene, the missing paths are not that
prominent, but the image is still slightly noisier.

10.1111/cgf.12681. 1, 2, 3, 4

[Jak10] JAKOB W.: Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 6

[Jen96] JENSEN H. W.: Global Illumination using Photon Maps. In Ren-
dering Techniques ’96, Pueyo X., Schröder P., (Eds.). Springer Vienna,
Vienna, 1996, pp. 21–30. doi:10.1007/978-3-7091-7484-5_
3. 2, 6

[JM12] JAKOB W., MARSCHNER S.: Manifold exploration: a Markov
Chain Monte Carlo technique for rendering scenes with difficult specu-
lar transport. ACM Transactions on Graphics 31, 4 (Aug. 2012), 1–13.
doi:10.1145/2185520.2185554. 2, 5

[Kaj86] KAJIYA J. T.: The rendering equation. In Proceedings of the 13th
annual conference on Computer graphics and interactive techniques -
SIGGRAPH '86 (1986), ACM Press. doi:10.1145/15922.15902.
2

[LZHJ20] LOUBET G., ZELTNER T., HOLZSCHUCH N., JAKOB W.:
Slope-space integrals for specular next event estimation. Transactions
on Graphics (Proceedings of SIGGRAPH Asia) 39, 6 (Dec. 2020). doi:
0.1145/3414685.3417811. 2

[MGN17] MÜLLER T., GROSS M., NOVÁK J.: Practical Path Guiding
for Efficient Light-Transport Simulation. Computer Graphics Forum 36,
4 (July 2017), 91–100. doi:10.1111/cgf.13227. 2, 6

[MH92] MITCHELL D., HANRAHAN P.: Illumination from curved re-
flectors. SIGGRAPH Comput. Graph. 26, 2 (jul 1992), 283–291. doi:
10.1145/142920.134082. 2

[NDVZJ19] NIMIER-DAVID M., VICINI D., ZELTNER T., JAKOB W.:
Mitsuba 2: A retargetable forward and inverse renderer. Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). doi:
10.1145/3355089.3356498. 5

[NM65] NELDER J. A., MEAD R.: A Simplex Method for Function Min-
imization. The Computer Journal 7, 4 (Jan. 1965), 308–313. doi:
10.1093/comjnl/7.4.308. 2

[VG97] VEACH E., GUIBAS L. J.: Metropolis light transport. In Pro-
ceedings of the 24th annual conference on Computer graphics and in-
teractive techniques - SIGGRAPH ’97 (Not Known, 1997), ACM Press,
pp. 65–76. doi:10.1145/258734.258775. 2

[WZHB09] WALTER B., ZHAO S., HOLZSCHUCH N., BALA K.: Single
scattering in refractive media with triangle mesh boundaries. ACM Trans.
Graph. 28, 3 (jul 2009). doi:10.1145/1531326.1531398. 2, 4

[ZGJ20] ZELTNER T., GEORGIEV I., JAKOB W.: Specular manifold
sampling for rendering high-frequency caustics and glints. ACM Trans-
actions on Graphics 39, 4 (Aug. 2020). doi:10.1145/3386569.
3392408. 2, 3, 4, 5

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.12681
https://doi.org/10.1111/cgf.12681
https://doi.org/10.1007/978-3-7091-7484-5_3
https://doi.org/10.1007/978-3-7091-7484-5_3
https://doi.org/10.1145/2185520.2185554
https://doi.org/10.1145/15922.15902
https://doi.org/0.1145/3414685.3417811
https://doi.org/0.1145/3414685.3417811
https://doi.org/10.1111/cgf.13227
https://doi.org/10.1145/142920.134082
https://doi.org/10.1145/142920.134082
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1145/258734.258775
https://doi.org/10.1145/1531326.1531398
https://doi.org/10.1145/3386569.3392408
https://doi.org/10.1145/3386569.3392408

Ana Granizo-Hidalgo & Nicolas Holzschuch / Computing Manifold Next-Event Estimation without Derivatives using the Nelder-Mead Method 9 of 9

Ours: 16spp, 95s Path Guiding: 95s Photon Map: 1.5M caustic photons, 91s

Ours: 64spp, 56 mn Path Guiding: 65mn Photon Map: 3.5M caustic photons, 57mn

Ours: 64spp, 55.9 mn Path Guiding: 55.6mn Photon Map: 3.5M caustic photons, 5.6mn

Figure 10: Equal time comparison between our algorithm (left), Practical Path Guiding (middle), and Photon Mapping (right). In scenes
with reflective caustics, Path Guiding has trouble finding the path of light, resulting in noisy images with no defined caustics. For the bumpy
sphere scene, our algorithm and Photon Mapping present similar results at the same computation time. For the vase scene, Photon Mapping
presents less noise and better-defined caustics. For the bunny scene, Photon mapping achieves the same quality of the image in 10 times less
time.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

