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Relationship between maximum principle and dynamic

programming principle for recursive optimal control problem of

stochastic evolution equations

Ying Hu∗ Guomin Liu† Shanjian Tang‡

Abstract

This paper aims to study the relationship between the maximum principle (MP) and the dynamic
programming principle (DPP) for recursive optimal control problem of stochastic evolution equations,
where the control domain is not necessarily convex and the value function can be non-smooth. By making
use the notions of the super-, sub-differentials and the conditional expected operator-valued BSIEs, we
establish the connection between the first and second-order adjoint variables in MP and the value funtion
in DPP. Moreover, the discussions in the smooth case are also presented.

Keywords. Stochastic evolution equations, nonconvex control domain, recursive optimal control,
maximum principle, dynamic programming principle.
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1 Introduction

Pontryagin’s maximum principle (MP) and Bellman’s dynamic programming principle (DPP) are two main
approaches in solving optimal control problems. So besides studying them separately, it is important to ask
what is the relationship between them (mainly the relationship between the adjoint variable in MP and the
value funtion in DPP, which play the key roles in these two results, respectively).

The relationship between the MP and the DPP for controlled ordinary differential equations was first
studied by Pontryagin, Boltyanskii, Gamkrelidze and Mishchenko [43], under the assumption that the value
function is continuous differentiable. By making use the notion of viscosity solutions, the relationship without
smoothness assumption on the value function was established by a series of works; see Barron and Jensen
[1], Clarke and Vinter [8] and Zhou [51]. After that, Cannarsa and Frankowska [3, 4] and Cernea and
Frankowska [5] generalized this result to control systems governed by partial differential equations. As far
as for controlled stochastic differential equations, Peng [38] first present a general (i.e., when the control
domain is nonconvex) MP for conventional utility case, by introducing a second-order adjoint process which
solves a matrix-valued BSDE, and the relationship was established in the smooth case by Bensoussan [2] and
in the nonsmooth case by Zhou [52, 53]. On the other hand, for the on the infinite dimensional stochastic
systems for nonconvex control domain under the conventional (non-recursive) utilities, [11, 17, 30] studied
the MP, and Chen and Lü [6] recently established the relationship between the MP and the DPP for SEEs.
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The main objective of this paper is to establish the connection between the MP and the DPP for the
following controlled SEE with different initial time and values:{

dX(t) =
[
A(s)X(s) + a(s,X(s), u(s))

]
ds+

[
B(s)X(s) + b(s,X(s), u(s))

]
dw(s),

X(0) = x,
(1.1)

where w(·) is a cylindrical Q-Brownian motion, (A,B) are unbounded linear operators (a, b) are nonlinear
functions, and u(·) is a control process taking values in a given metric space. The diffusion coefficient
depends on the control variable and the control domain is not necessarily convex, and the value function is
not assumed to be smooth. The cost functional is defined by

J(x;u(·)) := Y (t),

where Y t,x;u is the recursive utility subject to a BSDE:

Y (s) = h(X(T )) +

∫ T

s

k(r,X(r), Y (r), Z(r), u(r))dr −
∫ T

s

Z(r)dw(r), s ∈ [t, T ]. (1.2)

The notion of a recursive utility in continuous time was introduced by Duffie and Epstein [12] and generalized
to the form of (1.2) in Peng [40] and El Karoui, Peng and Quenez [14]. It represents a stochastic differential
formulation of recursive utility which is an extension of the standard additive utility with the instantaneous
utility. Stochastic recursive optimal control problems have found important applications in mathematical
economics, mathematical finance and engineering (see, e.g., El Karoui, Peng and Quenez [14]). When k is
invariant with (y, z), by taking expectation on both sides of (1.2), we get

J(x;u(·)) = E
[
h(X(T )) +

∫ T

t

k(t,X(s), u(s))ds
]
,

and the stochastic recursive optimal control problem is reduced to the conventional one studied in [6].

As for the stochastic recursive optimal control problems for finite dimensional systems, Peng [40] first
obtained a local MP when the control domain is convex. Recently, Hu [22] obtained a general MP for the
stochastic recursive optimal control problem, which solves a long-standing open problem proposed by Peng
[41] in the stochastic control theory; on the other hand, Peng [39, 49] obtained the DPP for the recursive
controlled systems and introduced the generalized Hamilton-Jacobi-Bellman (HJB) equation. Concerning
the connection between the MP and the DPP for stochastic recursive optimal control problem of stochastic
differential equations, Shi [45] and Shi and Yu [46] investigated the local case in which the control domain
is convex and the value function is smooth; within the framework of viscosity solution, Nie, Shi and Wu
[33] investigated the local case when the domain of the control is convex; Nie, Shi and Wu [34] studied the
general case when the domain of the control is non-convex.

Recently, two of the authors [27] established the MP for the recursive optimal control problem of SEEs,
where the control domain is a general metric space (not necessarily convex). The present paper is a conse-
quentive work of that, which studies the connection between the MP and the DPP for the control system
(1.1). We consider this problem under the framework of variational frameworks, which are introduced in
Pardoux [35, 36] and further developed by Krylov and Rozovskii [26]) and Gyöngy [20]. A main tool we use
in this paper is the operator-valued conditionally BSIE introduced in [27], which served as the second-order
adjoint equation. To carry out our purpose, we shall derive an Itô’s formula for the second-order condi-
tionally BSIE and the variational equations of the state equations with initial value perturbations, which
plays an important role in the derivation of the relationship. Apart from the fact that we consider the more
general recursive utility case, compared with the one in [6], our equation has an extra unobunded operator
in the diffusion term and the unbounded operators (in both drift and diffusion terms) can be time-varying.

The rest of this paper is organized as follows. In Section 2, we recall the MP for recursive control problem
of SEEs. In Section 3, we derive the DPP and present the relationship for MP and DPP non-smooth case.
We discuss the special smooth case in Section 4. In the appendix, some technical results are proved.
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2 Preliminaries and problem formulation

In this section, we recall the maximum principle (MP for short) for the recursive optimal control problem
for stochastic evolution equations (SEEs for short); more details can be found in [27].

2.1 Conditionally expected BSIEs

We first present the notion of conditionally expected BSIEs, which will served as the second-adjoint equations
for optimally controlled stochastic evolution equations (SEEs).

2.1.1 Spaces and norms

Let (Ω,F ,P) be a probability space. Fix a terminal time T > 0, let F := {Ft}0≤t≤T be a filtration on
(Ω,F ,P) satisfying the usual conditions. We denote by ∥ · ∥X the norm on a Banach space X. By L(X;Y ),
we denote the space of all bounded linear operators from X to another Banach space Y , equipped with the
operator norm. We write L(X) for L(X;X).

Let H be a separable Hilbert space with inner product ⟨·, ·⟩. We adopt the standard identification
viewpoint of L(H;R) = H. By M∗, we denote the adjoint of an operator M. We denote by Id the identity
operator on H.

Given a sub-σ-algebra G of F . For α ≥ 1, we denote by Lα(G, H) the space of H-valued G-measurable

mapping y with norm ∥y∥Lα(G,H) = {E[∥y∥αH ]} 1
α , and by Lα

F (0, T ;H) (resp. L2,α
F (0, T ;H), L1,2α

F (0, T ;H)) the

space of H-valued progressively measurable processes y(·) with norm ∥y∥Lα
F (0,T ;H) = {E[

∫ T

0
∥y(t)∥αHdt]}

1
α

(resp. ∥y∥L2,α
F (0,T ;H) = {E[(

∫ T

0
∥y(t)∥2Hdt)

α
2 ]} 1

α , ∥y∥L1,2α
F (0,T ;H) = {E[(

∫ T

0
∥y(t)∥Hdt)2α]}

1
2α ). We write

Lα(G), Lα
F (0, T ), L

2,α
F (0, T ) and L1,2α

F (0, T ;H) for Lα(G,R), Lα
F (0, T ;R), L

2,α
F (0, T ;R) and L1,2α

F (0, T ;R),
respectively.

Since the operator space L(H) is not separable (see [21, Solution 99]), we make use of the following
weak measurability notion (see, e.g., [25]) for random variables taking values in it. We say a mapping
Z : Ω → L(H) is weakly G-measurable if for each (u, v) ∈ H × H, ⟨Zu, v⟩ : Ω → R is G-measurable. A
process Y : Ω × [0, T ] → L(H) is said to be weakly progressively measurable (resp. weakly adapted) if for
each (u, v) ∈ H ×H, the process ⟨Y u, v⟩ : Ω× [0, T ] → R is progressively measurable (resp. adapted).

By Lα
w(G,L(H)), we denote the space of L(H)-valued weakly G-measurable mapping F with norm

∥F∥Lα
w(G,L(H)) = {E[∥F∥αL(H)]}

1
α . Similarly, we denote by Lα

F,w(0, T ;L(H)) (resp. L2,α
F,w(0, T ;L(H))) the

space of L(H)-valued weakly progressively measurable processes F (·) with the norm ∥F∥Lα
F,w(0,T ;L(H)) =

{E[
∫ T

0
∥F (t)∥αL(H)dt]}

1
α (resp. ∥F∥L2,α

F,w(0,T ;L(H)) = {E[(
∫ T

0
∥F (t)∥2L(H)dt)

α
2 ]} 1

α ). In the following, we shall

not distinguish two random variables if they coincide P -a.s. and two processes if one is a modification of the
other, unless otherwise stated.

Denote by Lw the weak σ-algebra on L(H) generated by all the sets in the form of{
z ∈ L(H) : ⟨zu, v⟩ ∈ A

}
, u, v ∈ H, A ∈ B(R).

Then Z : Ω → L(H) is weakly G-measurable if and only if it is measurable from (Ω,G) to (L(H), Lw).
Similarly, Y : Ω × [0, T ] → L(H) is weakly progressively measurable if and only if it is measurable from
(Ω× [0, T ],P) to (L(H), Lw), where P is the progressive σ-algebra on Ω× [0, T ].
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2.1.2 Operator-valued conditional expectations

For Y ∈ L2(H ×H;L1(F)), we call an L2(H ×H)-valued weakly G-measurable mapping Z the conditional
expectation of Y with respect to G, denoting it by E[Y |G], if for each (u, v) ∈ H ×H,

Z(u, v) = E[Y (u, v)|G], P -a.s., (2.1)

meaning that Z coincides with the classical conditional expectation at all the test points (u, v).

Theorem 2.1 Let Y ∈ L2(H ×H;L1(F)). Then the conditional expectation E[Y |G] exists and is integrable
(i.e., E[Y |G] ∈ L1

w(G,L2(H ×H))) if and only if the mapping (u, v) 7−→ E[Y (u, v)|G] ∈ L2(H ×H;L1(G))
satisfies the domination condition∣∣∣E[Y (u, v)|G]

∣∣∣ ≤ g∥u∥H∥v∥H , P -a.s., ∀(u, v) ∈ H ×H, (2.2)

for some 0 ≤ g ∈ L1(G). Moreover, such an E[Y |G] is unique (up to P -a.s. equality) and satisfies∥∥∥E[Y |G]
∥∥∥
L2(H×H)

≤ g, P -a.s. (2.3)

From L2(H × H) = L(H), we can also write (2.1) as, for weakly G-measurable Z taking values in
L(H) = L2(H ×H) and Y ∈ L2(H ×H;L1(F)),

⟨Zu, v⟩ = Z(u, v) = E[Y (u, v)|G], P -a.s., ∀(u, v) ∈ H ×H. (2.4)

2.1.3 Operator-valued BSIEs

By a stochastic evolution operator on H, we mean a family of mappings{
L(t, s) ∈ L(L2(Ft, H);L2(Fs, H)) : (t, s) ∈ ∆

}
with ∆ = {(t, s) : 0 ≤ t ≤ s ≤ T}. We adopt a definition of the following formal adjoint L∗ for L: For any
fixed (t, s) ∈ ∆ and u ∈ L1(Fs, H), define L∗(t, s)u by(

L∗(t, s)u
)
(v) := ⟨u, L(t, s)v⟩ P -a.s., for each v ∈ L2(Ft, H).

We consider a conditionally expected L(H)-valued BSIE (i.e., L(H)-valued BSIE in the conditional
expectation form):

P (t) = E
[
L∗(t, T )ξL(t, T ) +

∫ T

t

L∗(t, s)f(s, P (s))L(t, s)ds
∣∣∣Ft

]
, t ∈ [0, T ], (2.5)

where the coefficients ξ, f and L are given and subject to the following assumptions:

(H1) There exists some constant Λ ≥ 0 such that for each (t, s) ∈ ∆ and u ∈ L4(Ft, H), it holds that
L(t, s)u ∈ L4(Fs, H),

E
[
∥L(t, s)u∥4H

∣∣∣Ft

]
≤ Λ∥u∥4H , P -a.s.,

and (ω, t, s) 7→ (L(t, s)u)(ω) admits a jointly measurable version.

(H2) ξ ∈ L2
w(FT ,L(H)); the function f(w, t, p) : Ω× [0, T ]× L(H) → L(H) is P ⊗ Lw/Lw-measurable and

satisfies the Lipschitz condition in p with constant λ ≥ 0; f(·, ·, 0) ∈ L2
F,w(0, T ;L(H)).
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Under the assumption (H1), for any η ∈ L2
w(Fs,L(H)) and (u, v) ∈ H ×H, we have L∗(t, s)ηL(t, s) ∈

L(H;L(H;L1(Fs))) = L2(H×H;L1(Fs)) and we can also write (L∗(t, s)ηL(t, s)u)(v) = L∗(t, s)ηL(t, s)(u, v).
In particular, L∗(t, T )ξL(t, T ) ∈ L2(H ×H;L1(FT )).

For a g ∈ L2(H ×H;L1
F(t, T )), we define its integral

∫ T

t
g(s)ds in a weak sense by

(∫ T

t

g(s)ds
)
(u, v) :=

∫ T

t

g(s)(u, v)ds P -a.s, ∀(u, v) ∈ H ×H.

Then
∫ T

t
g(s)ds ∈ L2(H × H;L1(FT )). Note that for any h ∈ L2

F,w(t, T ;L(H)), we have [t, T ] ∋ s 7→
L∗(t, s)h(s)L(t, s) ∈ L2(H ×H;L1

F(t, T )) and the integral
∫ T

t
L∗(t, s)h(s)L(t, s)ds ∈ L2(H ×H;L1(FT )) is

defined. Given any P ∈ L2
F,w(0, T ;L(H)). we have f(·, P (·)) ∈ L2

F,w(0, T ;L(H)) and thus,

L∗(t, T )ξL(t, T ) +

∫ T

t

L∗(t, s)f(s, P (s))L(t, s)ds ∈ L2(H ×H;L1(FT )). (2.6)

Definition 2.2 A process P ∈ L2
F,w(0, T ;L(H)) is called a solution of (2.5) if for each 0 ≤ t ≤ T,

P (t) = E
[
L∗(t, T )ξL(t, T ) +

∫ T

t

L∗(t, s)f(s, P (s))L(t, s)ds
∣∣∣Ft

]
, P -a.s. (2.7)

We have the following well-posedness result on BSIEs. In the following of this paper, the constant C
may change from line to line.

Theorem 2.3 Let Assumptions (H1) and (H2) be satisfied. Then there exists a unique solution P to BSIE
(2.5). Moreover, for each t ∈ [0, T ],

∥P (t)∥2L(H) ≤ CE
[
∥ξ∥2L(H) +

∫ T

t

∥f(s, 0)∥2L(H)ds
∣∣∣Ft

]
, P -a.s., (2.8)

for some constant C depending on Λ and λ.

Proposition 2.4 For some α ≥ 1, suppose (H1), (H2) and

(H3) (ξ, f(·, ·, 0)) ∈ L2α
w (FT ,L(H))×L2,2α

F,w (0, T ;L(H)) and there exists some constant Λα ≥ 0 such that for

each 0 ≤ t ≤ r ≤ s ≤ T and u ∈ L4α(Ft, H), it holds that L(t, s) = L(t, r)L(r, s),

E[∥L(t, s)u∥4αH |Ft] ≤ Λα∥u∥4αH P -a.s. and [t, T ] ∋ s 7→ L(t, s)u is strongly continuous in L4α(FT , H).

Let P be the solution of (2.5). Then, for each t ∈ [0, T ) and u, v ∈ L4α(Ft, H), we have

lim
δ↓0

E
[∣∣∣⟨P (t+ δ)u, v⟩ − ⟨P (t)u, v⟩

∣∣∣α∣∣∣Ft

]
= 0, P -a.s.

Proof. The proof is similar as that for Proposition 2.11 in [27] and we shall not repeat that. □

2.1.4 Evolution operators associated to forward SEEs

The formal solution of forward operator-valued SEEs is a typical example of stochastic evolution operator.

Let V be a separable Hilbert space densely embedded in H. Denote V ∗ := L(V ;R), then V ⊂ H ⊂ V ∗

form a Gelfand triple. We denote the dualization between V ∗ and V by ⟨·, ·⟩∗.
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Let w := (w(t))t≥0 be a one-dimensional standard Brownian motion with respect to F. Consider the
following linear homogeneous SEE on [t, T ]:{

dut,u0(s) = A(s)ut,u0(s)dt+B(s)ut,u0(s)dw(s), s ∈ [t, T ],

ut,u0(t) = u0,
(2.9)

where u0 ∈ L2(Ft, H) and (A,B) : [0, T ]× Ω → L(V ;V ∗ ×H).

Remark 2.5 We only write the one-dimensional Brownian motion case for simplicity of presentation. With
direct modifications, the results throughout this paper still hold for the more general case that w is a Hilbert
space K-valued cylindrical Q-Brownian motion (including multi-dimensional Brownian motion, finite-trace
Q-Brownian motion, cylinderical Brownian motion as special cases) and the integrands f takes valued in the

Hilbert-Schmidt space L2(Q
1
2 (K), H); see [29, 28, 32] for more discussions on this direction.

We make the following assumption.

(H4) For each u ∈ V, A(t, ω)u and B(t, ω)u are progressively measurable and satisfying: There exist some
constants δ > 0 and K ≥ 0 such that the following two assertions hold: for each t, ω and u ∈ V ,

(i) coercivity condition:

2⟨A(t, ω)u, u⟩∗ + ∥B(t, ω)u∥2H ≤ −δ∥u∥2V +K∥u∥2H and ∥A(t, ω)u∥V ∗ ≤ K∥u∥V ;

(ii) quasi-skew-symmetry condition: ∣∣∣⟨B(t, ω)u, u⟩
∣∣∣ ≤ K∥u∥2H .

From [26], Equation (2.9) has a unique solution ut,u0(·) ∈ L2
F(t, T ;V ) ∩ S2

F(t, T ;H), where S2
F(t, T ;H)

is the space of adapted H-valued processes y with continuous paths such that E[supt≤s≤T ∥y(s)∥2H ] < ∞.
Through this solution, we define a stochastic evolution operator LA,B as follows:

LA,B(t, s)(u0) := ut,u0(s) ∈ L2(Fs, H), for t ≤ s ≤ T and u0 ∈ L2(Ft, H). (2.10)

From the basic estimates for SEEs, it satisfies the assumptions (H1) and (H3), for any α ≥ 1. Thus, in
virtue of Theorem 2.3, the L(H)-valued BSIE

P (t) = E
[
L∗
A,B(t, T )ξLA,B(t, T ) +

∫ T

t

L∗
A,B(t, s)f(s, P (s))LA,B(t, s)ds

∣∣∣Ft

]
, t ∈ [0, T ], (2.11)

has a unique solution P ∈ L2
F,w(0, T ;L(H)).

In the following, we shall always assume that the filtration F = (Ft)0≤t≤T is the augmented natural
filtration of Brownian motion (w(t))t≥0.

2.2 A priori estimates for SEEs

Consider the following SEE{
dz(s) = [A(s)z(s) + ã(s, z(s))]ds+ [B(s)z(s) + b̃(s, z(s))]dw(s), s ∈ [t, T ],

z(t) = z0,
(2.12)

With α ≥ 1, we made the following assumptions.
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(A1) The function (ã, b̃) : [0, T ]×Ω×H → V ∗×H satisfies, for each z ∈ H, ã(·, ·, z), b̃(·, ·, z) are progressively
measurable, ã(·, ·, 0) ∈ L2,2α

F (t, T ;V ∗), b̃(·, ·, 0) ∈ L2,2α
F (t, T ;H), and there exists a constant K > 0 such

that for almost all (t, ω) ∈ [0, T ]× Ω and all z, z′ ∈ H,

∥ã(t, z)− ã(t, z′)∥V ∗ + ∥b̃(t, z)− b̃(t, z′)∥H ≤ K∥z − z′∥H .

The proof of the following lemma is similar to Lemma 4.4 in [27] and is put in the appendix.

Lemma 2.6 Assume (H4), (A1) hold and z0 ∈ L2α(Ft, H). Then there is a constant C > 0 depending on
δ, K and α such that

E
[

sup
s∈[t,T ]

∥z(s)∥2αH
∣∣∣Ft

]
+ E

[( ∫ T

t

∥z(s)∥2V ds
)α∣∣∣Ft

]
≤ C

{
∥z0∥2αH + E

[( ∫ T

t

∥ã(s, 0)∥2V ∗ds
)α

+
(∫ T

t

∥b̃(s, 0)∥2Hds
)α∣∣∣Ft

]}
, P -a.s.

We first present an continuity estimate of SEEs in t, which will be needed later.

(A2) The function (ã, b̃) : [0, T ]×Ω×H → V ∗×H satisfies, for each z ∈ H, ã(·, ·, z), b̃(·, ·, z) are progressively
measurable, ã(·, ·, 0), b̃(·, ·, 0) are bounded, and there exists a constant K > 0 such that for almost all
(t, ω) ∈ [0, T ]× Ω and all z, z′ ∈ H,

∥ã(t, z)− ã(t, z′)∥V ∗ + ∥b̃(t, z)− b̃(t, z′)∥H ≤ K∥z − z′∥H .

Lemma 2.7 Suppose (H4), (A2) and z0 ∈ L2α(Ft, V ). Then for ρ ≤ T − t,

E
[

sup
t≤s≤t+ρ

∥z(s)− z0∥2αH
∣∣∣Ft

]
≤ C

(
1 + ∥z0∥2αV

)
ρα, P -a.s.,

where C > 0 is a constant depends on δ, K and α.

Proof. We denote
ẑ(s) := z(s)− z0, s ∈ [t, T ].

Then on [t, T ],

ẑ(s) =

∫ s

t

[A(r)z(r) + ã(r, z(r))]dr +

∫ s

t

[B(r)z(r) + b̃(r, z(r))]dw(r)

=

∫ s

t

[A(r)ẑ(r) +Az0 + ã(r, x̂(r) + z0)]dr +

∫ s

t

[B(r)ẑ(r) +Bz0 + b̃(r, ẑ(r) + z0)]dw(r).

So from Lemma 2.6,

E
[

sup
t≤s≤t+ρ

∥ẑ(s)∥2αH ds
∣∣∣Ft

]
≤ CE

[( ∫ t+ρ

t

∥A(r)z0 + ã(r, z0)∥2V ∗dr
)α

|Ft

]
+ CE

[( ∫ t+ρ

t

∥B(r)z0 + b̃(r, z0)∥2Hdr
)α

|Ft

]
≤ Cρα−1

∫ t+ρ

t

(1 + ∥z0∥2αV )dr

≤ C(1 + ∥z0∥2αV )ρα, P -a.s.

□
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Remark 2.8 It seems hard to prove such a kind of estimate if z0 ∈ H. At this case, we can only show that

E
[

sup
t≤s≤t+ρ

∥z(s)− z0∥2αH
∣∣∣Ft

]
→ 0, P -a.s., as ρ ↓ 0.

This follows trivially from the continuity of z with respect to s in the H-norm and the dominated convergence
theorem.

2.3 Stochastic maximum principle

Consider the following controlled SEE:{
dX(t) =

[
A(t)X(t) + a(t,X(t), u(t))

]
dt+

[
B(t)X(t) + b(t,X(t), u(t))

]
dw(t),

X(0) = x0,
(2.13)

where x0 ∈ H,
(A,B) : [0, T ] → L(V ;V ∗ ×H)

are unbounded linear operators satisfying the coercivity and quasi-skew-symmetry condition (H4) and

(a, b) : [0, T ]×H × U → H ×H

are nonlinear functions. Define the cost functional J(·) as

J(x, u(·)) := y(0),

where y is the recursive utility subject to a BSDE:

Y (t) = h(X(T )) +

∫ T

t

k(s,X(s), Y (s), Z(s), u(s))ds−
∫ T

t

Z(s)dw(s). (2.14)

Here,
k : [0, T ]×H × R× R× U → R and h : H → R.

The control domain U is a separable metric space with distance d(·, ·). By fixing an element 0 in U , we define
the length |u|U := d(u, 0). We define the admissible control set

U [0, T ] :=
{
u : [0, T ]× Ω → U is progressively measurable and E

[ ∫ T

0

|u(t)|αUdt
]
<∞, for each α ≥ 1

}
.

For t ∈ [0, T ), we define similarly U [t, T ].
The optimal control Problem (Sx) is to find an admissible control ū(·) such that the cost functional

J(x, u(·)) is minimized at ū(·) over the control set U [0, T ] :

J(x, ū(·)) = inf
u(·)∈U [0,T ]

J(x, u(·)).

We make the following assumption for a, b, h and k.

(H5) a, b, h, k are twice Fréchet differentiable with respect to (x, y, z); a, b, k, ax, bx, Dk, axx, bxx,
D2k are continuous in (x, y, z, u), where Dk and D2k are the gradient and Hessian matrix of k with
respect to (x, y, z), respectively; ax, bx, Dk, axx, bxx, D

2k, hxx are bounded; a, b are bounded by
C(1+ ∥x∥H + |u|U ) and k is bounded by C(1+ ∥x∥H + |y|+ |z|+ |u|U ). ∥a (s, 0, us) ∥H , ∥b (s, 0, us) ∥H
are bounded by C.
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We introduce the following simplified notations: for ψ = a, b, ax, bx, axx, bxx and v ∈ U , define

ψ̄(t) := ψ(t, X̄(t), ū(t)), δψ(t; v) := ψ(t, X̄(t), v)− ψ̄(t)

and
Ā := A+ āx, B̄ := B + b̄x.

Consider the following first-order H-valued adjoint backward stochastic evolution equation (BSEE for
short, and the well-posedness result is referred to [10]):{

−dp(t) =
{[
Ā∗(t) + ky(t) + kz(t)B̄

∗(t)
]
p(t) +

[
B̄∗(t) + kz(t)

]
q(t) + kx(t)

}
dt− q(t)dw(t),

p(T ) = hx(X̄(T )),
(2.15)

and the following second-order L(H)-valued adjoint BSIE

P (t) = E
[
L̃∗(t, T )hxx(X̄(T ))L̃(t, T ) +

∫ T

t

L̃∗(t, s)(ky(s)P (s) +G(s))L̃(t, s)ds
∣∣∣Ft

]
, 0 ≤ t ≤ T, (2.16)

where

ϕ(t) := ϕ(t, X̄(t), Ȳ (t), Z̄(t), ū(t)), for ϕ = kx, ky,, kz, D
2k,

L̃(t, s) := LÃ,B̃(t, s), for Ã(s) := Ā(s) +
kz(s)

2
B̄(s)− (kz(s))

2

8
Id and B̃(s) := B̄(s) +

kz(s)

2
Id,

G(t) := D2k(t)
([
Id, p(t), B̄

∗(t)p(t) + q(t)
]
,
[
Id, p(t), B̄

∗(t)p(t) + q(t)
])

+ ⟨p(t), āxx(t)⟩

+ kz(t)⟨p(t), b̄xx(t)⟩+ ⟨q(t), b̄xx(t)⟩.

The maximum principle is stated as follows.

Theorem 2.9 Suppose (H4) and (H5). Assume that X̄(·) and (Ȳ (·), Z̄(·)) are the solutions of SEE (2.18)
and BSDE (2.19) corresponding to the optimal control ū(·). Denote by processes (p, q) ∈ L2

F(0, T ;V × H)
and P ∈ L2

F,w(0, T ;L(H)) the solutions of BSEE (2.15) and BSIE (2.16), respectively. Then

inf
v∈U

{
H
(
t, X̄(t), Ȳ (t), Z̄(t), v, p(t), q(t)

)
−H

(
t, X̄(t), Ȳ (t), Z̄(t), ū(t), p(t), q(t)

)
+

1

2

〈
P (t)(b(t, X̄(t), v)− b(t, x̄(t), ū(t))), b(t, X̄(t), v)− b(t, X̄(t), ū(t))

〉}
= 0, P -a.s. a.e.,

(2.17)

where the Hamiltonian

H(t, x, y, z, v, p, q) := ⟨p, a(t, x, v)⟩+ ⟨q, b(t, x, v)⟩+ k(t, x, y, z + ⟨p, b(t, x, v)− b(t, X̄(t), ū(t))⟩, v),
(t, ω, x, y, z, v, p, q) ∈ [0, T ]× Ω×H × R× R× U ×H ×H.

2.4 Dynamic programming principle

For any given (t, x) ∈ [0, T ] × H, we consider the following controlled SEE with different initial time and
values:{

dXt,x;u(t) =
[
A(s)Xt,x;u(s) + a(s,Xt,x;u(s), u(s))

]
ds+

[
B(s)Xt,x;u(s) + b(s,Xt,x;u(s), u(s))

]
dw(s),

Xt,x;u(t) = x.

(2.18)
The cost functional is defined by

J(t, x;u(·)) := Y t,x;u(t),

9



where Y t,x;u is the recursive utility subject to a BSDE:

Y t,x;u(s) = h(Xt,x;u(T )) +

∫ T

s

k(r,Xt,x;u(r), Y t,x;u(r), Zt,x;u(r), u(r))dr −
∫ T

s

Zt,x;u(r)dw(r), s ∈ [t, T ].

(2.19)

The optimal control problem (Problem (St,x)) is to find an admissible control ū(·) such that the cost
functional J(t, x; ū(·)) is minimized at ū(·) over the control set U [t, T ] :

J(t, x; ū(·)) = ess inf
u(·)∈U [t,T ]

J(t, x;u(·)).

Note that when t = 0, (St,x) reduces to (Sx), and (Xt,x;u(s), Y t,x;u(s), Zt,x;u(s)) = (X(s), Y (s), Z(s)).

We define the value function

V (t, x) := ess inf
u(·)∈U [t,T ]

J(t, x;u(·)), (t, x) ∈ [0, T ]×H. (2.20)

We define U t[t, T ] the space of all U -valued (F t
s)t≤s≤T -progressively measurable processes on [t, T ], where

F t
s is augmented natural filtration of (w(s) − w(t))s≥t. Then for each u ∈ U t[t, T ], it is easy to verify

that the solution (Xt,x;u(s), Y t,x;u(s), Zt,x;u(s))t≤s≤T of the system is (F t
s)t≤s≤T -adapted. In particular,

(Xt,x;u(t), Y t,x;u(t), Zt,x;u(t)) ∈ F t
t , in particular of this, Y t,x;u(t) ∈ F t

t , so it is deterministic. From standard
argument (see Proposition 4.1), we can see that, V (t, x) is a deterministic function.

Given any initial data (t, x), a positive constant δ ≤ T−t and control u ∈ U [t, t+δ], for each η ∈ L2(Ft+δ),
we define the following backward semigroup

Gt,x,u
t,t+δ[η] := Y (t),

where (Y (s), Z(s)) solves the following BSDE

Y (s) = η +

∫ t+δ

s

k(r,Xt,x;u(r), Y (r), Z(r), u(r))dr −
∫ t+δ

s

Z(r)dw(r), s ∈ [t, t+ δ]. (2.21)

We have the following DPP for the above recursive optimal control problems (St,x) of SEEs. The proof
is standard and is given in the Appendix.

Theorem 2.10 For each (t, x) ∈ [0, T ]×H and 0 ≤ δ ≤ T − t, we have

V (t, x) = ess inf
u(·)∈U [t,t+δ]

Gt,x;u
t,t+δ[V (t+ δ,Xt,x;u(t+ δ))] = inf

u(·)∈Ut[t,t+δ]
Gt,x;u

t,t+δ[V (t+ δ,Xt,x;u(t+ δ))].

Remark 2.11 The DPP for nonrecursive case in the weak formulation can be found in [15]. We also note
that the DPP for recursive optimal control problems in the strong formulation of SEEs under the mild solution
framework is obtained in [6, 48]. Here we shall prove the strong formulation version of the variational solution
framework for the completeness of the paper. Moreover, compared with that result, our state equation can
have a unbounded oprator in the diffusion term and all the unbounded operators can be time-invariant, and
some technical assumptions, e.g., the separablitiy of the probability space, are not needed.

3 Main results

To carry out our purpose, we first derive an Itô’s formula for the operator-valued conditionally expected
BSIEs.
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3.1 An Itô’s formula for second adjoint equations

Given any t ∈ [0, T ] and x0 ∈ L2α(Ft, H). Consider the operator-valued BSIE

P (s) = E
[
L̃∗(s, T )ξL̃(s, T ) +

∫ T

s

L̃∗(s, r)f(r, P (r))L̃(s, r)dr
∣∣∣Fs

]
, s ∈ [t, T ], (3.1)

and two forward SEEs in the form of{
dx(s) =

[
A(s)x(s) + γ1(s)

]
ds+

[
B(s)x(s) + γ2(s)

]
dw(s), s ∈ [t, T ],

x(t) = x0,
(3.2)

where, for some β ∈ L∞
F (t, T ),

L̃(s, r) := LÃ,B̃(s, r) with Ã(s) := A(s) +
β(s)

2
B(s)− β2(s)

8
Id and B̃(s) := B(s) +

β(s)

2
Id,

and γ1 ∈ L1,2α
F (t, T ;H), γ2 ∈ L2,2α

F (t, T ;H).

Then we have the following Itô’s formula.

Theorem 3.1 Let Assumptions (H2) and (H4) be satisfied and for some α > 1,

(ξ, f(·, ·, 0), ζ) ∈ L2α
w (FT ,L(H))× L2,2α

F,w (t, T ;L(H))× L4α
F (t, T ;H). (3.3)

Then

⟨P (s)x(s), x(s)⟩+σ(s) = ⟨ξx(T ), x(T )⟩+
∫ T

s

[
⟨f(r, P (r))x(r), x(r)⟩+β(r)Z(r)

]
ds−

∫ T

s

Z(r)dw(r), s ∈ [t, T ],

(3.4)
for a unique couple of processes (σ,Z) ∈ Lα

F (t, T )× L2,α
F (t, T ) satisfying, for some constant C depend on Λ

and λ such that

sup
s≥t

(
E
[
|σ(s)|α

∣∣∣Ft

]) 1
α ≤ Cµ1(t), (3.5)

{
E
[( ∫ T

t

|Z(s)|2ds
)α

2
∣∣∣Ft

]} 1
α ≤ Cµ2(t), (3.6)

where

µ1(t) :=
{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α∣∣∣Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H dt
)2α∣∣∣Ft

]} 1
2α

+
{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α∣∣∣Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α∣∣∣Ft

]} 1
4α ∥x0∥H ,

and

µ2(t) := ∥x0∥2H +
{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α∣∣∣Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α∣∣∣Ft

]} 1
2α

Proof. We only prove the case of f ≡ 0, and the general case can be treated similarly. We introduce a new
SEE {

dx̃(s) = A(s)x̃(s)ds+B(s)x̃(s)dw(s), s ∈ [t, T ],

x(t) = x0,
(3.7)
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Then from Lemma 2.6, for any α ≥ 1,

E
[

sup
s∈[t,T ]

∥x(s)− x̃(s)∥2αH
∣∣∣Ft

]
≤ C

{
E
[( ∫ T

t

∥γ1(s)∥H ds
)2α∣∣∣Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)α∣∣∣Ft

]}
.

Moreover,

E
[

sup
s∈[t,T ]

∥x(s)∥2αH
∣∣∣Ft

]
≤ C

{
∥x0∥2αH + E

[( ∫ T

t

∥γ1(s)∥H ds
)2α∣∣Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)α∣∣Ft

]}
.

and
E
[

sup
s∈[t,T ]

∥x̃(s)∥2αH
∣∣∣Ft

]
≤ C ∥x0∥2αH .

We have from Lemma 4.3 in [27] that

L̃(s, r) =
λ1(r)

λ1(s)
L(s, r), for any t ≤ s ≤ r ≤ T,

with L(s, r) := LA,B(s, r) and λ1(s) := e
∫ s
0
− 1

4β
2(r)dr+ 1

2β(r)dw(r). We define

λ(s) := e
∫ s
0
− 1

2β
2(r)dr+β(r)dw(r).

Noting that λ = λ1 · λ1, then

P (s) = E
[λ(T )
λ(s)

L∗(s, T )ξL(s, T )
∣∣∣Fs

]
.

From the definition of L(s, r), we have L(s, r)x̃(s) = x̃(r). Thus,

⟨P (s)x̃(s), x̃(s)⟩ = E
[λ(T )
λ(s)

⟨ξL(s, T )x̃(t), L(s, T )x̃(s)⟩
∣∣∣Fs

]
= E

[λ(T )
λ(s)

⟨ξx̃(T ), x̃(T )⟩
∣∣∣Fs

]
. (3.8)

Then

⟨P (s)x(s), x(s)⟩+ σ(s) = E
[λ(T )
λ(s)

⟨ξx(T ), x(T )⟩
∣∣∣Fs

]
, s ∈ [t, T ], (3.9)

where

σ(s) = E
[λ(T )
λ(s)

⟨ξx(T ), x(T )⟩
∣∣∣Fs

]
− E

[λ(T )
λ(s)

⟨ξx̃(T ), x̃(T )⟩
∣∣∣Fs

]
−
(
⟨P (s)x(s), x(s)⟩ − ⟨P (s)x̃(s), x̃(s)⟩

)
=: I1(s) + I2(s).

Note that, with denoting by α′ the Holder conjugate of α,

E
[∣∣∣λ(T )
λ(s)

∣∣∣|⟨ξx(T ), x(T )⟩ − ⟨ξx̃(T ), x̃(T )⟩|
∣∣∣Fs

]
≤

(
E
[∣∣∣λ(T )
λ(s)

∣∣∣α′ ∣∣∣Fs

]) 1
α′
(
E
[
|⟨ξx(T ), x(T )⟩ − ⟨ξx̃(T ), x̃(T )⟩|α

∣∣∣Fs

]) 1
α

≤ C1

(
E
[
|⟨ξx(T ), x(T )⟩ − ⟨ξx̃(T ), x̃(T )⟩|α|Fs

]) 1
α

.
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Then(
E
[
|I1(s)|α

∣∣∣Ft

]) 1
α ≤ C1

(
E
[
|⟨ξx(T ), x(T )⟩ − ⟨ξx̃(T ), x̃(T )⟩|α

∣∣∣Ft

]) 1
α

≤ C1

(
E[∥ξ∥2αL(H)|Ft]

) 1
2α
(
E[∥x(T )− x̃(T )∥4αH |Ft]

) 1
4α
{(

E[∥x(T )∥4αH |Ft]
) 1

4α

+
(
E[∥x̃(T )∥4αH

∣∣∣Ft]
) 1

4α
}

≤ C1

{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α

|Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α

|Ft

]} 1
4α

·
{{

∥x0∥4αH + E
[( ∫ T

t

∥γ1(s)∥H ds
)4α

|Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α

|Ft

]} 1
4α

+ ∥x0∥H
}

≤ C1

{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α

|Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α

|Ft

]} 1
4α

·
{{

E
[( ∫ T

t

∥γ1(s)∥H ds
)4α

|Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α

|Ft

]} 1
4α

+ ∥x0∥H
}

≤ C1

{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α

|Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α

|Ft

]} 1
2α

+ C1

{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α

|Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α

|Ft

]} 1
4α ∥x0∥H

=: Cµ1(t).

Similarly but yet more simply, we also have(
E
[
|I2(s)|α

∣∣∣Ft

]) 1
α ≤ Cµ1(t).

Thus, (
E
[
|σ(s)|α

∣∣∣Ft

]) 1
α ≤ Cµ1(t).

Note that equation (3.9) is the explicit formula of the linear BSDE (3.4) with solution (⟨P (s)x(s), x(s)⟩ +
σ(s),Z(s)) ∈ Lα

F (t, T ) × L2,α
F (t, T ). The uniqueness of (σ,Z) in the equation (3.4) follows from the basic

results of BSDEs. We also have(
E
[
|⟨ξx(T ), x(T )⟩|α|Ft

]) 1
α ≤ C1

(
E[∥ξ∥2αL(H)|Ft]

) 1
2α
(
E[∥x(T )∥4αH |Ft]

) 1
2α

≤ C
{
∥x0∥2H +

{
E
[( ∫ T

t

∥γ1(s)∥H ds
)4α

|Ft

]
+ E

[( ∫ T

t

∥γ2(s)∥2H ds
)2α

|Ft

]} 1
2α
}

=: Cµ2(t).

Thus, from the basic estimates of BSDEs, we obtain that{
E
[( ∫ T

t

|Z(s)|2ds
)α

2
∣∣∣Ft

]} 1
α ≤ Cµ2(t).

□

We also need the following corollary of DPP.

Lemma 3.2 If (X̄t,x;ū(·), Ȳ t,x;ū(·), Z̄t,x;ū(·), ū(·)) are optimal for Problem (Stx), then for any δ ∈ [0, T − t],

V (t+ δ, X̄t,x;ū(t+ δ)) = Ȳ t,x;ū(t+ δ), P -a.s.
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Proof. According to (4.10), we have

Ȳ t,x;ū(s) = Ȳ t,x;ū(t+δ)+

∫ t+δ

s

k(r,Xt,x;ū(r), Y t,x;ū(r), Zt,x;ū(r), ū(r))dr−
∫ t+δ

s

Zt,x;ū(r)dw(r), s ∈ [t, t+δ].

We introduce a BSDE

yt,x;ū(s) = V (t+δ, X̄t,x;ū(t+δ))+

∫ t+δ

s

k(r,Xt,x;ū(r), yt,x;ū(r), zt,x;ū(r), ū(r))dr−
∫ t+δ

s

zt,x;ū(r)dw(r), s ∈ [t, t+δ].

We also know that, from Proposition 4.4,

Ȳ t,x;ū(t+ δ) = Ȳ t+δ,X̄t,x;ū(t+δ);ū(t+ δ) ≥ V (t+ δ, X̄t,x;ū(t+ δ)).

Then from the DPP and comparison theorem of classical BSDEs,

V (t, x) ≤ Gt,x;ū
t,t+δ

[
V (t+ δ,Xt,x;ū(t+ δ))

]
= yt,x;ū(t) ≤ Ȳ t,x;ū(t).

But V (t, x) = Ȳ t,x;ū(t). So, all the inequalities above are in fact equalities. Then from the strict comparison
theorem of classical BSDEs, it must holds

Ȳ t,x;ū(t+ δ) = V (t+ δ, X̄t,x;ū(t+ δ)).

This completes the proof. □

3.2 Differential in spatial variable

Before stating the main result of this subsection, let us recall the notion of super and subdifferentials.

For v ∈ C([0, T ] × H) and (t, x) ∈ [0, T ) × H, the second-order parabolic partial superdifferential of v
with respect to x is defined as follows:

D2,+
x v(t, x) =

{
(p, P ) ∈ H × S(H)

∣∣∣
v(t, y) ≤ v(t, x) + ⟨p, y − x⟩H +

1

2
⟨P (y − x), y − x⟩H + o(|y − x|2), as y → x

}
,

where S(H) is the space of all symmetric (self-adjoint) bounded linear operators on H. Similarly, the
second-order parabolic partial subdifferential of v with respect to x is defined as follows:

D2,−
t,x v(t, x) =

{
(p, P ) ∈ H × S(H)

∣∣∣
v(t, y) ≥ v(t, x) + ⟨p, y − x⟩H +

1

2
⟨P (y − x), y − x⟩H + o(|y − x|2), as y → x

}
.

We have the following result on the differential in the spatial variable.

Theorem 3.3 Assume (H1). Suppose (X̄(·), Ȳ (·), Z̄(·), ū(·)) are the optimal 4-tuple of Problem (Sx) and
p(·), q(·), P (·) are the solutions of corresponding adjoint equations. Let V ∈ C([0, T ] × H) be defined as in
(2.20). Then

{p(t)} × [P (t),∞) ⊂ D2,+
x V (t, X̄(t)), t ∈ [0, T ], P -a.s.

and
D2,−

x V (t, X̄(t)) ⊂ {p(t)} × (−∞, P (t)], t ∈ [0, T ], P -a.s.

14



Proof. Step 1: Variational equations. Fix any t ∈ [0, T ] and any x1 ∈ H, let Xx1

be the solution of the
following SEE on [t, T ] :

{
dXx1

(s) = [A(s)Xx1

(s) + a(s,Xx1

(s), ū(s))]ds+ [B(s)Xx1

(s) + b(s,Xx1

(s), ū(s))]dw(s),

Xx1

(t) = x1.
(3.10)

We denote x̂(s) := Xx1

(s)− X̄(s), s ∈ [t, T ] (In particular, x̂(t) = X1(t)− X̄(t) = x1 − X̄(t)).Then

x̂(s) = x̂(t) +

∫ s

t

[
A(r)x̂(r) + a(r,Xx1

(r), ū(r))− a(r, X̄(r), ū(r))
]
dr

+

∫ s

t

[
B(r)x̂(r) + b(r,Xx1

(r), ū(r))− b(r, X̄(r), ū(r))
]
dw(r)

= x̂(t) +

∫ s

t

[
A(r)x̂(r) + a(r, x̂(r) + X̄(r), ū(r))− a(r, X̄(r), ū(r))

]
dr

+

∫ s

t

[
B(r)x̂(r) + b(r, x̂(r) + X̄(r), ū(r))− b(r, X̄(r), ū(r))

]
dw(r).

From Lemma 2.6, we first have

E
[

sup
t≤s≤T

∥x̂(s)∥2αH dr|Ft

]
≤ C ∥x̂(t)∥2αH , P -a.s. (3.11)

With Ā, B̄ being defined as in subsection 2.2, we can write the equation of x̂(s) as:

x̂(s) = x̂(t) +

∫ s

t

[Ā(r)x̂(r) + ε1(r)]dr +

∫ s

t

[B̄(r)x̂(r) + ε2(r)]dw(r) (3.12)

and

x̂(s) = x̂(t)+

∫ s

t

[Ā(r)x̂(r) +
1

2
āxx(r)(x̂(r), x̂(r)) + ε3(r)] dr

+

∫ s

t

[B̄(r)x̂(r) +
1

2
b̄xx(r)(x̂(r), x̂(r)) + ε4(r)] dw(r),

(3.13)

where

ε1(r) :=

∫ 1

0

〈
ax

(
r, X̄(r) + µx̂(r), ū(r)

)
− āx (r) , x̂(r)

〉
dµ,

ε2(r) :=

∫ 1

0

〈
bx (r, x̄(r) + µx̂(r), ū(r))− b̄x (r) , x̂(r)

〉
dµ,

ε3(r) :=

∫ 1

0

(1− µ) [axx (r, x̄(r) + µx̂(r), ū(r))− āxx (r)] (x̂(r), x̂(r)) dµ,

ε4(r) :=

∫ 1

0

(1− µ)
[
bxx (r, x̄(r) + µx̂(r), ū(r))− b̄xx (r)

]
(x̂(r), x̂(r)) dµ.
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Step 2: Estimates of remainder terms of SEEs. We have following estimates: for any α ≥ 2,

E
[ ∫ T

t

∥ε1(r)∥αH dr|Ft

]
= o (∥x̂(t)∥αH) , P -a.s.

E
[ ∫ T

t

∥ε2(r)∥αH dr|Ft

]
= o (∥x̂(t)∥αH) , P -a.s.

E
[ ∫ T

t

∥ε3(r)∥αH dr|Ft

]
= o(∥x̂(t)∥2αH ), P -a.s.

E
[ ∫ T

t

∥ε4(r)∥αH dr|Ft

]
= o(∥x̂(t)∥2αH ), P -a.s.

(3.14)

In the above and the whole paper, we use o(ρ) to denote a deterministic infinitesimal function as ρ → 0
(which may be different according to the context), and similarly, use O(ρ) to represent a deterministic
function that has the same order as ρ. We only present the proofs for the first and the third ones, and the
other two can be derived similarly. Applying (3.11),

E
[ ∫ T

t

∥ε1(r)∥αH dr|Ft

]
=

∫ T

t

E
[
∥ε1(r)∥αH |Ft

]
dr

≤
∫ T

t

E
[ ∫ 1

0

∥ax (r, x̄(r) + µx̂(r), ū(r))− āx (r)∥αH dµ ∥x̂(r)∥αH |Ft

]
dr

≤
∫ T

t

E[∥x̂(r)∥2αH |Ft]dr

≤ C ∥x̂(t)∥2αH
= o(∥x̂(t)∥αH), P -a.s.

and (maybe we need to impose the γ-Hölder continuity assumption on axx here and in the proof of Theorem
3.4)

E
[ ∫ T

t

∥ε3(r)∥αH dr|Ft

]
=

∫ T

t

E [∥ε3(r)∥αH |Ft] dr

≤
∫ T

t

E
[∫ 1

0

|(1− µ) [axx (r, x̄(r) + µx̂(r), ū(r))− āxx (r)] (x̂(r), x̂(r)) |αdµ|Ft

]
dr

≤
(∫ T

t

E
[ ∫ 1

0

(1− µ)2α∥axx (r, x̄(r) + µx̂(r), ū(r))− āxx (r) ∥2αL(H)dµ|Ft

]
dr
) 1

2
(∫ T

t

E
[ ∫ 1

0

∥x̂(r)∥4αH dµ|Ft

]
dr
) 1

2

≤
(∫ T

t

E
[ ∫ 1

0

∥axx (r, x̄(r) + µx̂(r), ū(r))− āxx (r) ∥2αL(H)dµ|Ft

]
dr
) 1

2 ∥x̂(t)∥2αH

≤
(∫ T

t

E
[ ∫ 1

0

∥x̂(r)∥2γαL(H)dµ|Ft

]
dr
) 1

2 ∥x̂(t)∥2αH

= o(∥x̂(t)∥2αH ), P -a.s.

Step 3: Duality relationship. Applying Itô’s formula to ⟨p(r), x̂(r)⟩ , from (3.13) we get

⟨p(s), x̂(s)⟩ = ⟨hx(X̄(T )), x̂(T )⟩+
∫ T

s

J1(r)dr −
∫ T

s

J2(r)dw(r), s ∈ [t, T ]. (3.15)

16



where

J1(s) :=⟨kx(s) + ky(s)p(s) + kz(s)q(s), x̂(s)⟩+ kz(s)⟨p(s), B̄(s)x̂(s)⟩ − ⟨p(s), ε3(s)⟩ − ⟨q(s), ε4(s)⟩

− 1

2
[⟨p(s), (āxx(s)(x̂(s), x̂(s))⟩+ ⟨q(s), b̄xx(s)(x̂(s), x̂(s))⟩],

J2(s) :=⟨p(s), B̄(s)(x̂(s))⟩+ ⟨q(s), x̂(s)⟩+ ⟨p(s), ε4(s)⟩

+
1

2
⟨p(s), b̄xx(s)(x̂(s), x̂(s))⟩.

Next, taking γ1 = ε1, γ2 = ε2, x0 = x̂(t) in Theorem 3.1, from Step 2 we have

µ1(t) = o(∥x̂(t)∥2H) and µ2(t) = O(∥x̂(t)∥2H).

Thus, applying Theorem 3.1 to P and x̂ in (3.12), we obtain

⟨P (s)x̂(s), x̂(s)⟩+ σ(s) = ⟨hxx(X̄(T ))x̂(T ), x̂(T )⟩+
∫ T

s

[ky(s)⟨P (s)x̂(s), x̂(s)⟩

+ kz(s)Z(s) + ⟨G(s)x̂(s), x̂(s)⟩]ds−
∫ T

s

Z(s)dw(s),

(3.16)

for some processes (σ,Z) ∈ Lα
F (t, T )× L2,α

F (t, T ) satisfying

sup
s∈[t,T ]

(
E
[
|σ(s)|α

∣∣∣Ft

]) 1
α

= o(∥x̂(t)∥2H) and E
[( ∫ T

t

|Z(t)|2dt
)α

2 |Ft

]
= O(∥x̂(t)∥2αH ), for any α ≥ 2.

(3.17)
Therefore,

⟨p(t), x̂(t)⟩+ 1

2
⟨P (t)x̂(t), x̂(t)⟩+ 1

2
σ(t) = ⟨hx(x̄(T )), x̂(T )⟩

+
1

2
⟨hxx(x̄(T ))x̂(T ), x̂(T )⟩+

∫ T

t

I1(s)ds−
∫ T

t

I2(s)dw(s),

where

I1(s) := ⟨kx(s) + ky(s)p(s) + kz(s)q(s), x̂(s)⟩+ kz(s)⟨p(s), B̄(s)x̂(s)⟩+ 1

2
⟨{ky(s)P (s)

+D2k(s)([Id, p(s), B̄
∗(s)p(s) + q(s)], [Id, p(s), B̄

∗(s)p(s) + q(s)]) + kz(s)⟨p(s), b̄xx(s)⟩}x̂(s), x̂(s)⟩

+
1

2
kz(s)Z(s)− ⟨p(s), ε3(s)⟩ − ⟨q(s), ε4(s)⟩,

I2(s) := ⟨p(s), B̄(s)x̂(s)⟩+ ⟨q(s), x̂(s)⟩+ ⟨p(s), ε4(s)⟩+
1

2
⟨p(s), b̄xx(s)(x̂(s), x̂(s))⟩+

1

2
Z(s).

Step 4: Variational equation for BSDE. We denote, on [t, T ],

Y x1

(s) = h(Xx1

(T )) +

∫ T

s

k(r,Xx1

(r), Y x1

(r), Zx1

(r), ū(r))dr −
∫ T

s

Zx1

(r)dw(r).

Then we have

ŷ(s)− 1

2
σ(s) = h(Xx1

(T ))− h(X̄(T ))− ⟨hx(X̄(T )), x̂(T )⟩ − 1

2
⟨hxx(X̄(T ))x̂(T ), x̂(T )⟩

+

∫ T

s

{k(r,Xx1

(r), Y x1

(r), Zx1

(r), ū(r))− k(r, X̄(r), Ȳ (r), Z̄(r), ū(r))− I1(r)}dr −
∫ T

s

ẑ(r)dw(r),

(3.18)
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where

ŷ(s) := Y x1

(s)− Ȳ (s)− ⟨p(s), x̂(s)⟩ − 1

2
⟨P (s)x̂(s), x̂(s)⟩,

ẑ(s) := Zx1

(s)− Z̄(s)− I2(s).

We denote

I3(s) := ⟨p(s), x̂(s)⟩+ 1

2
⟨P (s)x̂(s), x̂(s)⟩

From the Taylor’s expansion,

ŷ(s)− 1

2
σ(s) = J4 +

∫ T

s

{
k̃y(r)(ŷ(r)−

1

2
σ(r)) + k̃z(r)ẑ(r) +

1

2
J5(r) +

1

2
k̃y(r)σ(r)

+ kz(r)⟨p(r), ε4(r)⟩+ ⟨p(r), ε3(r)⟩+ ⟨q(r), ε4(r)⟩
}
dr −

∫ T

s

ẑ(r)dw(r),

(3.19)

where

k̃y(s) :=

∫ 1

0

ky(s,X
x1

(s), Ȳ (s) + I3(s) + µŷ(s), Z̄(s) + I2(s) + µẑ(s), ū(s))dµ,

k̃z(s) :=

∫ 1

0

kz(s,X
x1

(s), Ȳ (s) + I3(s) + µŷ(s), Z̄(s) + I2(s) + µẑ(s), ū(s))dµ,

D̃2k(s) := 2

∫ 1

0

∫ 1

0

µD2k(s, x̄(s) + µνx̂(s), Ȳ (s) + µνI3(s), Z̄(s) + µνI2(s), ū(s))dµdν,

J3(s) := kz(s)⟨p(s), ε4(s)⟩+ ⟨p(s), ε3(s)⟩+ ⟨q(s), ε4(s)⟩,

J4 := h(Xx1

(T ))− h(X̄(T ))− ⟨hx(X̄(T )), x̂(T )⟩ − 1

2
⟨hxx(X̄(T ))x̂(T ), x̂(T )⟩,

J5(s) := D̃2k(s)([x̂(s), I3(s), I2(s)], [x̂(s), I3(s), I2(s)])

− ⟨D2k(s)([Id, p(s), B̄
∗(s)p(s) + q(s)], [Id, p(s), B̄

∗(s)p(s) + q(s)])x̂(s), x̂(s)⟩.

First, we have

E[h(Xx1

(T ))− h(X̄(T ))− ⟨hx(X̄(T )), x̂(T )⟩ − 1

2
⟨hxx(X̄(T ))x̂(T ), x̂(T )⟩|Ft]

= E[⟨hx(X̄(T )), x̂(T )⟩+ 1

2
⟨h̃xx(T )x̂(T ), x̂(T )⟩ − ⟨hx(X̄(T )), x̂(T )⟩ − 1

2
⟨hxx(X̄(T ))x̂(T ), x̂(T )⟩|Ft]

=
1

2
E[⟨(h̃xx(T )− hxx(X̄(T )))x̂(T ), x̂(T )⟩|Ft]

≤ 1

2

(
E[|h̃xx(T )− hxx(X̄(T ))|2L2(H×H)|Ft]

) 1
2
(
E[|x̂(T )|4H |Ft]

) 1
2

= o(∥x̂(t)∥2H),

where

h̃xx(T ) = 2

∫ 1

0

∫ 1

0

µhxx
(
X̄(T ) + µνx̂(T )

)
dµdν.

Moreover, it is direct to check that E[
∫ T

t
|J3(s)|ds|Ft] = o(∥x̂(t)∥2H). We write J5(s) = J6(s) + J7(s), where

J6(s) :=⟨D̃2k(s)([Id, p(s), B̄
∗(s)p(s) + q(s)], [Id, p(s), B̄

∗(s)p(s) + q(s)])x̂(s), x̂(s)⟩
− ⟨D2k(s)([Id, p(s), B̄

∗(s)p(s) + q(s)], [Id, p(s), B̄
∗(s)p(s) + q(s)])x̂(s), x̂(s)⟩,

J7(s) :=D̃
2k(s)([x̂(s), I3(s), I2(s)], [x̂(s), I3(s), I2(s)])

− ⟨D̃2k(s)([Id, p(s), B̄
∗(s)p(s) + q(s)], [Id, p(s), B̄

∗(s)p(s) + q(s)])x̂(s), x̂(s)⟩.
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We only estimate J6 and the treatment for J7 is similar. First, recall that (H4) implies (see the proof of
Proposition 3.5 in [27])

|⟨v,B(s, ω)w⟩| = |⟨B∗(s, ω)v, w⟩| ≤ C(K)∥v∥V ∥w∥H , for v, w ∈ V and (s, ω) ∈ [0, T ]× Ω. (3.20)

By denoting ∥D̃2k(s)−D2k(s)∥ := ∥D̃2k(s)−D2k(s)∥L2((H×R×R)×(H×R×R);R), we then have

E
[( ∫ T

t

|J6(s)|ds
)2α

|Ft

]
≤ CE

[( ∫ T

t

∥D̃2k(s)−D2k(s)∥
(
(1 + ∥p(s)∥2H)∥x̂(s)∥2H

+ ∥p(s)∥2V ∥x̂(s)∥2H + ∥q(s)∥2H∥x̂(s)∥2H
)
ds
)2α∣∣∣Ft

]
≤ C

(
E
[ ∫ T

t

∥D̃2k(s)−D2k(s)∥4α(1 + ∥p(s)∥8αH )ds
∣∣∣Ft

]) 1
2
∣∣∣Ft

(
E[
∫ T

t

∥x̂(s)∥8αH ds
∣∣∣Ft]

) 1
2

+ C
(
E
[( ∫ T

t

∥D̃2k(s)−D2k(s)∥∥p(s)∥2V ds
)4α

|Ft

]) 1
2

(E[ sup
s∈[t,T ]

∥x̂(s)∥8αH |Ft])
1
2

+ C
(
E
[( ∫ T

t

∥D̃2k(s)−D2k(s)∥∥q(s)∥2Hds
)4α∣∣∣Ft

]) 1
2

(E[ sup
s∈[t,T ]

∥x̂(s)∥8αH |Ft])
1
2

= o(∥x̂(t)∥4αH ).

So, E[(
∫ T

t
|J5(s)|ds)2α|Ft] = o(∥x̂(t)∥4αH ). Then from the a priori estimae for classical BSDEs,

sup
s∈[t,T ]

E[|ŷ(s)− 1

2
σ(s)|2α|Ft] + E

[( ∫ T

t

|ẑ(s)|2ds
)α

|Ft

]
= o(∥x̂(t)∥4αH ).

Taking into account of (3.17) again,

sup
s∈[t,T ]

E[|ŷ(s)|2α|Ft] + E
[( ∫ T

t

|ẑ(t)|2dt
)α

|Ft

]
= o(∥x̂(t)∥4αH ).

In particular,

Y x1

(t)− Ȳ (t) = ⟨p(t), x̂(t)⟩+ 1

2
⟨P (t)x̂(t), x̂(t)⟩+ o(∥x̂(t)∥2H), P -a.s. (3.21)

Step 5: Completion of the proof. Let M be a countable dense subset of H. We can find a subset Ω0 ⊂ Ω
such that P (Ω0) = 1 and for each ω0 ∈ Ω0,

V (t, X̄(t, ω0)) = Ȳ (t, ω0), Y
x1

(t, ω0) ≤ V (t, x1), (3.21) holds for all x1 ∈M,

and p(s, ω0) ∈ H, P (s, ω0) ∈ L(H), ∀s ∈ [0, T ].

Fix any ω0 ∈ Ω0. Then for any x1 ∈M,

Y x1

(t, ω0)− Ȳ (t, ω0) = ⟨p(t, ω0), x̂(t, ω0)⟩+
1

2
⟨P (t, ω0)x̂(t, ω0), x̂(t, ω0)⟩+ o(∥x̂(t, ω0)∥2H).

Thus

V (t, x1)−V (t, X̄(t, ω0)) ≤ ⟨p(t, ω0), x̂(t, ω0)⟩+
1

2
⟨P (t, ω0)x̂(t, ω0), x̂(t, ω0)⟩+ o(∥x̂(t, ω0)∥2H), for all x1 ∈M.

Note that the term o(|x̂(t, ω0)|2) in the above inequality depends only on the size |x̂(t, ω0)|2 and is is
independent of x1. Therefore, from the continuity of V (t, ·), we obtain that

V (t, x1)− V (t, X̄(t, ω0)) ≤ ⟨p(t, ω0), x̂(t, ω0)⟩+
1

2
⟨P (t, ω0)x̂(t, ω0), x̂(t, ω0)⟩+ o(∥x̂(t, ω0)∥2H), for all x1 ∈ H.

(3.22)
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This proves that, from the definition of upper-differentials,

{p(t, ω0)} × [P (t, , ω0),∞) ⊂ D2,+
x V (t, X̄(t, ω0)).

Now we prove the second one. Fix any ω0 such that (3.22) hold. For any (p̂, P̂ ) ∈ D2,−
x V (t, X̄(t, ω0)), we

have from the definition of subdifferentials and (3.22) that

0 ≤ lim inf
x1→X̄(t,ω0)

{
V (t, x1)− V (t, X̄(t, ω0))− ⟨p̂, x1 − X̄(t, ω0)⟩ − 1

2 ⟨P̂ (x
1 − X̄(t, ω0)), x

1 − X̄(t, ω0)⟩∥∥x1 − X̄(t, ω0)
∥∥2
H

}

≤ lim inf
x1→X̄(t,ω0)

{
⟨p(t, ω0)− p̂, x1 − X̄(t, ω0)⟩+ 1

2 ⟨(P (t, ω0)− P̂ )(x1 − X̄(t, ω0)), x
1 − X̄(t, ω0)⟩∥∥x1 − X̄(t, ω0)

∥∥2
H

}
.

Then it is necessary that
p̂ = p(t, ω0), P̂ ≤ P (t, ω0),

which implies the desired result. □

3.3 Differential in time variable

For v ∈ C([0, T ]×H) and (t, x) ∈ [0, T )×H, the second-order parabolic partial superdifferential of v with
respect to t is defined as:

D1,+
t+ v(t, x) =

{
r ∈ H

∣∣∣v(s, x) ≤ v(t, x) + r(s− t) + o(|s− t|), as s ↓ t
}
.

The second-order parabolic partial subdifferential of v with respect to t is defined as:

D1,−
t+ v(t, x) =

{
r ∈ H

∣∣∣v(s, x) ≥ v(t, x) + r(s− t) + o(|s− t|), as s ↓ t
}
.

Theorem 3.4 Suppose (X̄(·), Ȳ (·), Z̄(·), ū(·)) are the optimal 4-tuple of Problem (Sx) and p(·), q(·), P (·) are
the solutions of corresponding adjoint equations. Then{

[−⟨p(t), A(t)X̄(t)⟩ − ⟨q(t), B(t)X̄(t)⟩+H1(t, X̄(t), Ȳ (t), Z̄(t)),∞) ⊆ D1,+
t+ V (t, X̄(t)),

D1,−
t+ V (t, X̄(t)) ⊆ (−∞,−⟨p(t), A(t)X̄(t)⟩ − ⟨q(t), B(t)X̄(t)⟩+H1(t, X̄(t), Ȳ (t), Z̄(t))], a.e., P -a.s.,

where
H1(t, X̄(t), Ȳ (t), Z̄(t))

:= −H(s, X̄(s), Ȳ (s), Z̄(s), ū(s), p(t), q(t))
+⟨P (t)[B(t)X̄(t) + b(t, X̄(t), ū(t))], B(t)X̄(t) + b(t, X̄(t), ū(t))⟩.

Proof. Step 1. Take any τ ∈ (t, T ). Denote by Xτ the solution of the following SEE in [τ, T ] :

{
dXτ (s) = [A(s)Xτ (s) + a(s,Xτ (s), ū(s))]dr + [B(s)Xτ (s) + b(s,Xτ (s), ū(s))]dw(s),

Xτ (τ) = X̄(t).
(3.23)

We define
ξ̂τ (s) := Xτ (s)− X̄(s), s ∈ [τ, T ].

Then on [τ, T ],

ξ̂τ (s) = ξ̂τ (τ) +

∫ s

τ

[A(r)ξ̂τ (r) + a(r,Xx1

(r), ū(r))− a(r, X̄(r), ū(r))]dr

+

∫ s

τ

[B(r)ξ̂τ (r) + b(r,Xx1

(r), ū(r))− b(r, X̄(r), ū(r))]dw(r).
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From Lemma 2.6,

E
[

sup
τ≤s≤T

∥ξ̂τ (s)∥2αH
∣∣∣Fτ

]
≤ C∥ξ̂τ (τ)∥2αH , P -a.s. (3.24)

Moreover, note that
ξ̂τ (τ) = Xτ (τ)− X̄(τ) = X̄(t)− X̄(τ).

We also note that since X̄ ∈ L2,α
F (0, T ;V ), so for a.e. t, X̄(t) ∈ L2α(Ft, V ). Then from Lemma 2.7, we have

(for a.e. t)

E
[
∥ξ̂τ (τ)∥2αH

∣∣∣Ft

]
= E

[
∥X̄(τ)− X̄(t)∥2αH

∣∣∣Ft

]
≤ C(1 +

∥∥X̄(t)
∥∥2α
V
)|τ − t|α, P -a.s.,

and so

E
[

sup
τ≤r≤T

∥ξ̂τ (r)∥2αH
∣∣∣Ft

]
≤ E

[
E
[

sup
τ≤r≤T

∥ξ̂τ (r)∥2αH
∣∣∣Fτ

]∣∣∣Ft

]
≤ CE

[
∥ξ̂τ (τ)∥2αH

∣∣∣Ft

]
≤ Ct|τ − t|α, P -a.s. (3.25)

We can write the equation of ξ̂τ (s) as

ξ̂τ (s) = ξ̂τ (τ) +

∫ s

τ

[Ā(r)ξ̂τ (r) + ε1(r)]dr +

∫ s

τ

[B̄(r)ξ̂τ (r) + ε2(r)]dw(r) (3.26)

and

ξ̂τ (s) = ξ̂τ (τ)+

∫ s

τ

[Ā(r)ξ̂τ (r) +
1

2
āxx(r)(ξ̂τ (r), ξ̂τ (r)) + ε3(r)] dr

+

∫ s

τ

[B̄(r)ξ̂τ (r) +
1

2
b̄xx(r)(ξ̂τ (r), ξ̂τ (r)) + ε4(r)] dw(r),

(3.27)

where

ε1(r) :=

∫ 1

0

〈
ax

(
r, X̄(r) + µξ̂τ (r), ū(r)

)
− āx (r) , ξ̂τ (r)

〉
dµ,

ε2(r) :=

∫ 1

0

〈
bx

(
r, X̄(r) + µξ̂τ (r), ū(r)

)
− b̄x (r) , ξ̂τ (r)

〉
dµ,

ε3(r) :=

∫ 1

0

(1− µ)
[
axx

(
r, X̄(r) + µξ̂τ (r), ū(r)

)
− āxx (r)

] (
ξ̂τ (r), ξ̂τ (r)

)
dµ.

ε4(r) :=

∫ 1

0

(1− µ)
[
bxx

(
r, X̄(r) + µξ̂τ (r), ū(r)

)
− b̄xx (r)

] (
ξ̂τ (r), ξ̂τ (r)

)
dµ.

Step 2. We have, for any α ≥ 2,

E
[ ∫ T

τ

∥ε1(r)∥αH dr|Fτ

]
≤ C∥ξ̂τ (τ)∥2αH , P -a.s.

E
[ ∫ T

τ

∥ε2(r)∥αH dr|Fτ

]
≤ C∥ξ̂τ (τ)∥2αH , P -a.s.

E
[ ∫ T

τ

∥ε3(r)∥αH dr|Ft

]
= o(|τ − t|α), P -a.s.

E
[ ∫ T

τ

∥ε4(r)∥αH dr|Ft

]
= o(|τ − t|α), P -a.s.

(3.28)
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Indeed, from the a priori estimate for SEEs and (3.25), we obtain

E
[ ∫ T

τ

∥ε1(r)∥αH dr|Fτ

]
=

∫ T

τ

E
[
∥ε1(r)∥αH

∣∣∣Fτ

]
dr

≤
∫ T

τ

E
[ ∫ 1

0

∥ax(r, X̄(r) + µξ̂τ (r), ū(r))− āx (r) ∥2αH dµ∥ξ̂τ (r)∥αH
∣∣∣Fτ

]
dr

≤
∫ T

τ

E
[
∥ξ̂τ (r)∥2αH

∣∣∣Fτ

]
dr

≤ C∥ξ̂τ (τ)∥2αH , P -a.s.,

and

E[
∫ T

τ

∥ε3(r)∥αH dr|Ft]

=

∫ T

τ

E
[
∥ε3(r)∥αH

∣∣∣Ft

]
dr

≤
∫ T

τ

E
[ ∫ 1

0

(1− µ)
∣∣∣[axx(r, X̄(r) + µξ̂τ (r), ū(r))− āxx (r)

](
ξ̂τ (r), ξ̂τ (r)

)∣∣∣αdµ|Ft

]
dr

≤
(∫ T

τ

E
[ ∫ 1

0

∥∥∥axx(r, X̄(r) + µξ̂τ (r), ū(r)
)
− āxx (r)

∥∥∥2α
L(H)

dµ
∣∣∣Ft

]
dr
) 1

2
(∫ T

t

E
[ ∫ 1

0

∥∥∥ξ̂τ (r)∥∥∥4α
H
dµ

∣∣∣Ft

]
dr
) 1

2

≤ o(|τ − t|α), P -a.s.

Step 3. Applying Itô’s formula to ⟨p(r), x̂(r)⟩ , from (3.27) we get

⟨p(s), ξ̂τ (s)⟩ = ⟨hx(X̄(T )), x̂(T )⟩+
∫ T

s

J1(r)dr −
∫ T

s

J2(r)dw(r), s ∈ [τ, T ]. (3.29)

where

J1(s) :=⟨kx(s) + ky(s)p(s) + kz(s)q(s), ξ̂τ (s)⟩+ kz(s)⟨p(s), B̄(s)ξ̂τ (s)⟩ − ⟨p(s), ε3(s)⟩ − ⟨q(s), ε4(s)⟩

− 1

2
[⟨p(s), (āxx(s)(ξ̂τ (s), ξ̂τ (s))⟩+ ⟨q(s), b̄xx(s)(ξ̂τ (s), ξ̂τ (s))⟩],

J2(s) :=⟨p(s), B̄(s)(ξ̂τ (s))⟩+ ⟨q(s), ξ̂τ (s)⟩+ ⟨p(s), ε4(s)⟩

+
1

2
⟨p(s), b̄xx(s)(ξ̂τ (s), ξ̂τ (s))⟩.

Moreover, taking t̃ = τ, γ1 = ε1, γ2 = ε2, x0 = x̂(τ) in Theorem 3.1 and according to Step 2,

µ1(τ) = ∥ξ̂τ (τ)∥4H and µ2(τ) = ∥ξ̂τ (τ)∥2H .

Thus applying Theorem 3.1 and (3.26), we have on [τ, T ] that

⟨P (t)x̂(t), x̂(t)⟩+ σ(t) = ⟨hxx(X̄(T ))x̂(T ), x̂(T )⟩+
∫ T

t

[ky(s)⟨P (s)x̂(s), x̂(s)⟩

+ kz(s)Z(s) + ⟨G(s)x̂(s), x̂(s)⟩]ds−
∫ T

t

Z(s)dw(s),

(3.30)

for some processes (σ,Z) ∈ Lα
F (τ, T )× L2,α

F (τ, T ) satisfying

sup
s∈[τ,T ]

(
E
[
|σ(s)|α

∣∣∣Fτ

]) 1
α ≤ C

∥∥∥ξ̂τ (τ)∥∥∥4
H

and
(
E
[( ∫ T

τ

|Z(s)|2ds
)α

2 |Fτ

]) 1
α ≤ C

∥∥∥ξ̂τ (τ)∥∥∥2
H
, for any α ≥ 2.

(3.31)
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Consequently, on [τ, T ]

⟨p(t), ξ̂τ (t)⟩+
1

2
⟨P (t)ξ̂τ (t), x̂(t)⟩+

1

2
σ(t) = ⟨hx(X̄(T )), ξ̂τ (T )⟩

+
1

2
⟨hxx(x̄(T ))ξ̂τ (T ), ξ̂τ (T )⟩+

∫ T

t

I1(s)ds−
∫ T

t

I2(s)dw(s),

where

I1(t) := ⟨kx(t) + ky(t)p(t) + kz(t)q(t), ξ̂τ (t)⟩+ kz(t)⟨p(t), B̄(t)ξ̂τ (t)⟩+
1

2
⟨{ky(t)P (t)

+D2k(t)([Id, p(t), B̄
∗(t)p(t) + q(t)], [Id, p(t), B̄

∗(t)p(t) + q(t)]) + kz(t)⟨p(t), b̄xx(t)⟩}ξ̂τ (t), ξ̂τ (t)⟩

+
1

2
kz(t)Z(t)− ⟨p(t), ε3(t)⟩ − ⟨q(t), ε4(t)⟩,

I2(t) := ⟨p(t), B̄(t)ξ̂τ (t)⟩+ ⟨q(t), ξ̂τ (t)⟩+ ⟨p(t), ε4(t)⟩

+
1

2
⟨p(t), b̄xx(t)(ξ̂τ (t), ξ̂τ (t))⟩+

1

2
Z(t).

Step 4. We denote, on [τ, T ],

Y τ (s) = h(Xτ (T )) +

∫ T

s

k(r,Xτ (r), Y τ (r), Zτ (r), ū(r))dr −
∫ T

s

Zτ (r)dw(r).

Then we have

ŷ(s)− 1

2
σ(s) = h(Xx1

(T ))− h(X̄(T ))− ⟨hx(X̄(T )), x̂(T ) + x̂(T )⟩ − 1

2
⟨hxx(X̄(T ))x̂(T ), x̂(T )⟩

+

∫ T

s

{k(r,Xτ (r), Y τ (r), Zτ (r), ū(s))− k(s, X̄(s), Ȳ (s), Z̄(s), ū(s))− I1(s)}ds−
∫ T

s

ẑ(s)dw(s),

(3.32)

where

ŷ(s) := Y τ (s)− Ȳ (s)− ⟨p(s), ξ̂τ (s)⟩ −
1

2
⟨P (s)ξ̂τ (s), ξ̂τ (s)⟩,

ẑ(s) := Zτ (s)− Z̄(s)− I2(s).

Then from a similar analysis as in Step 4 in the proof of Theorem 3.3, we obtain (for a.e. t)

E [ŷ(τ)|Ft] = o(|τ − t|), P -a.s.

This is also

E
[
Y τ (τ)− Ȳ (τ)|Ft

]
= E

[〈
p(τ), ξ̂τ (τ)

〉
+

1

2
⟨P (τ)ξ̂τ (τ), ξ̂τ (τ)⟩|Ft

]
+ o(|τ − t|), P -a.s. (3.33)

On the other hand, note that, for any ϕ ∈ L2
F(0, T ;V

∗), from the Lebesgue differentiation theorem,

E
[∥∥∥ ∫ τ

t

ϕ(r)dr
∥∥∥2
V ∗

∣∣∣Ft

]
≤ (τ − t)

∫ τ

t

E
[
∥ϕ(r)∥2V ∗

∣∣∣Ft

]
dr

= O(|τ − t|2), as τ ↓ t, for a.e. t, P -a.s.,

and for any ψ ∈ L2
F(0, T ;H),

E
[∥∥∥ ∫ τ

t

ψ(r)dw(r)
∥∥∥2
H

∣∣∣Ft

]
≤ E

[ ∫ τ

t

∥ψ(r)∥2Hdr
∣∣∣Ft

]
=

∫ τ

t

E
[
∥ψ(r)∥2H

∣∣∣Ft

]
dr

= O(|τ − t|), as τ ↓ t, for a.e. t, P -a.s.
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Thus, from the formulas of p(τ) and ξτ (τ), we obtain

E
[
⟨p(τ), ξτ (τ)⟩

∣∣Ft

]
= E

[
⟨p(t), ξτ (τ)⟩

∣∣Ft

]
+ E

[
⟨p(τ)− p(t), ξτ (τ)⟩

∣∣Ft

]
= E

[
−
〈
p(t),

∫ τ

t

[A(r)X̄(r) + a(r, X̄(r), ū(r))]dr
〉
−
∫ τ

t

〈
q(r), [B(r)X̄(r) + b(r, X̄(r), ū(r))]

〉
dr
∣∣∣Ft

]
+ o(|τ − t|), as τ ↓ t, for a.e. t, P -a.s.

Similarly, we also have

E
[
⟨P (τ)ξτ (τ), ξτ (τ)⟩

− ⟨P (τ)
∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r),

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)⟩|Ft

]
= E

[
⟨P (τ)ξτ (τ), ξτ (τ)⟩ − ⟨P (τ)

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r), ξτ (τ)⟩|Ft

]
+ E

[
⟨P (τ)

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r), ξτ (τ)⟩

− ⟨P (τ)
∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r),

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)⟩|Ft

]
= E

[
⟨P (τ)

∫ τ

t

[A(r)X̄(r) + a(r, X̄(r), ū(r))]dr, ξτ (τ)⟩|Ft

]
+ E

[〈
P (τ)

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r),

∫ τ

t

[A(r)X̄(r) + a(r, X̄(r), ū(r))]dr
〉∣∣∣Ft

]
≤

(
E
[
∥P (τ)∥4L(H)

∣∣∣Ft

]) 1
4
(
E
[∥∥∥ ∫ τ

t

[A(r)X̄(r) + a(r, X̄(r), ū(r))]dr
∥∥∥2
H

∣∣∣Ft

]) 1
2
(
E
[∥∥∥ξτ (τ)∥∥∥4

H

∣∣∣Ft

]) 1
4

+
(
E
[
∥P (τ)∥4L(H)

∣∣∣Ft

]) 1
4
(
E
[∥∥∥ ∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)
∥∥∥4
H

∣∣∣Ft

]) 1
4

·
(
E
[∥∥∥ ∫ τ

t

[A(r)X̄(r) + a(r, X̄(r), ū(r))]dr
∥∥∥2
H

∣∣∣Ft

]) 1
2

= o(|τ − t|), as τ ↓ t, for a.e. t, P -a.s.,
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and

E
[
⟨P (τ)

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r),

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)⟩

− ⟨P (τ)
∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r)⟩|Ft

]
= E

[
⟨P (τ)

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r),

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)⟩

− ⟨P (τ)
∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)⟩|Ft

]
+ E

[
⟨P (τ)

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)⟩

− ⟨P (τ)
∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r)⟩|Ft

]
= E

[
⟨P (τ)

∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))−B(t)X̄(t)− b(t, X̄(t), ū(t))]dw(r),∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))]dw(r)⟩|Ft

]
+ E

[
⟨P (τ)

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),∫ τ

t

[B(r)X̄(r) + b(r, X̄(r), ū(r))−B(t)X̄(t)− b(t, X̄(t), ū(t))]dw(r)⟩|Ft

]
≤ (τ − t)

1
2

(
E
[
∥P (τ)∥2L(H)

]) 1
2
(
E
[ ∫ τ

t

∥∥∥B(r)X̄(r) + b(r, X̄(r), ū(r))−B(t)X̄(t)− b(t, X̄(t), ū(t))
∥∥∥4
H
dr
]) 1

4

·
(
E
[ ∫ τ

t

∥∥∥B(r)X̄(r) + b(r, X̄(r), ū(r))
∥∥∥4
H
dr
]) 1

4

+ (τ − t)
1
2

(
E
[
∥P (τ)∥2L(H)

]) 1
2
(
E
[ ∫ τ

t

∥∥∥B(t)X̄(t) + b(t, X̄(t), ū(t))
∥∥∥4
H
dr
]) 1

4

·
(
E
[ ∫ τ

t

∥∥∥B(r)X̄(r) + b(r, X̄(r), ū(r))−B(t)X̄(t)− b(t, X̄(t), ū(t))
∥∥∥4
H
dr
]) 1

4

= o(|τ − t|), as τ ↓ t, for a.e. t, P -a.s.,

and from Proposition 2.4,

E
[
⟨P (τ)

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r)⟩

− ⟨P (t)
∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r)⟩|Ft

]
= E

[
⟨(P (τ)− P (t))

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r)⟩|Ft

]
= E

[
⟨(P (τ)− P (t))[B(t)X̄(t) + b(t, X̄(t), ū(t))], [B(t)X̄(t) + b(t, X̄(t), ū(t))](w(τ)− w(t))2|Ft

]
≤

(
E
[
⟨(P (τ)− P (t))[B(t)X̄(t) + b(t, X̄(t), ū(t))], B(t)X̄(t) + b(t, X̄(t), ū(t))⟩2|Ft

]) 1
2
(
E
[
(w(τ)− w(t))4|Ft

]) 1
2

= o(|τ − t|), as τ ↓ t, P -a.s., for a.e. t.
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Moreover, from Itô’s isometry, for any t,

E
[
⟨P (t)

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r),

∫ τ

t

[B(t)X̄(t) + b(t, X̄(t), ū(t))]dw(r)⟩|Ft

]
= ⟨P (t)[B(t)X̄(t) + b(t, X̄(t), ū(t))], B(t)X̄(t) + b(t, X̄(t), ū(t))⟩(τ − t), P -a.s.

Thus,

E [⟨P (τ)ξτ (τ), ξτ (τ)⟩|Ft]

= ⟨P (t)[B(t)X̄(t) + b(t, X̄(t), ū(t))], B(t)X̄(t) + b(t, X̄(t), ū(t))⟩(τ − t) + o(|τ − t|), for a.e. t, P -a.s.

Therefore,

E
[
Y τ (τ)− Ȳ (τ)|Ft

]
= E

[
−
〈
p(t),

∫ τ

t

[A(r)X̄(r) + a(r, X̄(r), ū(r))]dr
〉
−

∫ τ

t

〈
q(r), [B(r)X̄(r) + b(r, X̄(r), ū(r))]

〉
dr
∣∣∣Ft

]
+

1

2
⟨P (t)[B(t)X̄(t) + b(t, X̄(t), ū(t))], B(t)X̄(t) + b(t, X̄(t), ū(t))⟩(τ − t) + o(|τ − t|), for a.e. t, P -a.s.

(3.34)

Step 5. Let M be a countable dense subset of H. We can find a subset Ω0 ⊂ Ω such that P (Ω0) = 1 and
for each ω0 ∈ Ω0,

V (t, X̄(t, ω0)) = Ȳ (t, ω0), Y
τ (τ, ω0) ≥ V (τ, X̄(t, ω0)), (3.34) hold for all rational τ > t, for almost all t, and

p(s, ω0) ∈ H, P (s, ω0) ∈ L(H),∀s ∈ [0, T ].

Fix any ω0 ∈ Ω0 (we shall only consider the corresponding t with full measure in the above, which may
depend on ω0). Then

V (τ, X̄(t, ω0))− V (t, X̄(t, ω0)) = E
[
V (τ, X̄(t))− V (t, X̄(t, ω0))|Ft

]
≤ E

[
Y τ (τ)− Ȳ (t)|Ft

]
(ω0)

≤ E
[
Y τ (τ)− Ȳ (τ)|Ft

]
(ω0) + E

[
Ȳ (τ)− Ȳ (t)|Ft

]
≤ E

[
−
〈
p(t),

∫ τ

t

[A(r)X̄(r) + a(r, X̄(r), ū(r))]dr
〉
−

∫ τ

t

〈
q(r), [B(r)X̄(r) + b(r, X̄(r), ū(r))]

〉
dr

−
∫ τ

t

k(r, X̄(r), Ȳ (r), Z̄(r), ū(r))dr
∣∣∣Ft

]
(ω0)

+
1

2
⟨P (t, ω0)[B(t, ω0)X̄(t, ω0) + b(t, X̄(t, ω0), ū(t, ω0))], B(t, ω0)X̄(t, ω0) + b(t, X̄(t, ω0), ū(t, ω0))⟩(τ − t)

+ o(|τ − t|), along all rational τ > t.

It follows that (we will omit ω0 for notational simplicity in the following)

V (τ, X̄(t))− V (t, X̄(t)) ≤ E
[
−
〈
p(t),

∫ τ

t

A(r)dr
〉
−

∫ τ

t

〈
q(r), B(r)

〉
dr
∣∣∣Ft

]
+ E

[
−
〈
p(t),

∫ τ

t

a(r, X̄(r), ū(r))dr
〉
−
∫ τ

t

〈
q(r), b(r, X̄(r), ū(r))

〉
dr

−
∫ τ

t

k(r, X̄(r), Ȳ (r), Z̄(r), ū(r))dr
∣∣∣Ft

]
+

1

2
⟨P (t)[B(t)X̄(t) + b(t, X̄(t), ū(t))], B(t)X̄(t) + b(t, X̄(t), ū(t))⟩(τ − t) + o(|τ − t|)

= [−⟨p(t), A(t)X̄(t)⟩ − ⟨q(t), B(t)X̄(t)⟩+H1(t, X̄(t), Ȳ (t), Z̄(t))](τ − t) + o(|τ − t|).

(3.35)
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Then from the continuity of V, we obtain that this relationship holds for all τ ∈ (s, T ]. This implies

−⟨p(t), A(t)X̄(t)⟩ − ⟨q(t), B(t)X̄(t)⟩+H1(t, X̄(t), Ȳ (t), Z̄(t)),∞) ⊆ D1,+
t+ V (t, X̄(t)).

Now we prove the second part. Fix an ω ∈ Ω such that (3.35) holds for any τ ∈ (s, T ]. Then for any
q̂ ∈ D1,−

t+ V (t, X̄(t)), we have

0 ≤ lim inf
τ↓t

{
V (τ, X̄(t))− V (t, X̄(t))− q̂(τ − t)

|τ − t|

}
≤ lim inf

τ↓s

{
(−⟨p(t), A(t)X̄(t)⟩ − ⟨q(t), B(t)X̄(t)⟩+H1(t, X̄(t), Ȳ (t), Z̄(t))− q̂)(τ − s)

|τ − s|

}
Then, it is necessary that q̂ ≤ −⟨p(t), A(t)⟩ − ⟨q(t), B(t)⟩ +H1(t, X̄(t), Ȳ (t), Z̄(t)). The proof is complete.
□

3.4 Smooth case

In this section, we study the relationship between MP and DPP under the special smooth case, i.e., we
assume that the value function V (t, x) is sufficiently smooth.

We first present a result of Hamilton-Jacobi-Bellman equation, which is needed later. Consider the
following Hamilton-Jacobi-Bellman (H-J-B) equation

∂tV (t, x) +⟨Ax, ∂xV (t, x)⟩∗ + 1
2 ⟨∂

2
xxV (t, x)Bx,Bx⟩+ 1

2 ⟨Pb(t, x, v), Bx⟩+
1
2 ⟨PBx, b(t, x, v)⟩+

infv∈U G(t, x, v, V (t, x), ∂xV (t, x), ∂2xxV (t, x)) = 0,

V (T, x) = h(x).

(3.36)

where

G(t, x, v, r, p, P ) :=
1

2
⟨Pb(t, x, v), b(t, x, v)⟩+ ⟨p, a(t, η, v)⟩+ k(t, x, r, b(t, x, v)∗p+ pBx, v),

(t, x, v, p, P ) ∈ [0, T )×H × U ×H × S(H).

(It seems we cannot handle the term ⟨∂2xxV (t, x)Bx,Bx⟩ in the representation of PDEs, so maybe we need
to assume B = 0. Then the above PDE reads:

∂tV (t, x) +⟨A∗∂xV (t, x), x⟩+
infv∈U G(t, x, v, V (t, x), ∂xV (t, x), ∂2xxV (t, x)) = 0, (t, x) ∈ [0, T ]×H,

V (T, x) = h(x), x ∈ H.

(3.37)

where

G(t, x, v, r, p, P ) :=
1

2
⟨Pb(t, x, v), b(t, x, v)⟩+ ⟨p, a(t, η, v)⟩+ k(t, x, r, b(t, x, v)∗p, v),

(t, x, v, p, P ) ∈ [0, T )×H × U ×H × S(H).

In the following calculations, we shall assume B = 0.).

In the following of the paper, we assume that U is compact.

Proposition 3.5 Suppose that the value function V ∈ C1,2([0, T ] × H), ∂xV (t, z) ∈ V, for almost all
(t, z) ∈ [0, T ]× V , and A∗∂xV (t, z) ∈ C([0, T ]×H;H), then it satisfies the H-J-B equation (3.37).
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Remark 3.6 In the recursive utility case, the corresponding H-J-B equation in the infinite dimension under
the mild solution framework is presented in [48]. Here we shall present a result in the variational solution
framework for the completeness of the paper, and the proof is given in the Appendix.

Theorem 3.7 Assume (H1) and fix x ∈ H. Suppose (X̄(·), Ȳ (·), Z̄(·), ū(·)) are the optimal 4-tuple of Prob-
lem (Sx) and p(·), q(·), P (·) are the solutions of corresponding adjoint equations. Suppose that the value
function V ∈ C1,2([0, T ]×H) and ∂xV (t, z) ∈ V, A∗∂xV (t, z) ∈ H, for almost all (t, z) ∈ [0, T ]×H. Then

− ∂tV (t, X̄(t))

= ⟨AX̄(t), ∂xV (t, X̄(t))⟩∗ +G(t, X̄(t), V (t, X̄(t)), ∂xV (t, X̄(t)), ∂xxV (t, X̄(t)), ū(t))

= ⟨AX̄(t), ∂xV (t, X̄(t))⟩∗ + inf
v∈U

G(t, X̄(t), V (t, X̄(t)), ∂xV (t, X̄(t)), ∂xxV (t, X̄(t)), v), P -a.s. a.e.,

If moreover, V ∈ C1,3([0, T ]×H) with Vtx ∈ H, and ∂xxV (t, z) ∈ V, for all (t, z) ∈ [0, T ]× V. Then

p(t) = ∂xV (t, X̄(t)), P -a.s. a.e.,

q(t) = ∂xxV (t, X̄(t))b(t, X̄(t), ū(t)), P -a.s. a.e.

Proof. From Lemma 3.2, we know that

V (t, X̄(t)) = Ȳ (t).

Applying Itô’s formula (see Lemma 2.15 in [37]), we obtain

dV (t, X̄(t)) = [∂tV (t, X̄(t)) + ⟨∂xV (t, X̄(t)), a(t, X̄(t), ū(t))⟩+ ⟨A∗∂xV (t, X̄(t)), X̄(t)⟩

+
1

2
⟨∂xxV (t, X̄(t))b(t, X̄(t), ū(t)), b(t, X̄(t), ū(t))⟩]dt+ ⟨∂xV (t, X̄(t)), b(t, X̄(t), ū(t))⟩dw(t).

Then from the uniqueness of Itô’s composition, we get

∂tV (t, X̄(t)) + ⟨∂xV (t, X̄(t)), a(t, X̄(t), ū(t))⟩+ ⟨AX̄(t), ∂xV (t, X̄(t))⟩∗

+
1

2
⟨∂xxV (t, X̄(t))b(t, X̄(t), ū(t)), b(t, X̄(t), ū(t))⟩ = −k(t, X̄(t), Ȳ (t), Z̄(t), ū(t))

and
⟨∂xV (t, X̄(t)), b(t, X̄(t), ū(t))⟩ = Z̄(t).

From the first equality in the above, we get

∂tV (t, X̄(t)) + ⟨AX̄(t), ∂xV (t, X̄(t))⟩∗
+G(t, X̄(t), ū(t), V (t, X̄(t)), ∂xV (t, X̄(t)), ∂xxV (t, X̄(t))) = 0

(3.38)

This proves the first one. The second equality follows from the fact that V is the classical solution of HJB
equation.

We then consider the second part. Taking into account (3.38) and the fact that V is the solution to HJB
equation

∂tV (t, x) + ⟨A∗∂xV (t, x), x⟩+G(t, x, V (s, x), ∂xV (t, x), ∂xxV (t, x), ū(t)) ≥ 0,

we derive that
Vt(t, x) + ⟨A∗∂xV (t, x), x⟩+G(t, x, V (t, x), ∂xV (t, x), ∂xxV (t, x), ū(t))

attains its minimum at X̄(t). Thus,

∂

∂x
{Vt(t, x) + ⟨A∗∂xV (t, x), x⟩+G(t, x, V (t, x) , ∂xV (t, x) , ∂xxV (t, x) , ū(t))}

∣∣∣
x=X̄(t)

= 0. (3.39)
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From (3.39),

0 = ∂txV (t, X̄(t)) +A∗∂xxV (t, X̄(t))X̄(t) +A∗∂xV (t, X̄(t))

+ ∂xxV (t, X̄(t))a(t, X̄(t), ū(t)) + ∂xV (t, X̄(t))ax(t, X̄(t), ū(t))

+
1

2
∂xxxV (t, X̄(t))b2(t, X̄(t), ū(t)) + ∂xxV (t, X̄(t))b(t, X̄(t), ū(t))bx(t, X̄(t), ū(t))

+ fx + fy∂xV (t, X̄(t)) + fz(bx(t, X̄(t), ū(t))∂xV (t, X̄(t)) + b(t, X̄(t), ū(t))∂xxV (t, X̄(t))).

Then, applying Itô’s formula to ∂xV (t, X̄(t)), we get

d∂xV (t, X̄(t)) = ∂xtV (t, X̄(t))dt+ ∂xxV (t, X̄(t))dX̄(t) +
1

2
∂xxxV (t, X̄(t))b2(t, X̄(t), ū(t))dt

= −[∂xV (t, X̄(t))(A+ ax + fy + fzbx) + ∂xxV (t, X̄(t))bbx

+ fx + fzb∂xxV (t, X̄(t)))]ds+ ∂xxV (t, X̄(t))b(t, X̄(t), ū(t))dw.

Moreover, from the boundary condition in the H-J-B equation,

∂x(T, X̄) = hx(X̄).

So we can note that p̃(t) = ∂xV (t, X̄(t)), q̃(t) = ∂xxV (t, X̄(t))b(t, X̄(t), ū(t)) also solves the first-order adjoint
equation. Thus from the uniqueness of solutions, we obtain

p(t) = ∂xV (t, X̄(t)), q(t) = ∂xxV (t, X̄(t))b(t, X̄(t), ū(t)).

The proof is complete. □

4 Appendix

4.1 Proof of Theorem 2.10

Proposition 4.1 Suppose the assumptions (H4) and (H5), then

V (t, x) = inf
u(·)∈Ut[t,T ]

Y t,x;u(t).

Proof. Noting that U t[t, T ] ⊂ U [t, T ], so V (t, x) ≤ infu(·)∈Ut[t,T ] Y
t,x;u(t). On the other hand, for any

u(·) ∈ U [t, T ], by Lemma 13 in [23], we know that there exists a sequence um taking the form

um(s) =

Nm∑
i=1

vmi(s)IAmi
, s ∈ [t, T ],

where {Ami}Nm
i=1 is a Ft-partition of Ω and vmi

s ∈ U t[t, T ], such that

E
[ ∫ T

t

|um(s)− u(s)|2Udt
]
→ 0, as m→ ∞.

From the a priori estimate of classical BSDEs,

E
[∣∣∣Y t,x;um

(t)− Y t,x;u(t)
∣∣∣2]

≤ CE
[ ∫ T

t

∣∣g(s,Xt,x;u
s , Y t,x;u

s , Zt,x;u
s , ums )− g(s,Xt,x;u

s , Y t,x;u
s , Zt,x;u

s , us)
∣∣2 ds]

≤ E[
∫ T

t

|um(s)− u(s)|2Udt]

→ 0, as m→ ∞.

(4.1)
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Note that for s ∈ [t, T ],(
Xt,x;um

s , Y t,x;um

s , Zt,x;um

s

)
=

( m∑
i=1

Xt,x;vmi

s IAi
,

m∑
i=1

Y t,x;vmi

s IAi
,

m∑
i=1

Zt,x;vmi

s IAi

)
.

Then,

Y t,x;um

t =

m∑
i=1

Y t,x;vmi

t IAi
≥

m∑
i=1

inf
v∈Ut[t,T ]

Y t,x;v
t IAi

= inf
v∈Ut[t,T ]

Y t,x;v
t . (4.2)

This, combining (4.1), implies
Y t,x;u
t ≥ inf

v∈Ut[t,T ]
Y t,x;v
t .

Thus, V (t, x) ≥ infv∈Ut[t,T ] Y
t,x;v
t . Therefore, V (t, x) = infv∈Ut[t,T ] Y

t,x;v
t . □

Lemma 4.2 Assume (H4) and (H5). Then there exists a constant C depending on such that, for each
u ∈ U [t, T ] and ξ, ξ′ ∈ L2(Ft;H),

E
[

sup
t≤s≤T

(
∥Xt,ξ;u

s −Xt,ξ′;u
s ∥2H + |Y t,ξ;u

s − Y t,ξ′;u
s |2

)
+

∫ T

t

|Zt,ξ;u
s − Zt,ξ′;u

s |2ds
∣∣∣Ft

]
≤ C∥ξ − ξ′∥2H ; (4.3)

E
[

sup
t≤s≤T

(
∥Xt,ξ;u

s ∥H2 + |Y t,ξ;u
s |2

)
+

∫ T

t

|Zt,ξ;u
s |2ds

∣∣∣Ft

]
≤ C

(
1 + ∥ξ∥2H

)
. (4.4)

Proof. We only prove the second one, and the first one can be handled similarly. From the basic estimate
for SEEs (see (2.24) and the inequality after it in [27]), we have

E
[

sup
t≤s≤T

∥Xt,ξ;u
s ∥H2

∣∣∣Ft

]
≤ CE

[
∥ξ∥2H +

∫ T

t

∥a (s, 0, us) ∥2Hds+
∫ T

t

∥b (s, 0, us) ∥2Hds
∣∣∣Ft

]
≤ C

(
1 + ∥ξ∥2H

)
.

Then from the basic estimate of classical BSDEs, we obtain

E
[

sup
t≤s≤T

|Y t,ξ;u
s |2 +

∫ T

t

|Zt,ξ;u
s |2ds

∣∣∣Ft

]
≤ CE

[
∥ξ∥2H +

(∫ T

t

|g|
(
s,Xt,ξ;u

s , 0, 0, us
)
ds
)2∣∣∣Ft

]
≤ C

(
1 + ∥ξ∥2H

)
.

This completes the proof. □

Lemma 4.3 Under (H4) and (H5), we have for each t ∈ [0, T ] and x, x′ ∈ H,

|V (t, x)− V (t, x′)| ≤ C∥x− x′∥H and |V (t, x)| ≤ C(1 + ∥x∥H).

Proof. Applying Proposition 4.1 and Lemma 4.2, we have

|V (t, x)− V (t, x′)| =
∣∣∣ inf
v∈Ut[t,T ]

Y t,x;v
t − inf

v∈Ut[t,T ]
Y t,x′;v
t

∣∣∣
≤ sup

v∈Ut[t,T ]

∣∣∣Y t,x;v
t − Y t,x′;v

t

∣∣∣
≤ sup

v∈Ut[t,T ]

{
E
[

sup
t≤s≤T

∣∣∣Y t,x;v
s − Y t,x′;v

s

∣∣∣2∣∣∣Ft

]} 1
2

≤ C∥x− x′∥H .
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The second inequality is obtained in the same manner. □

We first need the following preliminary result.

Proposition 4.4 Suppose (H4) and (H5). Then for each ξ ∈ L2(Ft;H), we have V (t, ξ) = ess infu∈U [t,T ] Y
t,ξ;u
t .

On the other hand, for each ε > 0, there exists an admissible control uε(·) ∈ U [t, T ] such that

V (t, ξ) ≥ Y t,ξ;uε

t − ε, (4.5)

Proof. We take a sequence ξm =
∑m

i=1 x
m
i IAm

i
such that E

[
∥ξm − ξ∥2H

]
→ 0 as m→ ∞, where {Am

i }mi=1 is
a Ft-partition of Ω and xmi ∈ H. Note that for s ∈ [t, T ],

(
Xt,ξm;u

s , Y t,ξm;u
s , Zt,ξm;u

s

)
=

( m∑
i=1

X
t,xm

i ;u
s IAm

i
,

m∑
i=1

Y
t,xm

i ;u
s IAm

i
,

m∑
i=1

Z
t,xm

i ;u
s IAm

i

)
.

Then we have

ess inf
u∈U [t,T ]

Y t,ξm;u
t = ess inf

u∈U [t,T ]

m∑
i=1

Y
t,xm

i ;u
t IAm

i

=

m∑
i=1

(
ess inf
u∈U [t,T ]

Y
t,xm

i ;u
t

)
IAm

i

=

m∑
i=1

V (t, xmi ) IAm
i

= V (t, ξm) .

(4.6)

By Lemmas 4.2 and 4.3, we have∣∣∣ ess inf
u∈U [t,T ]

Y t,ξm;u
t − ess inf

u∈U [t,T ]
Y t,ξ;u
t

∣∣∣ ≤ ess sup
u∈U [t,T ]

∣∣∣Y t,ξm;u
t − Y t,ξ;u

t

∣∣∣
≤ C∥ξm − ξ∥H ,

(4.7)

∣∣∣V (t, ξm)− V (t, ξ)
∣∣∣ ≤ C. (4.8)

Combining (4.6), (4.7) and (4.8), we get∣∣∣ ess inf
u∈U [t,T ]

Y t,ξ;u
t − V (t, ξ)

∣∣∣ ≤ 2C∥ξm − ξ∥H .

Then the desired result is deduced by letting m→ ∞.

Then we consider (4.5). From Proposition 11 in Chapter 1 of [9], we can find elementary function

ζ ′ =
∞∑
i=1

1Aixi such that

∥ζ ′ − ζ∥H ≤ ε

Then from Lemma 4.2 and Lemma 4.3, we have∣∣Y t,ζ;u
t − Y t,ζ′;u

t

∣∣ ≤ Cε,
∣∣V (t, ζ)− V (t, ζ ′)

∣∣ ≤ Cε.

For each xi, by Proposition 4.1, we can take ui ∈ U t[t, T ] such that

V (t, xi) ≥ Y t,xi;u
i

t − ε.
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Let u(·) =
∞∑
i=1

1Aiu
i(·). Then

Y t,ζ;u
t = Y t,ζ′;u

t + Y t,ζ;u
t − Y t,ζ′;u

t

≤ Y t,ζ′;u
t + Cε

=

∞∑
i=1

1Ai
Y t,xi;ui

t + Cε

≤
∞∑
i=1

1Ai
(V (t, xi) + ε) + Cε

≤ V (t, ζ ′) + Cε

≤ V (t, ζ) + Cε.

This completes the proof by noting that ε can be arbitrary. □

Proof of Theorem 2.10. We first prove V (t, x) ≥ infu(·)∈Ut[t,T ]G
t,x;u
t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ))

]
. Given any

u ∈ U [t, T ]. Note that

Y t,x;u(s) = h(Xt,x;u(T )) +

∫ T

s

k(r,Xt,x;u(r), Y t,x;u(r), Xt,x;u(r), u(r))dr −
∫ T

s

Xt,x;u(r)dw(r)

= Y t,x;u(t+ δ) +

∫ t+δ

s

k(r,Xt,x;u(r), Y t,x;u(r), Xt,x;u(r), u(r))dr −
∫ t+δ

s

Xt,x;u(r)dw(r), s ∈ [t, t+ δ].

Thus,
Gt,x;u

t,T

[
h(Xt,x;u(T ))

]
= Gt,x;u

t,t+δ

[
Y t,x;u(t+ δ)

]
. (4.9)

On the other hand, by the uniqueness of the solution to (2.18), we have

Xt,x;u(s) = Xt+δ,Xt,x;u(t+δ);u(s), s ∈ [t+ δ, T ].

Thus, on [t+ δ, T ],

Y t,x;u(s) = h(Xt,x;u(T )) +

∫ T

s

k(r,Xt,x;u(r), Y t,x;u(r), Xt,x;u(r), u(r))dr −
∫ T

s

Zt,x;u(r)dw(r)

= h(Xt+δ,Xt,x;u(t+δ);u(T )) +

∫ T

s

k(r,Xt+δ,Xt,x;u(t+δ);u(s), Y t,x;u(r), Zt,x;u(r), u(r))dr −
∫ T

s

Zt,x;u(r)dw(r).

So, from the uniqueness of solutions of BSDEs,

Y t,x;u(s) = Y t+δ,Xt,x;u(t+δ);u(s), s ∈ [t+ δ, T ]. (4.10)

Consequently,

Gt,x;u
t,t+δ

[
Y t,x;u(t+ δ)

]
= Gt,x;u

t,t+δ

[
Y t+δ,Xt,x;u(t+δ);u(t+ δ)

]
. (4.11)

From (4.9) and (4.11), we see that

V (t, x) = ess inf
u(·)∈U [t,T ]

Gt,x;u
t,T

[
h(Xt,x;u(T ))

]
= ess inf

u(·)∈U [t,T ]
Gt,x;u

t,t+δ

[
Y t,x;u(t+ δ)

]
= ess inf

u(·)∈U [t,T ]
Gt,x;u

t,t+δ

[
Y t+δ,Xt,x;u(t+δ);u(t+ δ)

]
.

(4.12)
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and

V (t, x) = inf
u(·)∈Ut[t,T ]

Y t,x;u(t)

= inf
u(·)∈Ut[t,T ]

Gt,x;u
t,T

[
h(Xt,x;u(T ))

]
= inf

u(·)∈Ut[t,T ]
Gt,x;u

t,t+δ

[
Y t,x;u(t+ δ)

]
= inf

u(·)∈Ut[t,T ]
Gt,x;u

t,t+δ

[
Y t+δ,Xt,x;u(t+δ);u(t+ δ)

]
.

By Proposition 4.4,

Y t+δ,Xt,x;u(t+δ);u(t+ δ) ≥ V (t+ δ,Xt,x;u(t+ δ)),

From the comparison theorem of the classical BSDE, we have

Gt,x;u
t,t+δ

[
Y t+δ,Xt,x;u(t+δ);u(t+ δ)

]
≥ Gt,x;u

t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ))

]
.

Thus taking infimum over u(·) ∈ U t[t, T ] on the both sides, we get

V (t, x) ≥ inf
u(·)∈Ut[t,T ]

Gt,x;u
t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ))

]
.

Then we prove V (t, x) ≤ ess inf
u(·)∈U [t,t+δ]

Gt,x;u
t,t+δ[V (t + δ,Xt,x;u(t + δ))]. Fix any u(·) ∈ U [t, t + δ]. From

Proposition 4.4, for any ε > 0, we can find an admissible control ū(·) ∈ U [t+ δ, T ] such that

V (t+ δ,Xt,x;u(t+ δ)) ≥ Y t+δ,Xt,x;u(t+δ);ū(t+ δ)− ε.

Since ũ(·) := u(·)I[t,t+δ] + ū(·)I(t+δ,T ] ∈ U [t, T ], from (4.12) and the comparison theorem of classical BSDE,
we get

V (t, x) = ess inf
u(·)∈U [t,T ]

Gt,x;u
t,t+δ

[
Y t+δ,Xt,x;u(t+δ);u(t+ δ)

]
≤ ess inf

u(·)∈U [t,T ]
Gt,x;ũ

t,t+δ

[
Y t+δ,Xt,x;ũ(t+δ);ũ(t+ δ)

]
= ess inf

u(·)∈U [t,T ]
Gt,x;u

t,t+δ

[
Y t+δ,Xt,x;u(t+δ);ū(t+ δ)

]
≤ ess inf

u(·)∈U [t,T ]
Gt,η;u

t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ)) + ε

]
.

Then from the a priori estimate of BSDEs,

V (t, x) ≤ ess inf
u(·)∈U [t,T ]

Gt,x;u
t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ))

]
+ Cε.

Letting ε→ 0, we obtain

V (t, x) ≤ ess inf
u(·)∈U [t,T ]

Gt,x;u
t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ))

]
.

Combining the above analysis, we obtain the desired result. □

Now we state the continuity property of V in t.

Proposition 4.5 Assume (H4) and (H5) hold. Then V is continuous in t.
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Proof. For each (t, x) ∈ [0, T )×H and δ ∈ (0, T − t], from Theorem 2.10, we have

V (t, x) = inf
u(·)∈Ut[t,t+δ]

Gt,x;u
t,t+δ[V (t+ δ,Xt,x;u(t+ δ))].

Then
|V (t, x)− V (t+ δ, x)| ≤ sup

u∈Ut[t,t+δ]

∣∣∣Gt,x;u
t,t+δ[V (t+ δ,Xt,x;u(t+ δ))]− V (t+ δ, x)

∣∣∣ .
For any u ∈ U t[t, t+ δ], from the definition of Gt,x;u

t,t+δ [·], we have

Gt,x;u
t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ))

]
= E

[
V (t+δ,Xt,x;u(t+δ))+

∫ t+δ

t

g
(
s,Xt,x;u(s), Y t,x;u(s), Zt,x;u(s), u(s)

)
ds
]
.

Then applying Lemma 4.3,∣∣∣Gt,x;u
t,t+δ

[
V (t+ δ,Xt,x;u(t+ δ))

]
− V (t+ δ, x)

∣∣∣
≤ E

[∣∣∣V (t+ δ,Xt,x;u(t+ δ))− V (t+ δ, x)
∣∣∣+ ∫ t+δ

t

∣∣∣g (s,Xt,x;u(s), Y t,x;u(s), Zt,x;u(s), u(s)
) ∣∣∣ds]

≤ CE
[∣∣∣Xt,x;u(t+ δ)− x

∣∣∣+ ∫ t+δ

t

(
1 + |Xt,x;u(s)|+ |Y t,x;u(s)|+ |Zt,x;u(s)|

)
ds
] (4.13)

Noting that

E
[

sup
t≤s≤t+δ

(
|Xt,x;u(s)|2 + |Y t,x;u(s)|2

)
+

∫ t+δ

t

|Zt,x;u(s)|2ds
]
≤ C(1 + ∥x∥2H),

we have by the Cauchy-Schwarz inequality that

E
[ ∫ t+δ

t

(
1 +

∣∣Xt,x;u(s)
∣∣+ ∣∣Y t,x;u(s)

∣∣+ ∣∣Zt,x;u(s)
∣∣ )ds] ≤ C (1 + ∥x∥H) δ

1
2 . (4.14)

Moreover, E
[∣∣∣Xt,x;u(t+ δ)− x

∣∣∣ → 0 due to Remark 2.8. This completes the proof. □

4.2 Proof of Lemma 2.6

In the proof, we denote by ε > 0 and γ > 0 two undetermined constants and for the sake of notation
simplicity, we use C1 to denote a generic constant independent of ε and γ, which may be different from line
to line. By the coercivity condition,

∥Bu∥H ≤ C1∥u∥V , for u ∈ V.

Then

2⟨Az(s) + a(s, z(s)), z(s)⟩∗ + ∥Bz(s) + b(s, z(s))∥2H
≤ 2⟨Az(s), z(s)⟩∗ + ∥Bz(s)∥2H + 2⟨Bz(s), b(s, z(s))⟩+ 2⟨a(s, z(s)), z(s)⟩∗
≤ −δ∥z(s)∥2V +K∥z(s)∥2H + C(K)∥z(s)∥V ∥b(s, z(s))∥H + 2∥a(s, z(s))∥V ∗∥z(s)∥V

≤ −δ∥z(s)∥2V +K∥z(s)∥2H +
δ

2
∥z(s)∥2V + C(δ)∥b(s, z(s))∥2H + C(δ)∥a(s, z(s))∥2V ∗

≤ −δ
2
∥z(s)∥2V + C1∥z(s)∥2H + C1∥b(s, 0)∥2H + C1∥a(s, 0)∥2V ∗ ,
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and from the quasi-skew-symmetry condition

|⟨Bz(s) + b(s, z(s)), z(s)⟩|2 ≤ 2|⟨Bz(s), z(s)⟩|2 + 2|⟨b(s, z(s)), z(s)⟩|2 ≤ C1∥z(s)∥4H + 2∥b(s, 0)∥2H∥z(s)∥2H
We have by the Hölder inequality and the Young’s inequality that

E[
∫ T

t

e−γs∥z(s)∥2(α−1)
H ∥a(s, z(s))∥2V ∗ds|Ft]

≤ ε2E[ sup
t∈[t,T ]

e−γs∥z(s)∥2αH ] +
C1

ε2
E[(

∫ T

t

e−
γs
α ∥a(s, z(s))∥2V ∗ds) α|Ft]

≤ ε2E[ sup
t∈[t,T ]

e−γs∥z(s)∥2αH |Ft] +
C1

ε2
E[(

∫ T

t

e−
γs
α ∥a(s, 0)∥2V ∗ds) α|Ft] +

C1

ε2
E[(

∫ T

t

e−
γs
α ∥z(s)∥2Hds) α|Ft],

and similarly,

E[
∫ T

t

e−γs∥z(s)∥2(α−1)
H ∥b(s, z(s))∥2H)ds|Ft] ≤ ε2E[ sup

t∈[t,T ]

e−γs∥z(s)∥2αH |Ft] +
C1

ε2
E[(

∫ T

t

∥b(s, z(s))∥2Hdt) α|Ft]

≤ ε2E[ sup
s∈[t,T ]

e−γs∥z(s)∥2αH |Ft] +
C1

ε2
E[(

∫ T

t

∥b(s, 0)∥2Hds) α|Ft] +
C1

ε2
E[(

∫ T

t

∥z(s)∥2Hds) α|Ft].

We can calculate

E[ sup
s∈[t,T ]

|
∫ T

s

e−γs∥z(s)∥2(α−1)
H ⟨Bz(s) + b(s), z(s)⟩ dw(s)|]

≤ C1E[(
∫ T

t

e−2γs∥z(s)∥4α−4
H |⟨Bz(s) + b(s), z(s)⟩|2 ds) 1

2 ]

≤ C1E[ sup
s∈[t,T ]

e−
γs
2 ∥z(s)∥αH(

∫ T

t

e−γs(∥z(s)∥2αH + ∥z(s)∥2α−2
H ∥b(s, z(s))∥2H)ds)

1
2 ]

≤ εE[ sup
s∈[t,T ]

e−γs∥z(s)∥2αH ] +
C1

ε
E[

∫ T

t

e−γs(∥z(s)∥2αH + ∥z(s)∥2α−2
H ∥b(s, z(s))∥2H)ds]

≤ 2εE[ sup
s∈[t,T ]

e−γs∥z(s)∥2αH ] +
C1

ε
E[

∫ T

t

e−γs∥z(s)∥2αH ds] +
C1

ε
E[(

∫ T

t

∥b(s)∥2Hds) α].

Applying Itô formula to e−γs∥z(s)∥2αH on [t, T ], we obtain

e−γs∥z(s)∥2αH + γ

∫ s

t

e−γu∥z(u)∥2αH du

= ∥z0∥2αH + α

∫ s

t

e−γr∥z(r)∥2(α−1)
H (2⟨Az(r) + a(r, z(r)), z(r)⟩∗ + ∥Bz(r) + b(r)∥2H) dr

+ 2α(α− 1)

∫ s

t

e−γr∥z(r)∥2(α−2)
H |⟨Bz(r) + b(r, z(r)), z(r)⟩|2 dr

+ 2α

∫ s

t

e−γr∥z(r)∥2(α−1)
H ⟨Bz(r) + b(s, z(s)), z(s)⟩ dw(s)

≤ ∥z0∥2αH + C1

∫ t

0

e−γs∥z(s)∥2(α−1)
H (−δ

2
∥z(s)∥2V + C1∥z(s)∥2H + C1∥b(s, 0)∥2H + C1∥a(s, 0)∥2V ∗) ds

+ C1

∫ t

0

e−γs∥z(s)∥2(α−2)
H (∥z(s)∥4H + ∥b(s, 0)∥2H∥z(s)∥2H) ds

+ 2α

∫ t

0

e−γs∥z(s)∥2(α−1)
H ⟨Bz(s) + b(s), z(s)⟩ dw(s).

35



Thus,

e−γt∥z(t)∥2αH + γ

∫ t

0

e−γs∥z(s)∥2αH ds+
δ

2
C1

∫ t

0

e−γs∥z(s)∥2(α−1)
H ∥z(s)∥2V ds

≤ ∥z0∥2αH + C1

∫ t

0

e−γs∥z(s)∥2(α−1)
H (∥z(s)∥2H + ∥b(s, 0)∥2H + ∥a(s, 0)∥2V ∗) ds

+ C1

∫ t

0

e−γs∥z(s)∥2(α−2)
H (∥z(s)∥4H + ∥b(s, 0)∥2H∥z(s)∥2H) ds

+ 2α

∫ t

0

e−γs∥z(s)∥2(α−1)
H ⟨Bz(s) + b(s), z(s)⟩ dw(s).

(4.15)

Taking supremum and expectation on both sides, we get

E[ sup
t∈[t,T ]

e−γt∥z(t)∥2αH ] + γE[
∫ T

t

e−γt∥z(t)∥2αH dt]

≤ C1(ε+ ε2)E[ sup
t∈[0,T ]

e−γt∥z(t)∥2αH ] + E[∥z0∥2αH ] + C1(1 +
1

ε
+

1

ε2
){E[

∫ t

0

e−γt∥z(t)∥2αH ds]

+ E[
∫ T

t

(∥a(s, 0)∥2V ∗) αdt] + E[
∫ T

t

(∥b(s, 0)∥2H) αdt]}.

Choosing ε small and then γ large, we obtain

E[ sup
t∈[t,T ]

∥z(t)∥2αH ] ≤ C E[∥z0∥2αH ] + E[
∫ T

t

(∥a(s, 0)∥2V ∗) αdt] + E[
∫ T

t

(∥b(s, 0)∥2H) αdt]. (4.16)

Now let α = 1 in (4.15), we obtain

∥z(t)∥2H +

∫ t

0

∥z(s)∥2H ds+

∫ t

0

e−γs∥z(s)∥2V ds

≤ ∥z0∥2H + C

∫ t

0

∥z(s)∥2H ds

+ C1

∫ t

0

(∥a(s, 0)∥2V ∗ + ∥b(s, 0)∥2H) ds+ C(α)

∫ t

0

e−γs⟨Bz(s) + b(s), z(s)⟩ dw(s).

Then

E[(
∫ T

t

∥z(s)∥2V ds)α]

≤ ∥z0∥2αH + CE
∫ T

0

∥z(s)∥2αH ds

+ CE
∫ T

0

(∥a(s, 0)∥2V ∗ + ∥b(s, 0)∥2H)α ds.

Combining with (4.16), we get the desired result.

4.3 Proof of Proof of Proposition 3.5

Proof. Fix any (t, x) ∈ [0, T ]×H and δ ∈ (0, T − t]. From Theorem 2.10, we know that

V (t, x) = ess inf
u(·)∈U [t,t+δ]

Gt,x;u
t,t+δ[V (t+ δ,Xt,x;u(t+ δ))] = inf

u(·)∈Ut[t,t+δ]
Gt,x;u

t,t+δ[V (t+ δ,Xt,x;u(t+ δ))]
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For any fixed control u ∈ U t[t, t+ δ], let X(s) := Xt,x;u(s) and let (Y,Z) be the solution of (2.21). Applying
Itô’s formula, we have that

V (s,Xs) = V (t+ δ,Xt+δ)−
∫ t+δ

s

[∂sV (r,Xr) + ⟨∂xV (r,Xr), a(r,Xr, u(r))⟩+ ⟨A∗∂xV (r,Xr), Xr⟩

+
1

2
⟨∂2xxV (r,Xr)b(r,Xr, u(r)), b(r,Xr, u(r))⟩]dr −

∫ t+δ

s

⟨∂xV (r,Xr), b(r,Xr, u(r))⟩dw(r), s ∈ [t, t+ δ].

Thus,

Y (s)− V (s,Xs) =

∫ t+δ

s

[k(r,X(r), Y (r), Z(r), u(r)) + ∂sV (r,Xr) + ⟨∂xV (r,Xr), a(r,Xr, u(r))⟩

+ ⟨A∗∂xV (r,Xr), Xr⟩+
1

2
⟨∂2xxV (r,Xr)b(r,Xr, u(r)), b(r,Xr, u(r))⟩]dr

−
∫ t+δ

s

[Z(r)− ⟨∂xV (r,Xr), b(r,Xr, u(r))⟩]dw(r), s ∈ [t, t+ δ].

(4.17)

We denote

Ŷ (s) := Y (s)− V (s,Xs) and Ẑ(s) := Z(s)− ⟨∂xV (s,Xs), b(s,Xs, u(s))⟩.

Then (4.17) can be written as

Ŷ (s) =

∫ T

s

[k(r,X(r), Ŷ (r) + V (r,Xr), Ẑ(r) + ⟨∂xV (r,Xr), b(r,Xr, u(r))⟩, u(r))

+ ∂sV (r,Xr) + ⟨∂xV (r,Xr), a(r,Xr, u(r))⟩+ ⟨A∗∂xV (r,Xr), Xr⟩

+
1

2
⟨∂2xxV (r,Xr)b(r,Xr, u(r)), b(r,Xr, u(r))⟩]dr −

∫ t+δ

s

Ẑ(r)dw(r), s ∈ [t, t+ δ],

which is a (real-valued) BSDE with Ŷ (s), Ẑ(s) being the solutions.

We consider another BSDE

Ŷ 1(s) =

∫ t+δ

s

[k(r,X(r), Ŷ 1(r) + V (r, x), Ẑ(r) + ⟨∂xV (r, x), b(r, x, u(r))⟩, u(r))

+ ∂sV (r, x) + ⟨∂xV (r, x), a(r, x, u(r))⟩+ ⟨A∗∂xV (r, x), x⟩

+
1

2
⟨∂2xxV (r, x)b(r, x, u(r)), b(r, x, u(r))⟩]dr −

∫ t+δ

s

Ẑ1(r)dw(r), s ∈ [t, t+ δ].

(4.18)

From the a priori estimate for classical BSDEs, we have

|Ŷ (t)− Ŷ 1(t)|2 ≤ δ

∫ t+δ

t

E
[

sup
t≤s≤t+ρ

∥X(r)− x∥2H
∣∣Ft

]
dr

≤ δ2E
[

sup
t≤s≤t+ρ

∥X(r)− x∥2H
∣∣Ft

]
= o(δ2).

We denote the generator in BSDE (4.18) by

F (s, x, y, z, v) := k(s, x, y + V (s, x), z + ⟨∂xV (r, x), b(r, x, v)⟩, v)
+ ∂sV (s, x) + ⟨∂xV (s, x), a(s, x, v)⟩+ ⟨A∗∂xV (s, x), x⟩

+
1

2
⟨∂2xxV (s, x)b(s, x, v), b(s, x, v)⟩.
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We consider the backward ODE (which is also a BSDE with solutions (Ŷ 0, 0) since the coefficients of it
is deterministic)

Ŷ 0(s) =

∫ t+δ

s

F0(r, x, Ŷ
0(r), 0)dr, s ∈ [t, t+ δ], (4.19)

where

F0(s, x, y, z) = inf
v∈U

F (s, x, y, z, v)

= ∂sV (s, x) + ⟨A∗∂xV (s, x), x⟩+ inf
v∈U

[⟨∂xV (s, x), a(s, x, v)⟩+ 1

2
⟨∂2xxV (s, x)b(s, x, v), b(s, x, v)⟩

+ k(r, x, y + V (s, x), z + ⟨∂xV (r, x), b(r, x, v)⟩, v)].

From the DPP, we have the following semegroup property:

V (t, x) = inf
u(·)∈Ut[t,t+δ]

Y (t).

Thus,
inf

u(·)∈Ut[t,t+δ]
Ŷ (t) = 0.

So, from Lemma 4.6,
Ŷ 0(t) = inf

u(·)∈Ut[t,t+δ]
Ŷ 1(t) = o(δ).

Letting s = t, and then divide by δ > 0 on both sides of (4.19) and letting δ ↓ 0, from the formula for uppper
limit integral, we get

F0(t, x, 0, 0) = 0,

which is just HJB eqation. The proof is complete. □

Lemma 4.6 For Ŷ 1(t) and Ŷ 0(t) defined as in the proof of Proposition 3.5. We have

inf
u(·)∈Ut[t,t+δ]

Ŷ 1(t) = Ŷ 0(t)

Proof. For each given u(·) ∈ U t[t, t+ δ], F (s, x, 0, 0, u(s)) ≥ F0(s, x, 0, 0), so by the comparison theorem of
classical BSDEs, Ŷ 1(t) ≥ Ŷ (t). On the other hand, by the measurable selection theorem and the compactness
of U, there exists (deterministic) measurable function ā : [0, T ]×H × R× R → U such that

F0(s, x, y, z) = F1(s, x, y, z, ā(s, x, y, z)), (s, x, y, z) ∈ [0, T ]×H × R× R.

We define u(s) = ā(s, x, Ŷ 0(s), 0). At this case, from the uniqueness of solutions of BSDEs, we have Ŷ 1,u(s) =
Ŷ 0(s), s ∈ [t, t+ δ], in particular, Ŷ 1,u(t) = Ŷ 0(t). □
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