
HAL Id: hal-04701732
https://hal.science/hal-04701732v1

Preprint submitted on 18 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative Operator Sketching Framework for Large-Scale
Imaging Inverse Problems

Junqi Tang, Subhadip Mukherjee, Carola-Bibiane Schönlieb

To cite this version:
Junqi Tang, Subhadip Mukherjee, Carola-Bibiane Schönlieb. Iterative Operator Sketching Framework
for Large-Scale Imaging Inverse Problems. 2024. �hal-04701732�

https://hal.science/hal-04701732v1
https://hal.archives-ouvertes.fr


Iterative Operator Sketching Framework for
Large-Scale Imaging Inverse Problems
1st Junqi Tang

School of Mathematics
University of Birmingham

Birmingham, UK
j.tang.2@bham.ac.uk

2nd Subhadip Mukherjee
ECE

IIT-Kharagpur
Kharagpur, India

subhadipju@gmail.com

3rd Carola-Bibiane Schönlieb
DAMTP

University of Cambridge
Cambridge, UK
cbs31@cam.ac.uk

Abstract—Although having demonstrated great numerical per-
formance in various imaging applications, the iterative data-
driven reconstruction (IDR) schemes, e.g., plug-and-play al-
gorithms and deep unrolling networks, can have significant
computational limitations in large-scale imaging inverse problems
in practice. This is mostly due to the fact that they need to
involve the high-dimensional forward/adjoint operators which
are non-trivial to compute in each iteration. In this work,
we propose a new operator sketching framework tailored for
designing efficient IDR schemes, which are currently state-of-
the-art solutions for imaging inverse problems. Our framework
performs dimensionality reduction on both image and measure-
ment data domain, leading to efficient computations. Using this
framework, we derive several accelerated IDR schemes, such
as the plug-and-play multi-stage sketched gradient (PnP-MS2G)
and sketching-based primal-dual (LSPD and Sk-LSPD) deep
unrolling networks. Our numerical experiments on X-ray CT
image reconstruction demonstrate the remarkable effectiveness
of our sketched IDR schemes.

Index Terms—Plug-and-Play Priors, Deep Unrolling, Sketch-
ing, Stochastic Optimization.

I. INTRODUCTION

Large-scale imaging inverse problems have become crucial
in various medical and industrial applications, such as X-ray
CT, MRI and PET. Such imaging systems can be generally
expressed as:

b = Ax† + w, (1)

where x† ∈ Rd, A ∈ Rn×d, b ∈ Rn, and w ∈ Rn

denote the ground truth image, the forward operator which
models the measurement physics, the measurement data, and
the (possibly data-dependent) measurement noise, respectively.
In this work, we propose a new paradigm for designing fast
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iterative data-driven reconstruction (IDR) schemes, such as the
PnP algorithms [17], [21] and deep unrolling schemes [1],
[10], [16], utilizing the principle of dimension reduction for
solving high-dimensional imaging inverse problems.

Traditionally, to obtain an estimate of the ground truth x†,
we typically solve an optimization problem of the form:

x⋆ ∈ arg min
x∈Rd

f(b, Ax) + g(x), (2)

where data fidelity term f(b, Ax) is a convex function in x,
and the most typical and widely used choice of the data fidelity
is the squared-error loss ∥b − Ax∥22. g(x) is a regularization
function that is usually convex to ensure provable convergence
and robustness of the estimation, such as the TV regularization
applied on the image domain and ℓ1 regularization in the
wavelet/shearlet domain. The problem (2) can be efficiently
solved using proximal splitting methods [5].

While these classical convex regularization approaches pro-
vide theoretically tractable solutions for inverse problems, they
have been significantly outperformed by the PnP priors, con-
structed by advanced image denoisers or deep neural networks.
For example, the PnP-ADMM of [21] and PnP-LBFGS of [18]
extend the classical optimization methods ADMM and quasi-
Newton, replacing the proximal operator with the denoiser
and have been widely applied in solving inverse problems
since then. On the other hand, a very similar approach named
regularization-by-denoising (RED) has been proposed by [13],
[15], which explicitly constructs the regularization term using
the denoiser and provides improved convenience in parameter
tuning. Since a strong link between PnP and RED is estab-
lished in [4] under the RED-PRO unifying framework, we
refer to both PnP and RED as “PnP” for simplicity. The deep
unrolling schemes [1], [10], [16] have been developed in par-
allel to the PnP schemes. Although having similar algorithmic
structure to PnP schemes, they are based on unfolding the
proximal splitting methods while parameterizing the proximal
operators with deep neural networks and then trained end-to-
end. For example, the Learned Primal-Dual network of [1]
is based on unrolling the iterations of the Chambolle-Pock
algorithm [3] via parameterizing the proximal operators with
CNNs, leading to state-of-the-art results in image reconstruc-
tion tasks.



The IDR schemes such as PnP and deep unrolling may
require a long computational time to obtain a good esti-
mate when the image and measurement dimensions are large.
We propose a generic acceleration scheme for IDR using
dimensionality-reduction/sketching both in the image space
and measurement space.

II. MULTI-STAGE SKETCHED ITERATIVE
RECONSTRUCTION

Our framework performs sketching in both image domain
(of dimension d) and data domain (of dimension n). For
ease of illustration, we use the least-squares objective and
linear forward operator here without loss of generality. For
a given forward operator A ∈ Rn×d, we can often find a
low dimensional proxy As ∈ Rn×m0 discretized on a reduced
image dimension m0 < d such that Ax ≈ AsS(x), where
S(·) : Rd → Rm0 (m0 < d) is a sketching/downsampling
operator. Furthermore, we can also perform random sketching
M(·) : Rn → Rm (m < n) on the measurement/data
domain, which corresponds to stochastic approximation [14].
One typical choice of this sketching operator M is the
subsampling sketch – uniformly sampled minibatch of In×n

[12], which is suitable for inverse problems. For the image
domain sketching operator S , we found that off-the-shelf
down-sampling algorithms such as the bi-cubic interpolation
suffice in our framework. Now we can summarize this double-
sketching as follows:

∥b−Ax∥22 ≈ ∥b−AsS(x)∥22
∝ EM∥Mb−MAsS(x)∥22.

(3)

Instead of using standalone data-domain sketches [12], our
double-sketching framework is more effective in terms of
dimensionality reduction and can be applied to generically
accelerate PnP methods and also deep unrolling networks.
When using the sketched loss in (3), we can have an ap-
proximate data fit that can be efficiently optimized by SGD
[14] or its variance-reduced variants [7]. To recover the same
reconstruction quality as the original program, we can adjust
the image-domain sketch size m0 stage-wise in a coarse-to-
fine manner.

A. Doubly-Sketched PnP

We first apply our framework above to derive a plug-and-
play multi-stage sketched gradient algorithm (PnP-MS2G). We
present our PnP-MS2G in Algorithm 1, where we denote D
as the denoiser, S as the image-domain sketching operator
with varying sketch sizes, and U(·) : Rm → Rd as the
upsampling operator which is an approximate inversion of the
downsampler S. To explain the motivation and derivation of
Algorithm 1, we give here a concrete example with the squared
error data fidelity. Noting that the PnP proximal gradient
descent iteration can be written as:

xk+1 = D[xk − η · (ATAxk −AT b)], (4)

Algorithm 1 — Plug-and-Play with Multi-Stage Sketched
Gradients (PnP-MS2G)
Initialization: x0 ∈ Rd, number of stages K, sketch-size
[m1, ...,mK ], sketched forward operator [As1 , ...AsK ], sketch-
ing operators [S1, ...,SK ], up-sampling operators [U1, ...,UK ],
number of inner-loops for each stage [N1, ..., NK ], step-size
sequence [η1, ..., η∑K

k=1 Nk
], α ∈ (0, 1], iteration counter i = 0

For k = 1 to K
For j = 1 to Nk

i← i+ 1
Generate random subsampling mask Mi

Compute the image-domain sketch: v = Sk(xi)
Compute gradient estimate G := ▽vf(Mib,MiAskv)
zi+1 = xi − ηiUkG,
xi+1 = (1− α)zi+1 + αD(zi+1),

Endfor
Endfor
Output xi+1

where D(·) denotes the denoiser, which can be a denoising
algorithm such as BM3D, or a classical proximal operator of
some convex regularization (such as TV-prox), or a pre-trained
denoising deep network such as (DnCNN [22]). Then we can
perform one-side sketch first on the image domain and obtain
a preliminary version of sketched gradient:

xk+1 = D[xk − η · U(AT
s AsS(xk)−AT

s b)], (5)

where U(·) denotes the upsamling operator. Numerically we
found that off-the-shelf up/down-sampling algorithms such as
the bi-cubic interpolation suffice to provide us with good
estimates of the true gradients.

To further reduce the computational complexity, we can also
utilize stochastic gradient estimate by applying the subsam-
pling sketches on the measurement domain:

xk+1 = D[xk−η ·U((MkAs)
TMkAsS(xk)−(MkAs)

TMkb)]
(6)

where Mk is a random subsampling operator here for com-
puting the stochastic gradient.

In Algorithm 1, we present our PnP-MS2G scheme, where
we typically start by an aggressive sketch {As1 ,S1} with
m1 ≪ d for very fast initial convergence, and then for later
stages we switch to medium size sketches {Ask ,Sk} with
mk < d which are increasingly more conservative, to reach a
similar reconstruction accuracy as the unsketched counterpart.
We also include a relaxation (optional) on the denoising step
as suggested in [4].

B. Doubly-Sketched Deep Unrolling

Our multi-stage sketching scheme above can be easily incor-
porated within deep unrolling networks. Here we choose one
of the state-of-the-art unrolling schemes, namely the learned
primal-dual network [1]. It is based on unfolding the iteration
of the Chambolle-Pock PDHG algorithm [3] by replacing the
proximal operators proxσf⋆(·) and proxτg(·) (here τ and σ are



TABLE I
LOW-DOSE CT TESTING RESULTS FOR LPD, LSPD, AND SKLSPD

NETWORKS ON MAYO DATASET, WITH SUPERVISED TRAINING

METHOD # CALLS PSNR SSIM GPU TIME

ON A AND AT 1 PASS OF
TEST SET

LPD 24 35.3177 0.9065 48.348
LSPD 6 35.0577 0.9014 31.196
SKLSPD 4 34.9749 0.9028 23.996

the primal and dual step-sizes) with multilayer convolutional
neural networks Pθp(·) and Dθd(·), with sets of parameters
θp and θd, applied on the both primal and dual spaces. The
step sizes at each step are also set to be trainable. The learned
primal-dual with K iterations can be written as the following,
where the learnable parameters are {θkp , θkd , τk, σk}K−1

k=0 :

Learned Primal-Dual (LPD)− Init. : x0 ∈ Rd y0 ∈ Rn

For k = 0, 1, 2, ...,K − 1⌊
yk+1 = Dθk

d
(yk, σk, Axk, b);

xk+1 = Pθk
p
(xk, τk, A

T yk+1);

By applying our sketching framework we can speedily approx-
imate the products Axk, AT yk+1:

Axk ≈ (MiAsk)S(xk), A
T yk+1 ≈ U((MiAsk)

T yk+1). (7)

We then apply dimensionality reduction using (7) to obtain
the final network, referred to as Sketched LSPD (SKLSPD):

SkLSPD− Initialize x0 ∈ Rd y0 ∈ Rm

For k = 0, 1, 2, ...,K − 1
i = mod (k, n/m);
(or pick i from [0, n/m− 1] uniformly at random)
yk+1 = Dθk

d
(yk, σk, (MiAsk)S(xk),Mib);

xk+1 = Pθk
p
(xk, τk,U((MiAsk)

T yk+1));

Alternatively, we can also rearrange the last line as:

xk+1 = U(Pθk
p
(S(xk), τk, (MiAsk)

T yk+1)) (8)

for further improved numerical efficiency in practice.
In this work, for the sake of numerical comparison, we also

implement a special case of SkLSPD which does not perform
image-domain sketches (i.e. U = S = I), referred to as the
LSPD (Learned Stochastic Primal-Dual) network.

III. NUMERICAL RESULTS

Sketched PnP. We start by presenting some numerical
results for applying our sketching framework to accelerating
PnP algorithms. We consider sparse-view CT reconstruction
and compare our PnP-MS2G with the PnP stochastic gradient
descent method [17], which has already been found to be
superior over deterministic PnP schemes. For our PnP-MS2G
we perform a 4× downscale at the first 50 iterations, then a
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Fig. 1. Example for applying MS2G (minibatched) in X-ray CT reconstruc-
tion, comparing to the PnP stochastic gradient descent (PnP-SGD) proposed by
[17]. Note that each iteration of PnP-MS2G is more computationally efficient
than PnP-SGD due to the dimensionality reduction by our double operator
sketching. Surprisingly, even in terms of iteration-number the PnP-MS2G can
provide better convergence rate comparing to PnP-SGD.

2× downscale afterward, leading to significant improvement
in computational efficiency. We choose here the BM3D [6]
as the denoiser. In the numerical results reported in Figure
1, we found that even in terms of the iteration counts, PnP-
MS2G can achieve an improvement in the convergence speed,
while additionally being more efficient per iteration compared
to PnP-SGD. We believe that this is because PnP-MS2G
prioritizes reconstructing the low-frequency component of the
image in the early iterations since the gradient is taken on the
low-dimensional image space, which leads to an algorithmic
warm-start as a by-product.
Sketched deep unrolling. We then present the experimental
performance of our proposed networks for low-dose X-ray CT.
In real-world clinical practice, the low dosage CT is widely
used and highly recommended, since the intense exposures
to the X-ray could significantly increase the risk of inducing
cancers. The low-dose CT takes a large number of low-energy
X-ray views, leading to huge volumes of noisy measurements.
This makes the reconstruction schemes struggle to achieve
efficient and accurate estimations. In our X-ray CT experi-
ments, we use the standard Mayo-Clinic dataset [11] which
contains 10 patients’ 3D CT scans. We use 2111 slices (from
nine patients) of 2D images sized 512× 512 for training and
118 slices of the remaining one patient for testing. We use
the ODL toolbox [1] to simulate fan beam projection data
with 800 equally-spaced angles of view (each view includes
800 rays). The fan-beam CT measurement is corrupted with
Poisson noise: b ∼ Poisson(I0e

−Ax†
), where we make a

low-dose choice of I0 = 7 × 104. We use the Beer-Lambert
law to simulate the noisy projection data and to linearize the
measurements, we consider the log data.

In our LSPD and SkLSPD networks, we interleave-partition
(according to the angles) the forward/adjoint operators and



Fig. 2. Examples for Low-dose CT on the test set of Mayo dataset. We can observe that our LSPD and SkLSPD networks achieve similar reconstruction
performance as the full-batch LPD.

Fig. 3. Example for intermediate layer outputs for Low-dose CT on the test
set of Mayo dataset. We can observe that LSPD/SkLSPD achieves competitive
reconstruction quality with LPD across intermediate layers (the first row is
for the 4th iteration/layer, the second row is for the 8th, while the third row
is for the 12th).

data into m = 4 subsets. Our networks have K = 12 layers1

hence correspond to three data-passes, which means it takes
only three calls in total on the forward and adjoint operators.
We compare it with the learned primal-dual (LPD) which has
K = 12 layers, corresponding to 12 calls on the forward and
adjoint operator. We train all the networks with 50 epochs of
Adam optimizer [8] with batch size one, in the supervised
manner.

For all these networks, we choose the subnetworks Pθk and
Dθk to have three convolutional layers (with a skip connection
between the first channel of input and the output) and 32
channels, with kernel size 5. The starting point x0 is set to

1each layer of LSPD includes a primal and a dual subnetwork with three
convolutional layers with kernel size 5× 5 and 32 channels, same for LPD.

be the standard filtered-back projection for all the unrolling
networks. We set all of them to have 12 algorithmic layers
(K = 12). For the up/down-samplers in our Sketched LSPD,
we choose the bilinear upsample and downsample functions
in Pytorch. The up-sampler increases the input image 4 times
(from 256×256 to 512×512), while the down-sampler makes
the input image 4 times smaller (from 512×512 to 256×256).
While the full forward operator A is defined on the grid of
512× 512, the sketched operator As is defined on the grid of
256× 256 and hence requires only half of the computation in
this setting. We use the coarse-to-fine strategy for SkLSPD,
where we double-sketch the first 8 layers, but leave the last
four layers to have only measurement subsampling and no
downsampling in the image and dual spaces.

We present the performance of the LPD, LSPD, and SkL-
SPD on the test set in Table 1, and some illustrative examples
in Figure 2 and 3 for a visual comparison. From the numerical
results, we found out that our LSPD and SkLSPD networks
both achieve almost the same reconstruction accuracy com-
pared to the LPD baseline in terms of PSNR (peak signal-
to-noise ratio) and SSIM measures, requiring only a fraction
of the computation of the forward and adjoint operators. In
terms of run time on GPU, our methods achieve a reduction
in reconstruction time of around 40% to 60% compared to the
full batch LPD.

IV. CONCLUSIONS

We proposed a generic acceleration framework for deriving
efficient IDR schemes, such as PnP and deep unrolling net-
works. We presented several important instances such as PnP-
MS2G, LSPD, and SkLSPD, and showed that the proposed
methods achieved high-quality reconstruction under significant
dimensionality reduction, demonstrating the promising poten-
tial of applicability in large-scale inverse problems. Mean-
while, we believe that our framework can also be effectively
applied to accelerate MCMC schemes for uncertainty quan-
tification in imaging, such as PnP-ULA [9], and NF-ULA [2]
which leverages generative models.
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