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Optimal Control of Nonsmooth Dynamical Systems using
Measure Relaxations

Saroj Prasad Chhatoi Aneel Tanwani Didier Henrion

Abstract— We address the problem of optimal control of
a nonsmooth dynamical system described by an evolution
variational inequality. We consider both the discrete-time and
continuous-time versions of the problem and we relax the
problem in the space of measures. We show that there is no gap
between the original finite-dimensional problem and the relaxed
problem. We show the convergence of the relaxed discrete-time
optimal control in measures to continuous-time optimal control
in measures. This paves the way to a sound implementation of
the moment sum-of-squares hierarchy to solve numerically the
optimal control of nonsmooth dynamical systems.

I. INTRODUCTION

Optimal control of nonlinear systems with well-posedness
properties is a well-studied problem [1]. In contrast, optimal
control for nonsmooth dynamical systems with set-valued
right-hand side is more complicated and has been an area of
active research over the last two decades due to the powerful
modeling capabilities of such systems [2].

In the present article, we are concerned with the class of
nonsmooth systems described by a normal cone to a convex
set as the set-valued mapping along with some perturba-
tion generated by a Lipschitz vector field [3]. In [4], au-
thors consider evolution variational inequality with a closed
convex constraint set and obtain first-order conditions on
the functional regularized system. They show under certain
regularity conditions that the limit adjoint variable exhibits
jump behavior. Pontrygin Maximum Principle optimality
conditions for discrete approximations of such systems are
performed in [5] and the authors use sophisticated tools from
variational analysis to derive the limit equation. Recently in
[6], the authors use exact penalization-based technique to
extend the optimality conditions to more general problems
with weaker assumptions on the system data.

Direct methods that discretize the problem and then op-
timize the discrete problem have fundamental issues and
in [7] the authors pointed out that the error in gradients
of the simulation results are independent of the step sizes.
The authors propose an optimal control strategy based on
smooth approximations but rely on the Euler integrator.
Finite-element-based discretization along with time-freezing
methods have been recently proposed in software packages
[8]. For a class of linear complementarity systems (closely
related to the formalism adopted in our present work), but
where the right-hand side of the differential equation can be
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written as a Lipschitz continuous map, the paper [9] presents
first-order optimality conditions and some numerical results.

On the other hand, global methods for nonlinear control
based on occupation measures have gained popularity in the
last decade because of their powerful modeling capabilities
and the availability of efficient algorithms and semidefinite
programming solvers [10]. These methods reformulate the
optimal control problem in finite dimensional space to a
primal/dual pair of linear problems where the primal problem
is expressed in the cone of non-negative Borel measures and
a dual problem is expressed in the cone of non-negative
continuous functions [11], [12] and then Linear Matrix
Inequality (LMI) relaxations of the problem are solved with
off-the-shelf semidefinite solvers. Occupation measures were
also studied in the context of different system class [13], [14].

In the present work, we address the problem of optimal
control of nonsmooth dynamical systems. We use occupation
measures to relax both the discrete-time and continuous-
time problem into a linear problem defined in the cone of
nonnegative Borel measures. Under some mild assumptions,
we show that this does not produce any relaxation gap.
Further, we use tools from optimal transport to show the
convergence of the discrete-time problem to the continuous
one when the time step size goes to zero. The overall layout
is summarized in Figure 1. The relaxed problems allow us
to address the problem of mass transport through controlled
nonsmooth dynamical systems, and both the mass transport
and the optimal control achieving this task are performed
in a single problem. The convergence of the discrete-time
problem to the continuous-time problem is of importance
for numerical purposes as well because the discrete-time
problem in measures has less number of variables and would
be a preferable choice for numerical studies using LMI relax-
ations obtained from the moment-sums-of-squares hierarchy
[10]. (Due to space restrictions, we have not included the
proofs of Theorem 2, Theorem 3, and Theorem 4 and we
rather convey the main ideas; they will be covered in detail
along with numerical findings based on LMI relaxations in
the extended version of this paper.)

II. OPTIMAL CONTROL PROBLEM FOR NONSMOOTH
DYNAMICAL SYSTEMS

We consider a controlled nonsmooth dynamical system
modeled as an evolution variational inequality:

ẋ(t) ∈ f(x(t), u(t))−NS(x(t)), x(0) = x0 (1)

where f : Rn × Rm → Rn is a vector field, and NS(x)
denotes the outward normal cone to the closed convex set



inf
u(·)

∫
l(x(t), u(t)dt,

s.t. ẋ ∈ −NS(x) + f(x, u),
u(t) ∈ U

Continuous Optimal Control Problem

inf
uk

∑
l(xk, uk)

s.t. xk+1 = PS(τfk(xk, uk) + xk),
uk ∈ U

Discretized Optimal Control Problem

infx(·), ω

∫
l(x(t), u)dω(u|t)dt

s.t. ẋ(t) =
∫ (
−
∫
NS

ζdη(ζ|x(t)) + f(x(t), u)
)
dω(u|t),

η(·|x, t) ∈ P(NS(x)), ∀t ∈ [0, T ],
ω(·|t) ∈ P(U), ∀t ∈ [0, T ]

Young’s Measure Relaxation

infµ,µT

∫
l(x, u)dµ(t, ζ, x, u)

s.t. µT − µ0 = ∂tµ+ ∂x · [(−ζ + f(x, u))µ],
µ ≥ 0; µT ≥ 0

Occupation Measure Relaxation

No gap (Section III-A)

No gap (Section III-C)

minµτ ,µ̃τ
T

∫
l(x, u)dµτ (x, u)

s.t. µτ + µ̃τ
T =

[
PS ◦ (f(·, ·) + idx)

]
#
µτ + µ̃τ

0 ,
µτ ≥ 0; µ̃τ

T ≥ 0

No gap (Section IV)

Convergence τ → 0 (Section V)

Relaxation

Fig. 1. For the continuous-time problem (left), we first relax the problem using Young measures and then occupation measures. We show that this does
not produce any relaxation gap. For the discrete-time problem (right), we lift the problem into the cone of nonnegative Borel measures. We further show
the convergence in the limit as τ → 0 (no gap).

S at x ∈ S. The control u(t) belongs to a convex compact
set U . The initial condition x0 belongs to S. We make the
following assumption for the existence and uniqueness of the
absolutely continuous solutions.

Assumption 1. There exists Lf > 0 such that

|f(x, u)| ≤ Lf (1 + |x|)
|f(x1, u)− f(x2, u)| ≤ Lf |x1 − x2| ∀u ∈ U.

An optimal control problem for such a system can be
formulated as

J∗(x0) = inf
u∈L∞[0,T ]

∫ T

0

l(x(t), u(t))dt (2)

s.t. ẋ(t) ∈ −NS(x(t)) + f(x(t), u(t)),

x(0) = x0, u(t) ∈ U ∀t ∈ [0, T ]

where l(x, u) is a continuous cost function in x, u subject to
the following assumption.

Assumption 2. The cost function satisfies the following
upper bound:

l(x, u) ≤ h(x)(1 + |u|2) (3)

where h is a given function of L∞(Rn).

Later in Section III-C we will generalize the problem to
an optimal control where the initial condition is a random
variable whose law is a given probability distribution on S,
that is, x(0) ∼ µ0, where µ0 ∈ P(S).

In order to study the discrete-time version of (2) we first
consider discrete-time dynamics defined over a partition of
[0, T ] = {0 = t0, t1, ...ti, ...tN = T} with tk − tk−1 = τ , τ
be the time step between the two samples. The evolution
of states is described by time-stepping scheme [3]. Let
xk, xk+1 be the states at time instant kτ and (k+1)τ , and

uk be the control at time instant kτ , then these are related
by the following,

xk+1 = PS(τf(xk, uk) + xk) (4)

where PS is the (unique) projection onto the compact convex
set S.

The discrete-time optimal control problem can be written
as

J∗
τ (x0) = inf

uk∈Rm

N∑
k=0

l(xk, uk) (5)

s.t. xk+1 = PS(τf(xk, uk) + xk)

x0 = x0; uk ∈ U ∀ 0 ≤ k ≤ N.

Next, we consider the relaxation of the problems by refor-
mulating these as linear programs in the space of measures.

Notation: Let X ⊂ Rn, we denote by C(X), re-
spectively C1(X), the set of continuous, resp. continuously
differentiable, functions. We will use M(X) for the set of
signed Borel measures. The cone of positive continuous
functions is denoted by C+(X) and M+(X) is its dual
cone of nonnegative Borel measures. We use the following
notation

⟨l, µ⟩ :=
∫
X

l(x)dµ(x) (6)

to refer to the duality pairing between l ∈ C(X), µ ∈M(X).
To measure the distance between two probability measures
we use the Wasserstein 2 metric defined as follows:

W2(µ, ν) = min
γ

∫
|x− y|2dγ s.t. πx#γ = µ, πy#γ = ν

where πx#γ resp. πy#γ is the x resp. y marginal of γ ∈
P(X × X) and µ, ν ∈ P(X). W2 defines a metric in the
space of probability measures (X,B(X)) with finite second
order moments B(X) refers to the Borel sigma algebra on
X .



III. RELAXED CONTINUOUS-TIME OPTIMAL CONTROL

An important result that will be used later deals with the
uniform convergence of trajectories corresponding to weakly
converging control sequences (Proof is based on the results
in [15]).

Lemma 1. Let {uj(·)}j be a weakly converging sequence i.e.
uj ⇀ u. Then, for the system (1), the sequence of trajectories
{xj(·)} controlled by {uj(.)} converges uniformly to a
trajectory x(·) controlled by u(·).

Next, we will use a foundational result calculus of vari-
ation theory and optimal control theory [16, Theorem 6.2],
that the weak limit of converging sequence {xj , uj}j can
be associated with a Young measure λt ∈ P(S,U) for each
t ∈ [0, T ].

A. Relaxation using Young measures

We make a selection of vector field from NS(x) by
choosing a probability measure η(·|t, x) ∈ P(NS(x(t))) (for
more details about this selection see [17]). Then (1) can be
expressed as

ẋ(t) = −
∫
NS(x(t))

ζdη(ζ|x(t)) + f(x(t), u(t)). (7)

Let (xj(·), uj(·)) be a minimizing sequence of state
and controls to the problem defined in (2) such that
limj

∫
l(xj(t), uj(t))dt→ J∗(x0).

Under the uniform integrability of the sequence
{f(xj , uj)}j , which follows from uniform boundedness of
the corresponding {ẋj}j (Lemma 1) and Lipschitzness of
f(·, u), there is an associated Young measure [16, Theorem
6.2] λt = δx(t)⊗ωt, where ⊗ defines a direct product, such
that

ẋ(t) = −
∫
NS(x(t))

ζdη(ζ|x(t)) +
∫
U

f(x(t), u)dω(u|t).

(8)

The uniform bound on {|uj |2}j and the upper bound of l(·, ·)
in Assumption 2 imply that the cost function {l(xj , uj)}j is
uniformly integrable. So using [16, Theorem 6.2]

lim
j→∞

∫ T

0

l(xj(t), uj(t))dt =

∫ T

0

l(x(t), u)dω(u|t)dt.

We relax the optimal control problem defined in (2) using
the Young measure as follows

J∗
r (x0) := inf

x(·), ω(·|·)

∫ T

0

∫
U

l(x(t), u)dω(u|t)dt (9)

s.t. ẋ(t) = −
∫
NS(x(t))

ζdη(ζ|x(t))

+

∫
U

f(x(t), u)dω(u|t), (10)

η(·|x(t)) ∈ P(NS(x(t))); ω(·|t) ∈ P(U) ∀t ∈ [0, T ].

Remark 1. The selection of η will be performed in the
optimization problem such as to ensure the feasibility of the
problem.

Theorem 1. The optimal value J∗ of (2) and the optimal
value J∗

r of (9) are equal, i.e., there is no gap when relaxing
to Young measures.

Proof. (Proof of J∗
r ≤ J∗): If (x(·), u(·)) is feasible for (2)

then (x(·), δu(·)) is feasible for (10), so J∗ ≥ J∗
r .

(Proof of J∗ ≤ J∗
r ): l(x, ·) is a convex function in u so

using Jensen’s inequality we get

J∗
r =

∫ T

0

∫
U

l(x(t), u)dωt(u|t)dt ≥
∫ T

0

l(x(t), u(t))dt.

(11)

Now we use the assumption that g(x, U) is convex so
the barycenter of ωt will lead to a valid vector field such
that ẋ(t) = g(x(t), u(t)), u(t) =

∫
udωt(u|t). The pair

(x(·), u(·)) thus obtained is a feasible for (2) and thus∫ T

0
l(x(t), u(t))dt ≥ J∗. Using this in (11) we obtain the

desired inequality.

We observe that problem (9) is still nonlinear in x(·) and
we need a linear program in measures. To do so, we further
relax into the set of occupation measures and we show
that these new objects are basically convex combinations of
the Young measures. Thus, the set of occupation measures
provides a convex closure to the set of Young measures.

B. Relationship between occupation measures and Young
measures

In [11], the author associated to each (t, x(·), ω(·|·)) which
satisfies (10), a linear functional defined on C([0, T ], S, U)
such that

⟨µ, h⟩ =
∫ T

0

∫
U

h(t, x(t), u)dω(u|t)dt

for all h ∈ C([0, T ], S, U). Let us define

R :=
{
(µ̂, ξ) ∈M([0, T ], S, U)×M([0, T ], S)

⟨µ̂, h⟩+⟨ξ, g⟩ =
∫ T

0

∫
U

h(t, x(t), u)dω(u|t)dt+g(T, x(T ))

s.t. (t, x, ω) satisfies (10) for some η(·|·, ·)

for all (h, g) ∈ C([0, T ], S, U)× C([0, T ], S)
}
. (12)

Set R is weak-star sequentially compact by the definition of
Young measure [16, Theorem 6.2]. It also satisfies

∥µ̂∥C∗ ≤ T ; ∥ξ∥C∗ ≤ 1; µ, ξ ≥ 0 (13)

where bounds are in the dual-norm. It is easy to verify that
the elements of the set R satisfy the following equation
which is called continuity equation or Liouville equation∫

[0,T ]×S

∫
U

∫
NS(x)

∂tϕ(t, x)dµ(t, x, ζ, u)+∂xϕ(t, x)·(−ζ

+ f(x, u))dµ(t, x, ζ, u) =

∫
S

ϕdµT − ϕ(t0, x0). (14)

To verify the claim one could substitute µ =
δx(t)dη(ζ|x(t))dω(u|x(t))dt in (14) to obtain (8) in
the integrated form. Now define



O := {(µ, µT ) ∈M([0, T ], S, U)×M([0, T ], S)

s.t. µ, µT satisfies (13) and (14)}. (15)

Clearly, any element of µ ∈ R satisfies (14) [11], and by
definition of set O we see that R ⊂ O. Further, set O
is convex and weak-star compact where convexity follows
from the equation being linear in (µ, µT ). The closed balls
in C([0, T ], S, U) × C([0, T ], S) corresponding to (13) are
metrizable, and thus the weak-star sequential compactness of
set O imply weak-star compactness. The elements of set O
are called occupation measures.

C. Occupation Measure Relaxation

We consider an occupation measure based reformulation
of the problem (2) as follows

J∗
o (x0) = inf

µ,µT

∫
l(x, u)dµ(t, ζ, x, u) (16)

s.t. ∂tµ(t, ζ, x, u)+

∂x · [(ζ + f(x, u))µ(t, ζ, x, u)] = µT − δx0,0,
(17)

µ ≥ 0; µT ≥ 0

where ∂x· is the divergence operator and (17) has to be
interpreted as the weak form of (14) i.e. when integrated
against test functions ϕ ∈ C1([0, T ], S, U). Note here the
search of the minimizer (µ, µT ) is over set O which is
weak-star compact. Further, the cost function is weakly-
star continuous (can be checked using the fact that l(·, ·)
is continuous) so the existence of a minimizer follows from
the direct method of calculus of variations.

Theorem 2. The optimal value J∗
o of (16) and the optimal

value J∗
r of (9) are equal, i.e., there is no relaxation gap

when relaxing to occupation measures.

Note that every feasible solution to (17) is of the form
µ(dt,dζ,dx,du|x0), i.e., it is conditioned w.r.t. to the initial
condition x0 ∈ S. So, the problem of the optimal mass
transport through a nonsmooth dynamical system is an easy
generalization of problem (16) by integrating the objective
function and the dynamics constraints with an initial distri-
bution µ0. This will require new notation for the measures
solution µ, µT to the obtained problem but for the notational
convenience we will use the same notation. Thus we have
the following linear program in the case where the initial
configuration is distributed according to µ0:

J∗
o (µ0) = inf

µ,µT

∫
l(x, u)dµ(t, ζ, x, u) (18)

s.t. ∂tµ(t, ζ, u, x) + ∂x · [(ζ + f(x, u))µ(t, ζ, x, u)]

= µT − µ0

µ ≥ 0, µT ≥ 0.

IV. RELAXED DISCRETE-TIME OPTIMAL CONTROL

In this section, we consider the relaxation of the discrete-
time problem (5) to the space of measures. The arguments
presented are inspired by [13]. We consider a partition {0 =

t0, t1, ...ti, ...tN = T} of time interval [0, T ] such that tk+1−
tk = τ and N = ⌈Tτ ⌉. We know from (4) that the states at
successive time instants kτ and (k + 1)τ are related as

xk+1 = PS ◦ (τf(xk, uk) + xk) := G(xk, uk)

where PS is the projection mapping on the compact convex
set S. To relax the problem in (5) to the space of measures we
will rely on probabilistic arguments since we are modeling
the initial condition and the control as random variables [13].
For a fixed value of τ , we define the measures {µ̃τ

k}k∈N, such
that µ̃τ

k ∈ P(Rn), at time instances tk, which are a result of
recursive evolution of measures through dynamics (4). We
introduce a time-varying stochastic kernel ωτ

k(u|x) ∈ P(U)
which is the probability measure on controls u at time instant
tk conditioned over the state. Using this stochastic kernel, we
define a transition kernel as follows:

Qω(A|x) :=
∫
U

IA(G(x, u))dω(u|x).

It is used to describe the probability measure of states at time
kτ given the state was at xk−1 at time (k − 1)τ , that is,

Prob(xk ∈ A|xk−1) = Qωτ
k−1

(A|xk−1) (19)

so that Qωτ
k
(·|·, ·) captures the effect of feedback ωτ

k(·|·) at
each time step. Now, given µ̃τ

0 is the measure at time 0, we
can find its successor as

µ̃τ
1(A) =

∫
S

∫
U

IA(G(x, u))dωτ
0 (u|x)dµ̃τ

0(x) (20)

where A ⊂ Rn. We can then use this recursive update to
obtain the measures at time kτ

µ̃τ
k(A) =

∫
S

∫
U

IA(G(x, u))dωτ
k−1(u|x)dµ̃τ

k−1(x). (21)

Next we identify a measure µτ
k ∈ P(S,U)

µτ
k(dx, du) = ωτ

k(du|x)µ̃τ
k(dx) (22)

at each time instant. Then we can define an occupation
measure µτ ∈ P(S,U) satisfying the following relationship∫

A,B

φ(x)dµτ (x, u) =

N−1∑
k=0

∫
A,B

φ(x)dµτ
k(x, u) (23)

for all φ(x) bounded measurable function and A ⊂ S, B ⊂
U . This measure captures the time spent by all possible
trajectories in some subset of state and control. Observe also
that G defines the push forward between µτ

k−1 and µ̃τ
k

1

Thus, we have the following relationship:

xk
G←− (xk−1, uk−1) (24)

µ̃τ
k(dx)

G#←−− µτ
k−1(dx, du). (25)

Proposition 1. Let ωτ
k(·|x) ∈ P(U) ∀x ∈ S be a stochastic

kernel and µτ
k, µτ be as defined in (22), (23). Let µ̃τ

0 , µ̃τ
T

1Given two measurable space (X,B(X)), (Y,B(Y )) and a measurable
function G : X → Y , the the pushforward of a measure µ ∈ P(X) is
defined as G#µ(B) = µ(G−1(B)) , ∀B ⊂ B(Y ) .



be such that x0 ∼ µ̃τ
0 and xN ∼ µ̃τ

T respectively. Then,
µτ , µ̃τ

0 , µ̃τ
T satisfy the following relationship,∫

S,U

φ(x)dµτ (x, u) +

∫
S

φ(x)dµ̃τ
T (x)

=

∫
S,U

φ(G(x, u))dµτ (x, u) +

∫
S

φ(x)dµ̃τ
0(x) (26)

for all φ(·) : Rn → Rn bounded, measurable functions.

Proof. Let φ(x) be some bounded measurable function, then
using (23) and (22),∫

S,U

φ(x)dµτ (x, u) =

N−1∑
k=0

∫
S,U

φ(x)dµτ
k(x, u)

=

N−1∑
k=0

∫
S,U

φ(x)dωτ
k(u|x)dµ̃τ

k(x) =

N−1∑
k=0

∫
S

φ(x)dµ̃τ
k(x)

=

N−1∑
k=0

∫
S

φ(x)dG#µ
τ
k−1(x, u)

where in the third and fourth equality we have used the fact
that ωτ

k(·|x) ∈ P(U) and Eq. (25) respectively. Now using
the change of variables formula for push-forward measures
we get,∫

S,U

φ(x)dµτ (x, u) =

N−1∑
k=0

∫
S,U

φ(G(x, u))dµτ
k(x, u)

+

∫
S

φ(x)dµ̃τ
0(x)−

∫
S

φ(x)dµ̃τ
T (x).

Next, we prove that for any solution of (26), we have
a stochastic kernel such that if we propagate this stochastic
kernel through (4) we obtain a sequence of measures defining
the probability of state at each time instant.

Theorem 3. Let µ̃τ
0 , µ̃

τ
T , µ

τ be the measures which satisfy
(26). Then there exists a stochastic kernel ωτ

k(·|x) ∈ P(U)
at each time kτ which defines the evolution of measure
µ̃τ
0 through (4) into µ̃τ

T . Moreover µτ is the corresponding
occupation measure satisfying (23).

Using (26) as the Liouville equation in discrete time for
the controlled system (4) we define the following linear
program in the cone of non-negative Borel measures:

J∗τ
d := inf

µτ

∫
l(x, u)dµτ (x, u) (27)

s.t. µτ + µ̃τ
T =

[
PS ◦ (f(·, ·) + idx)

]
#
µτ + µ̃τ

0 (28)

µτ ≥ 0, µ̃τ
T ≥ 0.

Here, (28) is to be interpreted in weak form like (26) and
idx refers to the partial identity function, i.e., idx(x, u) = x.
So for each fixed τ we obtain J∗τ

d as the optimal value for
(27).

Remark 2. In comparison to the continuous-time problem
(16), the selection from the normal cone is taken care of
by the projection operator in (27). Thus, when we formulate
LMI relaxations one would require lesser number of decision
variables.

V. CONVERGENCE OF THE DISCRETE-TIME OPTIMAL
CONTROL PROBLEM TO THE CONTINUOUS-TIME

PROBLEM

In this section, we present the underlying ideas to study
the pointwise convergence J∗τ

d (·) τ→0−−−→ J∗
o (·) where J∗τ

d

and J∗
o are defined in (27) and (18) respectively.

Recall from (25) and (21) that µ̃τ
k is the push-forward of

µτ
k−1(·, ·),i.e.

µ̃τ
k =

[
PS ◦

(
f(·, ·) + idx

)]
#
µτ
k−1.

Using the disintegration of µτ
k from (22), we get

µ̃τ
k =

[
PS ◦

(∫
U

f(·, u)dωτ (u|kτ, ·) + id(·)
)]

#
µ̃τ
k−1

where, id(x) = x. We will denote

Gτ
k(x) := PS

(∫
U

f(x, u)dωτ (u|kτ, x) + x
)
.

Thus for a partition {0 = t0, t1, ...ti, ...tN = T} of time
interval [0, T ] such that tk+1 − tk = τ , we have

µ̃τ
k+1 = Gτ

k#µ̃
τ
k (29)

vτk+1 =
Gτ

k(x)− x

τ
. (30)

We consider two different interpolations of measures se-
quence {µ̃τ

k}k to obtain
(1) Continuous interpolation curves µ̃τ

t such that

µ̃τ
t = Gτ

t #µ̃
τ
k for t ∈ (kτ, (k + 1)τ ] (31)

where, Gτ
t =

(
t−kτ
τ G∗ + (k+1)τ−t

τ id
)

and G∗ being the
optimal transport map between µ̃τ

k+1 and µ̃τ
k. The associated

velocity is ṽτt = vk+1 ◦ (Gτ
t )

−1.
(2) Piecewise constant interpolation curves µ̂τ

t such that

µ̂τ
t = µτ

k+1, for t ∈ (kτ, (k + 1)τ ] (32)

and velocity v̂τt = vτk+1 for t ∈ (kτ, (k + 1)τ ].
One important characterization of these curves [18, Chapter
5] is that

||ṽτt ||L2(µ̃τ
t )

=
W2(µ̃

τ
k, µ̃

τ
k+1)

τ
= |(µ̃τ )′|(t)

for all t ∈ (kτ, (k + 1)τ ]. (33)

Remark 3. The reason for using two interpolations is that
the convergence of curve µ̃τ will imply the convergence to
the limit µt which is the solution to the Liouville equation
and convergence of piecewise constant interpolated curve
µ̂τ
t will imply that the limit velocity of Liouville equation is

vt(x) ∈ −NS(x) +
∫
U
f(x, u)dω(u|t, x).

We make an interpolation of ωτ s.t. ωτ (u|t, x) =
ωτ (u|(k + 1)τ, x) ∀ t ∈ (kτ, (k + 1)τ ]. Lets define
gτ (kτ, x) =

∫
U
f(x, u) dω(u|kτ, x). We assume some mild

regularity of measure ωτ which ensure that gτ (t, x) =∫
f(x, u)dωτ (u|t, x) is uniformly (w.r.t. τ ) Lipschitz con-

tinuous. Further using Assumption 1 and the fact that
ωτ ∈ P(U) we deduce that gτ is uniformly bounded



w.r.t. τ . We conclude using the Arzelà-Ascoli theorem that
gτ (t, x)→ g(t, x). Using the Banach-Alaoglu theorem for a
subsequence (without relabelling), ωτ ⇀ ω in the weak-star
sense as ω ∈ P(U), thus

g(t, x) =

∫
U

f(x, u)dω(u|t, x), ∀t ∈ [0, T ]. (34)

Through the next theorem we formally state the convergence
result for the interpolated curves introduced above.

Theorem 4. For each t ∈ [0, T ], given measure µ0 ∈
P(S), the curves {µ̃τ

t }t ∈ P(S) defined in (31) converge
uniformly in the W2 metric to {µt}t ∈ P(S). The curve µ̂τ

t

(32) converges to µ̃τ
t in the W2 metric. Moreover vt(x) ∈

−NS(x) +
∫
U
f(x, u)dω(u|t, x).

Theorem 4 states that µ̃τ
t converges uniformly to µt. Next,

we would like to show that the objective function for (27)
converges to (16) in the limit τ → 0. The discrete-time
objective function is

N∑
t=0

τ

∫
S×U

l(x, u)dωτ (u|t, x)dµ̃τ
t (x).

Using the convergence results proved in Theorem 4 we have

N∑
k=0

τ

∫
S×U

l(x, u)dωτ (u|kτ, x)dµ̃τ
k(x)

τ→0−−−→
∫ T

0

∫
S×U

l(x, u)dω(u|t, x) dµt (x)dt

=

∫ T

0

∫
S×U

∫
NS(x)

l(x, u)dµ(t, ζ, x, u). (35)

So, if we take the minimizing sequence µτ for the discrete-
time problems (27), the sequence converges to a feasible so-
lution of (16). Thus, using (35), we get lim infτ→0 J

∗τ
d (x) ≥

J∗
o (x). For the opposite inequality, we observe that for every

feasible solution of (16), we disintegrate and then discretize
the feedback stochastic kernel. Using (21), we obtain a
feasible solution for (27) for each τ , so J∗

o (x) ≥ J∗τ
d (x) for

each τ and which implies that J∗
o (x) ≥ lim supτ→0 J

∗τ
d (x).

Combinging both we get lim infτ→0 J
∗τ
d (x) ≥ J∗

o (x) ≥
lim supτ→0 J

∗τ
d (x).

VI. CONCLUSION

We addressed the problem of optimal control for non-
smooth dynamical systems by formulating it as a linear
problem in the cone of nonnegative Borel measures. We
showed that relaxing the problems from finite dimensional
space to infinite dimensional does not produce any relaxation
gap. We further showed the convergence of the discrete-
time problems to continuous-time problems in the space
of measures using tools from optimal transport theory. We
defined interpolated curves and then showed that as the time
step goes to zero, the interpolated curves converge to the
solutions of the Liouville equation where the corresponding
velocity vector defines the nonsmooth dynamical system. We
then show the pointwise convergence of the value functions.

In future work, we aim to solve numerically these non-
smooth optimal control problems using the moment-SOS
hierarchy [10], which produces a family of convex LMI
relaxations of the problem. Convex relaxations based on
the moment-SOS hierarchy were used in [15] to study the
problem of measure evolution of the functional regularized
nonsmooth dynamical system. So our current paper can be
seen as a first step of the extension to optimal control of
the analysis results of [15]. We observe that in comparison
to the continuous-time problem, the discrete-time case has
fewer variables as there is no extra variable corresponding
to the selection of the vector field from the normal cone.
So solving the LMI relaxations is expected to be computa-
tionally faster. In future work, we will also address the case
with nonstationary sets defined on the right-hand side of the
dynamics which is expected to add more complexity to the
problem.
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