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Safe and Robust Planning for Uncertain Robots:
A Closed-Loop State Sensitivity Approach
Amr Afifi, Tommaso Belvedere, Andrea Pupa, Paolo Robuffo Giordano, Antonio Franchi

Abstract—In this work, we detail a comprehensive framework
for safe and robust planning for robots in presence of model
uncertainties. Our framework is based on the recent notion
of closed-loop state sensitivity, which is extended in this work
to also include uncertainties in the initial state. The proposed
framework, which considers the sensitivity of the nominal closed-
loop system w.r.t. both model parameters and initial state mis-
matches, is exploited to compute tubes that accurately capture the
worst-case effects of the considered uncertainties. In comparison
to the current state-of-the-art for safe and robust planning,
the proposed closed-loop state sensitivity framework has the
important advantage of computational simplicity and minimal
assumptions (and simplifications) regarding the underlying robot
closed-loop dynamics. The approach is validated via both exten-
sive simulations and real-world experiments. In the experiments
we consider as case study a nonlinear trajectory optimization
problem aimed at generating an intrinsically robust and safe
trajectory for an aerial robot for safely performing an obstacle
avoidance maneuver despite the uncertainties. Simulation and
experimental results further confirm the viability and interest of
the proposed approach.

Index Terms—Planning under Uncertainty; Robot Safety;
Constrained Motion Planning

I. INTRODUCTION

ROBOTIC systems are increasingly becoming a part of
our ecosystem. Robots are playing important roles in

maintaining our infrastructure and even our homes. Therefore,
designing safe robotic systems is a necessity for truly embrac-
ing this technology. A common approach for safety is to design
the robot behavior taking into account safety constraints that,
if violated, would cause failure of the task or even damage
to the robot or the surrounding environment. The process of
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designing the robot behavior often relies on a model of the
robot and its environment. However, due to the approximate
nature of any model, the actual robot behavior might deviate
from the planned one and even violate its safety constraints at
runtime.

There exists a number of different approaches attempting
to provide safety guarantees of a robot’s behavior. Several
approaches, for instance [1], propose formulations that allow
obtaining formal guarantees on the robot safety, for example a
constraint guaranteed to be always satisfied. Such guarantees
are, however, obtained on a specific model of the robot which
is ultimately only an approximation of the real system. There-
fore, any formal safety guarantee based on the robot model
can, in general, be only approximately met in any real-world
scenario. One such approach is the Hamilton-Jacobi (HJ)
reachability analysis [2], which requires the solution of a set of
partial differential equations. In order to obtain solutions, HJ
reachability approaches resort to discretizing the state-space
using grids, a technique which suffers from an exponential
increase in computational complexity as the dimension of the
state space increases. In order to tackle this computational
complexity, recent HJ approaches require a linear time varying
(LTV) representation of the dynamics [3], possibly obtained
using linearization, for which there is an analytic solution
to the HJ PDE, [4]. Another approach presented in [5] and
further applied in [6]. The approach entails computing funnels
(or tubes) that capture the state’s deviation from its nominal
value. The approach requires solving an optimization problem
with a sum of squares formulation. However, the computa-
tional complexity of the approach increases significantly with
the dimension of the state-space. Another approach towards
providing guarantees of robot behavior uses contraction the-
ory [7], [8]. This approach requires a complex procedure to
develop a specific controller, limiting the applicability of the
approach.

An alternative class of approaches relies on the recent notion
of closed-loop state sensitivity originally introduced in [9]. In
particular, it has been shown in [9]–[12] that it is possible to
exploit this notion for deriving uncertainty metrics and bounds
to be optimized in trajectory generation problems, thereby
allowing to produce motion plans that possess an intrinsic
robustness against parametric uncertainty in the robot model.
This approach is characterized by its computational simplicity
and minimal assumptions on the robot/controller structure,
indeed only requiring the differentiability of the robot dy-
namics and control action (which can be freely chosen). Such
properties then make this approach an interesting alternative
to current state-of-the-art methods in safe and robust trajectory
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generation for robotic systems.
Motivated by the previous considerations, the goal of this

work is to present a comprehensive framework for safe and
robust planning of robot motions based on the closed-loop
state sensitivity. Our main contributions are:

• The extension of the closed-loop state sensitivity frame-
work to also include uncertainties in the initial state
besides model parameters, which (to the best of our
knowledge) is a novel contribution of this work.

• The proposition of a novel and more accurate approach
(compared to [11]) to compute uncertainty tubes on the
states/inputs based on sensitivity framework.

• An extensive validation campaign involving both sim-
ulation and real-world experiments on an aerial robot.
In particular, contrarily to previous works on this sub-
ject [9]–[12], we provide an experimental validation by
considering a large spectrum of uncertainties spanning
(i) poorly known physical parameters, (ii) unmodeled
residual dynamics, and (iii) initial state mismatches.
This, in our opinion, demonstrates the interest, viability
and computational feasibility of the proposed approach
in dealing with non-trivial real-world cases. A software
package is released to the community as an example of
the framework1.

• The demonstration of the entire framework’s utility to
motion planing by embedding it into a trajectory opti-
mization problem.

The paper is structured as follows. Sect. II presents the notion
of the closed-loop state sensitivity. The novel tube computation
is described in Sect. III. The aerial robot used as a case study
is presented in Sect. IV, which is followed by the validation
in Sect. V. The robust trajectory optimization is presented in
Sect. VI. Lastly, the conclusions are outlined in Sect. VII.

II. CLOSED-LOOP STATE SENSITIVITY

We start by reviewing the notion of closed-loop state
sensitivity originally introduced in [9]. Consider the following
representation for the nonlinear closed-loop dynamics of a
robotic system. The robot dynamics are described by a set
of ordinary differential equations (ODEs) given by

q̇ = f(q, u, p), q(0) = q0, (1)

where q ∈ Rnq is the robot state, u ∈ Rnu the robot inputs,
p ∈ Rnp is a vector of physical parameters such as the mass
of robotic link or location of the center of mass, and q0 ∈ Rnq

represents the initial state. The robot output y ∈ Rny , e.g., the
end-effector pose of a manipulator, is in general a function of
the state and parameters

y = fy(q, p). (2)

The robot task is usually realized by properly designing a ref-
erence trajectory yr(t) for the robot output and by synthesising
a controller able to force the output y to follow the reference
trajectory. Such a controller can be represented generically as

ξ̇ = g(q, ξ, pn)

u = h(q, yr, ξ, pn)
(3)

1https://gitlab.com/AIR-TEAM/closed-loop-state-sensitivity-clss

where ξ ∈ Rnξ represents the controller internal states, e.g.,
an integral action. The controller may also require nominal
values for the system parameters denoted as pn.

We define the nominal closed-loop state trajectory, qn(t),
as the solution of (1–3) using nominal values for the system
physical parameters p = pn and initial state q(0) = q0n .
In presence of uncertainties in either the parameters or initial
state, qn(t) will not match exactly the real closed-loop state
trajectory q(t). The following quantities are then introduced
for quantifying deviations around the system nominal behavior
due to such uncertainties.

We consider the notion of closed-loop state sensitivities with
respect to perturbations in the parameter p as the following
matrix

Π(t) =
∂q(t)

∂p

∣∣∣∣
p=pn

Π(t) ∈ Rnq×np . (4)

Matrix Π is in general not available in closed-form, but a
closed-form expression for its dynamics can be obtained as
follows (see [9], [11] for all details)

Π̇ =
∂f

∂q
Π+

∂f

∂u
Θ+

∂f

∂p
, Π(0) = 0 ∈ Rnq×np

Θ =
∂h

∂q
Π+

∂g

∂ξ
Πξ

Π̇ξ =
∂g

∂q
Π+

∂h

∂q
Πξ, Πξ(0) = 0 ∈ Rnξ×np

(5)

where Θ ∈ Rnu×np is the so-called input sensitivity and Πξ ∈
Rnξ×np the sensitivity of the controller states. Furthermore,
for any function of the state such as, e.g., the output (2), its
sensitivity can be easily obtained as

Πy =
∂fy

∂q
Π+

∂fy

∂p
. (6)

This is relevant when the quantity to be verified is a function
of the state, e.g. a control point along the robot structure that
should avoid an obstacle. An example in this sense will be
provided in the evaluation of Sect. VI.

We now extend the previous formulation to include a novel
quantity introduced (to the best of our knowledge) for the first
time in this work: the closed-loop sensitivity w.r.t. perturba-
tions of the initial state q0. This is defined as the following
square matrix

Ψ(t) =
∂q(t)

∂q0

∣∣∣∣
q0=q0n

, Ψ(t) ∈ Rnq×nq (7)

which, again, has no closed-form expression in general case.
However, by following a procedure conceptually similar to the
one yielding (5), it is possible to show that the dynamics of
Ψ has expression

Ψ̇ =
∂f

∂q
Ψ+

∂f

∂u
Φ, Ψ(0) = I ∈ Rnq×nq (8)

where

Φ =
∂u(t)

∂q0

∣∣∣∣
q0=q0n

(9)
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represents the controller input sensitivity w.r.t. perturbations
in the initial state q0 with expression

Φ =
∂h

∂q
Ψ+

∂h

∂ξ
Ψξ. (10)

Similarly to (5), for evaluating (10) one also needs to propa-
gate the sensitivity of the controller internal states w.r.t. per-
turbations in q0

Ψξ =
∂ξ(t)

∂q0

∣∣∣∣
q0=q0n

(11)

with the following update law

Ψ̇ξ =
∂g

∂q
Ψ+

∂g

∂ξ
Ψξ, Ψξ(0) = 0 ∈ Rnξ×nq . (12)

One can then obtain the behavior of Π(t) and Ψ(t) by forward
integrating (5), (8) and (12) along a given future trajectory.

It is interesting to note that matrix Ψ in (7) is, essentially,
a state transition matrix [13]. In the context of linear time-
invariant systems, the state transition matrix is useful for
computing the evolution of the state in closed-form. In the
context of this work, we consider the state transition matrix
for a generic nonlinear systems and in closed-loop, i.e., by
explicitly considering the control action chosen for controlling
the robot. This allows to compute the sensitivity of the closed-
loop state w.r.t. mismatches in the robot initial conditions
which, as it will be shown in Sect. V, proves to be an important
information for producing robust motion plans. To the best
of our knowledge, this is a novel application of the classical
notion of state transition matrix to the robust planning problem
for (nonlinear) robot/controller pairs.

III. SENSITIVITY-BASED TUBE COMPUTATION

Assuming that deviations from the nominal trajectory are
bounded and form a time-varying set at each instant, the
evolution of this set can be represented as a tube centered
around the nominal trajectory. This tube bounds the envelope
of all perturbed trajectories. In the subsequent discussion,
we illustrate how to compute this tube by leveraging the
previous concepts of closed-loop state sensitivity. For clarity
we will focus our illustration on computing the tubes due to
sensitivity of the states w.r.t. physical parameters p. However
it is straightforward to extend the procedure by considering
the sensitivities Θ(t) and Ψ(t), as it is outlined at the end of
the section.

Suppose that the uncertain parameters p have a maximum
deviation ∆pmax = (∆pmax,1, . . . ,∆pmax,np

) w.r.t. their
nominal values pn, such that the parameters belong to the set
P = {p ∈ Rnp : −∆pmax ≤ p− pn ≤ ∆pmax}. To estimate
the effect that a parameter deviation has on the closed-loop tra-
jectory, it is possible to exploit ellipsoids to define a mapping
from the parameter space to the state space. Letting σp be the
scaled parameter deviation, such that ∆p = p−pn = W

1
2σp,

with W = diag{∆p2max,i}, it is possible to map the unit
sphere2

Sp =
{
σp ∈ Rnp : σT

pσp ≤ 1
}

(13)

2Note that this sphere represents an ellipsoid centered at pn when mapped
in the original parameter coordinates.

Fig. 1: Representation of the radius α along a generic direction n (dotted line)
computed via the proposed formula (17) (red) and via the one in [11] (yellow).
One can appreciate how the proposed (17) computes the distance to the
ellipsoid tangent plane (light red) with normal n, while the method proposed
in [11] underestimates the actual maximum deviation. This difference will
also be highlighted in the results of Sect. V.

into the corresponding ellipsoids of the space whose sensitivity
matrix is available. As already mentioned, without loss of
generality, we will focus on the state space, i.e. using Π(t).
If the parameter deviation ∆p is small enough, it is possible
to approximate ∆q(t) = q(t)− qn(t) as

∆q(t) ≃ Π(t)W
1
2σp, (14)

which, applied to the boundary equation of (13), yields

∆qT (ΠW
1
2 )†T (ΠW

1
2 )†∆q = ∆qT

(
ΠWΠT

)†
∆q ≤ 1,

where the time dependency has been dropped for ease of
notation. Letting KΠ = ΠWΠT , it is possible to define the
state space set:

Eq =
{
q ∈ Rnq : ∆qTK†

Π∆q ≤ 1
}
. (15)

Equation (15) defines an ellipsoid in the state space centered at
qn with a symmetric and positive semi-definite kernel matrix
KΠ. This ellipsoid allows to map the deviations from the
parameter space to the state space. However, the ellipsoid
axes are in general not aligned with the canonical basis. This
implies that calculating the deviation of each state component
qi is not straightforward, as direct use of the ellipsoid semi-
axes length is not possible. This may be even more complex
if we are interested in analyzing the evolution of the system
along directions other than those aligned with the canonical
basis. In general, given a direction n ∈ Rnq , we are interested
in finding the maximum deviation that the system can exhibit
along n, i.e., in obtaining the radius of the tube along n. More
formally, we want to find the minimum scalar α > 0 such that

∀∆q ∈ Eq nT∆q ≤ α.

A graphical representation of the ellipsoid and of the tube
radius α along a generic direction n is depicted in Fig. 1. The
radius can be found exploiting the linear approximation of the
state sensitivity, i.e., equation (14). Indeed, setting α = nT∆q,
one can obtain:

α ≃ nTΠW
1
2σp. (16)

By pseudoinverting (16) and plugging ∆p in (13) one obtains

α2(nTΠW
1
2 )†T (nTΠW

1
2 )† = 1,
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from which it is possible to derive

α =
√
nTKΠn. (17)

We highlight that in a previous work [11] an alternative
procedure (and formula) has been proposed for computing
the radius α. However, w.r.t. [11], the proposed (improved)
equation (17) has two main advantages: (i) (17) is a differ-
entiable expression everywhere, thus making it more suited
for gradient-based optimization and, even more importantly,
(ii) (17) provides a more accurate evaluation of the actual
tube radius. This is graphically illustrated in Fig. 1 and
demonstrated in the results of Sect. V.

Given a nominal trajectory qn(t) defined for t ∈ [0, T ],
we can then use (17) to compute bounds on any function of
the state and inputs through their closed-loop sensitivity. For
instance, in the case of the state tubes, we can evaluate the
sensitivity Π(t) exploiting (5) and applying (17) along the
canonical basis of Rnq (e1, . . . , enq

) for obtaining the tube
bounds αq(t) ∈ Rnq as

αq,i(t) =
√
eTi KΠei i = 1, . . . , nq, t ∈ [0, T ]. (18)

These will represent bounds on the deviation of each compo-
nent of the state vector around the nominal trajectory.

The previous computation can be straightforwardly ex-
tended to include the sensitivity w.r.t. initial conditions by sim-
ply defining a new sensitivity matrix Γ(t) as the concatenation
of matrices Π(t) and Ψ(t), i.e., Γ(t) =

[
Π(t) Ψ(t)

]
. With

this in mind, in the rest of the paper we will use the vector

γ =
[
pT qT

0

]T
to represent all the uncertain parameters (which will include
both the physical parameters p and the initial conditions q0).

IV. CASE STUDY: FULLY ACTUATED AERIAL ROBOT

The closed-loop state sensitivity approach can be applied
to general robotic systems such as quadrotors or robotic
manipulators [9]–[11]. In this work, we make use of a fully
actuated hexarotor aerial robot as case study for validating the
approach. In particular, we use the Tilthex design presented
in [14]. This choice is motivated by the fact that parameter
uncertainty plays a prominent role in the robot’s actuation
model. Unlike standard multi-rotors designs, the Tilthex’s
thrust model suffers from uncertainty along all thrust direc-
tions while for a standard aerial vehicle, like a quad-rotor, the
thrust is uncertain only along the body frame’s vertical axis.

In the following, we present the dynamics for the Tilthex
aerial robot with the main objective of exposing the system’s
parameters and highlighting the generality of our approach
in considering the parameters regardless of their non-linearity
within the dynamics. Consider the following frames: an inertial
frame, Fw, with origin denoted by Ow. The body fixed frame,
Fv , rigidly attached to the geometric center of the aerial robot’s
rigid body, with origin denoted by Ov . The configuration of
the robot is described by the position pv ∈ R3 expressed
in an inertial frame Fw and the orientation Rv ∈ R3×3, of
frame Fv with respect to the inertial frame Fw. The robot
velocities νv ∈ R6 are described by ṗv ∈ R3 and ωv ∈ R3

which represent, respectively, the linear velocity wrt frame
Fw and the angular velocity of frame Fv wrt Fw, expressed
in frame Fv . We define the state of the aerial robot as q =
(pv,Rv, ṗv,ωv) ∈ M ⊆ R3 × SO(3)× R3 × R3.

The kinematics of the orientation are given by Ṙv =
Rv[ωv]×. We derive the dynamic equations of motion (EoM)
of the robot using the Newton-Euler formalism, (we refer the
reader to [15] for full details). Consider the following inertia
matrix M ∈ R6×6

M =

[
mvI3 −mv[rc]×

mv[rc]× Iv −mv[rc]×[rc]×

]
(19)

where mv ∈ R+ represents the mass of the robot, Iv ∈ R3×3

represents the mass moment of inertia, and rc ∈ R3 is an
offset of the center of mass with respect to the Fv . We can
compactly describe the system dynamics as

Mν̇v + h(νv) = F (q)ω2
p (20)

with

h(νv) =

[
mvgRve3 +mvRv[ωv]×[ωv]×rc

mvg[rc]×R
T
v e3 + [ωv]×(Iv − [rc]×[rc]×)

]
and g being the gravity acceleration and e3 =

[
0 0 1

]T
.

The aerial robot is actuated by commanding the square
of the propeller spinning velocities ω2

p. The square of each
individual propeller spinning velocity ω2

pi
is related to its thrust

fpi
∈ R3 and drag moment τpi

∈ R3, in good approximation,
quadratically as follows

fv
pi

= (−1)ikf sign(ωpi
)ω2

pi
Rv

pi
e3

τ v
pi

= kτ sign(ωpi
)ω2

pi
Rv

pi
e3

(21)

where, i = 1, . . . , 6 and Rv
pi

∈ R3×3, denotes the orientation
of the i-th propeller frame Fpi wrt Fv . The rotation matrix
depends on the orientation of each propeller which, in the case
of the Tilthex platform, is the tangential angle αtilt for each
of the 6 propellers. By commanding ω2

p, the total force and
moment applied at Ov expressed in Fw and Fv respectively is

f(ω2
p) = Rv

6∑
i=1

fv
pi

= RvF1ω
2
p

τ (ω2
p) =

6∑
i=1

(pv
pi

× fv
pi

+ τ v
pi
) = F2ω

2
p

(22)

where, pv
pi

∈ R3 is the position of i-th propeller expressed
in Fv . Matrices F1 ∈ R3×6 and F2 ∈ R3×6 include the
physical and geometrical characteristics of the aerial robot and

compose matrix F in eq. (20) as F (q) =

[
RvF1

F2

]
. Thanks

to the Tilthex’s full actuation, the robot can be controlled by
a static feedback linearization scheme. Considering the robot
dynamics in the compact form shown in eq. (20), we can
compute the control action as

ω2
p = F (q)−1(Mνvi

v + h(νv)) (23)

with νvi
v representing a virtual input, encompassing a propor-

tional, damping and integral action, in addition to a feed-
forward acceleration. The various sensitivity matrices intro-
duced in Sect. II will then be evaluated by considering (23)
as controller for the Tilthex.
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(a) (b) (c)

Fig. 2: The figure shows the results for 500 flight trajectories in simulation. Figure 2a demonstrates how the sensitivity-tubes (shown in dashed red) computed
with the proposed approach precisely encapsulate the perturbed trajectories, i.e. computed considering both the state sensitivity Π and the initial state
uncertainty Ψ. Fig. 2b shows the tubes computed without considering Ψ, which leads to lower performance. Figure 2c, shows the sensitivity-tubes computed
using the approach presented in [11], which, as discussed in Sec. II and Fig. 1, underestimates the effects of the uncertainties.

V. APPROACH VALIDATION

In the previous Sections we have outlined the theoretical
framework behind the computation of sensitivity tubes. One
main aspect of the approach is the approximation introduced
in (14). In the following, we proceed to investigate how
effectively the approach captures the trajectory envelope of
the state. To this end, we use an empirical strategy, relying
on extensive simulations and experiments in presence of non-
trivial model uncertainty.

A. Numerical Validation via Extensive Simulations

Firstly, the effectiveness of our approach is tested using
numerical simulations with the Tilthex. A subset of the robot
physical parameters is chosen as uncertain. In particular, the
chosen parameters are the robot mass mv , the center of
mass location rc, the aerodynamic parameters kf , kτ for each
of the 6 propellers and the tilting angle for each propeller
αtilt, which amounts to 22 physical parameters. Moreover,
we consider the initial robot position to be uncertain. This
choice of the uncertain parameters (total of 25) is motivated by
their real-world relevance and modelling difficulty. Non-trivial
and arbitrary physical parameter and initial state perturbation
bounds are chosen for the simulations, i.e., realistic bounds for
the parametric uncertainty that can affect a real aerial robotic
platform in practice. The chosen bounds for the perturbation
to mv , kf , kτ , αtilt represent 10% of their nominal value,
while for each component of rc the perturbation is chosen
as 0.01 m. The perturbations to the initial position are set
to 0.15 m for each component. We then proceed to validate
via simulations the effectiveness by which the computed
sensitivity-tubes capture the state evolution in the presence of
parametric and initial condition uncertainties. To this end, we
performed Nsim = 1500 flight simulations, where the aerial
robot is tasked to track an arbitrary full pose trajectory. Each
500 simulations constitute a desired trajectory with different
boundary conditions (initial and final positions). The trajectory

duration is T = 3 s. In each simulation run, a different
perturbation ∆p and ∆q0 is applied, i.e., a mismatch is
induced by changing the true values of the robot parameters in
the simulator. The perturbations are sampled randomly from a
uniform distribution within an ellipsoid with semi-axis defined
by the chosen bounds on the uncertain parameters. In Fig. 2a,
as an example, we show an extract of 500 simulations for a
particular set of boundary conditions. It is then possible to
see the ability of the sensitivity-tubes to precisely bound the
envelope of the 500 flight trajectories, thereby confirming the
soundness of the whole approach and, in particular, of the
tube computation. We report that for all 1500 simulations, the
position trajectories are completely confined within the tubes.
Due to space limitations, the plots for the other boundary
conditions are shown in the supplementary video. Figure 2b
highlights another important aspect of the proposed frame-
work, that is, the importance of also considering the sensitivity
w.r.t. mismatches in the initial robot state. Indeed one can
appreciate how, when not considering Ψ, the sensitivity-tubes
are no longer able to correctly bound the envelope of the
perturbed trajectories, as it was instead the case in the results
of Fig. 2a. In addition we also implemented the sensitivity-
based tube computation presented in [11] to compare it with
the novel approach as described in Sect. II. The results are
presented in Fig. 2c which, compared to Fig. 2a, highlights
how the tube computation in [11] could only provide a
(non-negligible) underestimation of the deviation of the state.
Finally, by using the software provided with this work, the
interested reader can test the approach with arbitrary boundary
conditions and parameter deviations.

1) Computational considerations: The sensitivity propaga-
tion and the computation of the tube radii are performed on a
standard laptop with an Intel i7 processor and Nvidia Quadro
T1000 graphics card. Matlab 2021b is used together with the
autodiff library Casadi v3.5 [16], to perform the necessary
computation. It takes Matlab approx. 80 ms to perform the
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propagation and tube computation along a trajectory of inter-
est. An integration timestep of 0.01 s is used. This shows the
small computational burden of computing the sensitivity-based
tubes. Consequently, the analysis and constraint checking for
robot trajectories can be performed in fast manner and with
minimal computational burden.

B. Validation via Experiments
In the following, we extend our validation to the real

Tilthex robotic system. In this more practical and experimental
case, knowledge of some physical parameters such as the
aerodynamic coefficients or rotor dynamics can be uncertain
and the bounds on the uncertainty can be difficult to define. In
order to overcome this challenge, we augment the model of the
Tilthex robot with an additional additive term Wresidual ∈ R6

as shown in (24). This additive term represents the unknown
(and unmodeled) residual dynamics

Mν̇v + h(νv) = F (q)ω2
p +Wresidual. (24)

In the nominal model used by the controller Wresidual is
considered to be equal to zero, thus the controller does not
compensate for it. In order to compute bounds on Wresidual we
use the residual generator method in [17]. In particular, the
robot is tasked to fly different trajectories multiple times and
the residual wrench Wresidual(t) is recorded. The maximum
value along each of its 6 components is then extracted and
used as bound on the residual dynamics. Additionally to the
unknown residual dynamics, we consider a scenario where the
real aerial robot’s mass is not known precisely but lies within
a prescribed range around the nominal value. In particular, we
consider the perturbation to the mass of the vehicle in the
range of +150 to −150 grams. This proposed perturbation
is approximately 7% of the vehicle mass. The γ-ellipsoid
semi-axes are then composed of the maximum bounds on the
Wresidual, the bounds on the robot’s mass, and bounds on the
initial state mismatch.

In the experiments, the aerial robot is tasked to track
an arbitrary full-pose trajectory 5 times. For each flight,
a different perturbation of the mass is applied within the
prescribed range. In order to perform the tests in a systematic
manner and avoid unintentionally introducing other sources
of uncertainties, the perturbation is applied in software to the
nominal value of the mass used within the controller. The
desired full-pose trajectory for the aerial robot constitutes
a rest-to-rest motion. The applied perturbations are −80,
80, −150 and 150 grams respectively. The results of the
experiments are shown in Fig. 3a. The plots show, again, the
ability of the proposed framework to compute tubes accurately
capturing the uncertainty in the robots trajectories also in
the real conditions. Moreover, we highlight the importance
of having also considered the unknown residual dynamics
Wresidual and its identified bounds: to this end, we present in
Fig. 3b the same experimental results but with the sensitivity-
tubes obtained without considering Wresidual as additional
‘uncertain parameter’. By comparing Fig. 3b with Fig. 3a, one
can then note how in this latter case the sensitivity-tubes fail in
accurately capturing the deviation in some of the experimental
runs, as expected.

As final remark, we wish to highlight that the possibility of
decomposing and accounting for different sources of uncer-
tainties is, in our opinion, an important asset of our framework.
In a realistic scenario, our method provides the freedom to
consider different sources of uncertainties: poor knowledge
of some physical parameters in the robot model, or residual
dynamics that is not explicitly accounted for at the modeling
stage. Moreover, the ability to also consider uncertainties in
the initial state allows the user to embed information on, for
example, the position accuracy of their robot at arriving at a
certain position, from which a safety critical maneuver is to
be performed. This flexibility makes our proposed sensitivity-
based approach an effective and viable framework for robust
and safe planning in real-world cases.

VI. ROBUST TRAJECTORY OPTIMIZATION

We conclude with a case study example of the use of the
sensitivity tubes in a trajectory optimization (TO) problem.
Given the Tilthex start position and a goal end position, we
seek a dynamically feasible and obstacle free robot trajectory.
We are considering an experimental scenario where the robot
would be required to fly close to an object. We consider one
obstacle with known position pobs. Without loss of generality,
we chose as a cost function the robot power consumption
along the trajectory, computed as Pw(t) =

∑6
i kτω

3
pi
(t).

Moreover, we exploit the controller structure and parameterize
the reference trajectory denoted by yr in eq. (3) by means
of polynomial functions yr = r(a, t), where a represents
the coefficients of the polynomial of a particular order. The
Tilthex robot is fully actuated, therefore one can plan a full
pose reference trajectory. We denote the reference position by
pr
v ∈ R3 and the reference orientation as Rr

v ∈ R3×3. We
parameterize Rr

v with a roll-pitch-yaw minimal representation
of orientation which we denote by ϕr

v . Our choice of using
such parameterization is motivated by the fact that the Tilthex
actuator limitations constrain the robot admissible orientations
away from the singularities of a roll-pitch-yaw representation.
For our motion planning problem, we consider rest-to-rest
motions from the given start pose r(0) = r0 to the desired
goal pose r(T ) = rf . Since the required rest-to-rest motion
imposes 6 boundary conditions on the reference trajectory, a
quintic polynomial would be sufficient to achieve the required
motion. However we choose a 7th order polynomials to
parameterize r(a, t) in order provide the solver with some
redundancy for optimizing the trajectory. We then formulate
the following trajectory optimization (TO) problem

min
a

tf∑
t0

Pw(t)

s.t. ypi(q,Γ, t) ≥ 0 i = 1, . . . , 6 t ∈ [0, T ]

u− ui(t) ≥ 0 i = 1, . . . , 6 t ∈ [0, T ]

ui(t)− u ≥ 0 i = 1, . . . , 6 t ∈ [0, T ]

r(0) = r0 r(T ) = rf

ṙ(0) = 0 ṙ(T ) = 0

r̈(0) = 0 r̈(T ) = 0

. (25)
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Fig. 3: This figure demonstrates the generality and usefulness of our approach in also considering uncertain residual dynamics. This is demonstrated using
experimental flights and comparing the tube’s performance (shown in dashed red) in estimating the effects of uncertainty with and without including residual
dynamics uncertainty in Fig. 3a and Fig. 3b respectively.

The problem includes inequality constraints that represent
the hardware limits on the control inputs u and boundary
constraints on the reference trajectory. The obstacle avoidance
constraint is represented as ypi(q,Γ, t) ≥ 0. The obstacle
geometry is approximated with a sphere of radius robs. We
approximate the geometry of the robot by considering the
position of each of the 6 different propellers that surround
the aerial robot structure, denoted by ppi(t), i = 1, . . . , 6. The
position of each propeller is encapsulated within a sphere of
radius rprops, to take into account the propeller radius. The
choice of approximating the robot’s geometry, considering
some points along the robot’s structure, as opposed to, for
example, encapsulating it with a sphere, is to avoid being
overly conservative and allow the robot to get closer to the
object. We consider a trajectory to be ‘collision free’ if the
euclidean distance between each propeller and the obstacle,
dpi

= ∥ppi
(t)− pobs∥, satisfies the following condition

ypi
(q,Γ, t) = dpi

− dsafe ≥ 0 i = 1, . . . , 6

t ∈ [0, T ]
(26)

where
dsafe = robs + rprops + αypi

(q,Γdpi
, t)

and αypi
(q,Γdpi

, t) is the radius of the tubes around the
evolution given by dpi(t) i = 1, . . . , 6. Indeed, since
αypi

(q,Γdpi
, t) is a function of the state, one can compute

its sensitivity to uncertainty in parameters simply as

Γdpi
(t) =

∂dpi

∂q
Γ(t), (27)

see also (6). This then allows obtaining the corresponding
uncertainty tubes.

1) Experimental Results: As in Sect. V, we consider the
following uncertainties: an artificially induced uncertainty in
the mass of the vehicle, the unmodeled residual dynamics
Wresidual and an initial state mismatch. The aerial robot is
tasked to track the optimal full-pose trajectory 5 times. For
each flight, a different perturbation of the mass is applied
within the prescribed range (in software as in Sect. V). For
each flight we record the robot state and compute the evolution
of the function dpi

(t). Figure 4, shows the Tilthex platform

and a snapshot of the robot executing the optimized full pose
trajectory. The results are presented in Fig 5a where the reader
can appreciate how the sensitivity tubes for function dpi(t) are
well inside their bounds (thanks to the optimization) and, at the
same time, the various perturbed runs are well confined inside
the tubes and, therefore, do not violate any safety constraint.
For the sake of comparison, we also consider a variant of
the TO problem (25) which does not take into account the
sensitivity-tubes. We report in Fig. 5b the results when the
aerial robot tracks the reference trajectory from the non-robust
TO. One can see that in this case the tubes do violate the
constraints which results in the constraint violation for some
of the actual trajectories.

Fig. 4: The figure shows, on the left, the Tilthex platform which was used in
the experiments. Note the propeller tilt angles which allow full actuation of
the platform. While the image on the right shows the Tilthex executing the
optimized full pose trajectory

VII. CONCLUSIONS

In this work we presented a comprehensive framework for
the safe and robust planning for robots in the presence of
uncertainty. Our framework relies on the recent notion of
closed-loop state sensitivity, which we extended to include
uncertainties in the initial state. We also proposed a novel
(and more accurate) procedure to compute tubes based on
the closed-loop state sensitivity. An extensive simulation and
real-world testing campaign demonstrated the efficacy and
computational simplicity of the approach, and its possible
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Fig. 5: The figure shows two cases for the evolution of dpi (t) together with the obstacle avoidance constraint shown as the horizontal line. A constraint
violation corresponds to dpi (t) crossing that line. Figure 5a, shows the results of the robot tracking the robust optimized trajectory (five times with different
induced parameter perturbation). It can be seen that the sensitivity-tubes, in dashed red, do not violate the constraint and that the real system trajectories are
completely confined within the tube. In contrast, Fig. 5b show the robot executing the non-robust optimized trajectory. Note how some of the real system
trajectories, while being completely confined within the tube, violate the constraint.

use in the context of nonlinear trajectory generation problems
possessing an intrinsic robustness against uncertainties. Our
approach is based on a first-order analysis and, therefore,
cannot provide strong formal guarantees. Nevertheless, it is
able to produce tubes that tightly capture the envelope of the
perturbed trajectories while requiring minimal assumptions on
the closed-loop dynamics and at a very low computational
cost. Because of these features, we believe that our approach
provides a concrete step forward towards the development of
general and computationally simple planning algorithms for
attaining safety and robustness for robotic systems in realistic
conditions. Future work will focus on devising online control
and planning schemes exploiting the closed-loop sensitivity
framework. One interesting avenue is using our approach
within model predictive control, which is notoriously sensitive
to model-uncertainty.
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