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Relationship between maximum principle and dynamic
programming principle for recursive optimal control problem of
stochastic evolution equations

Ying Hu* Guomin Liu' Shanjian Tang*

Abstract

This paper aims to study the relationship between the maximum principle (MP) and the dynamic
programming principle (DPP) for recursive optimal control problem of stochastic evolution equations,
where the control domain is not necessarily convex and the value function can be non-smooth. By making
use the notions of the super-, sub-differentials and the conditional expected operator-valued BSIEs, we
establish the connection between the first and second-order adjoint variables in MP and the value funtion
in DPP. Moreover, the discussions in the smooth case are also presented.

Keywords. Stochastic evolution equations, nonconvex control domain, recursive optimal control,
maximum principle, dynamic programming principle.
AMS 2020 Subject Classifications. 93E20, 60H15, 49K27.

1 Introduction

Pontryagin’s maximum principle (MP) and Bellman’s dynamic programming principle (DPP) are two main
approaches in solving optimal control problems. So besides studying them separately, it is important to ask
what is the relationship between them (mainly the relationship between the adjoint variable in MP and the
value funtion in DPP, which play the key roles in these two results, respectively).

The relationship between the MP and the DPP for controlled ordinary differential equations was first
studied by Pontryagin, Boltyanskii, Gamkrelidze and Mishchenko [43], under the assumption that the value
function is continuous differentiable. By making use the notion of viscosity solutions, the relationship without
smoothness assumption on the value function was established by a series of works; see Barron and Jensen
[1], Clarke and Vinter [8] and Zhou [51]. After that, Cannarsa and Frankowska [3| 4] and Cernea and
Frankowska [5] generalized this result to control systems governed by partial differential equations. As far
as for controlled stochastic differential equations, Peng [38] first present a general (i.e., when the control
domain is nonconvex) MP for conventional utility case, by introducing a second-order adjoint process which
solves a matrix-valued BSDE, and the relationship was established in the smooth case by Bensoussan [2] and
in the nonsmooth case by Zhou [62, 53]. On the other hand, for the on the infinite dimensional stochastic
systems for nonconvex control domain under the conventional (non-recursive) utilities, [T}, [17, B0] studied
the MP, and Chen and Lii [6] recently established the relationship between the MP and the DPP for SEEs.
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The main objective of this paper is to establish the connection between the MP and the DPP for the
following controlled SEE with different initial time and values:

(1.1)

{dX(t) - [A(S)X(s) +a(s,X(s),u(s))}ds+ [B(S)X(s) —i—b(s,X(s),u(s))]dw(s),
X(0) ==z,

where w(+) is a cylindrical Q-Brownian motion, (A, B) are unbounded linear operators (a, b) are nonlinear
functions, and u(-) is a control process taking values in a given metric space. The diffusion coefficient
depends on the control variable and the control domain is not necessarily convex, and the value function is
not assumed to be smooth. The cost functional is defined by

J(@;u(-) =Y (1),

where Y% is the recursive utility subject to a BSDE:
T T
Y(s) = h(X(T)) —|—/ k(r,X(r),Y(r), Z(r),u(r))dr — / Z(r)dw(r), se€lt,T). (1.2)

The notion of a recursive utility in continuous time was introduced by Duffie and Epstein [12] and generalized
to the form of in Peng [40] and El Karoui, Peng and Quenez [14]. It represents a stochastic differential
formulation of recursive utility which is an extension of the standard additive utility with the instantaneous
utility. Stochastic recursive optimal control problems have found important applications in mathematical
economics, mathematical finance and engineering (see, e.g., El Karoui, Peng and Quenez [14]). When & is
invariant with (y, z), by taking expectation on both sides of , we get

J(z;u(-)) =E [h(X(T)) + /tT k(t, X (s), u(s))ds} :

and the stochastic recursive optimal control problem is reduced to the conventional one studied in [6].

As for the stochastic recursive optimal control problems for finite dimensional systems, Peng [40] first
obtained a local MP when the control domain is convex. Recently, Hu [22] obtained a general MP for the
stochastic recursive optimal control problem, which solves a long-standing open problem proposed by Peng
[41] in the stochastic control theory; on the other hand, Peng [39, 49] obtained the DPP for the recursive
controlled systems and introduced the generalized Hamilton-Jacobi-Bellman (HJB) equation. Concerning
the connection between the MP and the DPP for stochastic recursive optimal control problem of stochastic
differential equations, Shi [45] and Shi and Yu [46] investigated the local case in which the control domain
is convex and the value function is smooth; within the framework of viscosity solution, Nie, Shi and Wu
[33] investigated the local case when the domain of the control is convex; Nie, Shi and Wu [34] studied the
general case when the domain of the control is non-convex.

Recently, two of the authors [27] established the MP for the recursive optimal control problem of SEEs,
where the control domain is a general metric space (not necessarily convex). The present paper is a conse-
quentive work of that, which studies the connection between the MP and the DPP for the control system
(1.1). We consider this problem under the framework of variational frameworks, which are introduced in
Pardoux [35], [36] and further developed by Krylov and Rozovskii [26]) and Gyongy [20]. A main tool we use
in this paper is the operator-valued conditionally BSIE introduced in [27], which served as the second-order
adjoint equation. To carry out our purpose, we shall derive an [t6’s formula for the second-order condi-
tionally BSIE and the variational equations of the state equations with initial value perturbations, which
plays an important role in the derivation of the relationship. Apart from the fact that we consider the more
general recursive utility case, compared with the one in [6], our equation has an extra unobunded operator
in the diffusion term and the unbounded operators (in both drift and diffusion terms) can be time-varying.

The rest of this paper is organized as follows. In Section 2, we recall the MP for recursive control problem
of SEEs. In Section 3, we derive the DPP and present the relationship for MP and DPP non-smooth case.
We discuss the special smooth case in Section 4. In the appendix, some technical results are proved.



2 Preliminaries and problem formulation

In this section, we recall the maximum principle (MP for short) for the recursive optimal control problem
for stochastic evolution equations (SEEs for short); more details can be found in [27].

2.1 Conditionally expected BSIEs

We first present the notion of conditionally expected BSIEs, which will served as the second-adjoint equations
for optimally controlled stochastic evolution equations (SEEs).

2.1.1 Spaces and norms

Let (Q,F,P) be a probability space. Fix a terminal time T' > 0, let F := {F,;}o<;<7 be a filtration on
(Q, F,P) satisfying the usual conditions. We denote by || - | x the norm on a Banach space X. By £(X;Y),
we denote the space of all bounded linear operators from X to another Banach space Y, equipped with the
operator norm. We write £(X) for £(X; X).

Let H be a separable Hilbert space with inner product {-,-). We adopt the standard identification
viewpoint of £(H;R) = H. By M*, we denote the adjoint of an operator M. We denote by I; the identity
operator on H.

Given a sub-g-algebra G of F. For « > 1, we denote by L*(G, H) the space of H-valued G-measurable
mapping y with norm ||y|| e (g, iy = {E[||y[|%]} =, and by Lg(0,T; H) (resp. L2*(0,T; H), Ly**(0,T; H)) the
space of H-valued progressively measurable processes y(-) with norm ||y||re (o, r.) = {E[fOT g ()] dt]} =

T aqy 1 T all L .
(vesp. |yl 2.0,y = {EI(Jp ly(t)]|3dt) 5]} =, Iyl p2200mim = {EI(y Iy(t)[|rdt)>e]} 2= ). We write
L*(G), LE(0,T), Lg™(0,T) and Ly**(0,T; H) for L*(G,R), Lg(0,T;R), L¥*(0,T;R) and Ly>*(0,T;R),
respectively.

Since the operator space £(H) is not separable (see [2I, Solution 99]), we make use of the following
weak measurability notion (see, e.g., [25]) for random variables taking values in it. We say a mapping
Z : Q — £(H) is weakly G-measurable if for each (u,v) € H x H, (Zu,v) : Q@ — R is G-measurable. A
process Y : Q x [0,T] — £(H) is said to be weakly progressively measurable (resp. weakly adapted) if for
each (u,v) € H x H, the process (Yu,v) : Q x [0,T] — R is progressively measurable (resp. adapted).

By L%(G,£(H)), we denote the space of £(H)-valued weakly G-measurable mapping F with norm
Lo (G,8(H)) = {IE[HFH%(H)]}% Similarly, we denote by Lg (0,75 £(H)) (resp. L;:S‘U(O,T;S(H))) the

£ e,
space of £(H)-valued weakly progressively measurable processes F(-) with the norm || F]| L, (0.T;8(H) =

T a 1 T a1 .
{E[[, HF(t)HE(H)dt]}i (resp. ”F”L;;g(o,T;z:(H)) = {E[(/, ||F(t)||§(H)dt)2]}i). In the following, we shall

not distinguish two random variables if they coincide P-a.s. and two processes if one is a modification of the
other, unless otherwise stated.

Denote by L, the weak o-algebra on £(H) generated by all the sets in the form of
{z € &(H) : (zu,v) € A}, u,v € H, A€ B(R).
Then Z : Q — £(H) is weakly G-measurable if and only if it is measurable from (Q,G) to (£(H), Ly).

Similarly, Y : Q x [0,T] — £(H) is weakly progressively measurable if and only if it is measurable from
(Q % [0,T],P) to (£(H), L), where P is the progressive o-algebra on Q x [0, T].



2.1.2 Operator-valued conditional expectations

For Y € £5(H x H; L'(F)), we call an £5(H x H)-valued weakly G-measurable mapping Z the conditional
expectation of Y with respect to G, denoting it by E[Y'|G], if for each (u,v) € H x H,

Z(u,v) = E[Y (u,v)|G], P-as., (2.1)

meaning that Z coincides with the classical conditional expectation at all the test points (u,v).

Theorem 2.1 LetY € £o(H x H; L*(F)). Then the conditional expectation E[Y |G| exists and is integrable
(i.e., E[Y|G] € LL (G, £2(H x H))) if and only if the mapping (u,v) — E[Y (u,v)|G] € £2(H x H; L*(G))
satisfies the domination condition

‘E[Y(u,v)\g]‘ < glullglvlg, P-a.s., V(u,v) € H x H, (2.2)
for some 0 < g € LY(G). Moreover, such an E[Y|G] is unique (up to P-a.s. equality) and satisfies

<g, P-as. 2.3
SQ(HXH)_g a8 (2.3)

[Evig)

From £5(H x H) = £(H), we can also write (2.1) as, for weakly G-measurable Z taking values in
£(H) = £5(H x H) and Y € £5(H x H; L'(F)),

(Zu,v) = Z(u,v) = E[Y (u,v)|G], P-as., V(u,v) € Hx H. (2.4)

2.1.3 Operator-valued BSIEs
By a stochastic evolution operator on H, we mean a family of mappings
{L(t,s) € S(LX(Fy, H); L2(Fo, H)) : (L,5) € A}

with A = {(¢,s) : 0 <t < s <T}. We adopt a definition of the following formal adjoint L* for L: For any
fixed (t,s) € A and u € L*(Fs, H), define L*(, s)u by

(L*(t, s)u) (v) := (u, L(t,s)v) P-as., foreach v € L*(F;, H).

We consider a conditionally expected £(H)-valued BSIE (i.e., £(H)-valued BSIE in the conditional
expectation form):

T
P(t) = E[L* (1. T)EL(1.T) + / L*(t,5)f (s, Ps))L(t, 9)ds| 7], € 0,7, (2.5)
t
where the coefficients &, f and L are given and subject to the following assumptions:

(H1) There exists some constant A > 0 such that for each (t,s) € A and u € L*(F;, H), it holds that
L(t,s)u € L*(Fs, H),
E[IL(t s)uly | 7] < Allully,  P-as,

and (w,t,s) — (L(t, s)u)(w) admits a jointly measurable version.

(H2) ¢ € L2 (Fr, £(H)); the function f(w,t,p): Q x [0,T] x £(H) — £(H) is P ® L,/ Ly-measurable and

w

satisfies the Lipschitz condition in p with constant A > 0; f(-,-,0) € L%’w(o, T; £(H)).



Under the assumption (H1), for any n € L2 (Fs, £(H)) and (u,v) € H x H, we have L*(t,s)nL(t,s) €
S(H; £(H; LYN(Fy))) = £2(H x H; LY (F,)) and we can also write (L* (¢, s)nL(t, s)u)(v) = L*(t, s)nL(t, s)(u, v).
In particular, L*(t, T)EL(t, T) € £2(H x H; L*(Fr)).

For a g € £5(H x H; LL(t,T)), we define its integral ftT g(s)ds in a weak sense by

(/tTg(S)dS) (u,v) := /tT g(s)(u,v)ds P-as, V(u,v)€ H x H.

Then ftT g(s)ds € £2(H x H;L'(Fr)). Note that for any h € L, (t,T; £(H)), we have [t,T] 5> s —
L*(t,s)h(s)L(t,s) € Lo(H x H; L(t,T)) and the integral ftT L*(t,s)h(s)L(t,s)ds € £2(H x H; LY(Fr)) is
defined. Given any P € L%,w(o, T;£(H)). we have f(-, P(-)) € L§ (0, T; £(H)) and thus,

L*(t, T)¢L(t,T) + / ! L*(t,5)f(s, P(s))L(t, s)ds € £o(H x H; L*(Fr)). (2.6)

Definition 2.2 A process P € L%U,(O,T; L(H)) is called a solution of if for each 0 <t < T,
T
P(t) = E[L* (1. T)EL(1.T) + / L (t,5) /(5. P(S))L(t, $)ds| Fi] . Peas. 2.7)
t

We have the following well-posedness result on BSIEs. In the following of this paper, the constant C
may change from line to line.

Theorem 2.3 Let Assumptions (H1) and (H2) be satisfied. Then there exists a unique solution P to BSIE
. Moreover, for each t € [0,T],

T
IP(O3ay < C]E[HSH%(H) +/t ||f(570)||2£(H)d8‘ft}7 P-a.s., (2.8)
for some constant C depending on A and \.

Proposition 2.4 For some o > 1, suppose (H1), (H2) and

(H3) (& f(-,-,0)) € L2(Fr,£(H)) x L;:ia(O,T; L(H)) and there exists some constant A, > 0 such that for
each 0 <t <r <s<T andu € L*(F;, H), it holds that L(t,s) = L(t,r)L(r,s),

IFL‘[HL(t,s)u||j§?Y |Fi] < Apllullf P-a.s. and [t,T] 3 s+ L(t, s)u is strongly continuous in L**(Fr, H).

Let P be the solution of . Then, for each t € [0,T) and u,v € L**(F;, H), we have

(03

%EH (P(t + 8)u,v) — (P(t)u, v)

]:t} =0, P-a.s.
Proof. The proof is similar as that for Proposition 2.11 in [27] and we shall not repeat that. O

2.1.4 Evolution operators associated to forward SEEs

The formal solution of forward operator-valued SEEs is a typical example of stochastic evolution operator.

Let V' be a separable Hilbert space densely embedded in H. Denote V* := £(V;R), then V. C H C V*
form a Gelfand triple. We denote the dualization between V* and V' by (-, -)..



Let w := (w(t))i>0 be a one-dimensional standard Brownian motion with respect to F. Consider the
following linear homogeneous SEE on [t, T:

{dutvuo(s> = A(s)ub (s)dt + B(s)u' (s)dw(s), s € [t,T], (2.9)

ubuo(t) =y,

where ug € L?(F;, H) and (A, B) : [0,T] x Q — £(V;V* x H).

Remark 2.5 We only write the one-dimensional Brownian motion case for simplicity of presentation. With
direct modifications, the results throughout this paper still hold for the more general case that w is a Hilbert
space K-valued cylindrical Q-Brownian motion (including multi-dimensional Brownian motion, finite-trace

Q-Brownian motion, cylinderical Brownian motion as special cases) and the integrands f takes valued in the
Hilbert-Schmidt space L£2(Q2 (K), H); see [29, 28, 132] for more discussions on this direction.

We make the following assumption.

(H4) For each u € V, A(t,w)u and B(t,w)u are progressively measurable and satisfying: There exist some
constants 6 > 0 and K > 0 such that the following two assertions hold: for each ¢,w and u € V,

(i) coercivity condition:

2(A(t, wyu, u)s + |B(twullfy < —6fully, + Kullf  and  [[A(tw)ul

ve < Kllullv;
(i) quasi-skew-symmetry condition:
(B(t,w)u,u)| < K|lul?
From [26], Equation (2.9) has a unique solution u*“0(-) € L&(¢,T;V) N Sg(¢,T; H), where S2(¢,T; H)

is the space of adapted H-valued processes y with continuous paths such that Elsup,< < [ly(s)[|F] < oc.
Through this solution, we define a stochastic evolution operator L4 g as follows:

Lap(t,s)(ug) :=u'"0(s) € L*(Fs, H), fort<s<T andug € L*(F;, H). (2.10)

From the basic estimates for SEEs, it satisfies the assumptions (H1) and (H3), for any o > 1. Thus, in
virtue of Theorem the £(H)-valued BSIE

P(t) = E|Ly 5(t, T)La (L T) + /t L5 () f(s, P(s)) Lap(t s)ds| 7], t e [0,7], (2.11)

has a unique solution P € L]%w (0,T; £(H)).

In the following, we shall always assume that the filtration F = (F;)o<i<7 is the augmented natural
filtration of Brownian motion (w(t))¢>o.
2.2 A priori estimates for SEEs
Consider the following SEE

{dz(s) = [A(s)z(s) + a(s, z(s))]ds + [B(s)z(s) + B(s, z(s))]dw(s), se€[t,T], (2.12)

z(t) = zo,

With a > 1, we made the following assumptions.



(A1) The function (a,b) : [0, TJ xQx H — V*x H satisfies, for each z € H, a(-, -, 2), b(-, -, z) are progressively
measurable, a(-,-,0) € LF’QO‘ (t, T;V*), b(-,-,0) € LIQF’Qa(t, T; H), and there exists a constant K > 0 such
that for almost all (t,w) € [0,T] x Q and all 2,2’ € H,

la(t, =) — a(t, 2)]

ve + [1b(t,2) = b(t, 2| < K|z = 2'[|ar-
The proof of the following lemma is similar to Lemma 4.4 in [27] and is put in the appendix.

Lemma 2.6 Assume (H4), (A1) hold and zo € L**(F;, H). Then there is a constant C > 0 depending on
6, K and « such that

B[ sup [l2(s)l |73] + E[( / CelR )|
< o{lolty +B[( [ 1ats.0-a)" + ([ 1 0ls) 7]} s

We first present an continuity estimate of SEEs in ¢, which will be needed later.

(A2) The function (a, b) : [0, T] xQx H — V* x H satisfies, for each z € H, a(-, -, 2), b(-, -, z) are progressively
measurable, a(-, -, 0), b(-,-,0) are bounded, and there exists a constant K > 0 such that for almost all
(t,w) €[0,T] x Q and all 2,2’ € H,

la(t, =) — a(t, 2)|

ve + 1100t 2) = b(t, )|l < Kllz — ||
Lemma 2.7 Suppose (H4), (A2) and 29 € L**(F;, V). Then for p < T —t,

E| sup |[z(s) - 20|37y
t<s<t+p

]-'t] < c(1+ ||z0\|2va)pa, P-a.s.,
where C > 0 is a constant depends on §, K and a.
Proof. We denote
Then on [t, T,
2(s) = /:[A(r)z(r) + a(r, z(r))]dr + /:[B(r)z(r) + b(r, z(r)))dw(r)
= /tS[A(r)é(r) + Azo + a(r, &(r) + zo)]dr + /ts[B(r),%(r) + Bzo + b(r, 2(r) + 2o)]dw(r).
So from Lemma [2.6

E[ sup [[2(s)]5 ds

t<s<t+p

7 < C’IE[(/;JFP A z0 + a(r, z0) 3 dr ) |7
+ cm[(/jﬂ 1B(r)z0 + b, z0) )17

1 e 2«
<ot [ @ al¥ar
t

< O+ |20l2)p", P-as.



Remark 2.8 It seems hard to prove such a kind of estimate if zog € H. At this case, we can only show that

E[ sup |l2(s) = 20llF |Fi] = 0, P-as., asp Lo,

t<s<t+p

This follows trivially from the continuity of z with respect to s in the H-norm and the dominated convergence
theorem.

2.3 Stochastic maximum principle

Consider the following controlled SEE:

{dX(t) = [AM)X (1) + alt, X (1), u() |t + [BOX () +b(t, X (1), u(t)) | duw(?), (2.13)

X(0) = o,

where zg € H,
(A,B):[0,T] = £(V;V* x H)

are unbounded linear operators satisfying the coercivity and quasi-skew-symmetry condition (H4) and
(a,b) : [0,T)x HxU — Hx H

are nonlinear functions. Define the cost functional J(-) as

J(@,u(-) = y(0),

where y is the recursive utility subject to a BSDE:

T T
Y (t) = h(X(T)) —l—/t k(s, X(s),Y(s), Z(s),u(s))ds —/t Z(s)dw(s). (2.14)
Here,
E:[0,T]xHxRxRxU—=R and h:H —R.

The control domain U is a separable metric space with distance d(-, -). By fixing an element 0 in U, we define
the length |u|y := d(u,0). We define the admissible control set

T
U, T) := {u :[0,T] x Q@ — U is progressively measurable and E[/ |u(t)|%dt} < o0, for each a > 1}.
0

For ¢t € [0,T), we define similarly U[t, T).

The optimal control Problem (S,) is to find an admissible control u(-) such that the cost functional
J(x,u(-)) is minimized at @(-) over the control set U[0,T] :

Jaa() = inf ().

We make the following assumption for a, b, h and k.

(H5) a, b, h, k are twice Fréchet differentiable with respect to (x,y,z2); a, b, k, az, by, Dk, azz, brs,
D2k are continuous in (x,v, z,u), where Dk and D%k are the gradient and Hessian matrix of k with
respect to (x,v,2), respectively; ay, by, Dk, Gzz, bys, D?*k, hye are bounded; a, b are bounded by
C(1+ [z + lul) and k is bounded by C(1 + [zl + lyl + 12| + ulo)- lla (s, 0,1,) 1, b (5, 0,14,) 1
are bounded by C.



We introduce the following simplified notations: for ¢ = a, b, az,b;, aze, by and v € U, define

D) = (6, X (1), a(t),  dp(tv) = v(t, X(t),v) — ¥(t)

and

A:=A+a,, DB:=DB+b,.

Consider the following first-order H-valued adjoint backward stochastic evolution equation (BSEE for
short, and the well-posedness result is referred to [10]):

{ —dp(t) = { [A*(t) + Ky () + kz(t)B*(t)} p(t) + [B*(t) + kz(t)} q(t) + kz(t)}dt —adw(t), g 45
p(T) = ha(X(T)),

and the following second-order £(H)-valued adjoint BSIE

T
P(t) = ]E{E*(t,T)hm(X(T))I:(t,T) + /t L*(t,8)(ky(s)P(s) + G(s))L(t, s)ds

]-"t}, 0<t<T, (2.16)

where

B(t) = o(t, X (1), Y (t), Z(t),u(t)), for ¢ = ky,ky, ks, Dk,
kz(s))Q k.(s)
8

2

L(t,s) := Lz 5(t,s), for A(s):= A(s) + L(S)B(s) ¢ I; and B(s) := B(s) + 1,

7 2
(), B*(t)p(t) + q(t)], [1a, p(t), B* (t)p(t) + Q(t)]) + (p(t), Gga(t))

+ k2 ()(p(t), bua (1)) + (a(t), boa (1))
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The maximum principle is stated as follows.

Theorem 2.9 Suppose (H4) and (H5). Assume that X(-) and (Y (-), Z(-)) are the solutions of SEE
and BSDE corresponding to the optimal control u(-). Denote by processes (p,q) € L2(0,T;V x H)
and P € L%w(O,T;Q(H)) the solutions of BSEE and BSIE , respectively. Then

inf {H(t, X(0), 7 (2), Z(2), v,(6), (8)) — (8, X0, V(0), Z(2),a(t), p(0), a(t)) o
2.17

+ %(P(t)(b(t, X (t),v) — b(t, z(t),u(t))),b(t, X (t),v) — b(t,X(t),a(t)))} =0, P-as. ae.,

where the Hamiltonian

7-t(t7 x? y7 z7v7p7 q) = <p7a<t7x)v)> + <q7 b(t? ‘T7 v)) + k(t’ x7y7z + <p’ b(t7l‘7v) - b(t7)_((t)7a(t))>7v)7
(t,w,z,y,2,0,p,q) €[0,T] xAx HxRxRxU x H x H.

2.4 Dynamic programming principle

For any given (t,z) € [0,7] x H, we consider the following controlled SEE with different initial time and
values:

dxXPT(E) = [ A()XEE(s) + als, X0 (s),uls)) [ ds + [ Bs)XO(s) + b(s, X0 (s),u(s)) | dus),
XtTu() =g
(2.18)

The cost functional is defined by
J(t,zyu(t)) = YE5U(t),



where Y% is the recursive utility subject to a BSDE:

T T
Yot (s) = h(XBT(T)) + / R, X555 (), Y055 (), 257 () () dr = / Z8 (r)dw(r), s € [t T].
’ ’ (2.19)
The optimal control problem (Problem (S;,)) is to find an admissible control @(-) such that the cost

functional J(¢,x;a(-)) is minimized at @(-) over the control set U[t,T] :

J(t,z;u(-)) = u(?fgb}EfT]J(t%;u('))

Note that when ¢ = 0, (S ) reduces to (S;), and (X5%4(s), YE¥u(s), ZH%4(s)) = (X (s), Y (s), Z(s)).
We define the value function

Vt,z) = uf)sésbjﬁ)fT]J(t,x;u()), (t,z) € [0,T] x H. (2.20)

We define U![t, T| the space of all U-valued (F!);<s<r-progressively measurable processes on [t, T], where
Ft is augmented natural filtration of (w(s) — w(t))s>¢. Then for each u € U'[t, T, it is easy to verify
that the solution (X"%%(s), YH%u(s), Zb%%(s))i<s<r of the system is (F!);<s<r-adapted. In particular,
(Xbou(t), Yhou(t), Zb%4(t)) € Ff, in particular of this, Y5%%(t) € F}, so it is deterministic. From standard
argument (see Proposition , we can see that, V (¢, z) is a deterministic function.

Given any initial data (¢, x), a positive constant § < T'—t and control u € U[t, t+4], for each n € L*(Fy15),
we define the following backward semigroup

Gyl =Y (t),

where (Y (s), Z(s)) solves the following BSDE
t+68 t46
Y(s)=n +/ k(r, X554 (r), Y (r), Z(r), u(r))dr — / Z(r)dw(r), s € [t,t+ 4] (2.21)

We have the following DPP for the above recursive optimal control problems (S; ) of SEEs. The proof
is standard and is given in the Appendix.

Theorem 2.10 For each (t,x) € [0,T] x H and 0 <6 < T — ¢, we have

Vit,z) = inf  GiGV(IE+6, XDt +6)) = inf - GPESIV(E+ 6, Xt +6))).
(t2) = sossinf GuilslV(E+9, (E+ o] = oinb 5 CraralVE+S (t+0))]

Remark 2.11 The DPP for nonrecursive case in the weak formulation can be found in [15]. We also note
that the DPP for recursive optimal control problems in the strong formulation of SEEs under the mild solution
framework is obtained in [6,[48]. Here we shall prove the strong formulation version of the variational solution
framework for the completeness of the paper. Moreover, compared with that result, our state equation can
have a unbounded oprator in the diffusion term and all the unbounded operators can be time-invariant, and
some technical assumptions, e.q., the separablitiy of the probability space, are not needed.

3 Main results

To carry out our purpose, we first derive an It6’s formula for the operator-valued conditionally expected
BSIEs.

10



3.1 An Itd’s formula for second adjoint equations

Given any t € [0,T] and zg € L?*(F;, H). Consider the operator-valued BSIE

~ ~ T ~ ~
P(s) = B[ TIEL(T) + [ L (s, f(r P Es )

]—"s], set,Tl, (3.1)

and two forward SEEs in the form of

da(s) = [A(s)a(s) +71(s)|ds + [ B(s)a(s) +72(5)|du(s), s € [T, 33
z(t) =z,
where, for some 5 € L°(t,T),
~ ~ 2 ~
L(s,r):=Lj g(s,r) with A(s) = A(s) + @B(s) _P és>ld and B(s) := B(s) + @Id,
1,2c 2,2«
and v € Ly“%(t,T; H), v2 € Ly (t,T; H).
Then we have the following It6’s formula.
Theorem 3.1 Let Assumptions (H2) and (H4) be satisfied and for some o > 1,
(& £(+,0),€) € LT (Fr, £(H)) x Ly (8, T5 £(H)) x Li* (¢, T; H). (3:3)

Then

T T
(P()2(s),a(s))+os) = (@) al)+ [ (£ Pa(r), 2 +50)20) ds— [ Zrdutr), s € 1.7,

S S (3.4)
for a unique couple of processes (o, 2) € Lg(t,T) x Lf{a(t,T) satisfying, for some constant C' depend on A
and \ such that

Q=

sup (E[lo(9)°| 7] )" < Cunt0), (35)
([ 120Pa) 7]} < o, (36)
where
@)= {E[( [ nras) 7] B[ [ oy ar) 7]}
(B[ Imlaas) (5] + B[ [ Tnato as) [} el
and

pa(®) = ol + {E[( | Cin@lpds) |7 + B[ /tT Iy as) 7]}

Proof. We only prove the case of f = 0, and the general case can be treated similarly. We introduce a new
SEE

{da?(s) = A(s)@(s)ds + B(s)@(s)dw(s), se€ [t,T), 57)

z(t) = xo,

11



Then from Lemma for any a > 1,

7] < cofs] / (o)l ds) | 7] + B[ / a3 ds) | 7]}

2ae
E| sup |a(s) - #(s)lI3;
s€(t,T]

Moreover,

B s el 7] < c{ ol +E[( [ CInlas) |7 +E[( / el as) 17}

s€(t,T]

and )
E[ sup [#(s)5;

s€t,T]

F| < Cllaol

We have from Lemma 4.3 in [27] that

)\1(7‘)

E(s,r) = Ms)

L(s,r), foranyt<s<r<T,

with L(s,r) := La p(s,r) and A (s) := efo ~36°(dr+36(dw(n) We define

A(s) = elo = r)dr+B(r)dw(r)
Noting that A = A1 - A1, then
AT) .
P(s) = E[ )\((S))L (s,T)gL(s,T)‘fs]

From the definition of L(s,r), we have L(s,7)Z(s) = &(r). Thus,

(P(s)3(9).3(5)) = B[ (€105, T)a0), L T)a() | 7.] = B[ 30 o), s 7]
Then
(P(s)o().2(6)) + 0() = B[ 3 €olT), (D) 7] s € 11
where
a(s)E[i((f;@x( ).2(T >>]f}f [ .|z

11(8)+12( )

Note that, with denoting by o’ the Holder conjugate of «,

E[|3D)ea(r), o)) — (ear). 2| 7]

=) '(E[fo( ), 2(T)) — (€5(T), HD)I®

7))

12



Then
(E[n@r[7]) " <o (Bl €m).am) - @), ame|r)
< Cu (Bl 7)) ™ (Elllz(T) - &)i17]) * { (Bl 17]) ™ + (BlZD)]
<ade[( [ i) 1) +B[( [ Inatoll ) m]f
Loty +B[( [ 1l )] +B[( [ ity as) 17
<ad&[( [ neas) 5] +B[( [ Il ) 1E]}
/ I s ||Hds) 7] +E[( / e ds) 17} + lloly }

1
<ad( [ neas) 5] +B[( [ Il )R]}
t

7)"}

4
+llzoll s }

T 2a i
+a{E /\m My ds) "I, +E[(/ a3 ds) ™ 17} ol
t
=: Cp(1).

Similarly but yet more simply, we also have

(B[l

(E[loe)1[7])" < cmn.

Note that equation (3.9) is the explicit formula of the linear BSDE (3.4]) with solution ({(P(s)z(s),z(s)) +
o(s), 2(s)) € Lg(t,T) x Ly*(t, T). The uniqueness of (o, Z) in the equation (3.4) follows from the basic
results of BSDEs. We also have

th})é < Cuu(b).

Thus,

(B[l @), a(m)17]) " < 0 (Bl 1) ™ (Bl 1) ™

< c{llzolly, + {E[( / ' I (s}l ds) 17 + [ / e, ds)“m]}ﬁ}
=: Cus(t).

Thus, from the basic estimates of BSDEs, we obtain that

E[(/tT |Z(s)|2ds)%

We also need the following corollary of DPP.

ft} }é < Cus(t).

O

Lemma 3.2 If (XH®%(.), YE@u () Z6@9(.) () are optimal for Problem (Sy.), then for any § € [0,T —t],

V(t+ 8, XET0(t + 6)) = YETU(¢ + §), P-a.s.
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Proof. According to (4.10]), we have
o o t+6 ) ) ) t+6 )
YOS (s) = P (0) [ X ), V), 2 ) ) [ 2 r)du(r), s € e+,
We introduce a BSDE
) o t+6 ) ) ) t+6 )
Y (s) = V(t+0, Xt””;“(t—i-(S))—i-/ E(r, Xt’”;“(r),yt’x;“(r),zt’““(r),a(r))dr—/ 2T (rYdw(r), s € [t, t+6].
We also know that, from Proposition 4.4
YhE(t 4 §) = YHOXTTI DA 4 G) > V(14 0, XU (1 4+ 0)).
Then from the DPP and comparison theorem of classical BSDEs,
V(t,x) < Gyl [V(E+6, X550t + )] = yn=%(1) < VE59(1).

But V(t,z) = Y*%%(t). So, all the inequalities above are in fact equalities. Then from the strict comparison
theorem of classical BSDESs, it must holds

VTt 4+ 6) = V(t + 6, X" (¢ + 6)).

This completes the proof. [

3.2 Differential in spatial variable

Before stating the main result of this subsection, let us recall the notion of super and subdifferentials.

For v € C([0,T] x H) and (¢,x) € [0,T) x H, the second-order parabolic partial superdifferential of v
with respect to z is defined as follows:

D2 *u(t,z) = {(p, P)e H x S(H)

o(t,y) <v(t,x) + Py —2)m + %(P(y —z),y—a)u +o(ly—zf’), asy — :v}

where S(H) is the space of all symmetric (self-adjoint) bounded linear operators on H. Similarly, the
second-order parabolic partial subdifferential of v with respect to x is defined as follows:

D o(t,z) = {(p, P) e H x S(H)

o(t,) 2 o(t,2) + (py = 2) + 5 (Ply = ),y = o)+ oly — af?), a5y - 2},

We have the following result on the differential in the spatial variable.

Theorem 3.3 Assume (H1). Suppose (X(-),Y(-),Z(-),u(-)) are the optimal 4-tuple of Problem (S,) and
(), q(+), P(:) are the solutions of corresponding adjoint equations. Let V € C([0,T] x H) be defined as in
2.20)). Then

[p(0)} % [P(t), 50) © D2V, X(1), t€[0,T], Pas.

and
Di’_V(t,)_((t)) C {p(t)} x (=00, P(t)], te€]0,T], P-a.s.

14



Proof. Step 1: Variational equations. Fix any t € [0,T] and any 2! € H, let X" be the solution of the
following SEE on [¢,T] :

dxe'(s)
X ()

We denote #(s) := X*' (s) — X(s), s € [t,T] (In particular, Z(t) = X*(t) — X(t) = 2* — X(t)).Then

[A()X " (s) + a(s, X" (s),als))lds + [B(s)X* (5) + b(s, X*" (5), u(s))]duw(s),

xl

(3.10)

/ [A(2(r) + alr, X7 (1), 5(r) — a(r, X (). 5(r)) | dr
¥ / [B)a(r) +b(r, X7 (1), 5(r) — b(r. X (1), 5(r)) ] du(r)
/ A@)a(r) + a(r,&(r) + X (r), a(r) = alr, X (r), a(r) | dr
+/t [BE)(r) +b(r. () + X (), 5(r) — b(r, X (), 5(r)) dur)

From Lemma [2.6] we first have

E [ sup_[[4(s)]12 drm} <Cla)y, Pas (3.11)

t<s<T

With A, B being defined as in subsection 2.2, we can write the equation of Z(s) as:

(s) =a(t) + /:[A(r)i(r) +e1(r)]dr + /tS[B(r):i(r) + eo(r)]dw(r) (3.12)
and
(5) = a0+ [ [AGIA0) + 30a()E0). (1) + 2a(r)]
4 [ BI04 GBea(r)@0).3(0)) + 2x(r)] () Y
where

15



Step 2: Estimates of remainder terms of SEEs. We have following estimates: for any a > 2,

]E{/ les ()1 dri7:] = o (I6(0)I5) . P-as.
]E[/ llea(r ||Hdr|]-'t}: W%), P-as.
¢ (3.14)
E{/ les(r)l1 dri7:) = o | Pas.
B[ [ leatlfy dniF] = oI, Pas.

t

In the above and the whole paper, we use o(p) to denote a deterministic infinitesimal function as p — 0
(which may be different according to the context), and similarly, use O(p) to represent a deterministic
function that has the same order as p. We only present the proofs for the first and the third ones, and the
other two can be derived similarly. Applying ,

E[/tT ||el(r)||<;,dr|ft] :/T [Hsl( )||;;|;t]

/ / llaz (r,Z(r) + p2(r),u(r)) — @ (r)”?{dﬂﬂi(r)ﬂﬁlﬂ}dr

/t E[|l#(r) |12 | F/Jdr
< C )2

= o([|l2(t)[[ ), P-as.

and (maybe we need to impose the v-Holder continuity assumption on a,, here and in the proof of Theorem

5
E| / el arl 7]

= [ Bl 171

< /tTE [/ (1= ) lage (r,2(r) + (1), (1)) — g ()] (2(r), 2(0) |l F } o

IN

IN

< (/tTE[/l(l,u)?aHam (r, 2(r) + p(r), u(r)) — oz (r )IIQ(H)dm.Ft]dr / / 121 dulft}dr)%

0

| N

([ B[ [ oae 0209 + 180,50 ~ 00 0) 8,015 r) o015

([ / )l ar) 10

o(|& @)l P-as.

| N

‘204
H

Step 3: Duality relationship. Applying Itd’s formula to (p(r),Z(r)), from (3.13]) we get

~ T T
(p(s), &(s)) = (h(X(T)),&(T)) —I-/ Ji(r)dr —/ Jo(r)dw(r), s € t,T). (3.15)
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where
Ji(s) :=(ka(s) + ky(s)p(s) + k= (5)g(s), (s)) + k() (p(s), B(s)(s)) — (p(s), £3(s)) — {a(s), £4(s))

- %[( (8); (aaa () (E(s), 2(5))) + (a(5), baw () (2 (s), 2(5)))],

Ja(s) :=(p(s), B(s)(&(s))) + {a(s), 2(s)) + (p(s),€a(s))

+ 5 (P(8), baa () (#(5), #(5))).

Next, taking y1 = €1,v2 = €2, 29 = Z(t) in Theorem (3.1} from Step 2 we have

pa(t) = o(|&(t)l[3;) and pa(t) = O(2(1)]17).
Thus, applying Theorem [3.1]to P and 2 in (3.12)), we obtain
T
(P(5)2(s),2(s5)) + 0(s) = (hau(X(T))2(T), &(T)) +/ [y (s){P(s)Z(s), &(s))
(3.16)
+k.(s)Z(s) + (G( )]ds —/ Z(s)dw(s

for some processes (o, Z) € Lg(t,T) x L2 (t,T) satisfying

s (E[lots)"|£]) " = ollis(0) and [( [ CzPa) 7] = 0 0I). for any a > 2.

s€(t,T)
(3.17)
Therefore,
(1) 3(0)) + S0, 3(0)) + 0(8) = (ha(#(T)). (T))
T T
+ 5 (hea @(D)R(T), 5(T) + /t Ii(s)ds — /t I(s)du(s)
where

1(s) = (hals) + By (5)0(9) + K($)a(5),5(6)) + o (9)(p(9), BE() + 51y (5)P(5)
+ D(5) (L, (), B (5)p(5) + a(o)] [ (), B (5)p(5) +a()]) + s (5){p(s), B (61}, £(5))
+ 59 2(5) — (pls), 5(9)) — lals)s2a(s))

Iy(s) = (p(s), B(s)i(s)) + (a(s), &(5)) + (p(s), €a(s)) + 5 (), baa (5)(2(5), 2())) + 5 2 (5)-

Step 4: Variational equation for BSDE. We denote, on [t, T,

T
1

1 T 1 1 1 1
Y+ (s) = h(X* (T)) + / K(r, X7 (1), Y (r), 27 (), a(r)ydr — / 7% (r)dw(r).

S

Then we have

(5) — 50() = h(X* (1)) = A(X(D)) — (ha(K(D),#(T) — & (e X (D)D), #(T))
/ (X7 (), (1), 27" (1), 1)) = K X ),V (), 200, 0) = ()} = [ 2(r)dulr)
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where

where

E[{(hoa(T) = haa(X(T))2(T), &(T))| F]

= o= &
l

(Bl (T) = b (X (D)2, 111 F]) * (ELR(DIH1F])
(1)),

INA
S o
?

(

where

Paa( —2/ / fihe (X(T) + pvie(T) ) dpudy.

Moreover, it is direct to check that E| ft |J5(s)|ds|Fe] = o(]|&(t )||§I) We write J5(s) = Js(s) + J7(s), where
Jo(s) =(D*k(s)([La, p(s), B*(s)p(s) + a(s)], [La p(s), B (s)p(s) + a(s))E(s), &(s))
— (D?k(s)([La, p(s), B" (s)p(s) + a(s)], [La, p(s), B (s)p(s) + q(s)])i(s), &(s))
Ja(s) :=D?k(s)([(s), Is(s), I 2(8)); [#(5), 5(5), 12 (s)])
—(D?k(s)([La, p(s), B* (s)p(s) + a(s)], [La, p(s), B (s)p(s) + a()])i(s), &(s))



We only estimate Jg and the treatment for J; is similar. First, recall that (H4) implies (see the proof of
Proposition 3.5 in [27])

(00 Blssw)u)| = (B (5.0)v, w)] < C ol [wllr, for v, € V and (s,0) € 0.7] x 2. (320
By denoting | 52k(s) — D2(s)| = | D2K(s) — D?h(s)l s r1xksy 1ty e then have
([ Wstoias) 17 < CB[( [ 15K~ DRI + oo
+ I B 1)1 + I 1) ds)za]ft}
(El / #(s) 57 ds

T 1
<C(E[ [ 19%K(s) = D)1+ o) 7)°

uid

1
)2
1
2

+O(E[( / |D2k(s) = Dk(s)]llIp(s >||vds) m}) (B sup [12(5) 172D
(E[( / 15%(s) — Do) 3ds) | 7)) (8 (B sup [12(5) 172D

ft |J5(5)|ds)?*|F] = 0(||:i(t)||‘}f) Then from the a priori estimae for classical BSDEs,
~ 1 20 T A 2 @ o ~ 4o
sup E[lj(s) — 5o(s)* 7]+ E[( [ 12()2ds) 7] = olla)l}).
SE[t,T] 2 ¢
Taking into account of (3.17)) again,
T o A
swp E[li(s)17] +E[( [ 0)Pdt) 7] = ollato)lp).
s€[t,T) t

In particular,
1

Y7(1) = V() = (p(t), 3(8) + 5 (P)2(1), 2(1) + o(2(t)]17), P-as. (3.21)

Step 5: Completion of the proof. Let M be a countable dense subset of H. We can find a subset 2y C Q2
such that P(£9) = 1 and for each wp € Qy,

V(t, X (t,wo)) = Y (t,wo), Y’”l(t,wo) < V(t,zh), ) holds for all z! € M,
and p(s,wg) € H, P(s,wp) € £(H), Vs € [0,T].

Fix any wg € Q. Then for any x! € M,
Yxl(tvwo) =Y (t,wo) = (p(t,wo), &(t,wo)) + %(P(tawo)@(t’wo)’ Z(t,wo)) + 0(||93"(tawo)|@1)-
Thus
V(t,zt) = V(t, X(t,w0)) < (p(t,wo), &(t,wo)) +%<P(t,wo)5£(t,wo),fﬁ(tvwo» +o(||#(t,wo)||3,), for all ' € M.

Note that the term o(|#(t,wp)|?) in the above inequality depends only on the size |#(¢,wp)|? and is is
independent of x!. Therefore, from the continuity of V'(¢,-), we obtain that

V(t,a') — V(t, X (two)) < (pltwo), it wp)) +

5 (P(t,wo)Z(t,wo), Z(t,wo)) + 0(||33(t,w0)\|§1), for all ' € H.

(3.22)
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This proves that, from the definition of upper-differentials,
{p(t,wo)} x [P(t,,wp),00) C DTV (t, X (t,wp)).

Now we prove the second one. Fix any wy such that (3.22) hold. For any (p, P) € D>~V (t, X (t,wp)), we
have from the definition of subdifferentials and (3.22)) that

{vu@w—va@%»—@wtnﬂu%»—ymf—XuM@pﬁ—X@w»}
Ha:l fX'(t,wo)H

{ (p(t,wo) — pa* — X(t,wo)) + $((P(t,wo) — P)(

ot — X (t,w0) |,

0 < liminf
1 — X (t,wo)

2
ﬂ—X@%»f—X@%»}

< liminf

1 — X (t,wo)

Then it is necessary that .
ﬁ = p(t7w0)7p < P(t7w0)7

which implies the desired result. O

3.3 Differential in time variable

For v € C([0,T] x H) and (t,x) € [0,T) x H, the second-order parabolic partial superdifferential of v with
respect to t is defined as:

Dtlfv(t,x) = {7‘ € H‘v(s, z) <v(t,z)+r(s—t)+o(ls—t]), as s t}.
The second-order parabolic partial subdifferential of v with respect to ¢ is defined as:
Dtl;_v(t,x) = {r € H"U(S,.’L‘) >o(t,x)+r(s—t)+o(ls—t]), as s t}.

Theorem 3.4 Suppose (X(-),Y (-), Z(-),u(-)) are the optimal 4-tuple of Problem (S,) and p(-),q(-), P(-) are
the solutions of corresponding adjoint equations. Then

{[]@@%A@%Y@»<ﬂ0JﬂﬂX@»j’HNLX@%YGLZ@DNE
Dy V(#, X (1)) € (=00, =(p(t), A() X (1)) — (q(t), B() X (1)) + H

where

X@y+&tX()dﬂﬂ@%ﬂX@y+MuX@me».

Proof. Step 1. Take any 7 € (¢,T). Denote by X7 the solution of the following SEE in [r,T] :

{dst) — [A()X7(5) + alo X7, a(s)ldr + [B)X7() 4 blo, X7 (o) a( o), o
X"(r) =X().
We define . ~
& (8):=X"(s) — X(s), se[r,T).
Then on [r,T],



From Lemma 2.6
E| swp 1€ ()17

7' .S

fT} < Ol (7|22, P-as. (3.24)

Moreover, note that . -
&(7) = X7(r) — X(1) = X(t) — X(7).

We also note that since X € Ly*(0,T;V), so for a.e. t, X (t) € L**(F;, V). Then from Lemma we have
(for a.e. t)

E & (I3 |F] = E[1X(r) - XOIE|F] < ca+ |5 -4, Pas,
and so
E| sw 1603 |7] <B[E[ sw &0 |7 ]|7] < CE|IE (I |7] < Cir —d?, Pas. 3.25)

We can write the equation of &, (s) as

&) = &)+ [[AMED) +ar(0ldr + [ B ) + zalr)ldu(r (3.26)
and
&) =&+ [ MG+ 3asa()E (), &) + 2a(r)] ar
+ [ IBOED) + 350l (0, &) + a0 dulr) e
where
&1 (r) —/01< (r X () + e (r), (1)) = @ (1) &5 () ) dp
ea(r) = / b (1 X)), 10)) — B (1), 6 ()
es(r) /01(1_ ) [aze (r, XO) + 10 (), 0(0)) = s ()] (&0),6-(7)) d
ea(r) /Olu—u) (b (7 X (1) i (1), 0(r) ) = b ()] (é-(0), € (1)) di
Step 2. We have, for any o > 2,
E /Tnsl ()5 dr|F] < ()37 Pras.
/ jnea Pl drlF] < Clé (I3, Pras. -

E lles(r)||5 dr|Fe| = o(|T — t|%), P-as.

E

|
|
|
|

/T
f

lea(r)||5 dr|Fe| = o(jT — t|¥), P-a.s.
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Indeed, from the a priori estimate for SEEs and (3.25]), we obtain

E| / el ar\F;| = / E [lex (Il | 7] dr

T 1
< [ B[ Mol XD+ 0 (0.0 = () [ dil )1

< [ E[ieo

< C\é(D)3, P-as.,

.777} dr

.7-"7} dr

and

B[ sl arl 7

7—T
= [ B[leatrons |7 ar
/ g / -

IN

[amu X () + e (), () = g ()| (€0, ) [ dp 7] ar

2a % T 1 . da %
< / / Jae (X )+ 0, 50)) = e @ | ] ar) (/ E[/O &) "an|7)ar)
<o(|r —t|%), P-as.
Step 3. Applying It6’s formula to (p(r),&(r)), from we get
R B T T
(D61, :(5)) = (K@) D) + [ )= [ w5 € 11 (3.20)
where
T1(s) = (ka(s) + ky ()p(s) + k=(5)a(s), & (9)) + k= () (p(s), B(s)ér () — (p(s), €a(s)) = (a(s), ea(s))
—%K (5), (@ (5) (€7 (5), 6 (9))) + (a(5), baa (5) (€ (5), & (9)))],
Ta(s) :=(p(s), B(5)(&:(5))) + (a(), & (5)) + (p(s), €a(s))
5 0(5), Bra(5) ()., (5)-

Moreover, taking £ = 7, y1 = £1,v2 = €2, %9 = Z(7) in Theorem and according to Step 2,

Ml(T) = 1€ (M)} and pa(7) = [|-(7)-
Thus applying Theorem and (| , we have on [, T] that

(P)a(t), 2(t)) + o (t) = (hao(X(T))2(T), (T)) + / [ky (s)(P(5)2(s), &(s))

T (3.30)
+k.(s)Z(s) + Yds — / Z(s)dw(s
for some processes (o, Z) € LE(r,T) x Ly“(r,T) satisfying
sup (]E{|cr(s)|°‘ .FTDa <Clé(r and / |Z(s) |2ds |.7-" <o & (r )H , forany a > 2.
s€[r,T)
(3.31)
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Consequently, on [7,T]

(p(), (1)) + 5 {POE(D), #(0)) + 50(0) = (ha(X(T))

L& (1)
(ha Ix(s

) +
e EONET)ET) + [ Do)is = [ Blsduts)

i
where
L (t) = (ko () + ky (Dp(8) + ko (D)(8), & (D) + k= (£)(p(2), B(t)E- (1)) + %(*{ky(t) (t)
+D2 k()([La, p(t), B* (6)p(t) + a(0)], La, p(t), B*()p(t) + a(£)]) + k= (£)(p(t), ba (8)) }r (£), &7 (1))
k=(0)Z2(t) — (p(t), e3(t)) — (q(t),£a(t)),
I(t) = (p (t) B(6)E- (1)) + {a(t), & (£)) + (p(t), a (1))
(p(), b (1) (6- (), & (1)) + 52@).

NJM—\

Step 4. We denote, on [1,T],

Then we have

(5) — 50(s) = (X" (1) = h(X(T)) ~ (he (X (T)),2(T) + #(T) -

T _ _ T
+ / {h(r, X7(r), Y™ (1), Z7 (1), 0(5)) — (5, X (5), V(5), Z(5), u(s)) — T (5)}ds — / 5(s)du(s),

(3.32)
where
9(s) ==Y (s) = Y(s) = (p(s), & (s)) — %<P(S)fr(8),ff(8)>7
2(8) = Z7(s) — Z(s) — Ix(s).
Then from a similar analysis as in Step 4 in the proof of Theorem we obtain (for a.e. t)
E[g(r)|F] = o(|r —t]), P-as.
This is also
E[Y"(r) = V(r)|F] =E Kp(T), £(r) + %<P(T)g;(r), g}(f)>|ft] +o(|r —t)), P-as. (3.33)

On the other hand, note that, for any ¢ € L2(0,T;V*), from the Lebesgue differentiation theorem,
Bl [ o], |7] < =0 [ B[tk

=O(r —t]?), as 7 | t, for a.e. t, P-as.,
and for any v € L2(0,T; H),

Bl| [ s, |7] <[ [ w6
- [ =[woi|#]

=O(|t —t|), as T | t, for ae. t, P-a.s.

]:t} dr

7
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Thus, from the formulas of p(7) and &, (7), we obtain
E[{p(r),&-(T) ] = E[(p(t), &( \ft} - E[< (7) = plt), € |ft}

:]E{—<p(t),/tT[A( )X (r) + a(r, X (r) dr / (q(r) )+ b(r, X (r), u(r))])dr

+o(jt —t]), as 7 | t, for a.e. ¢, P-as.

d

Similarly, we also have
E[(P(r)&- (1), &(7))
- | [B)X () + b K (). 5(r)]dur), / [B)X () + b K (1), 5()]du(r) 7]
= B[P (7). & (7))~ (P() [ [B)X () + bl X(r), ) (r), & (7)) ]
+E[(P(r) [ [B)X() + bl (), 5()]du(r), (7))
- | [B)X () + bl K (), 5(r)]du(r), / [B)X () + bl K (1), 5(r)]du(r)) 7]

~E|(P(r) / AWX () + alr, X (), 5()]dr, & (D)1
+E[(P(r) / [B)X(r) + bl X(r), () Jdu(r). / TAWX () + alr, X (1), u(r)]dr)
< (e[1Ptiton 7)) (2] 7)) (e]

( [1P(r)]I2 ])(E[ /tT[B(r)X(r)+b(r,X(r),u(r) )dw(r HH th})i

H/ )+ a(r, X(r drH2 ‘]—}D%

o(|r —t|), as 7 | t, for a.e. t, P-a.s.,

]
e, |7])’

/tT[A( VX (r) + a(r, X (r), @ dr
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(e[
+(r—t)t (E[||P(T)3<H>Dé(E[[
(e[

Br)X(r) +b(r, X () 5(r)||

=o(|t —t|), as T | t, for a.e. ¢, P-a.s.,

and from Proposition

B(r)X (r) + b(r, X (1), a(r)) — B(t)X () — b(t, X (2), a(t))szr} )

- (P / (BOX O +ble. X0, aeDldu(r), [ (BOXO +ble, X0, ae)ldw(r)|7]

~ E[(P( / BOX(0) + b0, X (0, a(0)du(r), [ [BOX(0) 450, X0, 0(0) ()|
—E[(P(r (DX (0) + b(t, X (1), 8(1))]. [BO)X (1) + b(t. X (1) 5(t)))(w() — w(t))?| ]

< (E [(P(r) — PO)[BOX (1) +blt, X (£), a(t))], B)X (1) + blt, X (£),a(t)))*|F])* (B [(w(r) - w(t)'|F])
:O(|T*t|) aSTit P-as., for a.e. t.
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Moreover, from It6’s isometry, for any ¢,

E {<P(t) /tT[B(t)X(t) +0(t, X (t), a(t)]dw(r), /tT[B(t)X(t) +b(t, X (1), a(t))]dw(r)) | Fe
= (P(t)[B(t)X (t) + b(t, X (t),u(t))], B(t)X (t) + b(t, X (t),u(t))) (T —t), P-a.s.

= (Pt)[B(t)X(t) +b(t, X (t),u(t))], B&)X(t) + b(t, X (t),u(t))) (T —t) + o(|T — t|), for a.e. ¢, P-a.s.

[~ (p0). /t TAW)X () + a(r, X(r), ) Jar ) — /t (). [BOYX () + b X () ()] 7

(P)[B(t)X (t) + b(t, X (t),u(t))], B)X(t) + b(t, X (t),u(t))) (T —t) + o(|T — t|), for a.e. ¢, P-as.
(3.34)

+

N

Step 5. Let M be a countable dense subset of H. We can find a subset {29 C 2 such that P(€y) =1 and
for each wg € Qg,

V(t,X(t,wo)) =Y (t,wo), Y7 (1,w0) > V (7, X (t,wp)), (3.34) hold for all rational 7 > ¢, for almost all ¢, and
p(s,wo) € H, P(s,wy) € £(H),Vs € [0,T].

Fix any wy € Qo (we shall only consider the corresponding ¢ with full measure in the above, which may
depend on wp). Then

V(TvX(tawO) - V(th(tvwo)) =E [V(T,X(t)) - V(ta X(t’w0>)|~7:t]
< [YT(T — Y(t)|]—'t] (wo)
<E[Y7( Y Y

[~ (o), [ [ACIX () + alr, X0r),ar))Jr) / gl [BO)IX () + blr, X (), 5(r)] e

+ %(P(t,wo)[B(t, wo) X (t,wo) + b(t, X (t,wo), u(t,wo))], B(t,wo) X (t,wo) + b(t, X (t,wo), u(t,wo))) (T —t)
_|_

o(|7 —t|), along all rational 7 > ¢.

It follows that (we will omit wy for notational simplicity in the following)

Vi X(0) - V(e X0) < B[~ (o0, [ awar) - [ (atr). Bo)ar

g

+

E[f <p(t),/tTa(r,X(r),ﬂ(r))dr> f/t {q(r), b(r, X (r), a(r)))dr
(3.35)

= [={p(t), AW X (1)) — (a(t), BO)X (1)) + Ha(t, X (1), Y (1), Z(t)](7 — 1) + o(|7 — ).
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Then from the continuity of V, we obtain that this relationship holds for all 7 € (s,T]. This implies

—(p(t), A()X (1)) — (a(t), BO)X (1)) + Ha(t, X (1), Y (), Z(1)),00) € D"V (1, X(2)).

Now we prove the second part. Fix an w €  such that (3.35) holds for any 7 € (s,7]. Then for any
G € Dy V(t, X (1)), we have

{V(T,X(t)) —V(t, X(t) = q(r —t) }
T =1

{ (=(p(t), A()X (1)) — (a(t), B{O)X (1)) + Ha(t, X (1), Y (1), Z(t)) — @) (7 — 5) }

|7 — s

0 < lim inf

TIt

< liminf
Tls

Then, it is necessary that ¢ < —(p(t), A(t)) — (q(t), B(t)) + H1(t, X (t),Y (t), Z(t)). The proof is complete.
0

3.4 Smooth case

In this section, we study the relationship between MP and DPP under the special smooth case, i.e., we
assume that the value function V' (¢, z) is sufficiently smooth.

We first present a result of Hamilton-Jacobi-Bellman equation, which is needed later. Consider the
following Hamilton-Jacobi-Bellman (H-J-B) equation

OV (t,x) +(Az, 0,V (t,x)). + (02, V(t,2)Bx, Bx) + $(Pb(t,z,v), Bz) + (PBxz,b(t,z,v))+
inf e G(t,2,v, V(t,2),0:V (¢, ), 95,V (¢, z)) =0, (3.36)
V(T,z) = h(x).

where
1
G(t,z,v,r,p, P) = §<Pb(t,x, v),b(t, z,v)) + (p,a(t,n,v)) + k(t,z,r,b(t, z,v)*p + pBx,v),
(t,z,v,p, P) € [0,T) x HxU x Hx S(H).

(It seems we cannot handle the term (92, V (t,x) Bz, Bx) in the representation of PDEs, so maybe we need
to assume B = 0. Then the above PDE reads:

WV (t,x) +(A*0,V(t,x),x)+
infoer G(t, 2,0, V(t,2),0:V(t,2),07,V(t,2)) = 0, (t,z) € [0,T] x H, (3.37)
V(T,z) =h(z), x€ H.

where

1
G(t,z,v,r,p, P) = §<Pb(t,x7v), b(t,x,v)) + (p,a(t,n,v)) + k(t,z,r,b(t,z,v)"p,v),
(t,z,v,p, P) € [0,T) x HxU x Hx S(H).

In the following calculations, we shall assume B = 0.).

In the following of the paper, we assume that U is compact.

Proposition 3.5 Suppose that the value function V.€ CY2([0,T] x H), 8,V (t,z) € V, for almost all
(t,2) € [0,T) x V, and A*0,V(t,z) € C([0,T] x H; H), then it satisfies the H-J-B equation .
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Remark 3.6 In the recursive utility case, the corresponding H-J-B equation in the infinite dimension under
the mild solution framework is presented in [48]. Here we shall present a result in the variational solution
framework for the completeness of the paper, and the proof is given in the Appendiz.

Theorem 3.7 Assume (H1) and fiz x € H. Suppose (X(-),Y (-), Z(-),u(-)) are the optimal 4-tuple of Prob-
lem (Sz) and p(-),q(-), P(:) are the solutions of corresponding adjoint equations. Suppose that the value
function V€ CY2([0,T] x H) and 9,V (t,z) € V, A*0,V(t,2) € H, for almost all (t,z) € [0,T] x H. Then

— oV (t, X(t))
= (AX(1),0,V(t, X (1))« + G(t, X (1), V(t, X (1)), 0.V (t, X (1)), ua V (t, X (¢)), U(t))
= (AX(t),0,V(t, X(t)))« +325G(t X(),V(t,X(t),0.V(t,X(t),0..V(t,X(t)),v), P-a.s. a.ec.,
If moreover, V€ C13([0,T] x H) with Vi, € H, and 9.,V (t,z) € V, for all (t,2) € [0,T] x V. Then
p(t)— V(. X(t), P-as. ae.,
q(t) = 0z V(t, X (1))b(t, X (t),u(t)), P-a.s. a.e.

Proof. From Lemma we know that
V(t, X (1) = Y(t).
Applying Itd’s formula (see Lemma 2.15 in [37]), we obtain

dV (t, X(t)) = [0:V (t, X (1)) + (0. V (t, X (1)), a(t, X (t),a(t))) + (A*0, V (¢, X (), X (1))

[0
%(fth(t X(£))b(t, X (t), u(t)), b(t, X (£), u(t)))ldt + (0. V (¢, X (1)), b(t, X (t), u(t)))dw(t).

Then from the uniqueness of It6’s composition, we get

0V (8, X (1) + (0. V (1, X (1)), alt, X (8), u(t))) + (AX (1), 0,V (t, X (1))

+ %@mv(tvff(t))b(t, X(t),u(t)),bt, X (t),u(t)) = —k(t, X(1),Y(t), Z(t), u(t))
and - - ~
<81V(ta X(t))7 b(t’ X(t)v ﬂ(t))> = Z(t)
From the first equality in the above, we get

0V (t, X (1)) + (AX (1), 0,V (£, X(1)))s

+ G(t, X(t),a(t), V(t, X (1)), 0.V (t, X(t)), 0V (t, X(t))) =0 (3.38)

This proves the first one. The second equality follows from the fact that V is the classical solution of HJB
equation.

We then consider the second part. Taking into account (3.38) and the fact that V' is the solution to HJB
equation
OV (t,x)+ (A" 0,V (t,z),x) + G(t,z,V(s,x),0,V(t,x), 0p V (¢, ), u(t)) > 0,

we derive that

Vi(t,z) + (A"0.V(t,x),2) + G(t, z, V(t,2), 0,V (t, x), 0ua V (t, x), u(t))

attains its minimum at X (¢). Thus,

% {Vi(t,z) + (A" 0,V (t,x), x) + G(t,x,V (t,x),0,V (t,x), 0.V (t, ) ,u(t))} =0. (3.39)
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From (E39).

0=0V(t, X(t) + A*0uaV (£, X (£)) X (t) + A*0,V (¢, X (t))

+ 02V (8, X ()alt, X (), u(t)) + 0,V (t, X (t))an(t, X (t), u(t))
+lamV<tX<))b2<tX) u(t)) + OuaV (£, X ())b(t, () ()b (t, X (t), u(t))

+ fo 4 [y 0.V (8 X (1) + f(ba (8, X (£),u(t))0:V (t, X () + b(t, X (t), a(t))0uaV (£, X (1))

Then, applying It6’s formula to 9,V (¢, X (t)), we get

doV (t, X (t)) = 0uV (¢, X (1))dt + 0pa V (t, X (t))dX (t) + 8mV(t, X (t))b%(t, X (t), u(t))dt

= —[0,V(t, X)) A+ az + fy + f2be) + GMV( X(t))bb,
+ fo + [:00uaV(t, X (1)))]ds + 050V (£, X (£))b(t, X (1), u(t))dw.

Moreover, from the boundary condition in the H-J-B equation,
0.(T, X) = hy(X).

So we can note that p(t) = 9,V (t, X (1)), G(t) = 922V (¢, X (¢))b(t, X (t), @(t)) also solves the first-order adjoint
equation. Thus from the uniqueness of solutions, we obtain

p(t) = axv(tv X<t))a Q(t) = aw:vv(tv X(t))b<t7 X(t), ﬂ(t))
The proof is complete. [

4 Appendix

4.1 Proof of Theorem 2.10l

Proposition 4.1 Suppose the assumptions (H4) and (H5), then
V(t,z) = inf  YH¥U(p),
( I) u(-)elgt[t,T] ( )

Proof. Noting that U'[t,T] C U[t,T], so V(t,x) < infy( ey, Y (t). On the other hand, for any
u(-) € U[t, T], by Lemma 13 in [23], we know that there exists a sequence v taking the form

u™( vaz IA‘m.z’ s € [t’ T]’
where { A} is a Fy-partition of Q and v € Ut[t, T], such that
T
IE[/ lu™(s) — u(s)|%]dt} — 0, as m — oo.
t
From the a priori estimate of classical BSDEs,
m . 2
EHyt,w;u (t) _ Yt,;v,u(t)’ :|
r 2
S CE{/ ‘g(s7X§,x;u’ Y'St,ac;u7 Z;ﬁ,x;u7 ’LLZ,”) _ g(S7X§,x;u7 Y'St,ac;u7 Z;ﬁ,x;u’ Us)| d8:|
t

T
<E| / ™ (s) — u(s)[? di]

— 0, as m — oo.
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Note that for s € [¢,T],

m m m
t,xsu™ t,au™ tyasu™ ) t,xu™ t,xu™ t,xu™
(XS  Ybau™ gt )_(§ X0 L, SV S 2 IAl).

=1 =1 =1

Then,

m m
}/tt,a:;u — 2 :Y;t,w;v IA,L' > 2 : inf Y;t,;c;vIAi — inf Y;t,w;’u. (42)
— — veUt(t,T] veUt[t,T)]
1= 1=

This, combining (4.1)), implies
Y;t,a:;u > mf Y;t,x;v.

veUt[t,T]

Thus, V(t,z) > inf,eyer, ) Y0 Therefore, V(t,2) = inf,cyepr Yy 5. O

Lemma 4.2 Assume (H4) and (H5). Then there exists a constant C depending on such that, for each
weUt,T) and &,& € L*(Fi; H),

T
B sup (IX0 - X e - YIEnR) [ zie - i pas|m) < clle- € 43)
t

t<s<T

E[ sup (HX?&“
t<s<T

T
i+ V) + [ ze palE] < (14 el (14)

Proof. We only prove the second one, and the first one can be handled similarly. From the basic estimate
for SEEs (see (2.24) and the inequality after it in [27]), we have

T T
B sup X0 u?| 7] < CE[Iel + [ lla(s.0.0) s + [ 65,0, ) [3ds| 7]
t<s<T t t

<1+ el).

Then from the basic estimate of classical BSDEs, we obtain

T
]E[ sup |Yst’5?“|2+/ |Zt& st’]-'t]
t

t<s<T

< CE]l¢ll3, + (/tT ol (5. X55%,0,0,u,) ds) | 7]

<c(1+¢l).

This completes the proof. [

Lemma 4.3 Under (H4) and (H5), we have for each t € [0,T] and z,2’ € H,
V(t,2) = V(t2)] < Clla— o/l and |V(t,2)] < C(1+ |lz]1m).

Proof. Applying Proposition [£.1] and Lemma we have

. t.x: . b
inf V""" — inf YU
vEUL[t, T veUt[t,T]

t . t 7.
sup ‘}/t FE )/t » L3V
veUt[t,T]

|V(tv$) - V(t7xl>‘ =

IA

A

Y

. ’.
sup {E[ sup ‘Y*st,a:,v _ Y*St,z v
veUt[t,T] t<s<T

<Cllz—2||u.
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The second inequality is obtained in the same manner. [J

We first need the following preliminary result.

Proposition 4.4 Suppose (H4) and (H5). Then for each & € L*(Fy; H), we have V (t,€) = essinf, ey, 1] Ytt’E;“.
On the other hand, for each € > 0, there exists an admissible control u.(-) € U[t, T such that

V(t,€) > Y5 — ¢, (4.5)

2

a Fy-partition of Q and z € H. Note that for s € [¢,T],

Proof. We take a sequence ™ = Y, 27" I4m such that E [[|™ — ¢[|};] — 0 as m — oo, where {A"}]", is

m m m
; ; ; 2: [ }: ZEM 2: t,xi;
(Xz-fm,u7yst,£m,u,Z;,ém,u) _ ( X uIAT, Yo uIA;n7 zhe uIA;n).
=1 =1 1=1

Then we have

m

. t,&m; . t,xl"u
essinf Y, mit — egsinf Y, L qm
w€EU[t,T] w€eU[t,T] ’

1=

I

: tx";
(essmet i ")IA?L

i1 weU[t,T] (46)
=YV (t, ") Lam
i=1
=V (&™)
By Lemmas [4.2) and we have
ess inf Ytt’gm;" — essinf Ytt’&u’ < esssup Ytt’g’";u - Ytt’g;"
ueU|t,T] u€U[t,T) weU[t,T) (47)
< CIE™ =&l us
Ve -vne|<c (4.8)

Combining (4.6)), (4.7) and (4.8)), we get

essinf V"5 — V (¢,€) ’ <20|€™ = ¢&lln-
weU[t,T]

Then the desired result is deduced by letting m — oo.
Then we consider (4.5). From Proposition 11 in Chapter 1 of [9], we can find elementary function
o0
¢' = " 14,2, such that

i=1

I =Cllm <e

Then from Lemma [.2] and Lemma we have
v -y < e, [VI(5C) - VI, )| < Ce
For each x;, by Proposition we can take u’ € U'[t,T] such that

V(t, z;) > Yttxul —e.
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Let u(:) = Y 14,u’(+). Then
i=1

Y?;C;“ — Y?»C/;u + Y;t;Cu _ Y;/@C/;u
S )/ttvql;u + OE

= Z La; Yttx“uj +Ce
i=1
1a4,(V(t,2;) + &)+ Ce
i=1
V(t, (') + Ce
V(t,¢) + Ce.

IN

IN A

This completes the proof by noting that € can be arbitrary. O

Proof of Theorem We first prove V (¢, ) > infy, eyt Gifﬁs [V(t+ 6, X5"(t +6))]. Given any
u € U[t, T]. Note that

T T
YOS () = X)) 4 [ RG X ), Y ), X0 ), )~ [ X))
St+5 ’ t+0
= Y5H5U(E 4 §) + / E(r, X0%50(r), YE5U (r), X555 (1), u(r))dr — / X555 () dw(r), s € [t,t+ 6.

Thus,

Gijﬁ“ [R(X"™(T))] = Gi;fjg [YEo(t +0)]. (4.9)

On the other hand, by the uniqueness of the solution to (2.18)), we have
XUe(s) = XHOXTICON () s e [145,T]

Thus, on [t +6,T],
T T
YU () = ROEST)) 4 [ R XU ), Y ), X ) w20 ()
t,ziu X T t,z;u ) T
_ h(Xt+6,X o (t+5);u(T)) +/ /{;(T, DGR (H_é);u(s),yt’z;u(r),Zt’Z;u(T),u(T))dT _/ Zt,z;u(r)dw(r).

So, from the uniqueness of solutions of BSDEs,

yiai(g) = YHoX Tt gy g e [t 46,7 (4.10)
Consequently,
Grits Y ou(t +6)] = Gyl [y X 0 4 5)). (4.11)

From (4.9) and (4.11)), we see that

V(t,z) = essinf Gy [h(X5*(T))] = essinf Ghr (YO58 (¢ + 6)]

w(yeup,r or w(Heult,r) btto (4.12)
= essint Gyl [y X ).
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and
V(t,x) = inf  YH¥U(¢)
= inf  GPEY[R(XHTY(T
wyd o G [T

: t,x;u ,T5U
u()é2£[t 7] Gt,t+6 [Yt (t + 6)}

. t,ziu
A )

By Proposition [£.4]
Yt+6X wu(t+5 (t+5)>V(t+5 thu(t+6))

From the comparison theorem of the classical BSDE, we have

Griig[Y X (s 4 6)] > Gy V(e + 6, XM (¢ + 9))].

Thus taking infimum over u(-) € U*[t,T] on the both sides, we get

V(t,z) > o Eigg[t . Gyl V(e + 6, X157 (t + 8))].

Then we prove V(t,z) < (gfgg[[ltntﬁré}Gi fﬁ;[ (t + 0, Xb%%(t + §))]. Fix any u(-) € U[t,t + §]. From

Proposition for any € > 0, we can find an admissible control u(-) € U[t + J, T] such that
V(t 44, Xt,m;u(t + 5)) > Yt+§,Xt’m;“(t+§);ﬁ(t + 5) e

Since (-) := u(-)jt,446) + U(-) 445, € UL, T, from (4.12) and the comparison theorem of classical BSDE,
we get

_ t,x;u [y 48, X DT (146
Vi) =l G0 o)

< essinf G’

s
t46, X% (14-6);a
< Csinf Gy Y “(t+0)]
sl
[

¢,
= essinf G5

S Yt+6X U (E48)u (t—|—5)}

u(-)eult, T

< essinf GE’L_"(;

V(t+ 6, XDt +6)) +e].
u(-)EU[t,T)

Then from the a priori estimate of BSDEs,

Vitw) < essint Gys[V(+8, X"t +6)] + Ce.

Letting € — 0, we obtain

Vito) < essint G5V 0, X054 )]

Combining the above analysis, we obtain the desired result. O

Now we state the continuity property of V in ¢.

Proposition 4.5 Assume (H4) and (H5) hold. Then V is continuous in t.
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Proof. For each (t,z) € [0,T) x H and § € (0,T — t], from Theorem we have

V(t,z) = GrissIV(E+ 06, X5 (t +6))].

inf
u(-) EUL [t t40)

Then
Vta) =V (E+82) < swp  |GEESIV(E+ 6, X5t +8)] = V (t+6,)|
wEUt[t,t+8] ’

For any u € U'[t,t + ¢], from the definition of Gifﬁ; [-], we have

t+6
Gty [V (48, X+ 6)] = E[V(E+8, X0+ [ g (s, X05(9), Y5 (5), 27 (0),u(s)) d].
t

Then applying Lemma [£.3]

‘Gg;ﬁg [V(t 8, Xt (g4 5))} —V({t+, a?)‘

t+0

SEWw+&XWWHw»—wwwwﬂ+/ 9 (s, X150 (5), Y5 (5), 255 (5), u(s)) [ds|  (4.13)

t
+0

< CE[[xt w4 6) —al + [ (14 X 4 [y )| 4+ 207 )] ) s

t
t
Noting that

t+48
B[ sup (X Y )R) + [ 20 s)ds] < C1+ ol
t<s<t+6 t

we have by the Cauchy-Schwarz inequality that
t+5 .
B[ (L X0 + s+ |207s) ) ds] < € (1 L) . (4.14)
t

Moreover, E[’Xt"”?“(t +9)— x‘ — 0 due to Remark This completes the proof. [

4.2 Proof of Lemma 2.6

In the proof, we denote by ¢ > 0 and v > 0 two undetermined constants and for the sake of notation
simplicity, we use C; to denote a generic constant independent of € and ~y, which may be different from line
to line. By the coercivity condition,

|1Bullg < Cil|lu|ly, for ue V.
Then

2(Az(s) + als, 2(s)), 2(8))x + [ Bz(s) + b(s, z(s) | 31
< 2(Az(s), 2(5))« + [Bz(s)|[7; + 2(B2(5),b(s, 2(5))) + 2(a(s, 2(5)), 2(s))«
< =02V + Kll=(9)1F + CUE)2(s)llvIIbls, 2()) 1 + 2llals, 2(5))llv-2(s)llv

—8llz(s)II% + Kl=(s)lI + gIIZ(S)II%/ +CO)Ib(s, z(s)) I + C(9)lla(s, z(s))]

IN

2
v

IN

4]
—5 126 + Cullz(s) 17 + Cullbs, 0)lIz + Callals, )17,
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and from the quasi-skew-symmetry condition

[(Bz(s) +b(s, 2(s)), 2(s)) |* < 2(B2(s), 2(s))* + 2/(b(s, 2(s)), 2(s))|* < Cull=(s) |3 + 2[lb(s, 0)I[ [l=(s) |7
We have by the Holder inequality and the Young’s inequality that
r 2(a—1)
B[ 5 llats,2(5) - dsl 7
t
2 —vs 2 Gy T = 2 @
< eE[ sup e lz(s)IE]+ FEI([ e lals, 2(5))[[v-ds) “| 7]
telt,T) t
2 —s 2a & T 2 a & T 2 a
< eE[ sup e [lz(s)l7 | Fe] + EI([ e = [lals, 0)[[y-ds) “| 7] + ZE[( | ™~ [[2(s)ll7rds) | Fi],
te[t,T) g2 t € t
and similarly,

T T
B[ e a5 b, 2D sl F) < B sup eI+ B[ Ib(s,2(5)) ) 1
t te(t,T) € t

<[ swp eI 17]+ SB[ 0l R+ SEI 1 1
s€(t,T]
We can calculate
r 2 1
B | [ e I Bete) 4 60), (60 o))

< C1E[( / ™27 2(s)|| 35~ [(B2(s) + b(s), 2(s)) | ds) 2]
s T 1
< CE[ sup e = ||2(s) [ ( / e (L)1 + l12(s)I12021b(s, 2(5))[3)ds) 2]

set,T]
—s a C s a «
Sﬂwmf”MM”+1M/e”W@%+HUWQM@$M@M
selt, t
—s 2c Cl —vs 2c Cl 4 2 a
ﬂﬁwmf Izl + —E[ | e llz(s)llz" ds] + —E[( | [1b(s)l[zxds) *].
selt, t t

Applying It formula to e~ |[2(s)||2 on [t, T}, we obtain
o+ [ e du
= lzol3 +a / () A @A) + alr, 2(0)), 2} + [1B2(r) + b)) dr
+20(a - 1) / () A Ba(r) + b, 2()), () dr
+ 20 / ) A BAr) + bs, 2(5)), 2(5)) du(s)
< |lzoll3 +Ca / te-“||z<s>H%“”(—gnz(s)n% + Callz(s) 3 + Cullb(s, 0)[[3 + Cula(s,0)[-) ds
+Cy / e ) E D ((5) I + 15, 0) 3 () ) ds
+20a / e 2()[E (B(s) + b(s), 2(5)) ().
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Thus,

t

— « ! —vs « 6 —Ys a—
e =)+ / e lz(s) 37 ds + 5Ca / e 2[5 (s ds

t
< |lzoll7 + Cl/ e =)V (128113 + 16(s, 0) 1% + [lals, 0)%.) ds
. 0 (4.15)
—~s 2(a—2
+C / e 2(s) IR 1213 + 1505, 0) 1% 1 2() 1) ds
t
- 2‘“/ e |2(s) IR (Ba(s) + b(s), 2(s)) duw(s).
0
Taking supremum and expectation on both sides, we get
T
E[ sup e |lz(t)[|3] +v1E[/ e 2 (t)||7 dt]
te(t,T] t
2 —~t 2a 2c 1 1 ! —t 2a
< Ci(e+))E[ sup e fz()]7] + Elllz0ll7] + C1(1 + = + S )HE[ [ e |l2(t) |3 ds]
te[0,T) € € 0
T T
+E| / (lla(s, 0)[[2-) d] + E| / (Ib(s, 0)112,) ]}
Choosing ¢ small and then «y large, we obtain
T T
E[ﬁ:ﬁpﬂ [2(t)I7] < CE[||20]1 3] +E[/t (la(s, 0)[[3.) “dt] + E[/t (llb(s, 0)[|%) *dt]. (4.16)
Now let @ =1 in (4.15]), we obtain
t t
120113 + / 2(5) 13 ds + / e |2(s)|I3 ds
t
< Jlzoll? +C / I2(5) 1% ds
t t
€1 [ (ol 0) -+ [b(s,0)) ds+ C@) [ e (Ba(s) + b(s), 2(5)) (o).
0 0
Then
T
B[ 115)17 d)°)
t
T
< llz0]13 + CE / 2(s)128 ds
T
+ CE / (a5, OIIZ- + llo(s, 0))* d.
Combining with (4.16)), we get the desired result.
4.3 Proof of Proof of Proposition (3.5
Proof. Fix any (t,2) € [0,7] x H and § € (0,T — t]. From Theorem we know that
V(t,g) = essinf Gyyl[V(E+6, X" (t+06)] = inf  Gpyi[V(t+6, X" (t+6))]

u(-)EU[t,t+0] w(-)EUL[t,t+3]
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For any fixed control u € Ut[t,t 4 6], let X (s) := X"%%(s) and let (Y, Z) be the solution of (2.21)). Applying
1t6’s formula, we have that

48
Vs, Xs) =V({t+, Xiss) — / [0sV (r, X,) + {0,V (r, X,.), a(r, Xp, u(r))) + (A" 0,V (r, X)), X)

t+5
+ — {02,V (r, X,)b(r, Xy, u(r)), b(r, X, u(r)))]dr —/ 0,V (r, X)), b(r, X,y u(r)))dw(r), s € [t,t+ 0]

N —

t+0
Y(s) = V(s, Xs) = / [k(r, X (r), Y (r), Z(r),u(r)) + OV (r, X;) + (0. V (r, X;), a(r, Xr, u(r)))
+ (A*0, V(r, X,), X,) + %((ﬁx‘/(r, X)b(r, X, u(r)), blr, Xy, u(r)))]dr (4.17)
t46
—/ (Z(r) — (0, V (r, X,.),b(r, X, u(r)))]dw(r), s € [t,t+ 4]

‘We denote
Y(s):=Y(s) — V(s, Xs) and Z(s) := Z(s) — (0,V (s, X,), b(s, X5, u(s))).
Then can be written as

T
Y(s) = / [k(r, X (1), Y(r) +V(r,X,), Z(r) + (0, V (r, X,), b(r, X,, u(r))), u(r))
+ 0V (r, X)) + (0, V(r, X,), a(r, X, u(r))) + (A*0,V (r, X,), Xr)
t+5
+ %(ang(r, X)b(r, Xy u(r)), b(r, X, u(r)))]dr — / Z(r)dw(r), s € [t,t+ 4],
which is a (real-valued) BSDE with Y (s), Z(s) being the solutions.
We consider another BSDE
t+6 . R
Yi(s) = / [k(r, X (r), Y (r) + V(r,x), Z(r) + (0. V (r,2),b(r, z,u(r))), u(r))
+ 0V (r,x) + (0, V (r,x),a(r, z,u(r))) + (A" 0,V (r, ), x) (4.18)
t+5
+ %<8§wV(r, 2)b(r, z,u(r)), b(r, z, u(r)))]dr — / ZY(r)dw(r), s € [t,t +d].

From the a priori estimate for classical BSDEs, we have

N ~ t+6 2
|Y(t)—Y1(t)\2§5/t E[ sup [|X(r)— | |F]dr

t<s<t+p
2 2
<OE[ sup [|X(r) — 2|3 |F]
t<s<t+p
= o(6%).
We denote the generator in BSDE (4.18)) by

F(s,z,y,2,0) = k(s,z,y + V(s,x),z 4+ (0:V(r,x),b(r,z,v)),v)
+ 05V (s, ) + (0. V (s, x),a(s, z,v)) + (A*0,V (s, z), z)

OV (5,205, ,0), (5,7, 0).
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We consider the backward ODE (which is also a BSDE with solutions (Y, 0) since the coefficients of it
is deterministic)

t+0
PO(s) = / Fo(r,a, 7O(r), 0)dr, s € [t,¢ + 3], (4.19)
where

Fo(s,x,y,z) = Uilel[fJF(S,iﬂ,y,Z,U)

=0V (s,x) + (A*0,V(s,x),z) + 325[<8w\/(s,x),a(s,ac7v)> + %<8§$V(s, z)b(s, x,v),b(s, z,v))
+k(r,z,y+V(s,x), 2+ (0. V(r,z),b(r,xz,v)),v)].

From the DPP, we have the following semegroup property:

Vit,z) = Y (t).

inf
w()EUL [t t+0]

Thus,

inf y
u(-)EUt[t,t+6]
So, from Lemma [4.6 X
YOt)=  inf
u(+)EUL[t,t+6]

Letting s = ¢, and then divide by ¢ > 0 on both sides of (4.19) and letting 6 | 0, from the formula for uppper
limit integral, we get
Fy(t,z,0,0) =0,

which is just HIJB eqation. The proof is complete. O

Lemma 4.6 For Y! (t) and ?O(t) defined as in the proof of Proposition|3.5. We have

inf  Y(t)=Y'@#
u(')EZI/{rtl[t,t-&-é] *) ()

Proof. For each given u(-) € U'[t,t + 6], F(s,,0,0,u(s)) > Fo(s,,0,0), so by the comparison theorem of
classical BSDEs, Y'1(t) > Y (). On the other hand, by the measurable selection theorem and the compactness
of U, there exists (deterministic) measurable function a : [0, 7] x H x R x R — U such that

Fo(s,z,y,2) = Fi(s,z,y, z,a(s, 2,9y, 2)), (s,z,y,2) € [0,T] x HxR xR.

We define u(s) = a(s, z, Y/O(s), 0). At this case, from the uniqueness of solutions of BSDESs, we have Ylu(s) =
YO(s),s € [t,t + 6], in particular, Y14(¢) = YO(¢). O
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