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On sequences of convex records in the plane

Claude Godrèche and Jean-Marc Luck

Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique,
91191 Gif-sur-Yvette, France

Abstract. Convex records have an appealing purely geometric definition. In
a sequence of d-dimensional data points, the n-th point is a convex record if
it lies outside the convex hull of all preceding points. We specifically focus on
the bivariate (i.e., two-dimensional) setting. For iid (independent and identically
distributed) points, we establish an identity relating the mean number 〈Rn〉 of
convex records up to time n to the mean number 〈Nn〉 of vertices in the convex
hull of the first n points. By combining this identity with extensive numerical
simulations, we provide a comprehensive overview of the statistics of convex
records for various examples of iid data points in the plane: uniform points in
the square and in the disk, Gaussian points and points with an isotropic power-
law distribution. In all these cases, the mean values and variances of Nn and
Rn grow proportionally to each other, resulting in finite limit Fano factors FN

and FR. We also consider planar random walks, i.e., sequences of points with iid
increments. For both the Pearson walk in the continuum and the Pólya walk on
a lattice, we characterise the growth of the mean number 〈Rn〉 of convex records
and demonstrate that the ratio Rn/〈Rn〉 keeps fluctuating with a universal limit
distribution.
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1. Introduction

The statistics of rare and extreme events are of great importance across various
scientific disciplines. In particular, the study of the statistics of records in discrete
time series has widespread relevance in fields such as climate studies, finance and
economics, hydrology, sports, and complex physical systems‡. Most of these studies
deal with univariate records. The broad scope of the present work is to revisit the
subject of multivariate records.

Consider an infinite sequence of data points x1,x2, . . . ,xn, . . . in d-dimensional
space. The label n will be referred to as a discrete time. Loosely speaking, xn is a
record whenever it is, in some sense, larger than all previous data points. We then
say that there is a record-breaking event, or a record for short, at time n.

In the one-dimensional or univariate setting, the data xn consists of real numbers.
There is a natural ordering of points on the line, and therefore a natural definition of
(upper) records. There is a record at time n if

xn > max(x1, . . . , xn−1). (1.1)

This canonical definition of univariate records is invariant under the action of a large
group of reparametrisation transformations. Records are indeed left unchanged if the
data xn are transformed into yn = y(xn), where y(x) is any continuous increasing
function. The theory of univariate records, initiated by Chandler [2] and Rényi [3, 4],
has become a mature subject [5, 6, 7, 8, 9]. Most classic results concern the case where
the xn are iid (independent and identically distributed) continuous random variables.
The key property of records for iid variables is that there is a record at time n with
probability

Qn =
1

n
, (1.2)

independently of other occurrences of records. This result holds irrespective of the
underlying distribution of the random variables xn, provided the latter is continuous.
The resulting distribution of the number of records Rn up to time n has been long
known (see Appendix A). Another well-studied case is when the data points are the
successive positions of a one-dimensional random walker. Now, the data points are no
longer iid, but their increments are. The basic knowledge on records for random walks
can be found in [10]. This problem has later been revisited in the physics literature
(for a review, see [1] and references therein).

In the multivariate setting, the data points xn are d-dimensional vectors. At
variance with the one-dimensional situation, there is no natural total ordering in d-
dimensional space. This observation was made long ago [11, 12] and led to a variety
of definitions of multivariate records [13, 14] (see also [6, 15, 16, 17, 18, 19]). One of
these definitions stands out for its minimalistic beauty—the notion of convex records,
defined as follows. There is a record at time n if xn does not belong to the convex
hull C(x1, . . . ,xn−1) of all previous data points, i.e., the smallest closed convex set
containing these points. Convex records have attracted very little attention so far.
The phrase ‘convex records’ with this meaning seems to appear only once in the
literature [20]. Introductions to the convex geometry of random sets can be found
in [21, 22]. For a review on convex hulls in the physics literature, see [23].

‡ An extensive list of references on applications of records to the fields mentioned above can be found
in [1].
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The purpose of the present work is to investigate the statistics of these convex
records. Henceforth we focus our attention on the planar case, where data points xn

are two-dimensional vectors representing points in the plane, and the convex hull of
the first n points is a convex polygon. We consider two different settings, namely iid
data points in section 2 and random walks in section 3. The results to be described
below make no claim to mathematical rigour. They are based on a combination of
analytical reasoning, numerical simulations and heuristic scaling analysis.

One of the key geometric properties of the convex hull of a set of points is that
it is invariant under the action of the affine group. In the bivariate setting of the
present work, if the data points xn are changed into yn = Axn + b, where A is a
constant invertible matrix (i.e., detA 6= 0) and b a constant vector, their convex hull
is changed by the same affine transformation. This symmetry is less constraining than
the reparametrisation invariance of the univariate case. It nevertheless gives rise to
interesting consequences. For instance, the statistics of convex records for uniform iid
data points in the unit square (resp. in the unit disk) is identical to that of uniform
points in any parallelogram (resp. in any ellipse).

Figure 1. The three possible cases of convex records for n = 4 (see (1.4)).
The fourth data point and the attached edges of the convex hull, if any,
are shown in colour. Left to right: (N4 = 3, R4 = 3), (N4 = 3, R4 = 4),
(N4 = 4, R4 = 4).

Rn

Nn

Figure 2. The 36 possible values taken by the couple (Nn, Rn) for n = 10.

Let us introduce a few notations. For a given sequence of two-dimensional data
points xn, we denote by Nn the number of vertices of the convex hull of the first n
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points, and by Rn the number of convex records up to time n. In the generic situation
where the first three points are not aligned, each of them is a convex record. We have
therefore

N1 = R1 = 1, N2 = R2 = 2, N3 = R3 = 3. (1.3)

The construction begins to be non-trivial for n = 4, resulting in three possibilities (see
figure 1):

(N4 = 3, R4 = 3), (N4 = 3, R4 = 4), (N4 = 4, R4 = 4). (1.4)

More generally, Nn and Rn may take any values in the range (see figure 2)

3 ≤ Nn ≤ Rn ≤ n. (1.5)

There are therefore (n− 1)(n− 2)/2 possible couples (Nn, Rn).
The setup of this paper is as follows. Section 2 is devoted to sequences of iid data

points. We consider four characteristic examples, namely uniform points in the square
(section 2.2), uniform points in the disk (section 2.3), Gaussian points (section 2.4),
and points with an isotropic power-law distribution (section 2.5). Section 2.6 presents
a summary on the mean values and variances of Nn and Rn, whereas the extremal
probabilities that Nn and Rn take their smallest or largest values are considered in
section 2.7. In section 3 we investigate convex records of planar random walks. The
Pearson walk in the continuum and the Pólya walk on three lattices are dealt with
in parallel. Section 4 contains a brief discussion. We recall the classical theory of
univariate records in an appendix.

2. Sequences of iid data points

This section is devoted to the situation where the data points xn are iid and drawn
from some arbitrary distribution in the plane, assumed to be continuous, to prevent
any ties.

2.1. General results

Let us denote by In the characteristic function of the event that there is a convex
record at time n, and by Qn = 〈In〉 the corresponding record-breaking probability.
The random number Rn of records up to time n reads

Rn =

n
∑

m=1

Im. (2.1)

We have therefore

〈Rn〉 =
n
∑

m=1

Qm, (2.2)

and so

Qn = 〈Rn〉 − 〈Rn−1〉. (2.3)

Furthermore, in the iid setting, data points are exchangeable. Hence Qn is the
probability that any point xm chosen among the first n ones does not belong to the
convex hull of all the other ones. The product nQn is therefore the mean number of
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points among the first n ones which are not inside the convex hull of all the other
ones. These points are precisely the vertices of C(x1, . . . ,xn). This translates to

nQn = 〈Nn〉. (2.4)

The univariate result (1.2) is recovered by setting 〈Nn〉 = 1 in the above formula.
Eliminating the record-breaking probability Qn between (2.3) and (2.4), we obtain
the following identity:

〈Nn〉 = n
(

〈Rn〉 − 〈Rn−1〉
)

. (2.5)

It is worth emphasising that the formulas (2.2) and (2.3) hold in full generality,
whereas (2.4) and (2.5) are specific to the case of iid data points. Moreover, (2.5) only
relates the mean value of Rn to that of Nn.

The full statistics of the number Rn of records up to time n is by no means simply
related to that of the number Nn of vertices at the single time n. For instance, the
second moment of Rn reads

〈R2
n〉 =

n
∑

l=1

n
∑

m=1

Plm, (2.6)

where

Plm = 〈IlIm〉 (2.7)

is the joint probability that there are records at times l and m. We have therefore

VarRn =

n
∑

l=1

n
∑

m=1

(Plm − PlPm) =

n
∑

l=1

n
∑

m=1

〈IlIm〉c, (2.8)

where the subscript 〈〉c stands for ‘connected’. In the case of univariate records,
where the events Im are mutually independent, (2.8) boils down to (A.8). In the
case of multivariate convex records, the events Im are not statistically independent.
Numerical results however demonstrate that 〈Rn〉 and VarRn grow proportionally to
each other in all examples of iid data points we have considered (see Section 2.6).

The first instance where the identity (2.5) is non-trivial is n = 4. This situation
corresponds to Sylvester’s famous four point problem [24] (see [25] for a historical
account). Sylvester was interested in the probability P that a random planar
quadrilateral is reentrant, i.e., non-convex. The exchangeability of the data points
implies that the Sylvester probability reads

P = 4q, (2.9)

where q is the probability that a random point x is inside the triangle (x1,x2,x3).
This reads formally

q = 〈A(x1,x2,x3)〉, (2.10)

where A(x1,x2,x3) is the ‘probability content’ of the triangle (x1,x2,x3), i.e., the
probability for a data point x to be inside that triangle, and the average is taken
over the three iid points x1, x2 and x3. The probability q depends on the underlying
distribution of data points. It has been known since the 19th century for points
uniformly distributed in various domains:

q(triangle) =
1

12
= 0.083333 . . . , q(square) =

11

144
= 0.076388 . . . ,

q(disk) =
35

48π2
= 0.073880 . . . (2.11)
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The triangle and the disk respectively yield upper and lower bounds of q for points
uniformly distributed in a convex domain of the plane [26]. Larger values of q may
however be reached. We have indeed

q = 1− 3

2π
arccos

(

−1

3

)

= 0.087739 . . . (2.12)

for Gaussian points (see (2.14), (2.36)).
Coming back to convex records, the exchangeability of the data points implies that

the three cases listed in (1.4) and shown in figure 1 occur with respective probabilities

q1 = q, q2 = 3q, q3 = 1− 4q = 1− P. (2.13)

We have therefore

〈N4〉 = 4(1− q) = 4− P, 〈R4〉 = 4− q. (2.14)

These mean values obey the identity (2.5), as should be.
In the asymptotic regime of most interest where n is very large, it is legitimate

to use a continuum approximation, so that (2.5) becomes§

〈Nn〉 ≈ n
d〈Rn〉
dn

≈ d〈Rn〉
d lnn

. (2.15)

The statistics of the number Nn of vertices of the convex hull of n iid points
in d-dimensional space, and especially in the plane, has been the subject of a
rather abundant mathematical literature since the pioneering works by Rényi and
Sulanke [27] and by Efron [28]. Most available rigorous results concern the mean
number 〈Nn〉 of vertices. As it turns out, the behaviour of this quantity at large n
strongly depends on the underlying distribution of the data points. The identity (2.5)
enables us to predict in each case the behaviour of the mean number 〈Rn〉 of records.

Hereafter we consider four characteristic examples of iid data points in the
plane, namely uniform points in the square (section 2.2), uniform points in the disk
(section 2.3), Gaussian points (section 2.4), and points with an isotropic power-law
distribution (section 2.5).

2.2. Uniform points in the square

We begin with a reminder on the more general situation of uniform points in a convex
polygon with r sides and vertices Ri. The number Nn of vertices of the convex
hull of n points has been shown to obey a central limit theorem at large n, i.e., to
have an asymptotic normal or Gaussian distribution, whose mean and variance grow
logarithmically with n [29].

More precisely, the mean value of Nn reads asymptotically [27]

〈Nn〉 ≈
2r

3

(

lnn+
1

r

r
∑

i=1

ln
Ai

A + γ

)

, (2.16)

where γ is Euler’s constant, A is the total area of the polygon, and Ai is the area of the
triangle Ri−1RiRi+1 formed by three consecutive vertices. The area ratios entering

§ Here and throughout the following, x ≈ y means that x and y are asymptotically equivalent in
the appropriate regime (here, n ≫ 1), in the strong sense that y/x converges to unity, whereas the
weaker form x ∼ y means that y/x has much slower variations than x or y taken separately.
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the above formula are affine invariants. For the regular r-gon of the Euclidean plane,
this reads

〈Nn〉 ≈
2r

3

(

ln

(

4n

r
sin2

π

r

)

+ γ

)

. (2.17)

When the number r of sides becomes itself large, the above result simplifies to

〈Nn〉 ≈
2r

3

(

ln
4π2n

r3
+ γ

)

. (2.18)

This formula exhibits a crossover for n ∼ r3, with 〈Nn〉 scaling as (2.18) for
1 ≪ r3 ≪ n, and as (2.26) for 1 ≪ n ≪ r3.

The variance of Nn grows as [29]

VarNn ≈ 10r

27
lnn, (2.19)

up to an additive constant whose exact expression is not known.
For uniform points in a polygonal domain, (2.16) and (2.19) show that 〈Nn〉 and

VarNn share the same logarithmic growth law in n. The ratio

FNn
=

VarNn

〈Nn〉
, (2.20)

known as the Fano factor of the distribution of Nn, goes to the limit

FN =
5

9
, (2.21)

irrespective of the number r of sides of the polygon. The Fano factor [30] is used to
characterise distributions of integers counting detected particles and similar discrete
events (see e.g. [31]). Poisson distributions have a Fano factor F = 1. Distributions
with F less than unity (resp. larger than unity) are referred to as sub-Poissonian
(resp. super-Poissonian).‖ Higher Fano factors can be defined similarly, in terms of
higher cumulants.

We now turn to the specific case of uniform points in the unit square.
Combinatorial methods give access to some results for Nn for finite n [33, 34]. When n
is large, the asymptotic results (2.17) and (2.19) read

〈Nn〉 ≈ A1 lnn, VarNn ≈ A2 lnn, A1 =
8

3
, A2 =

40

27
. (2.22)

The identity (2.5) predicts that the mean value of Rn grows as

〈Rn〉 ≈ B1(lnn)
2, B1 =

A1

2
=

4

3
. (2.23)

We have performed extensive numerical simulations on the statistics of convex
records. For that purpose, we have developed a recursive algorithm constructing the
convex hull of a set of points in the plane that are added one by one. As a first
illustration, we show in figure 3 the outcome of a simulation of 200 iid data points in
the unit square, such that N = 11 and R = 38. Figure 4 illustrates the evolution of
Nn (lower tracks) and Rn (upper tracks) against time n for three typical histories of
1,000 data points. Each history is shown by a colour. The numbers Nn of vertices
exhibit non-monotonic fluctuations as a function of n. The numbers Rn of records
increase faster than Nn, and monotonically in time, as should be.

‖ The Mandel parameter Q = F − 1 is used in other areas of physics, including quantum optics [32].
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Figure 3. A sample of 200 uniform iid points in the unit square such that
N = 11 and R = 38. Green polygon: convex hull of the dataset. Green
symbols: the 11 vertices of the convex hull. Red symbols: the 27 other
convex records. Blue symbols: the 162 data points that are not convex
records.
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Figure 4. Numbers Nn (lower tracks) and Rn (upper tracks) plotted
against time n for three histories of 1,000 uniform data points in the unit
square. Each history is shown by a colour.

To come to a quantitative study, we focus our attention on the mean values
and variances of Nn and Rn. Figure 5 shows plots of 〈Nn〉 and VarNn against lnn.
Here and throughout the following, numerical data are gathered over 105 independent
histories of 106 data points each, and only data for n > 100 (sometimes n > 1, 000)
are included in the analysis of their asymptotic behaviour. Dashed lines show linear
fits to these data, whose respective slopes 2.67 and 1.47 are to be compared with
A1 = 8/3 = 2.666666 . . . and A2 = 40/27 = 1.481481 . . . (see (2.22)). This very good
agreement provides a solid validation of our numerical approach. Figure 6 shows plots
of 〈Rn〉 and VarRn against lnn. Dashed curves show quadratic fits. The coefficient
of (lnn)2 for 〈Rn〉 reads 1.33, again in good agreement with the analytical prediction
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Figure 5. 〈Nn〉 and VarNn plotted against lnn for uniform points in the
unit square. Dashed lines show linear fits, slightly offset for greater clarity.
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Figure 6. 〈Rn〉 and VarRn plotted against lnn for uniform points in the
unit square. Dashed curves show quadratic fits, slightly offset vertically for
greater clarity.

B1 = 4/3 = 1.333 . . . (see (2.23)). The coefficient of (lnn)2 for VarRn reads 3.96,
yielding the growth law

VarRn ≈ B2(lnn)
2, B2 ≈ 3.96. (2.24)

This is the first amplitude for which there is no analytical prediction. Equations (2.23)
and (2.24) yield the finite limit Fano factor

FR =
B2

B1
=

3B2

4
≈ 2.97. (2.25)

2.3. Uniform points in the disk

We now consider uniform iid points in the unit disk. Some combinatorial results on
the number Nn of vertices of the convex hull of n points in the disk are available for
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finite n [35]. For large n, Nn obeys a central limit theorem, i.e., it has an asymptotic
Gaussian distribution [29], whose mean and variance grow as

〈Nn〉 ≈ A1 n
1/3, VarNn ≈ A2 n

1/3. (2.26)

These power laws are common to all finite convex domains of the plane with a smooth
boundary. In the case of the disk, the prefactors A1 and A2 are known exactly. They
read [27]

A1 =

(

27π2

34

)1/3

Γ(2/3) = 3.383228 . . . (2.27)

and [36]

A2 =

(

27π2

313

)1/3(
16π2

Γ(2/3)2
− 57Γ(2/3)

)

= 0.826885 . . . (2.28)

The corresponding limit Fano factor is therefore

FN =
A2

A1
=

16π2

27Γ(2/3)3
− 19

9
= 0.244407 . . . (2.29)

The identity (2.5) predicts that the mean value of Rn grows as

〈Rn〉 ≈ B1 n
1/3, B1 = 3A1 = 10.149686 . . . (2.30)

We have again measured the mean values and variances of Nn and Rn by
extensive numerical simulations. Our data concerningNn (not shown) are in very good
agreement with (2.27), (2.28). Figure 7 shows plots of 〈Rn〉 and VarRn against n1/3.
Dashed lines show linear fits to the data. The slope for 〈Rn〉 reads 10.15, in excellent
agreement with the analytical prediction (2.30). The slope for VarRn reads 8.73,
implying the growth law

VarRn ≈ B2 n
1/3, B2 ≈ 8.7. (2.31)

Equations (2.30) and (2.31) yield the limit Fano factor

FR =
B2

B1
≈ 0.86. (2.32)

2.4. Gaussian points

This section is devoted to iid Gaussian (or normal) points. The invariance under
the affine group can be used to map an arbitrary Gaussian distribution on a centred
isotropic one such that 〈|x|2〉 = 1.

Many papers in the mathematical literature deal with the convex hull of two-
dimensional Gaussian points [27, 28, 37, 38, 39]. Exact formulas for the mean values
of several quantities for finite n have been derived in [28]. The expression for the mean
number Nn of vertices reads

〈Nn〉 =
√
4π Jn, (2.33)

with

Jn = n(n− 1)

∫ ∞

−∞

F (x)n−2f(x)2 dx (n ≥ 3), (2.34)

where

f(x) =
e−x2/2

√
2π

, F (x) =
1

2

(

1 + erf
x√
2

)

(2.35)
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Figure 7. 〈Rn〉 and VarRn plotted against n1/3 for uniform points in the
unit disk. Dashed lines show linear fits, slightly offset for greater clarity.

are the density and the distribution function of a Gaussian variable such that 〈x2〉 = 1.
The integrals Jn have been investigated in detail in [40], where they are denoted by An.
Besides (1.3), the expressions

〈N4〉 =
6

π
arccos

(

−1

3

)

= 3.649040 . . . , (2.36)

〈N5〉 =
5

2π
arccos

(

−23

27

)

= 4.122601 . . . (2.37)

seem to exhaust the list of available closed-form results. The asymptotic behaviour
of (2.33) reads

〈Nn〉 = (8π lnn)1/2
(

1 +
µ

2 lnn
− µ2 + 2µ+ 2 + π2/6

8(lnn)2
+ · · ·

)

, (2.38)

with

µ = γ − 1

2
ln(4π lnn), (2.39)

where γ is Euler’s constant.
The (lnn)1/2 growth law (2.38) is rather ubiquitous among data points with

isotropic distributions in the plane whose complementary radial distribution function

P(|x| > r) = F (r) = exp(−Φ(r)) (2.40)

decays rapidly as r → ∞. This situation has been investigated long ago by Carnal [37],
resulting in the following parametric representation of the mean number 〈Nn〉 of
vertices:

lnn ≈ Φ(r), 〈Nn〉 ≈ (4πrΦ′(r))
1/2

, (2.41)

where the accent denotes a derivative. The parameter r has a simple interpretation:
in line with the theory of extreme-value statistics, r provides an estimate for the
largest radius of the first n data points. For distributions falling off as a stretched or
compressed exponential of the form

F (r) ∼ exp(−Arα), (2.42)
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(2.41) predicts

〈Nn〉 ≈ (4πα lnn)1/2, (2.43)

where the exponent α only enters the prefactor of the (lnn)1/2 growth law. In the
limit situation of distributions decaying as a power law of the form

F (r) ≈ c

rθ
, (2.44)

(2.41) predicts that the mean number of vertices saturates to the finite value

〈Nn〉 ≈
√
4πθ. (2.45)

This is indeed the correct leading-order result for power-law data points with a large
exponent θ (see (2.57)).

Coming back to Gaussian data points, the random number Nn of vertices
obeys a central limit theorem at large n, i.e., it has an asymptotic Gaussian
distribution [38, 39], whose mean and variance grow as

〈Nn〉 ≈ A1(lnn)
1/2, VarNn ≈ A2(lnn)

1/2. (2.46)

The prefactor (see (2.38))

A1 =
√
8π = 5.013256 . . . (2.47)

has been long known [27]. No formula for A2 seems to be known to date (see [38]).
The identity (2.5) predicts that the mean value of Rn grows as

〈Rn〉 ≈ B1(lnn)
3/2, B1 =

2A1

3
=

4
√
2π

3
= 3.342171 . . . (2.48)

In analogy with previous cases, we anticipate that the variance of Rn also scales as

VarRn ≈ B2(lnn)
3/2. (2.49)

We have measured the mean values and variances of Nn and Rn by extensive
numerical simulations. Figure 8 shows plots of 〈Nn〉 and VarNn against lnn. Dashed
curves show non-linear fits of the form y = a(lnn + b)1/2. The complexity of the
sequence of subleading corrections entering (2.38) has deterred us from using more
sophisticated fits. In the case of 〈Nn〉, the fit parameter a = 4.911, to be identified
with A1, is in good agreement with the prediction (2.47) (2 percent relative difference),
especially in view of the above. In the case of VarNn, the fit parameter a = 1.865
yields

A2 ≈ 1.86, (2.50)

with an expected relative accuracy in the range of a few percent. Figure 9 shows
plots of 〈Rn〉 and VarRn against lnn. Dashed curves show non-linear fits of the
form y = a(lnn+ b)3/2. In the case of 〈Rn〉, the parameter a = 3.17, to be identified
with B1, is in reasonably good agreement with the prediction (2.48) (5 percent relative
difference). In the case of VarRn, the parameter a = 7.03 yields

B2 ≈ 7.0, (2.51)

again with an expected relative accuracy of a few percent.
The above results translate to the limit Fano factors

FN =
A2

A1
≈ 0.37, FR =

B2

B1
≈ 2.10. (2.52)
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Figure 8. 〈Nn〉 and VarNn plotted against lnn for Gaussian points.
Dashed curves show the non-linear fits described in the text, slightly offset
vertically for greater clarity.
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Figure 9. 〈Rn〉 and VarRn plotted against lnn for Gaussian points.
Dashed curves show the non-linear fits described in the text, slightly offset
vertically for greater clarity.

2.5. Points with isotropic power-law distributions

Our last example concerns iid data points xn with an isotropic distribution whose
complementary radial distribution function (see (2.40)) falls off as a power law at
large distances, namely

F (r) ≈ c

rθ
, (2.53)

with an arbitrary exponent θ > 0.
A few works in the mathematical literature deal with the convex hull of such iid

random points [37, 39, 41]. At variance with previous examples, the distribution of
the number Nn of its vertices now reaches a finite limit,

pk(θ) = lim
n→∞

P(Nn = k) (k ≥ 3), (2.54)
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as the number n of points becomes infinitely large. The above limit distribution is
universal, in the sense that it only depends on the exponent θ. For generic values of θ,
only the first moment

A1(θ) = lim
n→∞

〈Nn〉 =
∑

k≥3

kpk(θ) (2.55)

is known explicitly and reads

A1(θ) = 4
√
π
Γ2( 12θ + 1)Γ(θ + 1

2 )

Γ2( 12θ +
1
2 ) Γ(θ + 1)

. (2.56)

This expression starts from A1(0) = 4 (see (2.61)), and grows at large θ as

A1(θ) = (4πθ)1/2
(

1 +
3

8θ
+

9

128θ2
+ · · ·

)

. (2.57)

We introduce for further reference the notation for the corresponding variance:

A2(θ) = lim
n→∞

VarNn =
∑

k≥3

k2pk(θ)−A1(θ)
2. (2.58)

We mention for completeness that the problem simplifies in the θ → 0 limit [41], where
the full distribution pk(0) has been obtained explicitly:

pk(0) = 2k−3

(

2
(ln 2)k−2

(k − 2)!
− 2 +

k−3
∑

j=0

(ln 2)j

j!

)

. (2.59)

The corresponding generating function,

G(z) = lim
n→∞

〈zNn〉 =
∑

k≥3

pk(0)z
k =

z2

1− 2z
((1− z)22z − 1), (2.60)

yields in particular

A1(0) = 4, A2(0) = 16 ln 2− 10 = 1.090354 . . . (2.61)

The identity (2.5) predicts that the mean value of Rn grows as

〈Rn〉 ≈ B1(θ) lnn, B1(θ) = A1(θ). (2.62)

In analogy with previous cases, we anticipate that the variance of Rn scales as

VarRn ≈ B2(θ) lnn. (2.63)

We have run extensive numerical simulations for exponents θ ranging from 1/2
to 10. Data points with isotropic power-law distributions were generated by using the
non-linear mapping

x =
y

(1− |y|)1/θ . (2.64)

If y is uniformly distributed in the unit disk, the distribution of x is isotropic and
obeys (2.53) with c = 2 and an arbitrary exponent θ > 0. We have again measured the
mean values and variances of Nn and Rn. Our data corroborate the above picture.
The measured 〈Nn〉 and VarNn go to well-defined limits A1(θ) and A2(θ), shown
in figure 10. The observed values of A1(θ) are in very good agreement with the
analytical result (2.56). The measured 〈Rn〉 and VarRn are found to follow the
logarithmic growth laws (2.62) and (2.63). The numerical values of B1(θ) are in
very good agreement with the prediction (2.62). The values of B2(θ) are also shown
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in figure 10. This figure strongly suggests that the three plotted quantities share the
same square-root law at large θ (see (2.57)). This observation is corroborated by
figure 11, showing the Fano factors

FN (θ) =
A2(θ)

A1(θ)
, FR(θ) =

B2(θ)

B1(θ)
. (2.65)

These quantities are found to converge to the limits

FN (∞) ≈ 0.40, FR(∞) ≈ 2.20. (2.66)

These values are rather close to those corresponding to Gaussian points (see (2.52)).

0 2 4 6 8 10

θ
0

4

8

12

16

20

24

28

A
1
, 
  

A
2
, 
  

B
2

A
1

A
2

B
2

Figure 10. Amplitudes A1(θ), A2(θ) and B2(θ) characterising convex hulls
and convex records of data points with isotropic power-law distributions,
plotted against the exponent θ. Black: A1(θ) entering (2.55) and (2.62),
and given by (2.56). Red: numerical values of A2(θ) entering (2.58). Blue:
numerical values of B2(θ) entering (2.63).
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Distribution section 〈Nn〉 VarNn 〈Rn〉 VarRn

uniform (square) (2.2) A⋆
1 lnn A⋆

2 lnn B⋆
1(lnn)

2 B2(lnn)
2

uniform (disk) (2.3) A⋆
1 n

1/3 A⋆
2 n

1/3 B⋆
1 n

1/3 B2 n
1/3

Gaussian (2.4) A⋆
1 (lnn)

1/2 A2 (lnn)
1/2 B⋆

1 (lnn)
3/2 B2 (lnn)

3/2

power-law (2.5) A⋆
1(θ) A2(θ) B⋆

1(θ) lnn B2(θ) lnn

Table 1. Asymptotic behaviour of the mean values and variances of Nn and Rn

for the four examples of iid data points studied in this work. Amplitudes with a
star in superscript are known analytically. All other amplitudes are determined
numerically.

2.6. A summary on mean values and variances

Our investigation of convex records for four characteristic examples of iid points in the
plane (uniform points in the square and in the disk, isotropic Gaussian and power-law
points) allows us to draw the following conclusions. Consider first the number Nn of
vertices of the convex hull of the first n points. In the first three examples recalled
above, 〈Nn〉 and VarNn grow proportionally to each other, resulting in a finite limit
Fano factor FN . For these examples, and many other cases studied in the mathematical
literature, Nn is known to obey a central limit theorem, i.e., to have an asymptotic
normal or Gaussian distribution, with mean values and variances growing at the same
rate. Note however that a counterexample ‘whose support is quite a complicated
geometric object’ has been constructed [42], for which the relative fluctuations of Nn

around 〈Nn〉 do not shrink to zero as n is very large. Extensive numerical simulations
have demonstrated that the number Rn of convex records behaves quite similarly,
in that 〈Rn〉 and VarRn also grow proportionally to each other, also resulting in
a finite limit Fano factor FR. Our numerical results make it very plausible that Rn

asymptotically obeys a central limit theorem, and that higher cumulants of Nn and Rn

grow at the same rate as their mean values, resulting in non-trivial higher limit Fano
factors FN,k = 〈Nk

n〉c/〈Nn〉 and FR,k = 〈Rk
n〉c/〈Rn〉.

Table 1 summarises the asymptotic behaviour of the mean values and variances
of Nn and Rn. Amplitudes whose analytical expression was known exactly are marked
by stars. Figure 12 shows a scatter plot of all Fano factors thus obtained. Among these
numbers, only the first two values of FN are known exactly (see (2.21), (2.29)). In all
cases, FN is smaller than unity, so that the distribution of Nn is asymptotically sub-
Poissonian. In all cases but the disk, FR is larger than unity, so that the distribution
of Rn is super-Poissonian. The case of uniform points in the disk is somehow an outlier
in two respects: 〈Nn〉 and 〈Rn〉 grow as a power law, and the distribution of Rn is
sub-Poissonian. We recall that the distribution of Rn is asymptotically Poissonian in
the classical case of univariate records (see Appendix A).

2.7. Extremal probabilities

The full distributions of Nn and Rn have many features of potential interest, besides
their mean values and variances investigated so far. Hereafter we focus our attention
on the extremal values of these random numbers, namely 3 and n (see (1.5) and
figure 2).
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Figure 12. Scatter plot of the limit Fano factors FN and FR obtained for the
four examples of iid points in the plane considered in this work. Red square:
uniform points in the square (section 2.2). Green disk: uniform points in
the disk (section 2.3). Blue diamond: Gaussian points (section 2.4). Cyan
symbols joined by a line: Isotropic power-law points (section 2.5).

The probability that the number of records takes its minimal value Rn = 3
reads [20]

P(Rn = 3) = 〈A(x1,x2,x3)
n−3〉 (n > 3), (2.67)

with the notation used in (2.10). The meaning of this general result is clear: Rn = 3
holds for datasets of n points where all subsequent n − 3 points fall inside the
triangle formed by the first three ones. Along this line of thought, using again the
exchangeability of the data points, Nn = 3 corresponds to datasets of n points where
the remaining n−3 points fall inside the triangle formed by any three different points.
This observation translates to the identity

P(Nn = 3) =

(

n

3

)

P(Rn = 3). (2.68)

The event Rn = 3 corresponds to the bottom left-hand corner of figure 2, whereas
Nn = 3 corresponds to the entire leftmost column. The corresponding extremal
probabilities only differ by a simple combinatorial factor. Equations (2.5) and (2.68)
are the only two general identities we have found for convex records of bivariate iid
data.

The asymptotic behaviour of the extremal probability P(Nn = 3) depends on the
underlying distribution of points. For isotropic power-law points, P(Nn = 3) goes to
the universal limit p3(θ). For uniform points inside a convex domain, this probability
generically falls off exponentially fast, as

P(Nn = 3) ∼ An
⋆ , (2.69)

where A⋆ is the ‘probability content’ of the largest triangle inscribed in the domain,
i.e., the fraction of the total area enclosed by this largest triangle. We have

A⋆(triangle) = 1, A⋆(square) =
1

2
,
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A⋆(disk) =
3
√
3

4π
= 0.413496 . . . (2.70)

In the case of a triangular domain, A⋆ = 1 prevents the exponential decay of (2.69).
The extremal probabilities obey the power law P(Nn = 3) ≈ 8/n3 [43, 44], and so
P(Rn = 3) ≈ 48/n6.

The probability that the number of vertices takes its maximal value Nn = n has
been investigated for uniform points in several domains. Exact combinatorial results
are available for the triangle and the square [45, 46], whereas a full asymptotic analysis
has been performed in the case of the disk [47]. This extremal probability is found to
fall off super-exponentially, as

P(Nn = n) ∼ Bn

(n!)2
, (2.71)

with

B(triangle) =
27

2
= 13.5, B(square) = 16,

B(disk) = 2π2 = 19.739208 . . . (2.72)

A general expression for B for an arbitrary convex domain is known [48] (see also [49]).
It is highly likely that the exponential law (2.69) and the 1/(n!)2 law (2.71) hold for
a much larger class of distributions of iid data points.

The probability P(Rn = n) that the number of records takes its maximal value
Rn = n is expected to fall off less rapidly than P(Nn = n). The event Nn = n indeed
corresponds to the top right-hand corner of figure 2, whereas Rn = n corresponds to
the entire top row. We have run numerical simulations to measure P(Rn = n) for
the above four characteristic examples of iid points in the plane. Figure 13 shows
logarithmic plots of the product n!P(Rn = n) against time n. The fits to the data
(see caption) convincingly suggest the behaviour

P(Rn = n) ∼ Cn

n!
, (2.73)

where the constant C has a weak dependence on the underlying distribution of points:

C(square) ≈ 9.7, C(disk) ≈ 10.2,

C(Gaussian) ≈ 8.5, C(power-law, θ = 2) ≈ 7.5. (2.74)

A rationale for the 1/n! decay of P(Rn = n) is that the event Rn = n corresponds
to histories where every new data point is outside the convex hull of all previous
ones. Loosely speaking, data point are further and further away from the origin. In
this regard, they resemble univariate records, for which P(Rn = n) = 1/n! exactly
(see (A.10)).

3. Random walks

We now consider convex records for data points generated by planar random walks.
The points xn are the successive positions of a random walker launched at the origin:

xn = xn−1 + δn (x0 = 0). (3.1)

The increments δn are iid two-dimensional random vectors, drawn from some fixed
distribution. After n time steps, the dataset consists of n+ 1 points x0, . . . ,xn.

In this work we consider in parallel four examples of planar random walks: the
Pearson walk [50], where the increments δn are uniformly distributed over the unit
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Figure 13. Logarithmic plot of the extremal probability P(Rn = n),
multiplied by n!, against n for the above four characteristic examples of
iid points in the plane. Black: uniform points in the square. Red: uniform
points in the disk. Green: Gaussian points. Blue: power-law points with
θ = 2. Dashed curves: fits y = an+ b lnn+ c, so that C = ea. Curves are
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circle, and the Pólya walk [51] on three lattices (triangular, square, hexagonal), where
the δn take a finite number z of discrete values, equal to the coordination number of
the lattice (respectively 6, 4 and 3). In all these models we have |δn| = 1, and so

〈|xn|2〉 = n. (3.2)

Many rigorous results on the convex hulls of planar random walks and Brownian
curves have been derived, concerning in particular the mean value of their area,
perimeter length and number of vertices [52, 53, 54] (see [23] for a synthetic review).
More recent developments on the combinatorics of random walks in two and higher
dimensions also address properties of their convex hulls [55, 56].

Various types of records may be attached to planar random walks. Three classes
of such records, namely diagonal, simultaneous and radial ones, have been investigated
recently [57]. The mean numbers of these records grow as universal powers of time,
with respective exponents 1/4, 1/3 and 1/2. Their full asymptotic distributions have
also been determined.

Hereafter we consider convex records, denoting by Nn the number of vertices of
the convex hull of the walk at time n, and by Rn the number of convex records up
to time n. We recall that xn is not counted as a convex record if it falls exactly on
the boundary of the convex hull C(x0, . . . ,xn−1). This event occurs with non-zero
probability in the case of lattice walks. Furthermore, to keep our numerical algorithm
unchanged, we have imposed the constraint that the first two steps δ1 and δ2 of lattice
walks are not parallel to each other.

The most notable difference with respect to the case of iid data points investigated
in section 2 is that the position of the random walker spreads away from the origin,
according to the diffusion law (3.2). As a consequence, records are progressively buried
deeper and deeper inside the current convex hull which expands at the same diffusive
scale as the walk. In particular, the number Rn of records is expected to grow much
faster than Nn. Stated otherwise, data points are by far not exchangeable, so that the
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Figure 14. A Pólya walk of 10,000 steps on the square lattice with N = 18
and R = 820. Black line: trajectory of the random walker. Green polygon:
convex hull of the walk. Green symbols: the 18 vertices of the convex hull.
Red symbols: the 802 other convex records.

relation (2.5) can be expected to be violated by large amounts. This is illustrated in
figure 14, showing a Pólya walk of 10,000 steps on the square lattice such that N = 18
and R = 820.

Let us now turn to a quantitative analysis, and consider first the number Nn of
vertices of the convex hull at time n. For all microscopically isotropic planar random
walks, including the Pearson walk, the mean number 〈Nn〉 of vertices has been long
known. A combinatorial argument due to Baxter [53] yields the simple expression

〈Nn〉 = 2Hn ≈ 2(lnn+ γ), (3.3)

where the harmonic numbers Hn are defined in (A.9) and γ is Euler’s constant. No
expression seems to be known for the corresponding variance.

The logarithmic growth law (3.3) appears to be universal, including its prefactor,
at least among the planar random walks we have investigated. Figure 15 shows plots
of the difference 〈Nn〉 − 2 lnn against lnn for the four examples of random walks
considered in this work. The plotted data strongly support the behaviour

〈Nn〉 ≈ 2 lnn+G, (3.4)

where the additive constant G depends on the type of walk (see table 2 below). For
the Pearson walk, data for finite n converge rather fast from above to G ≈ 1.15, in
perfect agreement with the known limit G(Pearson) = 2γ = 1.154431 . . . (see (3.3)).
For the Pólya walk on three lattices, data exhibit a slower convergence from below to
higher values of G.

Figure 16 shows plots of VarNn against lnn for the same four random walks.
The data support the universal logarithmic grow law

VarNn ≈ A2 lnn, (3.5)

where the prefactor assumes the seemingly universal value

A2 ≈ 1.50, (3.6)
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Figure 15. Difference 〈Nn〉−2 lnn plotted against lnn for the four random
walks considered in this work. Black: Pearson walk. Other colours: Pólya
walk on three lattices. Red: triangular. Green: square. Blue: hexagonal.
Horizontal dashed lines: extrapolated limits yielding the values of the
additive constant G listed in table 2.
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Figure 16. Variance of Nn plotted against lnn for the four random walks
(see legend). Colours are as in figure 15. The dashed line has slope 1.50.

with an expected relative accuracy of a few percent. The results (3.4) and (3.5) imply
that the distribution of Nn is characterised by the universal limit Fano factor

FN =
A2

2
≈ 0.75. (3.7)

The occurrence of long transients in the data shown in figure 16 prevents us from
measuring the additive constant of the logarithmic law (3.5) in an accurate way. Here,
too, it is likely that Nn obeys a central limit theorem, i.e., has an asymptotic Gaussian
distribution, and that its higher cumulants grow proportionally to lnn, even though
it is difficult to reliably confirm this hypothesis by purely numerical means.

Before we pursue, it is worth emphasising the analogy between the convex records
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of planar random walks and their radial records, investigated in [57]. The position xn

of the walker at time n is a radial record if it is outside the circle whose radius¶
rn = max(|x0|, . . . , |xn−1|) (3.8)

is the largest distance to the origin reached by the walker before time n, whereas xn is
a convex record if it is outside the convex hull C(x0, . . . ,xn−1). This convex polygon
keeps forever fluctuating, to the extent that it may assume any shape [58]. It is
nevertheless to be expected that the radius rn and the diameter of C(x0, . . . ,xn) grow
proportionally to the diffusive scale

√
n, and so that there are similarities between the

statistics of radial and convex records.
We recall that the main outcomes of [57] concerning radial records of random

walks are based on the asymptotic equivalence

R(rad)
n ≈ rn

a
(3.9)

between the number R
(rad)
n of radial records and the radius rn introduced in (3.8).

In (3.9), the microscopic length scale a depends on the type of walk, whereas the
radius rn scales as

rn ≈ U
√
n, (3.10)

where the random variable U has a universal distribution that is known explicitly [59,
p. 280] and recalled in [57, Eq. (4.12)].

In particular, the mean number of radial records grows as

〈R(rad)
n 〉 ≈ B(rad)

√
n, (3.11)

where the prefactor

B(rad) =
〈U〉
a

(3.12)

depends on the type of walk through a. Reference [57] gives B(rad)(Pearson) ≈ 2.35 for
the Pearson walk and B(rad)(square) ≈ 2.10 for the Pólya walk on the square lattice.
The number of radial records is asymptotically distributed according to

R
(rad)
n

〈R(rad)
n 〉

→ X(rad) =
U

〈U〉 . (3.13)

The limit random variable X therefore has a universal distribution such that
〈X(rad)〉 = 1, by construction, whereas

VarX(rad) =
VarU

〈U〉2
= 0.110751 . . . (3.14)

Let us come back to convex records of random walks. Concerning the mean
number 〈Rn〉 of these records, the numerical data shown in figure 17 strongly suggest
the growth law

〈Rn〉 ≈ B
√
n lnn, (3.15)

where the prefactor B has a weak dependence on the type of walk (see table 2). A
plausible justification for the above scaling law is that Rn contains both a factor

√
n,

already present in (3.11), representing the diffusive growth of the walk, and a

¶ In [57] n is denoted by t, rn by Rt, R
(rad)
n by Nt, and B(rad) by A.
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Figure 17. Ratio 〈Rn〉/
√
n plotted against lnn for the four random walks

(see legend). Colours are as in figure 15. Dashed lines have the slopes B
listed in table 2.

Type of walk z G B

Pearson ∞ 1.15 1.12

Pólya (triangular) 6 2.55 1.03

Pólya (square) 4 2.76 1.00

Pólya (hexagonal) 3 3.04 1.07

Table 2. Various characteristic constants of the four random walks considered
in this work: z is the number of directions taken by the increments δn, i.e., the
coordination number of the lattice, G is the additive constant of the logarithmic
law (3.4) for the mean number 〈Nn〉 of vertices, B is the prefactor of the growth
law (3.15) for the mean number 〈Rn〉 of convex records.

factor lnn, representing the number Nn of vertices of the convex hull at the current
time n (see (3.4)).

It is interesting to notice that the ratio B(Pearson)/B(square) ≈ 1.12 equals
the corresponding ratio for radial records, i.e., B(rad)(Pearson)/B(rad)(square) ≈
2.35/2.10 ≈ 1.12, given the available precision. This coincidence suggests that the
prefactor B, just as B(rad), only depends on the type of walk through the microscopic
length scale a introduced in [57].

Concerning the full distribution of the number of convex records, it is to
be expected, in line with (3.13), that Rn keeps fluctuating and is asymptotically
distributed according to

Rn

〈Rn〉
→ X, (3.16)

where the limit random variable X has a universal distribution such that 〈X〉 = 1.
This expectation, too, is corroborated by numerical simulations. Figure 18 shows the
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Figure 18. Reduced variance Kn of the number of convex records plotted
against 1/(lnn), for the four random walks (see legend). Colours are as in
figure 15. The dashed line has intercept 0.044.

reduced variance of the number of convex records,

Kn =
VarRn

〈Rn〉2
, (3.17)

plotted against 1/(lnn) for the four random walks considered in this work. The data
is observed to converge linearly to the universal limit

K = VarX ≈ 0.044. (3.18)

The very slowly decaying corrections in 1/(lnn) however come as a surprise.
Figure 19 shows the distribution of Rn/〈Rn〉 for Pearson walk and for Pólya walk

on the square lattice with n = 10, 000 steps. Both datasets fall on the same smooth
curve, representing a good approximation of the distribution of the limit variable X.
The exactly known distribution of X(rad), corresponding to radial records (see (3.13)),
is shown for comparison. The latter distribution is broader. The variance of X(rad) is
indeed some 2.5 times larger than that of X (see (3.14), (3.18)).

4. Discussion

The primary aim of this paper is to draw the reader’s attention to convex records.
Among all possible definitions of multivariate records, the convex records investigated
in this work stand out for the elegance of their geometric definition and for the ensuing
invariance of their construction under the affine group.

The present work is focused on the bivariate (i.e., two-dimensional) case. This
choice is motivated by simplicity, and chiefly by the existence of a simple algorithm
to recursively build convex hulls of growing data sets. We wish to highlight that some
of the statistics of higher-dimensional convex records can be sketched in the light of
the results presented above. To be more specific, for iid (independent and identically
distributed) data points, the identity (2.5) has been instrumental in relating the mean
number 〈Rn〉 of convex records up to time n to the mean number 〈Nn〉 of vertices
of the convex hull of the first n points. The above identity is in fact quite general,
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Figure 19. Distribution of the reduced variable Rn/〈Rn〉 ≈ X (unbinned
data) for walks of n = 10, 000 steps. Black: Pearson walk. Green: Pólya
walk on the square lattice. Red: exactly known distribution of X(rad),
corresponding to radial records (see (3.13)).

and applies to iid data points in any dimension d. Let us consider two characteristic
examples, for which some results on convex hulls are available in the mathematical
literature. For uniform data points in an arbitrary d-dimensional convex polytope, we
have

〈Nn〉 ≈ A1(lnn)
d−1, (4.1)

where the prefactor A1 is known [60], and so (2.5) yields

〈Rn〉 ≈ B1(lnn)
d, B1 =

A1

d
. (4.2)

For uniform data points in a d-dimensional sphere, we have

〈Nn〉 ≈ A1 n
(d−1)/(d+1), (4.3)

where A1 is also known exactly [61, 62], and so (2.5) yields

〈Rn〉 ≈ B1 n
(d−1)/(d+1), B1 =

d+ 1

d− 1
A1. (4.4)

Moreover, it is quite plausible that the variances of Nn and Rn generically grow
proportionally to the corresponding mean values given above, resulting in finite limit
Fano factors FN and FR, such as those shown in figure 12. On the other hand, for
isotropic random walks in d dimensions, a known exact expression of 〈Nn〉 for any
finite number n of steps [56] reads asymptotically

〈Nn〉 ≈
2

(d− 1)!
(lnn)d−1. (4.5)

We can therefore expect that the mean number of convex records scales as

〈Rn〉 ≈ B
√
n (lnn)d−1. (4.6)

This estimate should hold for the Pearson walk and for the Pólya walk on a lattice in
any dimension d, with the prefactor B depending on the type of walk. Finally, it is
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also to be expected that Rn/〈Rn〉 keeps fluctuating and goes to a universal random
variable X, whose distribution only depends on d.

We conclude with a discussion on the growth of the number of records for various
kinds of records in sequences of d-dimensional iid data points. The mean number of
records can be expressed in terms of the record-breaking probability Qn (see (2.2)).
For the convex records studied in this work, a d-dimensional simplex has d+1 vertices.
As a result, we have generically nQn = 〈Nn〉 ≥ d+1 for all n ≥ d+1, implying that the
mean number of records, 〈Rn〉, grows at least as (d+1) lnn. This minimal logarithmic
growth should be compared with the growth rates observed for other definitions
of multivariate records. Consider simultaneous records (also known as complete or
concomitant records), where there is a record at time n if each component xi

n of xn

is larger than all previous xi
m. There, the record-breaking probability Qn can assume

any value between 0 and 1/n (see [15] and references therein). The upper bound
coincides with the result (1.2) of the univariate case. Simple explicit examples can be
built in any dimension d, for which either Qn = 0 for all n > 1, or Qn = 1/n. For
data points with independent components xi

n following continuous distributions, we
have Qn = 1/nd. For Gaussian data points, we have Qn ∼ n−α, where the exponent
α > 1 depends continuously on parameters. In both examples, the total number of
simultaneous records remains finite for an infinitely large dataset.

Acknowledgments

It is a pleasure to thank Philippe Naveau for the discussions that motivated this work.

Data availability statement

Data sharing not applicable to this article.

Conflict of interest

The authors declare no conflict of interest.

Orcid ids
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Appendix A. The distribution of univariate records

This appendix is a self-contained reminder of the classical theory of the statistics
of records in sequences of iid univariate random variables drawn from an arbitrary
continuous distribution (see [2, 3, 4, 5, 6, 7, 8, 9]). In this setting, there is a record at
time n with probability (see (1.2))

Qn =
1

n
, (A.1)

and the occurrences of records at different times are statistically independent.
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The quantity of interest is the number Rn of records up to time n. The
distribution of this random number,

pn(k) = P(Rn = k) (k = 1, . . . , n), (A.2)

is conveniently encoded in the generating function

Gn(z) = 〈zRn〉 =
n
∑

k=1

pn(k)z
k, (A.3)

which is a polynomial in z with degree n. The independence of the occurrences of
records at different times yields the product formula

Gn(z) =

n
∏

m=1

(1−Qm + zQm) =

n
∏

m=1

m− 1 + z

m
. (A.4)

This can be recast as

Gn(z) =
Γ(n+ z)

n! Γ(z)
=

1

n!

n
∑

k=1

[n

k

]

zk, (A.5)

where the
[

n
k

]

are the Stirling numbers of the first kind, which are ubiquitous in
combinatorics (see e.g. [63, 64]). The distribution of Rn therefore reads

pn(k) =
1

n!

[n

k

]

. (A.6)

The integer
[

n
k

]

is, among many other things, the number of permutations of n objects
having k cycles, so that the number Rn of records is distributed as the number of cycles
in a uniform random permutation.

In particular, the mean value and the variance of Rn read

〈Rn〉 =
n
∑

m=1

Qm = Hn ≈ lnn+ γ, (A.7)

VarRn =
n
∑

m=1

Qm(1−Qm) = Hn −H(2)
n ≈ lnn+ γ − π2

6
, (A.8)

where

Hn =

n
∑

m=1

1

m
, H(2)

n =

n
∑

m=1

1

m2
, (A.9)

and γ is Euler’s constant.
The number Rn of records takes its smallest and largest values with respective

probabilities

pn(1) =
1

n
, pn(n) =

1

n!
. (A.10)

The full distribution of Rn takes a simple asymptotic form at large n. A first
approximation to (A.5) at large n reads

Gn(z) ∼ e(z−1) lnn, (A.11)

and so the distribution of Rn becomes a Poisson distribution with parameter λ = lnn
and Fano factor F = 1. A more refined asymptotic form of (A.5) is

Gn(z) ≈
e(z−1) lnn

Γ(z)
, (A.12)
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implying that the cumulants of Rn grow as

〈Rp
n〉c ≈ lnn+ ap, (A.13)

with a common logarithmic term with unit prefactor, and additive constants ap given
by

∑

p≥1

ap
p!

sp = − ln Γ(es), (A.14)

i.e.,

a1 = γ, a2 = γ − π2

6
, a3 = γ − π2

2
+ 2ζ(3),

a4 = γ − 7π2

6
− π4

15
+ 12ζ(3), (A.15)

and so on. The first two expressions agree with (A.7) and (A.8).
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[27] A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahr.,

2:75–84, 1963.
[28] B. Efron. The convex hull of a random set of points. Biometrika, 52:331–343, 1965.
[29] P. Groeneboom. Limit theorems for convex hulls. Probab. Th. Rel. Fields, 79:327–368, 1988.
[30] U. Fano. Ionization yield of radiations. II. The fluctuations of the number of ions. Phys. Rev.,

72:26–29, 1947.
[31] J. Tworzyd lo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker. Sub-Poissonian

shot noise in graphene. Phys. Rev. Lett., 96:246802, 2006.
[32] L. Mandel. Sub-Poissonian photon statistics in resonance fluorescence. Optics Lett., 4:205–207,

1979.
[33] C. Buchta. The exact distribution of the number of vertices of a random convex chain.

Mathematika, 53:247–254, 2006.
[34] C. Buchta. On the number of vertices of the convex hull of random points in a square and a

triangle. Anzeiger Abt. II, 143:3–10, 2009.
[35] J. F. Marckert. The probability that n random points in a disk are in convex position. Braz.

J. Probab. Stat., 31:320–337, 2017.
[36] S. Finch and I. Hueter. Random convex hulls: a variance revisited. Adv. Appl. Probab., 36:981–

986, 2004.
[37] H. Carnal. Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten. Z. Wahr., 15:168–

176, 1970.
[38] I. Hueter. The convex hull of a normal sample. Adv. Appl. Probab., 26:855–875, 1994.
[39] I. Hueter. Limit theorems for the convex hull of random points in higher dimensions. Trans.

Amer. Math. Soc., 351:4337–4363, 1999.
[40] P. L. Krapivsky and J. M. Luck. On multidimensional record patterns. J. Stat. Mech.,

2020:063205, 2020.
[41] D. J. Aldous, B. Fristedt, P. S. Griffin, and W. E. Pruitt. The number of extreme points in the

convex hull of a random sample. J. Appl. Probab., 28:287–304, 1991.
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