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ANTI-SYMPLECTIC INVOLUTIONS ON MODULI SPACES OF SHEAVES

ON K3 SURFACES VIA AUTO-EQUIVALENCES

DANIELE FAENZI, GRÉGOIRE MENET, AND YULIETH PRIETO–MONTAÑEZ

Abstract. We provide new examples of anti-symplectic involutions on moduli spaces of
stable sheaves on K3 surfaces. These involutions are constructed through (anti) auto-
equivalences of the bounded derived category of coherent sheaves on K3 surfaces arising from
spherical bundles. We analyze these induced maps in the moduli space, imposing restrictions
on the Mukai vector and considering the preservation of stability conditions. Our construction
extends and unifies classical examples, such as the Beauville involutions, Markman-O’Grady
reflections and a more recent construction by Beri-Manivel.

1. Introduction

Irreducible holomorphic symplectic manifolds (IHS) are significant objects in algebraic ge-
ometry, notably as they play a fundamental part in the Bogomolov decomposition Theo-
rem [Bog75]. When examining these manifolds, a natural question arises regarding their
symmetries. Symmetries and, more specifically, involutions have been analyzed recently under
several perspectives, for instance derived categories (see [HT24]) and the study of fixed loci,
see [FMOS22,FMOS23].

About classification, determining the birational automorphism group of these manifolds
is a significant problem. A classical tool for addressing this question is the global Torelli
theorem (see [Ver13] and [Mar11, Theorem 1.3]). For instance, Beri and Cattaneo recently
classified birational automorphisms on the Hilbert scheme X [n] of n points on a K3 surface
X with Picard number one and genus g ≥ 3 in terms of minimal solutions of Pell’s equation
z2 − (g − 1)(n − 1)y2 = 1. Their result implies that, under certain arithmetic conditions,

Bir(X [n]) ≃ Z /2Z, see [BC22, Theorem 1.1].
However, constructing birational automorphisms explicitly or geometrically remains a chal-

lenging problem for Hilbert schemes of points, let alone for more general moduli space M(v).
In this paper, we propose an explicit construction that yields involutions on the moduli

spaces of stable sheaves on X with a given Mukai vector v, relying on the twist along a
spherical bundle S, under certain restrictions on v and on the Mukai vector of S, see Theorem
1 below. In particular, this gives birational involutions on the Hilbert scheme X [n] whenever
g ≡ 2 mod 4 and n = g+2

4 (see Remark 4.7). The construction recovers and gives a unified
framework to several involutions already known in the literature, such as:

• the Beauville involutions [Bea83] (see Example 5.1);
• the Markman-O’Grady involutions [Mar01] (see Section 4.1);
• the Beri-Manivel involution [BM22] (see Example 5.5), see also [BM24].

Let us describe briefly our approach, based on (anti)-auto-equivalences within the bounded
derived category D

b(X) of coherent sheaves on X. Let S∈ D
b(X) be a spherical object and

TS its spherical twist; see Section 3 for more details. Given a line bundle L on X, we introduce
the following contravariant endofunctor of Db(X), actually an anti-auto-equivalence:

E 7→ Φp
S,L(E) = RHom(TS(E),L[p]).
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2 D. FAENZI, G. MENET, AND Y. PRIETO–MONTAÑEZ

For a fixed d ∈ Z, we set
ΦS,d = Φ1

S,OX(d).

The main observation is that, in some cases of interest, ΦS,d induces an involution on moduli
spaces of stable sheaves on X with a well-chosen Mukai vector. Well-chosen here means that
only very few choices of the Mukai vector s and the twist d will work and that, s and d being
fixed, we have a range of good choices for v to get involutions on M(v). The two relevant
cases for this purpose are the following (see Lemmas 3.4 and 3.8):

• d = 0 and S= OX .
• d = 1 and S is a stable spherical bundle of Mukai vector (2,H, g2 ).

The first case aligns with Markman-O’Grady involutions. In this case we just recover these
well-known involutions and we only point out that their regularity is proved without relying
on the study of the ample and movable cones of M(v). On the other hand, in the second case
our approach introduces new involutions. The new construction obtained in this paper can be
summarized in the following result, see Theorem 4.4 and Corollary 5.13.

Theorem 1. Let k and g0 ≥ k(k + 1) be integers. Let (X,H) be a polarized K3 surface such
that Pic(X) = Z ·H ⊕N , with H ample and N not containing effective divisors. Let S be a
spherical bundle with Mukai vector v(S) = (2,H, 2g0 + 1) and fix v = (v0, v1, v2) with

v0 = 2k + 1, v1 = (k + 1)H, v2 = g0(2k + 3) + k + 1.

Then ΦS,1 defines an anti-symplectic birational involution on the moduli space of sheaves M(v).

Here, (X,H) is a polarized K3 surface of genus 4g0 + 2 and the condition g0 ≥ k(k + 1)
amounts to v

2 ≥ 0. The proof that the involution is well-defined on M(v), which is to say,
that ΦS,1(E) is stable for a sufficiently general sheaf E in M(v), is the point that requires
more effort. To achieve this, the first obstacle is to show that, for a generic element E of
M(v) one has Ext1(S, E) = 0. This holds in the above range, essentially owing to results of
Yoshioka, [Yos99]. Once this is done, we show that applying our functor indeed gives a sheaf
with the required invariants and check that this sheaf is stable. This forces the above choice
of v2, which agrees with the requirement that v = (v0, v1, v2) is indeed a fixed vector of the
cohomological reflection associated with our construction. Finally, to check that the involution
is anti-symplectic, we study the action on the cohomology, see Proposition 5.15 for a more
detailed statement.

We note that, for k = 0, our theorem provides involutions on the Hilbert scheme of points
X [n], with n = (g + 2)/4 for all g ≡ 2 modulo 4, generalizing the construction of [BM22].

We contend that any birational involution on MX(v) should be induced by an endofunctor
of Db(X) obtained as composition of spherical twists, tensor product by line bundles, duality
and shifts, together with pull-backs of automorphisms of X itself. In any concrete case, an
obstacle to check that our functor induces a birational (respectively, biregular) involution
is to check that Ext1(S, E) vanishes for sufficiently general (respectively, for all) sheaves E

in M(v), for suitable choices of v. This interpolation problem, tightly connected to Brill-
Noether theory, has been treated for generic sheaves in recent and less recent times, see
for instance [CNY23, Yos01a, Mar01, Yos99]. We don’t know much of vanishing result for
Ext1(S, E) for all sheaves in M(v), though we prove a small one in Lemma 4.1.

The paper is structured as follows. In Section 2, we introduce the main concepts and
results related to the moduli space of sheaves on K3 surfaces, highlighting the role and some
properties of (anti) auto-equivalences of derived categories. In Section 3, we delve into the
auto-equivalence ΦS,d within D

b(X) and explore the necessary conditions for obtaining an
involution on moduli spaces of stable sheaves. Section 4 establishes the existence of the
involutions presented in Theorem 1. Additionally, we obtain the involutions introduced by
Markman and studied by O’Grady. Section 5.1 describes several examples; notably, we proved
that the Beri–Manivel involution corresponds to ΦS,1 within the context of its action on the
moduli space of stable sheaves M(v), involving a suitable vector v and g, see Example 5.5.
Finally, the action on cohomology is described in Sections 5.2 and 5.3.
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2. Preliminaries

Here we give a short account of the material needed to set up our construction, by recalling
some fundamental facts about moduli spaces of semistable sheaves on a projective K3 surface
X and describing the basic equivalences of the derived category of X and their action on the
cohomology of X.

2.1. Moduli space of sheaves on K3 surfaces. The moduli space of semistable sheaves
on a projective K3 surface X stands as a fundamental example in the study of irreducible
holomorphic symplectic (IHS) manifolds. Let H be an ample divisor on X and set g for the
genus of H, namely H2 = 2g − 2, so (X,H) is a polarized K3 surface. Let H∗(X,Z) =
H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) be endowed with the pairing ·, representing the Mukai lattice
associated with X. For a coherent sheaf E on X, its Mukai vector v(E) = (v0, c1, v2) in
H∗(X,Z) satisfies

v0 = rk(E), c1 = c1(E), v2 = χ(E) − rk(E).

This extends to any objects of the derived category D
b(X). Applying Riemann-Roch we

obtain v2 = rk(E) + c1(E)
2/2− c2(E).

The degree of E, denoted by degH(E), is defined as the normalized intersection of H with
the first Chern class of E, i.e., degH(E) := 1

H2H · c1(E). The slope of E, denoted by µH(E),
is defined as

µH(E) :=
degH(E)

rk(E)
, if rk(E) > 0.

The moduli space MH(v) consists of H-semistable (torsion-free) sheaves on X with Mukai
vector v. The dimension of M(v) is given by v

2 + 2 = c21 − 2v0v2 + 2. We will omit H from
the notation and simply write MH(v), since we will always work with the polarized surface
(X,H), the reference to H being implicit. Thanks to the contributions of various authors,
including Mukai, Göttsche-Huybrechts, O’Grady, and Yoshioka (see [Yos01b, Proposition 5.1,
Theorem 8.1], it has been established that under specific restrictions on the Mukai vector v,
the moduli space M(v) is an IHS manifold of dimension 2n with the same deformation type

as a Hilbert scheme X [n] of n points on a K3 surface X.

2.2. (Anti)-equivalences and their action on the Mukai lattice. Let us briefly recall
some basic (anti)-auto-equivalences of Db(X) and review their action on the cohomology of
the surface X.

2.2.1. Duality. Duality gives an involutive functor D
b(X) → D

b(X)op, i. e. a contravariant
functor D

b(X) → D
b(X). This is defined by

E 7→ RHom(E,OX ),

where the right-hand side is seen as an object of D
b(X), see [Huy06, Corollary 5.29]. The

induced mapping at the level of Mukai vectors is the automorphism D of H∗(X,Z) defined as

D : (w0, c1, w2) 7→ (w0,−c1, w2).

2.2.2. Twisting by a line bundle. Let L be a line bundle on X. Tensoring by L gives an
auto-equivalence of Db(X) defined by sending an object E to E⊗OX L. The induced action
on Mukai vectors is · ch(L) : H∗(X,Z) → H∗(X,Z), sending the Mukai vector of a sheaf F to
the Mukai vector of F⊗L. For L= OX(dH), we have

· ch(OX(dH)) : (w0, c1, w2) 7→ (w0, c1 + dw0H,w2 + d2(g − 1)w0 + dc1 ·H).

2.2.3. Shifts. The shift functor on D
b(X) sending an object E to E[1] has an induced action

on cohomology assigning to a Mukai vector v its opposite −v.
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2.2.4. Spherical twists. Let S be an object of D
b(X). We define TS as the left mutation

endofunctor on D
b(X) with respect to S. This functor applied to an object E, is the cone of

the natural evaluation morphism eS,E, hence we have a distinguished triangle

RHom(S, E) ⊗ S
eS,E
−−→ E→ TS(E) (1)

Here, if S is not concentrated in a single degree, the tensor product should be intended to be
derived as well, however in this paper Swill always be a vector bundle. If S is spherical in the
sense of [Huy16, Chapter 16], then TS is an equivalence, known as a spherical twist (we refer
to [Huy06, Exercise 8.5 and Proposition 8.6]). The induced action on H∗(X,Z) is given by the
reflection along the hyperplane orthogonal to the (−2)-class given by the Mukai vector v(S)
on H∗(X,Z), see [Huy06, Lemma 8.12]. More explicitly, we set RS : H∗(X,Z) → H∗(X,Z) :
x 7→ x+ (x · v(S)) v(S). Then, according to [Huy06, Exercise 8.5 and Lemma 8.12], we have:

v(TS(E)) = −RS(v(E)).

3. Construction of the involution

Let X be a smooth projective K3 surface polarized by H and let S be a spherical object of
X and d ∈ Z. Here we define an anti-auto-equivalence ΦS,d of Db(X) and show that, under
suitable conditions on Pic(X) and on the Mukai vectors of S and v, the functor ΦS,d defines
a birational or even biregular involution of the moduli space M(v) of H-semistable sheaves on
X with Mukai vector v.

3.1. General construction as an equivalence of derived categories. Let us introduce
the functor we will mostly use. It is the composition of endofunctors of Db(X) described in
Section 2.2.

Definition 3.1. Let L∈ Pic(X). Set Φp
S,L for the contravariant endofunctor of Db(X):

Φp
S,L : E 7→ ΦS,L(E) = RHom(TS(E),L[p]).

For fixed H ∈ Pic(X), given d ∈ Z we write ΦS,d = Φ1
S,OX(dH), so

ΦS,d(E) = RHom(TS(E),OX (dH)[1]).

For simplicity, we often abbreviate Φp
S,L to ΦS,L or just Φ.

The functor Φp
S,L is an anti-auto-equivalence of Db(X) as composition of equivalences and

duality (see Section 2.2). Its involutive nature is clear if S is self-dual up to a twist. This
happens if S is locally free of rank one or two.

Lemma 3.2. If S ≃ RHom(S,L[q]) for some q ∈ Z, then Φ = Φp
S,L is involutive for all

p ∈ Z. If Pic(X) ≃ Z ·H and S a torsion-free sheaf of rank s0, this happens if and only if

s0 ∈ {1, 2} and L≃ det(S)
2
s0 . (2)

Proof. Recall the notion of dual spherical twist T
′
S
, sending an object E of D

b(X) to the
cone of the dual evaluation map:

E→ RHom(E,S)∨ ⊗ S.

According to [ST01, Proposition 2.10], TS ◦T
′
S

and T
′
S
◦TS have natural transformations to

the identity functor. Under the condition S≃ RHom(S,L[q]), for any object E of Db(X) we
have a natural isomorphism:

T
′
S(RHom(E,L)) ≃ RHom(TS(E),L).

This implies that Φ(Φ(E)) is naturally isomorphic to E. If S is locally free and (2) holds,
then S≃ S∨ ⊗L≃ RHom(S,L) so that Φ is involutive.

Conversely, assume that S is a torsion-free sheaf, suppose Pic(X) ≃ H · Z for some ample
divisor H, with H2 = 2g − 2 ≥ 2. Write s = (s0, s1H, s2) for the Mukai vector of S. The
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assumption S ≃ RHom(S,L[q]) yields q = 0 and we get that S is locally free. Moreover,
writing c1(S) = s1H and c1(L) = dH, we get s0d = 2s1. Then, the condition s

2 = −2 reads

s20d
2(g − 1) = 4(s0s2 − 1).

For any prime divisor p > 2 of s0, the right-hand-side is non-zero modulo p, which is a
contradiction. Hence s0 = 2q for some q ≥ 0 and again the right-hand-side is non-zero modulo
2q if q > 2. Similarly one excludes the case q = 2 and we are left with s0 ∈ {1, 2}. Now (2)
follows from s0d = 2s1. �

The image of a semistable sheaf by Φ may not be a coherent sheaf, and even then, it is not
necessarily semistable. Here we provide sufficient conditions for Φ(E) to be a coherent sheaf.

Lemma 3.3. We assume that:

i) E and S are torsion-free sheaves;
ii) Ext1(S, E) = Ext2(S, E) = 0;
iii) coker (eS,E : Hom(S, E) ⊗ S→ E) is a torsion sheaf.

Then ΦS,L(E) is a sheaf that fits in the following exact sequence:

0 → E
∨ ⊗L→ Hom(S, E)∨ ⊗ S

∨ ⊗L→ ΦS,L(E) → Ext1(E,L) → 0. (3)

Proof. Recally that S is locally free. Then, applying RHom(−,L) to the distinguished
triangle (1), we obtain the distinguished triangle:

RHom(E,L) → RHom(S, E)∨ ⊗ S
∨ ⊗L→ Φ(E).

Taking homology leads to a long exact sequence:

· · · → Extk(E,L) → Extk(S, E) ⊗ S
∨ ⊗L→ H

k(Φ(E)) → Extk+1(E,L) → · · · (4)

Since coker(eS,E) is a torsion sheaf, the transpose of eS,E is an injective map

Hom(E,L) → Hom(S, E) ⊗ S
∨ ⊗L.

Since the kernel of this map is H−1(Φ(E)), we get H−1(Φ(E)) = 0. Moreover since E is torsion-
free, Extp(E,L) = 0 for all p ≥ 2. Hence, under the assumption ii), Hp(Φ(E)) vanishes for
all p ∈ Z

∗ and Φ(E) ≃ H0(Φ(E)). In other words, Φ(E) is a coherent sheaf and (4) for k = 0
provides the desired exact sequence. �

Lemma 3.4. In the assumption of Lemma 3.3, let N∈ Pic(X). Set:

L
′ = L⊗N

⊗2, S
′ = S⊗N, v

′ = v · ch(N)

and define f : M(v) → M(v′) by sending E to E⊗ N. If ΦS,L defines an automorphism on
M(v), then ΦS′,L′ defines an automorphism on M(v′) and:

ΦS′,L′ = f ◦ ΦS,L ◦ f−1.

Proof. For any object E of Db(X) we have

TS′(E⊗N) ≃ TS(E) ⊗N

Therefore we get the following isomorphisms:

ΦS′,L′(E⊗N) = RHom(TS′(E⊗N),L′[1]) ≃ RHom(TS(E),L⊗N[1]) = ΦS,L(E) ⊗N.

This implies the desired formula. �

Consequence 3.5. As Lemma 3.4 shows, while dealing with L= OX(dH), modulo conjugation,
we can assume that d ∈ {0, 1}. So without loss of generality, when Pic(X) ≃ Z ·H, we assume
that d ∈ {0, 1} for the sequel of this paper. Note that, in view of Lemma 3.2, we deduce:

• either S≃ OX , s = (1, 0, 1) and d = 0,
• or S is a spherical stable bundle of rank 2, the genus g is even, s = (2,H, g2 ) and d = 1.
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3.2. Strategy to obtain an involution on the moduli space. From now, we assume that
E and S are torsion-free sheaves. We set v(E) = (v0, v1H, v2) and s = (s0, s1H, s2) = v(S)
the Mukai vector of E and S respectively.

Objective 3.6. The objective of the paper is to determine when Φ defines an automorphism on
the moduli space M(v). Therefore, there are two main properties that Φ(E) has to verify:

(i) v(Φ(E)) = v.
(ii) Φ(E) is torsion-free and semi-stable.

3.2.1. Determination of Mukai vectors. In this subsection, we work under the assumption that
Pic(X) = Z · H, where H is an ample divisor with H2 = 2g − 2, even though later on we
will authorize a slightly more general Picard lattice. The reason of looking at Pic(X) ≃ Z is
that we would like to study involutions that do exist for a moduli space M(v) over X, with X
general. By the description of the action on cohomology of the functors defining Φ given in
§2.2, we get:

Lemma 3.7. The action of Φ on Mukai vectors satisfies:

v(Φ(E)) = − (D ◦RS(v(E))) · ch(OX(dH)). (5)

From the previous lemma, we can determine the different possibilities on S with Mukai
vector s to verify condition (i) of Objective 3.6 when d = 0 and when d = 1.

Lemma 3.8. Let v be a Mukai vector with s · v 6= 0. Then v(Φ(E)) = v if and only if:

i) (s0, d) = (1, 0), S= OX and v0 = v2, or:
ii) (s0, d) = (2, 1), S is spherical with s = (2,H, g2) and 2v2 = (2g − 2)v1 − v0(

g
2 − 1).

Proof. In case i), we know that the spherical bundle is OX and that d = 0, see Consequence
3.5. So s = (1, 0, 1). Moreover, looking at the rank of the involved sheaves, Lemma 3.7
gives v0 = −s · v − v0, hence v0 = v2. To finish the proof, it only remains to check that
χ(Φ(E)) = χ(E) when s = (1, 0, 1) and v0 = v2. However this follows from the equation on
the Euler characteristics obtained from (5).

Let us look at case ii). Set a := −s ·v. Lemma 3.7 provides equations on the ranks and the
first Chern classes, to the effect that 2v0 = as0 and v1 − v0 = −as1 + v1. We get

v0 = as1. (6)

Recall from Consequence 3.5 that s = (2,H, g2 ), so that (6) yields v0 = a. We obtain

2v2 = (2g − 2)v1 − v0

(g
2
− 1

)
. (7)

It remains to verify that we have χ(Φ(E)) = χ(E). Lemma 3.7 provides the following equation
on the Euler characteristics:

χ((Φ(E) ⊗ OX(−H)) = v0

(g
2
+ 2

)
− v2 − v0.

However:
χ(E(−H)) = v2 + v0 − (g − 1)(2v1 − v0).

So, we need to verify that:

v2 + v0 − (g − 1)(2v1 − v0) = v0

(g
2
+ 2

)
− v2 − v0.

This is equivalent to relation (7). �

3.2.2. Preservation of stability. With the Mukai vectors determined in the previous subsection,
we now prove that the functor under consideration preserves the family of semistable sheaves.
In this subsection, we make a slightly more general assumption on the Picard group of X; we
assume that Pic(X) = Z ·H ⊕N , where H is an ample divisor with H2 = 2g − 2 and N is a
lattice that does not contain any effective divisor.

Proposition 3.9. We assume that Ext1(S, E) = Ext2(S, E) = 0.
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(i) If dim(coker(eS,E)) ≤ 0, then Φ(E) is a torsion-free sheaf.
(ii) If in addition Ker(eS,E) is slope-stable, then Φ(E) is slope-stable.

Proof. Set K := Ker(eS,E) and E0 := Im(eS,E). We obtain an exact sequence:

0 → K→ Hom(S, E) ⊗ S→ E0 → 0. (8)

Since coker(eS,E) has dimension at most 0, c1(E0) = c1(E) and E∨ = E∨
0 . We can deduce the

first Chern class of K:
c1(K) = − (v(S) · v) c1(S)− c1(E). (9)

Note also that K is a reflexive sheaf, hence a vector bundle.
By Lemma 3.3, Φ(E) is a sheaf and verifies (3). Consider the image G of the middle map

in the exact sequence. We have:

0 → G→ Φ(E) → Ext1(E,OX (dH)) → 0. (10)

Note that Ext1(E,OX (dH)) is supported on isolated points since E is torsion free. Taking the
dual, tensored by OX(dH), of (8) we see that G is also the image of the middle map of the
following sequence:

0 → E
∨
0 (dH) → Hom(S, E)∨ ⊗ S

∨(dH) → K
∨(dH) → Ext1(E0,OX(dH)) → 0. (11)

In particular, we have G∨ ≃ Φ(E)∨ and G∨ ≃ K(−dH). This shows that c1(G
∨) = c1(Φ(E)

∨)
and c1(G

∨) = c1(K(−dH)). Combined with (9) and (5), we obtain that:

c1(Φ(E)
∨) = −c1(Φ(E)).

This proves that Φ(E) cannot have 1-dimensional torsion.
Moreover, we know that Φ is an anti-auto-equivalence of Db(X), which implies

Exti(Φ(E),Φ(E)) ≃ Exti(E, E), ∀i ∈ Z.

Therefore, since E is stable and hence simple, Φ(E) is also simple. This implies that Φ(E)
has no zero-dimensional torsion. To see this, note that if p ∈ Z was a point in the support of
a zero-dimensional torsion subsheaf of Φ(E), since Φ(E) has positive rank, one could find an
epimorphism of Φ(E) onto the skyscraper sheaf Op, and since Op maps injectively into Φ(E), we
would get an endomorphism of Φ(E) factoring through Op, which is absurd. So (i) is proved.

We are ready to prove (ii). Since K is a vector bundle. The slope stability of K implies
the slope stability of K∨(dH). However by (11), G differs from K∨(dH) only along a zero-
dimensional subset of X. So G is slope-stable. Similarly, by (10) G and Φ(E) differs along a
zero-dimensional subset of X. We obtain that Φ(E) is slope stable. �

When dealing with twisting about OX , we are able to prove Objective 3.6, (ii) when v1 = 1,
so the next step would be to establish the following lemma. We omit its proof since the ideas
are similar to the ones used by Markman (see [Mar01, P. 682–684] and [O’G05, Lemma 4.10])
and the proof is also similar to the one of Proposition 3.11.

Lemma 3.10. We assume that:

(i) Ext1(OX , E) = Ext2(OX , E) = 0 and Hom(OX , E) 6= 0;
(ii) v(Φ(E)) = v(E) and c1(E) = H;
(iii) Pic(X) = Z ·H ⊕N with N not containing any effective divisor.

Then coker(eOX ,E) is supported on isolated points and Ker(eOX ,E) is slope-stable.

When dealing with involutions defined by twisting about a spherical bundle S of rank 2,
our choice for the Mukai vector is made so that the H-slope of E is just a bit bigger than 1/2.
Then, in order to guarantee preservation of stability, we need the following proposition.

Proposition 3.11. Let S be a spherical bundle of Mukai vector (2,H, g2 ) with g even. Assume:

(i) Ext1(S, E) = Ext2(S, E) = 0 and Hom(S, E) 6= 0;
(ii) rk(E) = 2k + 1 with k ∈ N;
(iii) v(Φ(E)) = v(E) and c1(E) = (k + 1)H;
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(iv) Pic(X) = Z ·H ⊕N with N not containing any effective divisor.

Then coker(eS,E) is supported on isolated points and Ker(eS,E) is slope-stable.

Proof. We first prove that coker(eS,E) is supported on isolated points. We denote by E0 the
image of eS,E and by v0 the rank of E. Let c ∈ Z and D ∈ N such that c1(E0) = cH +D. By
stability of E and S, we must have:

1

2
≤

c

rk(E0)
≤

k + 1

2k + 1
.

First, we notice that we may not have 1
2 < c

rk(E0)
< k+1

2k+1 . Indeed, this would imply

rk(E0)

2
< c <

rk(E0)

2
+

rk(E0)

4k + 2
<

rk(E0)

2
+

1

2
.

But this is impossible for any choice of the integers c and rk(E0).

Now, we consider the case c
rk(E0)

= 1
2 . We write K= Ker(eS,E). We have rk(E0) = 2c and

rk(K) = 2 rk(E) − rk(E0) = 2(rk(E) − c). Moreover c1(K) = (rk(E) − c)H −D. Hence the

slope of K is also 1
2 . Therefore by stability of S, we must have K≃ S⊕(rk(E)−c). However, this

is impossible because Hom(S,K) = 0. Indeed, we have the exact sequence:

0 → K→ Hom(S, E) ⊗S→ E;

if we take the image by the functor Hom(S,−), since S is simple we obtain:

0 → Hom(S,K) → Hom(S, E) → Hom(S, E).

Note that the last map is induced by the evaluation map and therefore it is just the identity.
We obtain Hom(S,K) = 0.

The only remaining case is c
rk(E0)

= k+1
2k+1 . Since k+1 and 2k+1 are coprime and rk(E0) ≤

2k + 1, we obtain rk(E0) = 2k + 1 = rk(E) which is what we wanted to prove. We also get
c1(E0) = c1(E), hence c1(E/E0) = 0 so that coker(eS,E) ≃ E/E0 is supported on isolated
points.

Now, we prove that K is slope-stable. We assume that there exists a destabilizing subsheaf
H →֒ K and we will find a contradiction. We have H →֒ K →֒ Hom(S, E) ⊗ S. The slope of

K is given by rk(E)−c

rk(E) = k
2k+1 . Hence by stability of S, we obtain:

k

2k + 1
≤

α

rk(H)
≤

1

2
,

with c1(H) = αH +D′ with D′ ∈ N . Note that rk(H) < 2k + 1. As before, we have:

rk(H)

2
−

1

2
<

rk(H)

2
−

rk(H)

4k + 2
≤ α ≤

rk(H)

2
.

The only solution is then rk(H) = 2α. As before this implies that H = S⊕α and it is
impossible because we have seen that Hom(S,K) = 0. Therefore K is slope-stable, which
finishes the proof. �

4. Existence of the involution

Here we describe the argument to see that the functor ΨS,d indeed induces an involution
on the moduli space M(v) over X. We first deal with the case S = OX , where we recover
results of Markman and O’Grady, then move to the case rk(S) = 2, where we describe new
involutions.
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4.1. Markman-O’Grady’s involutions. In this section, we review Markman’s results
[Mar01] (see also [O’G05, Section 4]). This corresponds to the spherical twists about S= OX ,
with d = 0, see Consequence 3.5. Our approach provides a direct path to check regularity of
Markman-O’Grady’s involutions, without any input from the study of divisors on M(v).

In this section, for simplicity, we denote ΦOX ,0 = Φ. We are going to prove the existence of
the involution using Proposition 3.9 and Lemma 3.10. First, we propose an alternative proof
of the vanishing of Ext1(OX , E) = H1(E).

Lemma 4.1. Assume r2 ≤ g < (r+1)2. Let E be any element of M(r,H, r). Then H1(E) = 0.

Proof. Assume H1(E) 6= 0 and we will find a contradiction. Note that, by Serre duality, we
have Ext1(E,OX ) ≃ H1(E)∨ 6= 0. Then, we may choose a non-zero element of Ext1(E,OX )
and write the corresponding non-trivial extension, which takes the form:

0 → OX → F→ E→ 0. (12)

The strategy of the proof is the following. The genus g is chosen in such a way that

v(F)2 < −2.

So if we prove that F is slope-stable we will have a contradiction.
Let us prove that F is slope-stable. For this, by contradiction we take a saturated desta-

bilizing subsheaf K of F and set Q = F/K so that Q is a non-trivial torsion-free coherent
sheaf on X. Put K′ for the intersection of K and OX in F, K′′ = K/K′, Q′ = OX/K′ and
Q′′ = E/K′′.

Let us summarize the notation in the following commutative exact diagram:

0

��

0

��

0

��
0 // K′ //

��

K //

��

K
′′ //

��

0

0 // OX
//

��

F //

��

E //

��

0

0 // Q′ //

��

Q //

��

Q
′′ //

��

0.

0 0 0

Set c = degH(K). Then, since K destabilizes F, we must have:

c ≥ 1. (13)

Consider the sheaf K′ and assume K′ 6= 0. Since OX is locally free of rank 1, the sheaf K′

must be torsion-free of rank 1. Therefore, Q′ is a torsion sheaf, which cannot be non-trivial
since Q, and hence Q′, are torsion-free sheaves. This says that Q ≃ Q′′. Therefore rk(K′′) < r
as otherwise Q′′ would be a torsion sheaf. By stability of E, we must then have c ≤ rk(K′′)/r,
which is to say c ≤ 0. But this contradicts (13).

We have thus proved that K′ = 0, which in turn gives Q′ ≃ OX and K ≃ K′′. Since
E is stable, whenever rk(K′′) < r, we get c ≤ 0, which again contradicts (13). Therefore
rk(K′′) = r, so that Q′′ is a torsion sheaf supported on a closed subscheme Z ( X. In case
dim(Z) = 1, then Z is a divisor of class (1 − c)H +D, with D ∈ N . Since Z is effective we
would have (1− c) > 0 which is against (13).

Therefore Z has finite length. This in turn gives c1(Q) = 0. Now, since the sheaf Q is
torsion-free of rank 1 and with c1(Q) = 0, the injection OX → Q must be an isomorphism, as
one sees by composing with the embedding Q →֒ Q∗∗ ≃ OX . In other words, composing the
injection OX →֒ F with the projection F→ Q ≃ OX we get an isomorphism. This says that
the extension (12) splits, a contradiction. We have thus checked that F is slope-stable. �

We deduce the (well-known) regularity if Markman-O’Grady’s involutions.
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Proposition 4.2. Let X be a K3 surface with Pic(X) = Z · H ⊕⊥ N with H2 = 2g − 2
and N a lattice which does not contain any effective divisor. Let r ≥ 1 be an integer with
r2 ≤ g < (r + 1)2. Then, whenever E lies in M(r,H, r), also Φ(E) lies in M(r,H, r). This
provides a biregular involution Φ of M(r,H, r).

Proof. By Lemma 3.8, we already know that v(Φ(E)) = v(E). So, it remains to prove that
Φ(E) is slope-stable and torsion-free. This is a consequence of Proposition 3.9 and Lemma
3.10 if we know that Ext1(OX , E) = Ext2(OX , E) = 0. However, the first vanishing is the
content of Lemma 4.1 while the second one follows from stability of E. �

Remark 4.3. Note that Proposition 4.2 can be generalized when g ≥ (r + 1)2, in this case
we only obtain a birational involution. It follows for instance from Lemma 3.10 and [CNY23,
Theorem 1.1] (it is also explained in [O’G05, Section 4.2.2]). The case r = 1 corresponds to
the Beauville involutions (see for instance [O’G05, Section 4.1.2] and Example 5.1).

4.2. Involutions from spherical bundles of rank two. In this section, we study the
involution ΦS,1 with v(S) = (2,H, g2 ), see Lemma 3.8. The main point it to define new
involutions from spherical twists about bundles of rank 2, which is the content of our main
result, namely Theorem 1. We are in position to prove here, except for the statement on the
anti-symplectic nature of the involution, which will be checked in the next section.

Theorem 4.4. Let (g, k) ∈ N2 with g ≡ 2 modulo 4. Let (X,H) be a polarized K3 surface
such that Pic(X) = Z ·H⊕N with H2 = 2g−2 and N not containing any effective divisor. Let
S be the spherical bundle of Mukai vector (2,H, g2 ). Consider the Mukai vector v = (v0, v1, v2)
with

v0 = 2k + 1, v1 = (k + 1)H, 2v2 = (2g − 2)(k + 1)− (2k + 1)(
g

2
− 1),

as given by Lemma 3.8. We assume that dim(M(v)) ≥ 2, namely g ≥ (2k + 1)2 + 1. Then
ΦS,1 induces a birational involution on M(v).

One of the points we need in order to prove this result is to check that, for E sufficiently
general in M(v), we have Ext1(S, E) = 0. However, this essentially follows [Yos99, Lemma
2.6]. We provide here a self-contained proof of this fact.

Lemma 4.5. Let g be an integer and let X be a K3 surface having Pic(X) = Z·H⊕N , with N
which does not contain any effective divisor. We consider two Mukai vectors s = (s0, s1H, s2)
and v = (v0, v1H, v2) which verify the following conditions:

s
2 = −2, v · s ≤ 0, s1v0 < s0v1.

Let S be the vector bundle of Mukai vector s. We assume that Ext1(S, E) 6= 0 for E generic in
M(v). Then there is a Zariski open dense subset U ⊂ M(v) such that for all E∈ U , a generic
nonsplitting extension

0 → S→ F→ E→ 0

gives a non-simple sheaf F.

Proof. By assumption, we have Ext1(S, E)∨ ≃ Ext1(E,S) 6= 0 for all E in M(v). We define

a = min{h1(S∨ ⊗ E) | E∈ M(v)}

Then, we consider the open dense subset U of M(v) where equality is attained. We get a
locally free sheaf V over U and a projective bundle P(V) → U , a point of P(V) being given
by a pair (E, [ξ]), where [ξ] is the proportionality class of ξ ∈ Ext1(E,S) \ {0}. The element ξ
represents a nonsplitting extension:

0 → S
f
−→ F→ E→ 0. (14)

where the map f is induced by the extension. We get the following dimension count:

dim(P(V)) = dim(M(v)) + h1(S∨ ⊗ E) = v
2 + a+ 1.
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Note that Ext2(S, E)∨ ≃ Hom(E,S) = 0 by stability of E and S. Also, applying Hom(S,−)
to (14) we have

0 → End(S) → Hom(S,F) → Hom(S, E) → 0.

Note that, using χ(S∨ ⊗ E) = −v · s, we get dim(Hom(S, E)) = a− v · s. Therefore we have

dim(Hom(S,F)) = dim(Hom(S, E)) + 1 = a− v · s+ 1.

Assume by contradiction that Fis simple and consider its class in the moduli space Spl(v+s)
of simple sheaves of Mukai vector v+ s. Here, (E, [ξ]) determines the point (F, [f ]), where [f ]
is the proportionality class of f ∈ Hom(S,F) \ {0}. The space of these pairs has dimension

dim(Spl(v + s)) + dim(P(Hom(S,F)) = (v + s)2 + 2 + a− v · s = v
2 + v · s+ a.

However, from the pair (F, [f ]) we recover E as E ≃ coker(f) and the class [ξ] as the
extension given by (14), therefore we must have

v
2 + a+ 1 ≤ v

2 + v · s+ a.

But this is against the assumption v · s ≤ 0. �

Lemma 4.6. Let s2 ∈ N. Let X be a K3 surface having Pic(X) = Z·H⊕N with H2 = 4s2−2
and N containing no effective divisor. We consider S, a slope-stable bundle of Mukai vector
s = (2,H, s2). Let E be a generic slope-stable sheaf of Mukai vector (2k+1, (k+1)H, v2) with
v2 ∈ N. Consider a non-trivial extension

0 → S→ F→ E→ 0.

Then F is slope-stable.

Proof. Let K be a stable destabilizing subsheaf of F. We want to check that assuming the
existence of K we are led to a contradiction. As in Lemma 4.1, write K′ and K′′ for the
sub-sheaves of S and E induced by the sub-sheaf K of F.

We start by proving the result for k = 0 which is slightly different. In this case E= IZ(H)
with Z a generic 0-dimensional scheme of the appropriate length. If K′′ = 0, then the inclusion
of K′ ≃ K into S would either give a rank-1 destabilizing sub-sheaf, or a subsheaf of rank 2
with degH(K′) = k′ and k′ ≥ 2. However both cases are impossible.

Hence K′′ 6= 0, so actually K′′ must be of the form IZ′(H) for some 0-dimensional subscheme
Z ′ containing Z, hence Q′′ = IZ(H)/K′′ is a 0-dimensional sheaf.

Now if K′ = 0, since Q′′ is 0-dimensional ans S is locally free, we get Ext1(Q′′,S) = 0, hence
Q′′ is a direct summand of Q = F/K, against the assumption that K is saturated.

However if K′ 6= 0 then rk(K′) = 1, so that in order for K to stabilise F we would need
degH(K′) = k′ with k′ ≥ 2, which is impossible by the stability of S.

Now, we consider the case k ≥ 1, so rk E≥ 2. Therefore, in this case, for E generic, we can
assume that E is locally free; then F and K are also locally free. Start by writing

µ(E) =
k + 1

2k + 1
=

1

2
+

1

4k + 2
, µ(F) =

k + 2

2k + 3
=

1

2
+

1

4k + 6
.

Since K destabilizes F, we have:

µ(K) ≥ µ(F) =
1

2
+

1

4k + 6
, rk(K) < 2k + 3.

• Assume K′′ = 0. Then K= K′, so rk(K) ∈ {1, 2}. If rk(K) = 1 then by stability of S
we have degH(K) = a with a ≤ 0, so K does not destabilize F. If rk(K) = 2 then we
have degH(K) = a with a ≤ 1, so Kdoes not destabilize F. This case is thus excluded
and we assume from now on K′′ 6= 0.

• Let us prove µ(K′′) < µ(E). By stability of E, we always have µ(K′′) ≤ µ(E) and
strict inequality holds if rk(K′′) < rk(E) = 2k + 1.
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– If K′ = 0, then K = K′′ is a locally free subsheaf of E. Note that µ(K′′) =
µ(K) < µ(E) holds unless K and E have same rank and determinant. But in
this case, since K′′ is a locally free subsheaf of E with the same slope as E and
E is stable, the inclusion K→ E is an isomorphism and therefore the sequence
defining F splits, a contradiction.

– Assume thus K′ 6= 0. Again, µ(K′′) < µ(E) unless rk(K′′) = rk(E) = 2k + 1.
However in this case K′ must be of rank 1, since rk(K) < rk(F). Then, by
stability of S, we get degH(K′) = a with a ≤ 0, hence

µ(K) ≤
k + 1

2k + 2
.

But we immediately check

k + 1

2k + 2
<

k + 2

2k + 3
= µ(F).

Therefore, we have µ(K) < µ(F), a contradiction.
• We proved µ(K′′) < µ(E). Also, K is stable and K′′ is a torsion-free quotient of K so
µ(K) ≤ µ(K′′), with strict inequality whenever K′ 6= 0. Hence

µ(F) ≤ µ(K) ≤ µ(K′′) < µ(E). (15)

In other words
1

2
+

1

4k + 6
≤ µ(K) ≤ µ(K′′) <

1

2
+

1

4k + 2

Hence:
1

2
+

1

4k + 6
≤

c

rkK)
<

1

2
+

1

4k + 2
,

with degH(K) = c. This gives:

rk(K)

2
< c <

rk(K)

2
+ 1.

We obtain that the only solution is rk(K) = 2r + 1 and c = r + 1, with 0 ≤ r ≤ k.

However, the sequence
(

n+1
2n+1

)
is strictly decreasing. So µ(K) = r+1

2r+1 ≥ k+1
2k+1 , which

contradicts (15). Therefore there is no possibility for the slope of K, this sheaf cannot
exist and F is then stable.

�

Proof of Theorem 4.4. Note that s · v = −(2k + 1). So, as follows from [Yos99, Lemma 2.6],
or by the two previous lemmas, we have Ext1(S, E) = 0 for a generic E∈ M(v). Since E and
S are stable, we have Ext2(S, E) = 0 and by Riemann–Roch dim(Hom(S, E)) = 2k + 1 6= 0.
Therefore we obtain our result from Lemma 3.8 and Propositions 3.9 and 3.11. �

Remark 4.7. Note that when k = 0, the involution ΦS,1 acts on X [n] with n = g+2
4 . For

g = 10, this agrees with the construction of [BM22]. For all g ≡ 2 modulo 4, one can describe
this involution by taking the residual subscheme with respect to a section of S vanishing along
an element of X [n]. See the end of §5.1 for more details on this.

Remark 4.8. To go further and construct more involutions, we could also consider a construc-
tion more complicated than the one exposed in Definition 3.1 and Section 2.2. An idea that
could be explored would be to compose several spherical twists.

5. Properties of the involutions

Here we discuss some basic properties of the involutions constructed in this paper. After
reviewing the connection with several well-known examples, we provide some results about
the nature of our involutions and their induced action on the cohomology of the moduli space
M(v).
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5.1. Examples. Let us point out how our construction gives a general framework to many
examples of involutions constructed so far on moduli spaces.

5.1.1. A quick review of involutions defined by OX . Here we just give a brief account of some
well-known involutions and observe that they can are described as Φ = ΦOX ,0.

Example 5.1. For r = 1, let us describe the cases g = 2 and g = 3 allowed by the inequalities
of Theorem 4.2. The moduli space M(v) = M(1,H, 1) is identified with the Hilbert scheme
of subschemes Z of length g − 1 of X. Note that an element of M(v) is of the form IZ(H).
Taking double dual we easily see Ext1(IZ(H),OX) ≃ ωZ and for subschemes Z ⊂ X of length
1 or 2, ωZ is identified with OZ .

For g = 3, X ⊂ P3 is a quartic surface. Let us see that Φ agrees with the Beauville
involution sending a length-2 subscheme Z of X to its residual in X with respect to the line
in P3 generated by Z. For any such Z ⊂ X, we have h0(IZ(H)) = 2. The base locus in X
of the pencil of planes through the line L ⊂ P3 spanned by Z is the residual subscheme Z ′

with respect to L ∩X. In other words, the cokernel of eIZ(H) is OZ′ , while clearly the kernel
of eIZ(H), being a reflexive sheaf of rank 1, is just OX(−H). We summarize this in the exact
sequence:

0 → OX(−H) → O
⊕2
X → IZ(H) → OZ′ → 0.

The image of the middle map in the above sequence is just IZ̄(H), where we put Z̄ = L ∩X.
Dualizing the previous display, we see that (3) becomes:

0 → OX(−H) → O
⊕2
X → Φ(IZ(H)) → OZ → 0.

It is now clear that Φ(IZ(H)) ≃ IZ′(H).

By the same argument we see that, for g = 2, Φ is just the involution exchanging the sheets
of the double cover π : X → P2, defined by sending a point p to Ip(H) and then via Φ
to Ip′(H), where p′ is the conjugate point of p. Indeed, Op′ appears as cokernel of the map

O
⊕2
X → Ip(H) given by the pencil of lines through π(p).

Example 5.2. For r = 2, we have biregular Markman-O’Grady involutions for g = 4, 5, 6, 7, 8.
For g = 5, the surface X is the intersection of three quadrics in P5 and the moduli space
M(v) is a K3 surface of genus 2. More specifically, M(v) can be seen as the double cover
π : M(v) → P2, where the plane P2 parametrizes the web of quadrics whose base locus is
X. The branch locus of π is the discriminant sextic of the web. Pairs of conjugate points
p, p′ for this cover correspond to pairs of spinor bundles G, G′ defined over a non-singular
4-dimensional quadric Q of the web. These bundles fit into:

0 → G
∨ → O

⊕4
Q → G

′ → 0.

After restriction to X, the above sequence shows that G′|X ≃ Φ(G|X) so Φ in again the
involution exchanging sheets of π : M(v) → P2.

For g = 7, the involution Φ was described at the level of Fano threefolds in [BF14].

Example 5.3. For r = 3, in case g = 10 we have that M(v) = M(3,H, 3) is a K3 surface
of genus 2. In this case, X is a 3-codimensional linear section of the 5-dimensional variety
Σ in P13 homogeneous under the exceptional complex Lie group G2. The double cover π of
the plane parametrizing the hyperplanes in P13 whose base locus is X and ramified along the
sextic curve obtained by cutting the dual of Σ along this plane is identified with M(v). A
point of M(v) is a rank-3 vector bundle E providing an embedding of X in G(3, 6), cf. [KR13].
The tautological bundles G, G′ of rank 3 defined G(3, 6) fit into:

0 → G
∨ → O

⊕6
G(3,6) → G

′ → 0.

Again, restricting to X the above sequence we get that G|′X ≃ Φ(G|X). Exchanging the sheets
of π corresponds to exchanging the restricted tautological bundles on G(3, 6).
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5.1.2. Involutions on Hilbert schemes from spherical bundles of rank 2. Here we mention that,
if S is a K3 surface of genus g with g ≡ 2 modulo 4, then, setting k = 0, the birational
involution in Theorem 4.4 acts on X [n], with n = (g + 2)/4. Note that X carries a spherical
bundle S of rank 2 with c1(S) = H and c2(S) = 2n. We get the following result. As we have
been informed, a similar construction appears also in [BM24].

Proposition 5.4. The involution Φ sends a generic subscheme Z ∈ X [n] to its residual sub-
scheme with respect to the zero-locus of the only section of S vanishing at Z.

Proof. Note that c2(S) = 2n. Let Z ∈ X [n] be a generic element. According to Riemann–Roch
and since H1(S⊗IZ) = 0 for generic Z by [Yos99, Lemma 2.6], we know that Hom(S,IZ(H)) =
C and Exti(S,IZ(H)) = 0 for all i > 0. Let s ∈ Hom(S,IZ(H)) = H0(S∨ ⊗ IZ(H)) =
H0(S⊗ IZ). So Z ⊂ V(s). We obtain the following diagram of exact sequences with e the
evaluation map:

0 // OX
s

// S // IV(s)(H)
_�

��

// 0

0 // OX
s

// S
e

// IZ(H) // coker(e).

So coker(e) is also the cokernel of the map IV(s)(H) →֒ IZ(H). Therefore coker(e) is a torsion
sheaf supported on a subscheme of length ℓ(V(s)) − ℓ(Z) = n. We set Z ′ := Supp(coker(e)).
Now, we consider the dual of the evaluation map by OX(H) and we obtain the following
commutative diagram:

0 // OX
e
∨

// S

��

s∨
// OX(H) // Ext2(coker(e),OX ) // 0.

0 // ΦS,1(IZ(H))

44
❥
❥
❥
❥
❥
❥
❥

The sheaf Ext2(coker(e),OX ) is a torsion sheaf supported on Z ′, so we have
Ext2(coker(e),OX) = OZ′ . This shows that ΦS,1(IZ(H)) = IZ′(H). The subscheme Z ′

described here is the residual with respect to the only section s of S vanishing at Z. �

Example 5.5. The involution studied in [BM22, BM24] by Beri and Manivel is the same as
the involution of Theorem 4.4 with g = 10 and k = 0. Indeed, setting g = 10 we get n = 3,
so we consider Z = {p1, p2, p3} ∈ X [3], a generic element. The bundle S∨ is the restriction
of the tautological rank 2 bundle on G(2, 7) via the embedding X →֒ G(2, 7). Moreover, we
have S= S∨(H) and H0(S) = C

7. For all s ∈ H0(S), we have V(s) = G(2, 6) ∩X ⊂ G(2, 7)
and V(s) is a subscheme of dimension 0 and of length c2(S) = 6. Hence each point in X
can be seen as a plane in C

7 and, for each i ∈ {1, 2, 3}, let Pi be the plane associated to
pi. The plane P1, P2, P3 genera a sub-vector space V6 ⊂ C

7 of dimension 6. We obtain:
V(s̃) = G(2, V6) ⊂ G(2, 7), with s̃ a section of the dual tautological sub-bundle of rank 2
on G(2, 7). We get s = s̃|X ∈ H0(S) and Z ⊂ V(s) = X ∩ G(2, V6) with V(s) which is

0-dimensional of length 6. Beri and Manivel in [BM22, Page 8] send Z to Z ′ = {q1, q2, q3}
with V(s) = {p1, p2, p3, q1, q2, q3}. This is the same as our involution since s ∈ H0(S⊗ IZ)
and Z ′ = {q1, q2, q3} is the residual of Z = {p1, p2, p3} with respect to the zero-locus of s.

5.2. Anti-symplectic involution. Let M(v) be a compact moduli space of stable sheaves
on X of dimension ≥ 4. We know from O’Grady [O’G97] that there is a Hodge isometry:

θ : v⊥ ⊂ H∗(X,Z) → H2(M(v),Z), (16)

with H∗(X,Z) endowed with the Mukai pairing and H2(M(v),Z) with the Beauville–
Bogomolov form. The following result has been proved by O’Grady.

Proposition 5.6 (See [O’G05, Proposition 4.14]). Let (X,H) be a polarized K3 surface such
that Pic(X) = Z · H ⊕ N , with H2 = 2g − 2 and N not containing effective divisors. Let
v = (r,H, r) be a Mukai vector with r ≥ 2 and dimM(v) ≥ 4. Let hv := θ(1, 0,−1) and
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Rhv
(α) = −α + BM(v)(hv, α)hv, with BM(v) the Beauville–Bogomolov form on M(v). The

involution ΦOX ,0 on M(v) is anti-symplectic. Moreover:

Φ∗
OX ,0 = Rhv

.

Remark 5.7. O’Grady also gives the cohomology action of the Beauville involution in [O’G05,
Proposition 4.21].

Using the same ideas as O’Grady, we are going to provide a generalization of Proposition 5.6
to the involution ΦS,1. We consider a Mukai vector (v0, v1H, v2) with v2 = (g−1)v1−

v0
2 (

g
2−1).

Moreover, we assume that dimM(v) ≥ 4. As before S is the stable bundle on X with Mukai
vector (2,H, g2 ). Let U(v) ⊂ M(v) be the set where ΦS,1 is well defined. Let dv := θ(2,H, g2−1)
and Rdv(α) = −α+BM(v)(dv, α)dv, with BM(v) the Beauville–Bogomolov form.

Lemma 5.8. We assume that U(v) is a non-empty Zariski open set in M(v). Let ιv : U(v) →֒
M(v) be the embedding. We have:

ι∗
v
◦ Φ∗

S,1 = ι∗
v
◦Rdv .

Proof. Consider R as a quasi-family of sheaves on X parametrized by M(v), where v is the
Mukai vector. We also set σ : X × M(v) → X and π : X × M(v) → M(v) for the natural
projections. We set H4(X,Z) = Z η. We know (see for instance [O’G05, 4.2.8]) that:

θ(α) = θR(α) =
1

ρ(R)
π∗

[
ch(R)(1 + σ∗(η))σ∗(α∨)

]
6
,

with ρ(R) an integer such that R|X×{t} = F ρ(R) for all t ∈ M(v) and with F a sheaf with
Mukai vector v. We want to compute:

ι∗
v
◦Φ∗

S,1θR(α) = θ(id×Φ)∗R|X×U(v)
(α).

For simplicity in the notation, we are going to denote R|X×U(v) also by R. The first step is
to understand (id×Φ)∗R. It is given by the complex B := RHom(A, σ∗(OX(H))), with

A := π∗(π∗(R⊗ σ∗(S∨)))⊗ σ∗
S→ R.

We have:

ch(B) = ch(RHom(A, σ∗(OX(H)))) = ch(RHom(A, σ∗(OX))) ch(σ∗(OX(H))) =

= ch(A)∨ ch(σ∗(OX(H))).

Since ΦS,1 is well defined on U(v), B is a quasi-family of sheaves and we can consider:

θB(α) = π∗
[
ch(A)∨(1 + σ∗(η))σ∗(α∨ ch(OX(H)))

]
6

= π∗
[
ch(A)∨(1 + σ∗(η))σ∗(α ch(OX(−H)))∨

]
6
.

We refer to Section 2.1 for the computation of α ch(OX(−H)). We set β := (α ch(OX(−H)))∨.
We obtain:

θB(α) = −π∗
[
ch(A)(1 + σ∗(η))σ∗(β∨)

]
6

= π∗
[
ch(R)(1 + σ∗(η))σ∗(β∨)

]
6

− π∗
[
ch(π∗(π∗(R⊗ σ∗(S∨)))⊗ σ∗(S))(1 + σ∗(η)σ∗(β∨)

]
6
.

The first term of the last equality is just θR(β). It remains to compute the second term; we
set:

(♥) := π∗
[
ch(π∗(π∗(R⊗ σ∗(S∨))) ⊗ σ∗

S)(1 + σ∗(η)σ∗(β∨)
]
6
.

By projection formula, we have:

(♥) =
[
ch(π∗(R⊗ σ∗(S∨)))π∗(ch(σ

∗(S))(1 + σ∗(η))σ∗(β∨))
]
6

= c1(π∗(R⊗ σ∗(S∨)))π∗
[
σ∗(ch(S)(1 + σ(η)))β∨

]
4
.



16 D. FAENZI, G. MENET, AND Y. PRIETO–MONTAÑEZ

We set (♦) := c1(π∗(R⊗ σ∗(S∨))) and (♠) := π∗ [σ
∗(ch(S)(1 + σ(η)))β∨]4. We first compute

(♦); according to Grothendieck–Riemann–Roch theorem, we have:

(♦) = π∗
[
ch(R⊗ σ∗(S∨))σ∗(1 + 2η)

]
6

= π∗
[
ch(R)σ∗(ch(S∨)(1 + 2η))

]
6
.

However, we have ch(S∨) = (2,−H, g2 − 2). So: ch(S∨)(1 + 2η) = (2,−H, g2 + 2) =
(2,−H, g2 )(1 + η) = v(S)∨(1 + η). So:

(♦) = θR(v(S)).

It remains to compute (♠). We set β = (β0, β1, β2).

(♠) = π∗

[
σ∗

((
2,H,

g

2
− 2

)
(1 + η)(β0,−β1, β2)

)]

4

= π∗

[
σ∗

((
2,H,

g

2

)
(β0,−β1, β2)

)]

4

= 2β2 − (2g − 2)β1 +
g

2
β0

= −
(
2,H,

g

2

)
· β

= −v(S) · β.

Combining all the previous computations, we obtain:

ι∗
v
Φ∗θR(α) = ι∗

v
[θR(β) + (v(S) · β) θR(v(S))] .

We set RS(x) = x+(v(S) · x)v(S), D the dual and T the tensorization by OX(−H) of Mukai
vectors. We have shown that:

ι∗
v
Φ∗θR(α) = ι∗

v
◦ θR ◦RS ◦D ◦ T (α). (17)

Then it remains to show that, for all x ∈ v
⊥,

RS ◦D ◦ T (x) = −x+
[(

2,H,
g

2
− 1

)
· x

] (
2,H,

g

2
− 1

)
,

It is true for all elements in (H0(X,Z)⊕ZH⊕H4(X,Z))⊥ and we can verify easily that it is also
true for a basis of

(
H0(X,Z)⊕ZH ⊕H4(X,Z)

)
∩v

⊥, for instance ((2,H, g2 −1), (v0, 0,−v2)).
�

Remark 5.9. A priori the set M(v) r U(v) could have codimension 1. To be more precise,
the involution Φ can always be extended to a bimeromophism regular in codimension 2, but
Φ as constructed in Section 3.1 may be defined only in codimension 1. Therefore, if we also
denote by Φ the extension of Φ to a regular involution in codimension 2, the action of Φ∗ on
H2(M(v),Z) is well defined but could differ from the one found in Lemma 5.8.

Remark 5.10. If M(v) r U(v) has codimension 2 then according to (17) the action of Φ∗ on
H2(M(v),Z) is given by :

Φ∗ = θ ◦RS ◦D ◦ T ◦ θ−1.

Note that there is another action on H2(M(v),Z) obtained from the computation on Mukai
vector, see Lemma 3.7. It provides the following action :

ϕ = −
(
θ ◦ T−1 ◦D ◦RS ◦ θ

−1
)
.

This shows that ϕ = −Φ∗.

As explained in Remark 5.9, we cannot always determined the action of Φ∗ on H2(M(v),Z),
however we can deduce from the previous lemma that ΦS,1 is anti-symplectic.

Proposition 5.11. Let g ≥ 2 even. Let (X,H) be a K3 surface with H2 = 2g − 2 and S the
stable bundle of Mukai vector (2,H, g2 ). Let v = (v0, v1H, (g − 1)v1 −

v0
2 (

g
2 − 1)) be a Mukai

vector (we assume that v0
2 (

g
2 − 1) is integral). We set U(v) the open set where ΦS,1 is well

defined. We assume that:
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• dimM(v) ≥ 4;
• U(v) is a non-empty Zariski open set in M(v).

Then, the involution ΦS,1 on M(v) is anti-symplectic.

Proof. Let TM(v) be the transcendental lattice of M(v). From Lemma 5.8, we can prove that
Φ∗
S,1|TM(v)

= − idTM(v)
. We have an exact sequence:

H2(M(v), U(v),Z)
f
−→ H2(M(v),Z)

ι∗
v−→ H2(U(v),Z).

According to [Voi03, Section 11.1], Im(f) ⊂ Pic(M(v)). Therefore, ι∗
v

induces an injection
TM(v) →֒ H2(U(v),Z). So Lemma 5.8 implies our claim. �

Remark 5.12. If dim(M(v)) = 2, the involution ΦS,1 induces a double cover M(v) → P2 and
is also anti-symplectic.

As a direct consequence, we have the following corollary.

Corollary 5.13. The involutions defined in Theorems 4.4 are anti-symplectic.

As explained in Remark 5.9, we cannot conclude from Lemma 5.8 the action of Φ∗
S,1 on the

cohomology. However, using lattice theory, we can show that Φ∗
S,1 is a reflection through an

element of square 2 or n− 1 or 2(n− 1) with 2n = dim(M(v)).

5.3. Action on the cohomology. In this section, we assume that PicX = Z ·H in order to
obtain information on H2(M(v),Z)ΦS,1 from lattice considerations. Let us describe the Picard
lattice of M(v), based on (16).

Lemma 5.14. Let g ≥ 2 even. Let X be a K3 surface such that Pic(X) = Z ·H, with
H2 = 2g − 2. Let v = (v0, v1H, v2) a Mukai vector with v2 = (g − 1)v1 − v0

2 (
g
2 − 1) an

integer. We assume that 2n := dimM(v) ≥ 4. We set δ := v0 ∧ v2, dv = θ(2, 1, g2 − 1) and

fv := 1
δ
θ(v0, 0,−v2). Then (dv, fv) gives a basis of Pic(M(v)) with bilinear form given by the

matrix: (
2 2v2

δ
− (g2 − 1)v0

δ
2v2
δ

− (g2 − 1)v0
δ

2v0v2
δ2

)
.

In Particular:

discr(Pic(M(v))) = −
4(g − 1)

δ2
(n− 1). (18)

Proof. Since dv and fv are orthogonal to v, we have Z dv ⊕ Z fv ⊂ Pic(X). Moreover,
Z dv ⊕ Z fv is a primitive sublattice of rank two, so Pic(X) = Z dv ⊕ Z fv. The bilinear
matrix is obtained because θ is an isometry. Finally, since

n− 1 = (g − 1)v21 − v0v2, (19)

we obtain the given discriminant. �

From the two previous lemmas, we deduce the cohomology action of ΦS,1.

Proposition 5.15. Let g ∈ N with g ≡ 2 mod 4 and k ∈ N. Let X be a K3 surface such
that Pic(X) = Z ·H, with H2 = 2g − 2. Let v = (2k + 1, (k + 1)H, v2) be a Mukai vector with
v2 = (g− 1)(k+1)− 2k+1

2 (g2 − 1). We set δ = v0 ∧ v2. We assume that 2n := dim(M(v)) ≥ 4.

1. For n > 2, if H2(M(v),Z)ΦS,1 ≃ (2(n − 1)) then δ = 1 and −1
g−1 is a square in

Z /(n − 1)Z.
2. For even n > 2, if H2(M(v),Z)ΦS,1 ≃ (n − 1) then δ = 1 and −1

2(g−1) is a square in

Z /(n − 1)Z.
3. Otherwise H2(M(v),Z)ΦS,1 ≃ (2).

About 2., note that −1
g−1 is well defined in Z /(n− 1)Z), because δ = (n− 1) ∧ (g − 1) = 1.
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Proof. Before starting the proof note that δ = (n− 1)∧ (g− 1). This is a direct consequence
of the two equations v2 = (g − 1)v1 −

v0
2 (

g
2 − 1) and n− 1 = (g − 1)v21 − v0v2.

We set T := H2(M(v),Z)ΦS,1 . By Proposition 5.11, the involution Φ is anti-symplectic. So:

T ⊂ Pic(M(v)).

Since rk(Pic(M(v))) = 2, according to [CCC21, Proposition 1.6], there are four possibilities:

(i) AT = Z /2Z;
(ii) AT = Z /2Z⊕Z /2(n − 1)Z;
(iii) AT = Z /2(n − 1)Z, n > 2.
(iv) AT = Z /(n − 1)Z, n > 2 and n even.

First note that all these cases imply that rk(T ) = 1. Indeed if rk(T ) = 2, it provides T =
Pic(M(v)) and so by (18):

(i) δ2 = 2(n − 1)(g − 1);
(ii) δ2 = g − 1;
(iii) δ2 = 2(g − 1);
(iv) δ2 = 4(g − 1).

However the hypothesis dim(M(v)) ≥ 4 implies that g − 1 > v20 ≥ δ2. So all the previous
cases are impossible. The case (ii) can only occur for rkT = 2, so it remains to treat the cases
(iii) and (iv) with rkT = 1. According to [CCC21, Proposition 1.6], we have the following
sub-cases:

(iii) (a) There exists a primitive element x of square 2(n − 1) and divisibility 2(n − 1).
(b) There exists a primitive element x of square 2(n − 1) and divisibility (n− 1).

(iv) There exists a primitive element x of square (n− 1) and divisibility (n− 1).

Let y be a primitive element such that BM(v)(x, y) = 0. According to the divisibility of x, there
are two cases, namely Zx⊕Z y = Pic(M(v)) or Zx⊕Z y has index 2 in Pic(M(v)) in the sub-

case (b) of (iii). So discr (Zx⊕Z y) = −4(g−1)
δ2

(n− 1) or discr (Z x⊕Z y) = −16(g−1)
δ2

(n− 1)
again in the sub-case (b) of (iii). It implies in the different cases that:

(iii) (a) y2 = −2(g−1)
δ2

,

(b) y2 = −8(g−1)
δ2

,

(iv) y2 = −4(g−1)
δ2

.

Since δ is odd, it means that δ2 | (g−1). Hence by (19), δ2 | (n−1) and so δ = 1. Moreover,
we can write dv = λx+ µy or 2dv = λx+ µy, in the sub-case (b) of (iii), that is:

(iii) (a) 2 = λ2(2(n − 1)) + µ2 (−2(g − 1));
(b) 8 = λ2(2(n − 1)) + µ2 (−8(g − 1));

(iv) 2 = λ2(n− 1) + µ2 (−4(g − 1)).

In the sub-case (b) of (iii), λ has to be divisible by 2; so in case (iii) we obtain that −1
g−1 is

a square in Z /(n − 1)Z. In case (iv), λ is also divisible by 2 and we obtain that −1
2(g−1) is a

square in Z /(n− 1)Z. �
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