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Abstract
Models such as XLS-R and UniSpeech have proven effec-
tive in speech processing across diverse languages, even with
limited annotated data, enabling, for instance, the development
of transcription systems for some under-documented languages.
This work aims to test the hypothesis that these models can
build “generic” representations of an audio snippet that do not
depend on characteristics that are irrelevant to understanding
the message conveyed. Through two sets of experiments, we as-
sess their ability to abstract away from speaker-specific details
and distill core informational contents — in an informational-
communicational sense to be refined further: all the information
contained in the audio signal that contributes evidence on the
speaker’s communicative intent. The results of our experiments
show that pre-trained models of speech such as XLS-R do not
necessarily encode information in the same way, depending on
the speaker’s gender.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Pre-trained multilingual models such as XLS-R [1] or
UniSpeech [2] can build vector representations of an utter-
ance spoken in any language. This capability has been used,
with undisputed success, to develop speech processing models
for an open range of languages and/or domains even when lit-
tle annotated data is available. The ability of these models to
selectively extract relevant information from the audio signal
has even made it possible to develop transcription systems for
very low-resource languages [3, 4, 5], for which very little data
and few transcriptions are available and which have very dif-
ferent characteristics from the languages used to (pre-)train the
speech model.

The success of pre-trained models raises the issue whether
they have ability to uncover generic, universal speech represen-
tations that abstract certain features from the audio signal and
capture the essentials needed to model the content of an audio
utterance. Thus, to develop an accurate transcription system by
fine-tuning pre-trained representations with only a few minutes
of annotated data,1 it is crucial that pre-training goes beyond
learning a mere conversion of the audio signal representation
(from sound pressure variations to vectors), and instead distills

1For example, [6] reports a WER of 4.8 on the Librispeech test
set after tuning a pre-trained model on only 10 minutes of annotated
data (but considering a large n-gram language model); [5] succeeds
in learning a high-quality phonemic transcription system for Japhug,
a newly-documented Sino-Tibetan language and shows that in the case
of languages with transparent orthography, transcription performance
was already good without a language model.

the core message conveyed by an audio snippet, somehow sepa-
rating it from paralinguistic or nonlinguistic information: those
pieces of information in the acoustic signal that reflect charac-
teristics of the speaker, the environment, the microphone, etc.

This intuition seems to receive support from mind-boggling
conclusions drawn from experiments on multilingual models of
text [7]: these models are able to match words from differ-
ent languages that refer to the same objects and/or concepts,
even though they are not given any information about the trans-
lation relationships between words (e.g. in the form of paral-
lel sentences or bilingual lexicons), which suggests that Trans-
formers trained on multilingual data are capable of learning
cross-lingual generalizations and constructing abstract repre-
sentations that do not depend on the surface form of words [8].

To verify this intuition, we investigate, in this paper, to what
extent the representations built by a pre-trained speech model
are robust to domain changes. Specifically, we use a linguistic
probe — a simple linear classifier — to predict certain features
of a recording, namely the speaker’s language and gender.2 Us-
ing carefully constructed test sets, we evaluate the performance
of these probes in an out-of-domain scenario. Linguistic probes
have several advantages over the evaluation of the performance
of models trained under various conditions on downstream tasks
(e.g. transcription tasks). Not only does this reduce the com-
putational cost of our experiments, enabling us to carry out a
greater number of tests (it is cheaper, in all respects, to learn
a probe than a complete transcription model): crucially, it en-
ables us to test our hypotheses on corpora of newly-documented
languages for which we do not necessarily have sufficient anno-
tated data to train (or even just fine-tune) a complete transcrip-
tion system.

Our results show that, contrary to our initial intuition, the
representations built by pre-trained speech models do not actu-
ally abstract away from the audio signal: in addition to the core
message conveyed by an audio snippet, they also encapsulate
speaker-specific information. More importantly, we show that
this information can play the role of confounding variables and
affect the ability of fine-tuned models to generalize. These re-
sults have important consequences: they show that it is not fea-
sible to fine-tune pre-trained representations of speech for any
task using a training set containing only one speaker, or speak-

2In this work, we utilize “gender” — the term used in the metadata
of the CommonVoice corpus — as a simplified representation for the
biological differences typically categorized as female and male, focus-
ing on anatomical factors that are known to have a statistical bearing on
phonetic realizations (see [9, p. 5] and references therein). Considering
a binary gender system raises ethical questions [10], but on this point,
we are limited by the metadata collected in CommonVoice. While
we recognize that phonetic differences among gender groups stem in
no small part from social influences beyond this binary framework, the
present piece of research does not delve into these social aspects.
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ers of the same gender. This is a vital consideration in low-
resource scenarios, such as language documentation and/or lan-
guage revitalization. In these situations, researchers often have
access to only small corpora, which may come from a single
speaker, and with no possibility of collecting more data. Our re-
sults also shed new light on the possible limitations of debiasing
methods, particularly that of gender neutralization (e.g. [11]).
This method, which essentially consists of modifying speech
embeddings to remove certain potentially prejudicial informa-
tion, could lead to a drop in performance. By demonstrating
that gender information is encoded in a language-independent
way, we suggest that it is fully plausible that debiasing methods
developed for a given language can be successfully applied to
recordings from other languages.

The rest of the article is organized as follows. In Section 2
we present the data used and our experimental protocol. In Sec-
tion 3, we set out our experimental results, which show that
pre-trained speech models such as XLS-R do not necessarily
encode information in the same way, depending on the speaker’s
gender.

2. Probing Language and Gender
Information in Speech Embeddings

Linguistic Probes The goal of our experiments is to find out
whether information about the language of an audio snippet and
the gender of its speaker is encoded in the representations that a
neural network has induced from raw audio during pre-training.

For this purpose, we use a linguistic probe (see [12] for
an overview): we consider audio snippets of 5 s or of 2 s
and construct a vector representation of the audio signal using
XLSR-53, a cross-lingual speech model that results from pre-
training a single Transformer model from the raw waveform of
speech in multiple languages [1].3 Note that [13] has shown
that the wav2vec2 architecture on which XLSR-53 is based
is sensitive to the gender distribution in the training data: de-
pending on the task under consideration and the way in which
the models are used, not having a gender-balanced corpus can
hurt performance. We, however, do not explore this dimension
here and limit ourselves to studying the properties of a vanilla
XLSR-53 model as it is used in many works.

Several recent studies (e.g. [14]) have also shown that,
counterintuitively, XLSR-53 representations in the last layers
are not necessarily those that capture the most linguistic infor-
mation, probably because they are specialized for the task of
reconstructing the masked part of the signal (the task consid-
ered during pre-training). In fact, our preliminary experiments
(on an independent validation set) showed that the best perfor-
mance on the language prediction task was achieved when us-
ing representations from the 21st layer. In all our experiments
we have used the audio embeddings extracted from this layer.

All our experiments rely on a very simple framework: the
vector representation built by the neural network is used as the
feature vector to train a linear classifier to predict either the
gender of the speaker or the language of the snippet. We use
a logistic regression with ℓ2 regularization as the multi-class
classifier.4 Note that the classifier is trained on “frozen” rep-
resentations computed by the pre-trained model: unlike what
is sometimes done when fine-tuning a model, the neural rep-

3We used max-pooling to build a single vector from the output of
the Transformer model.

4We used the implementation of logistic regression provided by the
sklearn library [15].

resentations are not modified when learning our classifier. We
are therefore evaluating the ability of a vanilla XLSR-53model
to learn, during pre-training, how to encode information about
languages and speakers: it is not the probe training that causes
this information to appear in the representations. The choice of
a linear classifier also avoids some of the drawbacks of linguis-
tic probes: the limited capacity of the classifier limits the risk
that the target information (in our case, gender or language) is
captured by the probe and not by the representation [16].

Language identification is a well-established task and has
been the focus of much research (see e.g. [17] for recent work
using a pre-trained model, as we do). However, the goal of
our work is not to develop a state-of-the-art model for language
identification, but rather to assess the ability of pre-trained mod-
els to generalize to new speaker and/or languages.

Corpus We performed all our experiments on corpora from
the CommonVoice project, a collection of audio recordings
and their transcriptions in a wide variety of languages [18].
The corpus contains recordings of sentences associated with a
broad range of metadata: transcription, unique speaker identi-
fier, speaker gender5 and age, language of recording (down to
the level of dialects/‘accents’ where appropriate). Not all meta-
data fields are filled in for all audio files.

In our experiments, we consider6 five languages: three
Indo-European languages, English (en), French (fr) and Span-
ish (es) and two Bantu languages, Luganda (lg) and Swahili
(sw). For each language, we sampled training corpora contain-
ing between 2 hours and 20 hours of audio recordings and test
corpora containing 20 minutes, with two constraints: no speaker
from the training set appears in the test set; and all the corpora
are perfectly gender balanced. We then combine the data sets
of equal size of the 5 languages to obtain our final training set,
ensuring that they are also equally balanced in language. Note
that English, French and Spanish are part of the training set of
XLSR-53, whereas Luganda and Swahili are not.

To assess the capacity of our linguistic probe to general-
ize beyond the languages seen at the stage of the pre-training
of the model, we also extract a test set from the Pangloss Col-
lection [19],7 an open archive of audio recordings in various
languages of the world (most of them endangered). We se-
lected from the Pangloss Collection the languages for which
information on speaker gender was available,8 and built a cor-
pus of 20 languages spanning over 7 language families:9 Oto-
Manguean (Mixtec (mix)); Northern Berber (Tasahlit (mis));
Sino-Tibetan (Yongning Na (nru)); Indo-European (Na-našu

5CommonVoice metadata considers 3 different genders (“male”,
“female”, and “other”). This information is optional and is therefore
not always provided. There are not enough records where the speaker’s
gender is “other” for us to include them in this work.

6We had to limit ourselves to languages for which the
CommonVoice corpus contained sufficient data for both genders. In
our experiments we consider version 15 of the CommonVoice corpus.

7https://pangloss.cnrs.fr/?lang=en&mode=pro
8The gender of speakers in recordings from the Pangloss Collection

is not encoded as such in the metadata — a shortcoming shared with
major archives [20]: There is no “Gender” field in the OLAC meta-
data standard, and from fieldworkers’ perspective, the information may
seem self-evident from hints such as given names, speaking styles and
so on. We have therefore selected only those recordings for which the
researcher explicitly specified the gender of the speaker, for example
when providing its name or describing the record.

9Our datasets are available for download at https://nakala.
fr/10.34847/nkl.bf2e8mgi.
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(svm), Bulgarian-Macedonian (bul), Nashta (mkd)); Aus-
tronesian (Cèmuhî (cam), Chru (cje), Xârâcùù (ane), Mwot-
lap (mlv)); Austro-Asiatic: Tampuan (tpu), Chong Heup
(cog), Chong Tratt (cog), Chong Lo (cog), War (aml), Pear
(pcb), Cardamom Khmer (khm), Mường (mtq)); Tai-Kadai
(Tai Yo (tyj)). Unlike the other corpora used, this one is not
perfectly gender-balanced: 54.7% of utterances are pronounced
by women.

Experimental Setting We conducted two types of experi-
ments to evaluate the ability of pre-trained representations of
speech to capture gender and language information. The first
set of experiments falls within the methodological framework
of linguistic probes and consists in training a linear classifier
(a probe) to evaluate whether specific information is encoded in
XLSR-53 representations. Achieving high accuracy in this task
implies that this information is encoded in the representation.

In the second set of experiments, we aimed to determine the
probe’s ability to generalize beyond its training data. To achieve
this, we consider test and training sets that differ on specific cri-
teria. More specifically, we are interested in two research sce-
narios. In the first scenario, we train a classifier to predict the
gender of an audio snippet by considering only recordings in a
single language and we evaluate its ability to predict the gen-
der in other languages. In the second scenario, we address the
task of predicting the language of an audio snippet and we test
the ability of a model to generalize from one gender to another.
More specifically, we train a classifier on recordings of one gen-
der only, and we measure its ability to predict the language of a
recording produced by a speaker of another gender.

This out-of-distribution evaluation helped us to assess the
robustness of the representations uncovered by pre-trained mod-
els, and to determine whether these models could produce rep-
resentations that abstract away from certain characteristics of
the audio signal. Using a classifier on non-identically dis-
tributed data runs counter to the very theoretical foundations of
machine learning, but it makes sense to entertain the hypothesis
that the representations learned to model a very extensive and
diverse corpus will be sufficiently generic to allow generaliza-
tion from one domain to another. Crucially, the representations
of the audio signal we are working with are learned from very
large corpora (56,000 hours in the case of XLSR-53) that in-
clude recordings from various languages, speakers, and record-
ing conditions.

3. Experimental Results
3.1. In-Domain Evaluation

We begin by evaluating the ability of a linguistic probe to pre-
dict gender and language information when the test and training
sets are similar.

Table 1 reports the accuracy10 of a classifier trained on data
sets of increasing sizes to predict either the language of an audio
snippet or the gender of its speaker. As explained in Section 2,
the test and training sets were chosen so that they do not contain
the same speakers. These results clearly show that both gender
and language can be predicted with high accuracy even when
the classifier is learned on a small amount of data, revealing
that both types of information are encoded in the representations
built by XLSR-53.

10Recall that our test sets are built to be perfectly balanced (in gen-
der and language). Therefore, there is no need to consider recall and
precision to evaluate our classifiers.

gender language
snippet size → 2s 5s 2s 5s

↓ train size

2.5 hours 86.2 88.7 70.3 75.2
10 hours 87.4 90.3 72.1 78.2
20 hours 88.6 88.8 71.1 78.4
40 hours 90.3 90.8 73.4 82.5
60 hours 90.4 90.5 71.9 82.7
80 hours 90.2 91.0 72.1 82.7
100 hours 90.2 90.6 71.9 83.3

Table 1: Accuracy (in %) of our linguistic probe predicting ei-
ther gender (2 labels) or language information (5 labels).

The results in Table 1 also show that, while performance
for gender prediction is essentially the same for the two snip-
pet sizes we are considering (with a systematic but very small
improvement from 2 s to 5 s), there is a substantial difference
according to snippet length when we predict language. This re-
sult is in line with our intuition: language prediction requires
more contextual information (a broader time window), whereas
gender can be determined from local information.

Figure 1 shows the confusion matrix of our language-
identifying classifier trained on 20 hours of data. This matrix
clearly brings out the two language families we are consider-
ing: confusions between two Bantu languages (Luganda and
Swahili) are much more frequent than those between a Bantu
language and an Indo-European language (and vice versa). This
observation provides a piece of anecdotal evidence that analyz-
ing the errors of a language identification system can yield in-
formation about the closeness between languages, and possibly
about language families, an observation similar to the conclu-
sions of [21].

Figure 1: Confusion matrix for language identification systems.

3.2. Out-Domain Evaluation

We now consider the probe’s ability to generalize beyond its
learning data. First, we test the ability of our classifier to iden-
tify the gender of an utterance and learn cross-lingual general-
ization. Specifically, we learned a gender-identifying classifier
on a corpus containing only recordings from one language, and
tested its performance on other languages. The results (Table 2)
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snippet size → 2 s 5 s
↓ train size

30 minutes 85.7 86.2
8 hours 86.9 87.3
20 hours 88.6 88.0

Table 2: Average of the accuracies (in %) of a linguistic probe
trained to predict gender on a corpus containing only record-
ings of one language and tested on the four other languages.

2 s snippet 5 s snippet
gender in test → female male female male

↓ train set size

training on “female” snippets only
1.25 hours 66.0 63.7 66.8 60.1
20 hours 72.1 69.6 79.3 74.1
50 hours 71.7 69.0 79.7 75.1

training on “male” snippets only
1.25 hours 61.2 64.1 71.9 68.3
20 hours 68.4 72.5 77.3 81.3
50 hours 68.2 71.5 78.7 82.6

Table 3: Accuracies (in %) of a probe identifying languages on
a dataset containing only speakers of a given gender.

show that applying the linguistic probe to languages that were
not considered at training (but were present in the data set used
at pre-training) does not harm performance: the performances
are on a par with those obtained on an equal amount of data
including the languages of the test set. Detailed results by lan-
guage (Table 4) show, however, that performance varies widely
from one language to another: performance on Luganda (one of
the two languages not present in the XLSR-53 learning corpus)
is very poor. We come back to this point in § 3.3.

We then considered the case where a classifier is trained
to predict the language of an audio snippet when the train and
test sets only contain speakers of a given gender. The results
(Table 3) show that, while a probe trained and tested only on
recordings spoken by males yields similar performance to an-
other probe trained on a corpus containing both genders, the
reverse is not true. Considering only recordings spoken by fe-
males harms performance. This result is surprising, because the
probe’s training set is perfectly balanced in terms of gender. Our
interpretation is that it is the representations themselves that are
the cause of the observed difference in performance.

Another interesting finding made when testing the classi-
fier is that it has difficulty generalizing its predictions to a new
gender: out-domain performance (when the classifier is tested
on speakers of a gender it did not see during training) is sys-
tematically lower than in-domain performance. It seems worth
reporting that the difference between in-domain and out-domain
performance does not depend on the size of the corpus on which
the probe was trained. That suffices to demonstrate that it is ac-
tually the neural representations of the audio recordings that are
different, and that they do not encode language information in
the same way for recordings by female and male speakers.

3.3. Quality of Gender Prediction on New Languages

The ability of XLSR-53 to capture information on the gender
of speakers, highlighted by the experiments we have just pre-

snippet size → 2 s 5 s
↓ Language

English 94.2 91.8
Spanish 89.3 90.0
French 93.8 93.8

Luganda 78.6 84.4
Swahili 91.8 90.2

Table 4: Results of training a linguistic probe on all languages
of the CommonVoice corpus but one and testing on the lan-
guage that has been discarded.

sented, may be overestimated: indeed, all the languages used
in our experiments were seen when (pre-)training XLSR-53.
In a final series of experiments, we aim at testing the ability of
XLSR-53 representations to generalize to languages that have
never been seen (neither during training the linguistic probe, nor
during pre-training). These languages (see §2), collected within
the framework of documentary linguistics, present us with a va-
riety of linguistic features very different from those usually con-
sidered in NLP experiments, and with a wide variety of record-
ing conditions (unlike for CommonVoice). A linear classifier
trained on a corpus extracted from CommonVoice and com-
posed of 20 hours of the 5 languages considered in this work
(i.e. a total of 100 hours) and used to predict the gender of the
speaker of recordings extracted from the Pangloss Collection
(cf. § 2 for a detailed list of the languages of the train and test
set) obtains an accuracy of 82.7% when snippets of 2 s are con-
sidered and of 87.0 % for snippets of 5 s.

These performances are comparable with those obtained by
performing a similar experiment on our CommonVoice corpus
(Table 2). But as shown in Table 4, these comparisons are bi-
ased by the results for Luganda. Be that as it may, the results
for the Pangloss languages are clearly inferior, suggesting that
XLSR-53 is specialized on the languages seen at pre-training.

4. Conclusion
In this paper we described several experiments showing that
speech representations built by a pre-trained multilingual model
encapsulate information about the gender of the speaker and
the language of the snippet, as these pieces of information can
be retrieved with good accuracy. Our results are in line with
previous experiments showing that wav2vec2 representations
encode much more information than the sole linguistic content
[22]. Using out-domain settings, we also observed that these
representations do not necessarily encode information (at least
information about the language of the snippet) in the same way
depending on the gender of the speaker. This result is particu-
larly important in situations where we do not have the possibil-
ity to tailor data sets to suit our exact needs — as is typically the
case in the low-resource setting of computational linguistic doc-
umentation — or in work that relies on speech modeling (e.g.
to understand how infants learn language), such as the reverse
engineering approach of [23].

Our observations raise several fundamental questions about
the use of pre-trained speech models. In particular, we need
to understand why representations differ between genders, how
these differences affect downstream tasks, and to what extent it
is possible to construct gender-independent representations.
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