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Asymptotics for conformal inference

Ulysse Gazin1
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Abstract: Conformal inference is a versatile tool for building prediction sets in regression or
classification. In this paper, we consider the false coverage proportion (FCP) in a transductive
setting with a calibration sample of n points and a test sample of m points. We identify the
exact, distribution-free, asymptotic distribution of the FCP when both n and m tend to
infinity. This shows in particular that FCP control can be achieved by using the well-known
Kolmogorov distribution, and puts forward that the asymptotic variance is decreasing in the
ratio n/m. We then provide a number of extensions by considering the novelty detection
problem, weighted conformal inference and distribution shift between the calibration sample
and the test sample. In particular, our asymptotical results allow to accurately quantify the
asymptotical behavior of the errors when weighted conformal inference is used.

1. Introduction

1.1. Background

In classical statistics, producing prediction sets for outcomes often relies on strong model assump-
tions. Recent advances involve complex data sets and sophisticated machine learning methods, for
which such an approach is not appropriate. One recent solution is conformal prediction (Saunders
et al., 1999; Vovk et al., 2005; Angelopoulos and Bates, 2021) which consists in calibrating the
prediction set according to an appropriate quantile of a calibration/training sample. Strikingly,
this method provides a finite-sample valid coverage (that is, for any size n ⩾ 1 of the calibra-
tion sample), for any underlying distribution of the data and for any underlying point-prediction
machine learning algorithm. Similar techniques can be employed for the novelty detection task
(Balasubramanian et al., 2014; Bates et al., 2023; Marandon et al., 2024).

1.2. Aim and contributions

We consider here the so-called transductive setting (Vovk, 2013), where it is given a calibra-
tion sample of n points (X1, Y1), . . . , (Xn, Yn) and a test sample of m points (Xn+1, Yn+1), . . . ,
(Xn+m, Yn+m). While the calibration sample is fully observed, the Yi’s of the test points are not
observed and a prediction set should be provided for each of them. The false coverage propor-
tion (FCP) for the m conformal prediction sets Cα(Xn+1), . . . , Cα(Xn+m) (see below for a formal
definition) is given as the proportion of coverage errors among the test sample:

FCP(n)
m (α) :=

1

m

∑
i∈JmK

1Yn+i /∈Cα(Xn+i).

Under standard assumptions, the distribution of the process FCP(n)
m has been shown to be distribution-

free, in the sense that it does only depend on n and m (Marques F., 2023; Huang et al., 2024; Gazin
et al., 2024). Due to the dependence between the individual coverage errors, this distribution is
particularly complex in n and m and combinatorial formulas have been derived in Marques F.
(2023); Huang et al. (2024); Gazin et al. (2024). Nevertheless, focusing on the maximum absolute
deviation

∥FCP(n)
m − In∥∞ := sup

α∈[0,1]

|FCP(n)
m (α)− In(α)|, (1)

1
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with In(α) = ⌊(n+1)α⌋/(n+1), a DKW-type concentration inequality has been derived in Gazin

et al. (2024), which is both simple and finite-sample valid. It explicitly involves a rate τ
1/2
n,m defined

by

τn,m :=
nm

n+m
∈
[n ∧m

2
, n ∧m

]
. (2)

However, this DKW inequality is conservative in general (see Figure 1 below), which makes the
corresponding FCP control conservative.

The aim of this paper is to complement the above studies by analyzing FCP(n)
m from an asymp-

totical point of view, where both m and n tend to infinity. Our contributions are as follows:

1. We show that FCP(n)
m converges uniformly to the nominal value at rate τ

1/2
n,m and that the

asymptotic covariance process is a standard Brownian bridge (Theorem 3.1). Compared to
the “oracle” case where n = ∞, it means that the variance is inflated by a factor asymptot-
ically equivalent to (n+m)/n, for instance 2 in the case where n ∼ m.

2. A direct corollary of this result is that τ
1/2
n,m∥FCP(n)

m −In∥∞ converges to the well known Kol-

mogorov distribution, that is, the distribution with c.d.f. x 7→ (1−2
∑

k⩾1(−1)ke−2k2x2

)1x⩾0.
A comparison between the quantiles of this distribution and those given by empirical simu-
lations or DKW is provided in Figure 1. As we can see, while the validity of the new quantile
is only asymptotic with n,m → +∞, the asymptotic quantile is simple and more accurate
than the quantile obtained from DKW. Hence, the new result allows to get simple, accurate
and asymptotically-valid confidence bounds for the FCP process and more generally one can
have an asymptotic approximation of all quantities related to the distribution of the FCP
process.

3. We then extend this result to the case where the distribution of the calibration sample is
not equal to the test sample, that is, under a distribution shift (Theorem 3.2). As expected,
the convergence of the FCP is not towards the nominal level in this case but rather towards
a new term G that takes into account this shift. The asymptotic covariance process is also
modified according to G and an explicit formula is given.

4. To recover the appropriate nominal level in the limit, we adopt the weighted conformal ap-
proach (Tibshirani et al., 2019; Barber et al., 2023), with specific weights that rely on the
data distribution, that we refer to as oracle weights. The central limit theorem shares sim-
ilarities with the exchangeable case described above, with the essential difference that the
asymptotic covariance process is not distribution free, and depends on the sample distribu-
tions (Theorem 3.4).

5. We also obtained a convergence result in case of non-oracle weights (Theorem 3.3), which is
crucial to quantify the FCP asymptotic behavior in the difficult but realistic case where the
user has not access to the true distribution shift. An illustration in displayed in Figure 2,
where the asymptotical confidence interval of the FCP is given in function of an error ∆,
measuring how the used weights deviate from the oracle ones. This puts forward that the
FCP gets significantly away from α when ∆ is above ≈ 0.133 or below ≈ −0.11 in this
framework.

6. Finally, we obtain similar results for the novelty detection task, by studying the asymptotical
behavior of the false discovery proportion (FDP) of classical procedures (Bates et al., 2023;
Jin and Candès, 2023), see Section 4. To our knowledge, using a weighted approach has not
been considered before in the novelty detection case.

The proofs are based on specific decompositions of the processes that can be found in Section 5,
while further details are postponed to appendices.

1.3. Relation to previous work

Conformal prediction is a general pipeline and we refer the reader to Vovk et al. (2005) or An-
gelopoulos and Bates (2021) for reviews. We focus here on the inductive/split conformal inference
(Papadopoulos et al., 2002), where an independent training sample is used to build the predictors,
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Fig 1: Comparison of the (1 − δ)-quantile of different approximations of the distribution of

∥FCP(n)
m − In∥∞ in (1) for different values of n,m and δ. The approximations include Monte-

Carlo (1000 replications), DKW (Gazin et al., 2024) and the new asymptotic one (see text).

while a calibration sample is used to adjust the prediction sets. All our results can be thought of
holding conditionally on the training sample, that is, they hold once the point-predictions have
been computed.

The process FCP(n)
m coincides with the empirical cumulative distribution function (e.c.d.f.) of

conformal p-values as introduced by Saunders et al. (1999). As recalled above, for a given nominal

level α, the non-asymptotic distribution of FCP(n)
m (α) has been obtained in Marques F. (2023);

Huang et al. (2024) and the full distribution of the process FCP(n)
m has been given in Gazin et al.

(2024). In addition, Marques F. (2023) gives an asymptotic result for FCP(n)
m (α) in the regime

where n tends to infinity only after having made m tends to infinity, whereas here we make n and
m grow to infinity independently. In addition, our results are uniform in α. Next, in Nguyen et al.
(2024), they study a more general risk and also obtained asymptotical results, but only as m tends
to infinity while n is kept fixed.

Finally, we study here novelty detection procedures obtained by applying the Benjamini-Hochberg
procedure (BH, Benjamini and Hochberg, 1995) to the conformal p-values (Mary and Roquain,
2022; Bates et al., 2023; Marandon et al., 2024) or to the weighted conformal p-values (Tibshi-
rani et al., 2019; Barber et al., 2023; Jin and Candès, 2023). Asymptotics for the FDP of such
procedures have been extensively studied in the literature, see Genovese and Wasserman (2002);
Neuvial (2008) for iid uniform p-values and Delattre and Roquain (2011, 2016); Kluger and Owen
(2024) for several types of dependence structures. The present work is in this line of research
by seeing (weighted) conformal p-values as a particular case of dependent p-values, with a very
specific dependence structure, induced by the calibration sample. We obtain our results in the
novelty detection setting by using the techniques introduced in Neuvial (2008), that combine
functional central limit theorems with the functional delta method. In particular, this provides
the full asymptotic FDP distribution for the procedure of Jin and Candès (2023) (or a variant
thereof), for which only in-expectation results were known to our knowledge.



Gazin /Asymptotics for conformal inference 4

−0.4 −0.2 0.0 0.2 0.4
Error ∆ on the weight function

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

F
C

P
(α

)

Asymptotic of FCP(α) under non-oracle weighting

Targeted Coverage Level α

Asymptotic confidence interval for FCP(α)

Asymptotic mean of FCP(α)

Fig 2: Plot of the asymptotical confidence interval for the FCP of the weighted conformal method
(at level 80%) obtained in Theorem 3.3 versus an error parameter ∆. The calibration sample and
the test sample are distributed according to the exponential distribution with mean 1 and 1/3,
respectively. The weight function used in the conformal method is w∆(x) = exp(−(2+∆)x)1x>0,
which corresponds to the oracle choice if ∆ = 0 (for which the asymptotic average of FCP(α) is
equal to α) and deviates from it if ∆ ̸= 0.

2. Preliminaries

2.1. Prediction setting

We consider the classical split/inductive conformal prediction (Papadopoulos et al., 2002). A
calibration set {Zk, k ∈ JnK} is observed with Zk = (Xk, Yk) and, given a new point Zn+1 =
(Xn+1, Yn+1) for which only the covariate Xn+1 ∈ X is observed, a prediction set should be
inferred for the outcome Yn+1 ∈ Y1. A non-conformity score function S : X ×Y → R is also given;
S(X,Y ) ∈ R measures the non-conformity of the response Y ∈ Y with the covariate X ∈ X .
The classical example in regression is the residual S(X,Y ) = |Y − µ̂(X)| where µ̂ : X → Y is a
regression function trained from an independent training sample (considered as fixed here). The
(split) conformal prediction set at level (1− α) for Xn+1, denoted by Cα(Xn+1), is defined as

Cα(Xn+1) :=
{
y ∈ Y : S(Xn+1, y) ⩽ S(⌈(n+1)(1−α)⌉)

}
, (3)

where S(1) ⩽ S(2) ⩽ · · · ⩽ S(n) < S(n+1) := +∞ correspond to the ordered calibration scores
Dcal = {Sk : k ∈ JnK}. The set Cα(Xn+1) can be equivalently described as follows (this classical

fact can be retrieved from Lemma F.1): Yn+1 /∈ Cα(Xn+1) if and only if p
(n)
1 ⩽ α, where the

1The regression and classification settings correspond to Y = R and Y finite, respectively.
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conformal p-value is given by

p
(n)
1 := (n+ 1)−1

1 +
∑
k∈JnK

1Sk⩾T1

 ,

where T1 = S(Xn+1, Yn+1).
In this paper, we consider a transductive setting (Vovk, 2013), where a decision should be

made for a whole test sample of size m for which only the covariates are observed. We denote
Dtest = (Ti, i ∈ JmK) the set of the unobserved (since we only observed the covariates of the test
points) scores of the test sample. Considering the conformal prediction sets Cα(Xn+i), i ∈ JmK —
corresponding to (3) for all members of the test sample — gives rise to a family of m conformal

p-values (p
(n)
i )i∈JmK defined by

p
(n)
i := (n+ 1)−1

1 +
∑
k∈JnK

1Sk⩾Ti

 , i ∈ JmK. (4)

The false coverage proportion FCP(n)
m (α) of the prediction set family (Cα(Xn+i))i∈JmK is defined

by

FCP(n)
m (α) :=

1

m

∑
i∈JmK

1Yn+i /∈Cα(Xn+i) =
1

m

∑
i∈JmK

1
p
(n)
i ⩽α

. (5)

Note that this corresponds to the empirical cumulative density function (e.c.d.f.) of the conformal

p-values family (p
(n)
i )i∈JmK. The following assumption will be considered throughout the paper for

the (weighted or not) conformal prediction task.

Assumption 1. The set of calibration scores (Sk)k⩾1 and the set of test scores (Ti)i⩾1 are two
independent families of real random variables. The Sk, k ⩾ 1, (resp. Ti, i ⩾ 1) are i.i.d. with
distribution Pcal (resp. Ptest) and cumulative distribution function Fcal (resp. Ftest). Moreover, Fcal

and Ftest are continuous functions.

In the classical setting, the variables Zi, i ∈ Jn + mK, are i.i.d., hence Assumption 1 is true
with Pcal = Ptest. Since the vector of scores Dcal ∪Dtest is exchangeable in this case, the conformal
p-values are marginally super-uniform (Vovk et al., 2005; Romano and Wolf, 2005) which leads
to non-asymptotically valid prediction sets. However, in case of a distribution shift between the
distributions of the calibration and the test sample, that is Pcal ̸= Ptest, this property is lost. To
solve this issue, Tibshirani et al. (2019); Barber et al. (2023) proposed in this case to use weighted
conformal prediction. We follow this approach (with light formal variations for mathematical
convenience) by introducing a nonnegative weight function w : R → R+ and w(+∞) ∈ R+ and
the prediction set

Cw,α(Xn+1) :=

y ∈ Y : S(Xn+1, y) ⩽ Q1−α

w(+∞)

W
δ+∞ +

∑
k∈JnK

w (Sk)

W
δSk

 ,

where Qα(µ) denotes the α-quantile of the probability measure µ, δa denotes the Dirac measure
in a and W := w(+∞) +

∑
k∈JnK w (Sk) is a normalization constant. The set Cw,α(Xn+1) can also

be described with weighted conformal p-values thanks to Lemma F.1: Yn+1 /∈ Cw,α(Xn+1) if and

only if p
w,(n)
1 ⩽ α, with

p
w,(n)
1 :=

w(+∞) +
∑n

k=1 w(Sk)1Sk⩾T1

w(+∞) +
∑n

k=1 w(Sk)
.

Similarly, with a test sample of size m, we obtained the m weighted conformal p-values,

p
w,(n)
i :=

w(+∞) +
∑n

k=1 w(Sk)1Sk⩾Ti

w(+∞) +
∑n

k=1 w(Sk)
, for all i ∈ JmK, (6)
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The FCP of these weighted conformal prediction sets is in this case

FCPw,(n)
m (α) :=

1

m

∑
i∈JmK

1Yn+i /∈Cw,α(Xn+i) =
1

m

∑
i∈JmK

1
p
w,(n)
i ⩽α

, (7)

which, similarly to (5), is the e.c.d.f. of the weighted conformal p-values family.
Finally, under Assumption 1 and if Ptest is absolutely continuous with respect to Pcal, a partic-

ularly interesting weight function, called the oracle weight function, is given by

w∗ :=
dPtest

dPcal

. (8)

Clearly, if the calibration and test sample are exchangeable (Pcal = Ptest), the function w∗ is
constantly equal to 1. However, under a distribution shift (Pcal ̸= Ptest), the oracle weight function is

different, and oracle-weighted conformal p-values p
w∗,(n)
i (6) are different from the regular ones p

(n)
i

(4). They recover the marginally super-uniform property provided that w∗(+∞) ⩾ supu∈R w∗(u),
see Tibshirani et al. (2019).

2.2. Novelty detection setting

In the novelty detection setting (see for instance Vovk et al., 2005; Bates et al., 2023), we observe
a calibration set {Zk, k ∈ JnK} of size n, with values in Z distributed according to an unknown
“null” distribution P0 and a test sample {Zn+i, i ∈ JmK} with Zn+i ∈ Z either distributed as P0

or not. Formally, we introduce a subset H0 ⊂ {1, 2, . . . } so that Zn+i ∼ P0 when i ∈ H0. We also
denote H1 = {1, 2, . . . }\H0. In addition, it is given a non-conformity score function S : Z → R
such that S(Z) ∈ R measures the non-conformity of the variables Z with respect to P0 and we
denote Dcal = {Sk : k ∈ JnK} and Dtest = {Ti : i ∈ JmK} the set of the score from the calibration
and test samples respectively. A novelty detection procedure decides, for each i ∈ JmK, whether
Zn+i is a novelty (that is, does not follow P0), or not. The procedure described by Bates et al.
(2023) consists in computing the conformal p-values defined in (4) (by using the specific Sk’s and
Ti’s of novelty detection), and then applying the Benjamini-Hochberg procedure (Benjamini and

Hochberg, 1995) on this p-value family (p
(n)
i )i∈JmK (see Section 5.2.1 for more formal details). This

gives a rejection set Rα ⊂ JmK corresponding to the indices of the declared novelties.

FDP(n)
m (Rα) :=

|Rα ∩H0|
|Rα| ∨ 1

; (9)

TDP(n)
m (Rα) :=

|Rα ∩H1|
|H1| ∨ 1

. (10)

The FDP corresponds to the proportion of errors among the declared novelties (related to a type
I error notion), while the TDP corresponds to the proportion of correct decisions among the true
novelties (related to a power notion). The following will be assumed throughout the paper for
(weighted or not) novelty detection:

Assumption 2. The set of calibration scores (Sk)k⩾1 and the set of test scores (Ti)i⩾1 are two
independent families of real random variables. The variables Sk, k ⩾ 1, are i.i.d. with distribution
Pcal and c.d.f. Fcal. The variables Ti, i ⩾ 1, are independent, the variables Ti, i ∈ H0, are identically
distributed as a null score distribution P0 and c.d.f. F0, and the variables Ti, i ∈ H1, are identically
distributed as an alternative score distribution Ptest (potentially different from P0) with c.d.f. Ftest.
Moreover, Fcal, F0 and Ftest are continuous.

We also consider the case of a distribution shift between the distribution of the calibration set
Pcal and the null distribution P0, in which case we propose to use a weighted p-value approach (as
for the prediction task). For some weight function w : R → R+ and w(+∞) ∈ R+, the weighted
conformal p-values are the ones from (6) (by using the specific Sk’s and Ti’s of novelty detection).
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We introduce the weighted Bates et al. (2023) procedure as the one applying the BH procedure
on this weighted p-value family and we denote its rejection set by Rw

α ⊂ JmK. We defined as above
the FDP and TDP of this procedure.

Under Assumption 2 and if P0 is absolutely continuous with respect to Pcal, a particular weight
is the oracle weight function defined by

w∗ :=
dP0

dPcal

. (11)

The oracle weighted conformal p-values p
w∗,(n)
i , i ∈ H0, are marginally super-uniform provided

that w∗(+∞) ⩾ supu∈R w∗(u), see Tibshirani et al. (2019).

2.3. Spaces for process convergence

We study the asymptotic convergence of random processes and we consider usual spaces defined
in Billingsley (1999) and van der Vaart and Wellner (1996), denoted as usual D[0, 1], D(0, 1) and
ℓ∞(0, 1), and which are briefly described below.

First, D[0, 1] is the set of càdlàg function f : [0, 1] → R with the usual Skorohod topology.
Second, D(0, 1) is the set of càdlàg function f : (0, 1) → R with the extended Skorohod topology2

defined as follows: (xn)n ∈ D(0, 1)N converge to x ∈ D(0, 1) if and only if, for all (a, b) ∈ (0, 1)2

with a < b such that x is continuous at points a and b, the sequence (xn)n restricted to [a, b]
converges to x restricted to [a, b] in D[a, b] with the usual Skorohod topology. Finally, ℓ∞(0, 1) is
the space of locally bounded function f : (0, 1) → R with the topology of the uniform convergence
on all compact sets of (0, 1): a sequence (fn)n ∈ [ℓ∞(0, 1)]N converges to f ∈ ℓ∞(0, 1) if and only if
for all K compact subsets of (0, 1), supx∈K |fn(x)− f(x)| → 0. We also consider D(R) the space of
càdlàg function from R to R with the extended Skorohod topology and ℓ∞(R) the space of locally
bounded function from R to R with the topology of the uniform convergence on all compact sets
of R.

3. Asymptotics for conformal prediction

The aim here is to study the asymptotic properties of the processes FCP(n)
m (5) and FCPw,(n)

m (7).
We study each process in two scenarios: exchangeable or distribution shift.

3.1. Main result

Let us introduce the two following quantities:

I(t) := t, t ∈ [0, 1]; (12)

G(t) := 1− Ftest ◦ F−1
cal (1− t), t ∈ (0, 1), (13)

where F−1
cal (u) = inf {x ∈ R : Fcal(x) ⩾ u} denotes the general inverse of Fcal. Formally, I and G

correspond to the c.d.f. of the theoretical p-values p(+∞) = 1−Fcal(T ) when T ∼ Pcal and T ∼ Ptest,
respectively. We denote G′ denotes the derivative of G when it is defined.

Theorem 3.1. Under Assumption 1 with Fcal = Ftest, we have

√
τn,m

(
FCP(n)

m − I
)

L−→
τn,m→+∞

U on D[0, 1],

where τn,m is defined by (2) and U is a standard Brownian bridge.

2This definition is similar to the convergence in D[0,+∞) considered in Billingsley (1999)
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Theorem 3.1 is proved in Section 5.1.4. Note that Theorem 3.1 is true under slightly more general
assumptions: namely, it is sufficient that all the scores are exchangeable without ties (Gazin et al.,
2024). As a corollary, if n/(n+m) → σ2 ∈ (0, 1], this result gives

√
m
(
FCP(n)

m − I
)

L−→
τn,m→+∞

σ−1U.

The latter shows that if the ratio τn,mm−1 or nm−1 is small (see Lemma F.2 for the equivalence),
the FCP becomes asymptotically over-dispersed. This is markedly different from the case where
we have m i.i.d. p-values uniformly distributed on (0, 1) (compare with the Donsker theorem, see
Theorem E.3).

Let us now consider the case where we have potentially a covariate shift, that is, Fcal ̸= Ftest.
For this, we consider the following additional assumptions3 on Fcal and Ftest.

Assumption 3. Fcal is increasing on its support (a, b) ⊂ R with −∞ ⩽ a < b ⩽ +∞ and is
continuously differentiable. In addition, Ftest is continuously differentiable.

Theorem 3.2. Under Assumptions 1 and 3 and assuming that n/(n+m) tends to σ2 ∈ [0, 1], we
have

√
τn,m

(
FCP(n)

m −G
)

L−→
τn,m→+∞

σU ◦G+
√

1− σ2G′V on D(0, 1),

where U and V are two independent Brownian bridges.

Theorem 3.2 is proved in Section 5.1.3. When Ftest = Fcal it recovers Theorem 3.1 (under
stronger assumptions). Otherwise, it shows that the FCP converges to G ̸= I which entails that

FCP(n)
m (α) is not provided to converge to α anymore.

3.2. Weighted case

Let w : R∪{∞} 7→ R+ be a bounded and measurable weight function. To describe the asymptotic

behavior of FCPw,(n)
m , we need to introduce few additional quantities. First, we let

Fw
cal(t) :=

∫ t

−∞ w(u) dPcal(u)∫
R w(u) dPcal(u)

, t ∈ R, (14)

which corresponds to the c.d.f. of the distribution induced by weight function w on the distribution
Pcal. Note that when choosing the oracle weights (8), the latter is simply the c.d.f. of Ptest. Second,
let

Gw(t) := 1− Ftest ◦ (Fw
cal)

−1(1− t), t ∈ (0, 1), (15)

the c.d.f. of the theoretical p-values pw,(+∞) = 1−Fw
cal(T ) with T ∼ Ptest, and we denote (Gw)′ its

derivatives when it exists. Finally, we introduce quantities involved in the variance:

ρw :=

(∫
R w(u)2 dPcal(u)

)1/2∫
R w(u) dPcal(u)

⩾ 1; (16)

V w
cal(t) :=

∫ t

−∞ w(u)2 dPcal(u)∫
R w(u)2 dPcal(u)

, t ∈ R; (17)

Iw(t) := 1− V w
cal ◦ (Fw

cal)
−1(1− t), t ∈ (0, 1). (18)

Assumption 4. The weight function w : R∪ {∞} → R+ is uniformly bounded by a constant and
is measurable. Moreover, Fw

cal is increasing on its support (aw, bw) ⊂ R with −∞ ⩽ aw < bw ⩽ +∞
and is continuously differentiable.

3Assumption 3 can be slightly relaxed, by only assuming that Ftest ◦F−1
cal is continuously differentiable on (0, 1).
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Typically, Assumption 4 holds if {t ∈ R, w(t) > 0} is a (possibly infinite) interval of R on which
w is bounded and continuous and Fcal satisfies Assumption 3.

Theorem 3.3. Under Assumptions 1, 3, 4 and assuming that n/(n+m) tends to σ2 ∈ [0, 1], we
have

√
τn,m

(
FCPw,(n)

m −Gw
)

L−→
τn,m→+∞

σU ◦Gw +
√
1− σ2ρw(Gw)′ (V (Iw) + [I − Iw]N) on D(0, 1),

where U, V are two independent standard Brownian bridges, ρw is defined by (16), Iw is defined by
(18), N is an independent standard Gaussian random variable and (Gw)′ denotes the derivative
of Gw.

Theorem 3.3 is proved in Section 5.1.5. Note that Theorem 3.3 recovers Theorem 3.2 when
w ≡ 1. The asymptotic expectation of FCPw,(n)

m (α) is Gw(α) which is different from α in general,
if w is chosen arbitrarily. Interestingly, when choosing the oracle weight function w∗ given by (8),
we have Gw∗

= I and the convergence in Theorem 3.3 reads as follows:

Theorem 3.4. Under Assumptions 1 and 3, assume that Ptest is absolutely continuous with respect
to Pcal and that the oracle weight function w∗ (8) satisfies Assumption 4. If the ratio n/(n +m)
tends to σ2 ∈ [0, 1], we have,

√
τn,m

(
FCPw∗,(n)

m − I
)

L−→
τn,m→+∞

σU+
√
1− σ2ρw

∗
(
V
(
Iw

∗
)
+
[
I − Iw

∗
]
N
)

on D(0, 1),

where U, V are two independent standard Brownian bridge and N is an independent standard
Gaussian random variable.

This result means that we can recover a result close to Theorem 3.1 in case of a distribution
shift if the oracle weight function is used in the prediction sets.

Finally, the covariance terms of Theorems 3.3 and 3.1 can be used to build confidence intervals
for the FCP, as illustrated in Figure 2.

4. Asymptotics for novelty detection

Recall the novelty detection setting of Section 2.2. The aim here is to study the asymptotic
properties of the process FDP(n)

m (Rα) (9) and of the process TDP(n)
m (Rα) (10).

4.1. Additional notation and assumptions

We denote, for all m ⩾ 1, m0(m) = |H0 ∩ JmK| and π0(m) = m0(m)/m the number and the
proportion of nulls (i.e. of non-novelties) among m tested points, respectively. We introduce the
following quantities:

G0(t) = 1− F0 ◦ F−1
cal (1− t), t ∈ (0, 1); (19)

Gmixt = π0G0 + (1− π0)G, (20)

that correspond to the (limiting) c.d.f. of the conformal p-values under the null and under the
test sample mixture, respectively. For some weight function w, we also define their weighted
counterparts:

Gw
0 (t) = 1− F0 ◦ (Fw

cal)
−1

(1− t), t ∈ (0, 1), (21)

Gw
mixt = π0G

w
0 + (1− π0)G

w. (22)

We denote G′
mixt and (Gw

mixt)
′ the derivatives of Gmixt and Gw

mixt, respectively. Note that Assump-
tion 2 with F0 = Fcal entails G0 = I. If F0 ̸= Fcal, we still have Gw∗

0 = I when w∗ is the oracle
weight function.

The two following assumptions are classical when studying the asymptotic of multiple testing
procedures (Genovese and Wasserman, 2002).
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Assumption 5. Gmixt is strictly concave on (0, 1).

Assumption 6. Gw
mixt is strictly concave on (0, 1).

As shown in Chi (2007); Neuvial (2008) in the independent case, there is a critical value for
the BH procedure given by α∗ = [G′

mixt(0
+)]−1; the central limit theorem for the FDP/TDP of

BH procedure at level α can only be obtained if α > α∗ (for α < α∗, the BH procedure at level
α has asymptotically no power). We will show below that this quantity plays a similar role in the
(dependent) conformal setting and prove results only if α > α∗.

Finally, as in Neuvial (2008), we consider also the following thresholds

Tα = sup

{
t ∈ (0, 1), Gmixt(t) ⩾

t

α

}
; (23)

T w
α = sup

{
t ∈ (0, 1), Gw

mixt(t) ⩾
t

α

}
, (24)

which are well defined (and belong to (0, 1)) under Assumption 5 if α > [(Gmixt)
′(0+)]−1 and

Assumption 6 if α > [(Gw
mixt)

′(0+)]−1, respectively.

4.2. Main results

When P0 = Pcal (no distribution shift), the following result holds for the regular Bates et al. (2023)
procedure.

Theorem 4.1. Under Assumption 2 with P0 = Pcal, Assumption 3 and and Assumption 5, let
us consider Rα the BH procedure at level α applied to the conformal p-values (4), with a level
α > [G′

mixt(0
+)]−1. If n/(n+m) → σ2 ∈ [0, 1] and π0(m) → π0 ∈ (0, 1), we have

√
τn,m

(
FDP(n)

m (Rα)− π0α
)

L−→
τn,m→+∞

N
(
0, α2π0

[
σ2 + (1− σ2)π0

] 1− Tα
Tα

)
; (25)

√
τn,m

(
TDP(n)

m (Rα)−G(T ∗)
)

L−→
τn,m→+∞

N
(
0,

Σα

(α−1 −G′
mixt(Tα))2

)
, (26)

with Σα = G′(Tα)2Tα(1− Tα)
[
π0σ

2 + (1− σ2)α−2
]
+
[
α−1 − π0

]2
(1− π0)

−1
G(Tα)(1−G(Tα))σ2.

Theorem 4.1 is a direct corollary of Proposition 5.3, itself proved in Section 5.2.3. It relies on
the pipeline introduced by Neuvial (2008), which consists in first deriving a functional central
limit theorem for the e.c.d.f. of the p-values and then to use the functional delta method (van der
Vaart, 1998).

Interestingly, under the assumptions of Theorem 4.1 and if σ2 > 0, (25) yields

√
m
(
FDP(n)

m (Rα)− π0α
)

L−→
τn,m→+∞

N
(
0, α2π0

[
1 + (σ−2 − 1)π0

] 1− Tα
Tα

)
.

When σ = 1 (that is n/m → ∞), we note that the FDP convergence is the same as when the p-
values are independent (Neuvial, 2008). However, when n/m is bounded, the asymptotic variance
is affected by the dependence and gets larger when σ decreases (that is, n/m decreases). This is
coherent with results on FDP convergence in literature dealing with dependency structure: the
(positive) dependence is shown to increase the dispersion of the FDP, see Delattre and Roquain
(2011, 2016) among others.

Under distribution shift, the following result holds.

Theorem 4.2. Under Assumptions 2 and 6, assume that P0 is absolutely continuous with respect
to Pcal and that the oracle weight function w∗ (11) satisfies Assumptions 3 and 4. Consider the
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BH procedure at level α applied to the oracle weighted p-values (p
w∗,(n)
i )i∈JmK (6), with a level

α > [(Gw∗

mixt)
′(0+)]−1. Then if n/(n+m) → σ2 ∈ [0, 1] and π0(m) → π0 ∈ (0, 1), we have

√
τn,m

(
FDP(n)

m (Rw∗

α )− π0α
)

L−→
τn,m→+∞

N
(
0, α2π0Ξ

w∗

α

1− T w∗

α

T w∗
α

)
; (27)

√
τn,m

(
TDP(n)

m (Rw∗

α )−Gw∗
(T w∗

α )
)

L−→
τn,m→+∞

N
(
0,

Σw∗

α

(α−1 − (Gw∗
mixt)

′(T w∗
α ))2

)
, (28)

where we denote

Ξw∗

α = σ2 + (1− σ2)ρw
∗2
π0

Iw
∗
(T w∗

α )T w∗

α

−1
+ T w∗

α − 2Iw
∗
(T w∗

α )

1− T w∗,∗
α

;

Σw∗

α =
(
(Gw∗

)
′
(T w∗

α )
)2

T w∗

α (1− T w∗

α )π0σ
2

+
(
ρw

∗
(Gw∗

)
′
(T w∗

α )α−1
)2 [

T w∗

α − Iw
∗
(T w∗

α )2
]
(1− σ2)

+
[
α−1 − π0

]2
(1− π0)

−1
Gw∗

(T w∗

α )(1−Gw∗
(T w∗

α ))σ2.

Theorem 4.2 is proved in Section 5.2.4. The Bates et al. (2023) procedure with (similar) weighted
conformal p-values has been studied in Jin and Candès (2023) and they obtained a convergence of
FDR and FDP to quantities analogue to π0α andGw∗

(T w∗

α ), respectively. By contrast, Theorem 4.2
provides the full asymptotic distribution.

While Theorem 4.2 focuses on the oracle weight function, the non-oracle case is deferred to
Section D, see Theorem D.2 .

5. Proofs

In this section, we prove the main results of the paper. They rely on a particular decomposition
of the FCP/FDP into two processes that further jointly converge. Applying the functional delta
method (van der Vaart, 1998) then allows to conclude.

5.1. Proofs for Section 3

5.1.1. FCP decomposition

To emphasize that the FCP is the e.c.d.f. of (p
(n)
i )i∈JmK, we let for all n ⩾ 1 and m ⩾ 1,

Ĝ(n)
m :=

1

m

m∑
i=1

1
p
(n)
i ⩽t

= FCP(n)
m (t), t ∈ [0, 1]. (29)

We also introduce, for all n ⩾ 1 and m ⩾ 1,

F̂
(n)
cal (t) =

1

n+ 1

n∑
k=1

1Sk⩽t, t ∈ R, (30)

F̂m,test(t) =
1

m

m∑
i=1

1Ti⩽t, t ∈ R, (31)

corresponding to the e.c.d.f. of the calibration score sample and test score sample, respectively.

Note that we have p
(n)
i = 1 − F̂

(n)
cal (Ti) almost surely (under Assumption 1 to ensure that there

are no ties almost surely).
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By Lemma F.1 we have that p
(n)
i ⩽ t if and only if Ti > (F̂

(n)
cal )

−1(1 − t) for all t ∈ (0, 1).

Recalling (13), this leads to the following decomposition for Ĝ
(n)
m : for all t ∈ (0, 1),

Ĝ(n)
m (t)−G(t) =

1

m

∑
i∈JmK

1
p
(n)
i ⩽t

−G(t)

=
1

m

∑
i∈JmK

1
(F̂

(n)
cal )

−1(1−t)<Ti
−
(
1− Ftest ◦ F−1

cal (1− t)
)

= 1− 1

m

∑
i∈JmK

1
(F̂

(n)
cal )

−1(1−t)⩾Ti
−
(
1− Ftest ◦ F−1

cal (1− t)
)

= Ftest ◦ F−1
cal (1− t)− F̂m,test ◦ (F̂ (n)

cal )
−1(1− t).

Hence, it follows

Ĝ(n)
m (t)−G(t) = Ftest ◦ (F̂ (n)

cal )
−1(1− t)− F̂m,test ◦ (F̂ (n)

cal )
−1(1− t)

+ Ftest ◦ F−1
cal (1− t)− Ftest ◦ (F̂ (n)

cal )
−1(1− t).

Finally, we obtain the decomposition

√
τn,m

(
Ĝ(n)

m (t)−G(t)
)
=−

√
τn,m
m

√
m
(
F̂m,test ◦ (F̂ (n)

cal )
−1(1− t)− Ftest ◦ (F̂ (n)

cal )
−1(1− t)

)
−
√

τn,m
n

√
n
(
Ftest ◦ (F̂ (n)

cal )
−1(1− t)− Ftest ◦ F−1

cal (1− t)
)
. (32)

5.1.2. Joint convergence

Thanks to (32), in order to obtain a convergence result for
√
τn,m

(
Ĝ

(n)
m −G

)
, we only need to

derive the joint convergence of the two processes delineated in the decomposition (32).

Proposition 5.1. Under Assumptions 1 and 3 we have,√
m
[
F̂m,test ◦ (F̂ (n)

cal )−1(1− I)− Ftest ◦ (F̂ (n)
cal )−1(1− I)

]
√
n
[
Ftest ◦ (F̂ (n)

cal )−1(1− I)− Ftest ◦ F−1
cal (1− I)

]  L→
(
U ◦G
G′V

)
on [D(0, 1)]

2
, (33)

where U and V are two independent Brownian bridges.

Proposition 5.1 is proved in Section B.1. The main idea of the proof is to study each coordinate
separately and then to use independence to obtain a joint convergence. The process of the first
coordinate (test term) is studied by using the Donsker Theorem for F̂m,test and the continuous
mapping theorem with a random change of time (Lemma E.10). The second coordinate (calibration

term) is investigated by using the Donsker theorem for (F̂
(n)
cal )

−1 and then using the functional
delta method with the map ϕ 7→ Ftest ◦ ϕ (Lemma E.5).

5.1.3. Proof of Theorem 3.2

Thanks to Proposition 5.1 we have U and V two independent standard Brownian bridges such
that (33) holds. Since n/(n +m) → σ2 ∈ [0, 1] and τn,m/n → 1 − σ2 ∈ [0, 1] by assumption, we
obtain by Slutsky’s Lemma

√
m
[
F̂m,test ◦ (F̂ (n)

cal )
−1(1− I)− Ftest ◦ (F̂ (n)

cal )
−1(1− I)

]
√
n
[
Ftest ◦ (F̂ (n)

cal )
−1(1− I)− Ftest ◦ F−1

cal (1− I)
]

τn,m

mτn,m

n

 L→


U ◦G
G′V
σ2

1− σ2

 on [D(0, 1)]
2 × [0, 1]2.

The result follows by applying the continuous mapping theorem with the decomposition (32).
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5.1.4. Proof of Theorem 3.1

Up to consider a subsequence, one can assume that n/(n+m) → σ2 ∈ [0, 1]. The result thus follows
from Theorem 3.2 in the special case Fcal = Ftest, because G = I in this case, and σU+

√
1− σ2V

is a standard Brownian bridge.

5.1.5. Proof of Theorem 3.3

For weighted conformal p-values, we introduce

Ĝw,(n)
m (t) :=

1

m

∑
i∈JmK

1
p
w,(n)
i ⩽t

= FCPw,(n)
m (t), t ∈ R; (34)

F̂
w,(n)
cal (t) :=

∑n
k=1 w(Sk)1Sk⩽t

w(+∞) +
∑n

k=1 w(Sk)
, t ∈ R, (35)

the counterparts of Ĝ
(n)
m (29) and F̂

(n)
cal (30) in the weighted case, respectively. Note that p

w,(n)
i =

1 − F̂
w,(n)
cal (Ti) almost surely under Assumption 1. Hence, the following decomposition, analogue

to (32), holds:

√
τn,m

(
Ĝw,(n)

m (t)−Gw(t)
)
=−

√
τn,m
m

√
m
(
F̂m,test ◦ (F̂w,(n)

cal )−1(1− t)− Ftest ◦ (F̂w,(n)
cal )−1(1− t)

)
−
√

τn,m
n

√
n
(
Ftest ◦ (F̂w,(n)

cal )−1(1− t)− Ftest ◦ (Fw
cal)

−1
(1− t)

)
.

(36)

Thus, the novelty of (36) with respect to (32) is only the presence of (F̂
w,(n)
cal )−1 instead of (F̂

(n)
cal )

−1.
By Assumption 4, we can show that the family of function F = {wt : x ∈ R 7→ w(x)1x⩽t; t ∈ R}
is Pcal-Donsker and Pcal-Glivenko-Cantelli. Since F is Glivenko-Cantelli, the convergence of the
test term happens with the same argument in the unweighted case. Because this class is Donsker,

using twice the functional delta method gives us that (
√
n[(F̂

w,(n)
cal )−1 − (Fw

cal)
−1])n converges in

distribution to some known random process on the set D(0, 1). This result is stated and then
proved in Lemma C.1. This leads to the joint convergence Proposition C.2, which is the analogue
of Proposition 5.1 in the weighted case. Theorem 3.3 is thus proved by applying the continuous
mapping theorem to the decomposition (36).

5.2. Proofs for Section 4

5.2.1. FDP expression

We introduced, as in the works from Genovese and Wasserman (2004) and Neuvial (2008), Ĝ
(n)
m,0

and Ĝ
(n)
m,1 the two e.c.d.f.’s of conformal p-values for non-novelties and novelties, respectively:

Ĝ
(n)
m,0(t) :=

1

m0(m)

∑
i∈JmK∩H0

1
p
(n)
i ⩽t

, t ∈ (0, 1), (37)

Ĝ
(n)
m,1(t) :=

1

m1(m)

∑
i∈JmK∩H1

1
p
(n)
i ⩽t

, t ∈ (0, 1). (38)

We also introduce the mixture e.c.d.f. of the test sample

Ĝ(n)
m (t) =

1

m

∑
i∈JmK

1
p
(n)
i ⩽t

= π0(m)Ĝ
(n)
m,0(t) + (1− π0(m))Ĝ

(n)
m,1(t), t ∈ (0, 1). (39)
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For all t ∈ (0, 1), we denote simply FDP(n)
m (t) := FDP(n)

m ({i ∈ JmK, p
(n)
i ⩽ t}) (resp. TDP(n)

m (t) :=

TDP(n)
m ({i ∈ JmK, p

(n)
i ⩽ t})) the FDP (resp. TDP) of the procedure rejecting all the conformal

p-values smaller than t, see (9) and (10). The following equalities hold:

FDP(n)
m (t) =

π0(m)Ĝ
(n)
m,0(t)

Ĝ
(n)
m (t) ∨m−1

, t ∈ (0, 1),

TDP(n)
m (t) = Ĝ

(n)
m,1(t), t ∈ (0, 1).

Following Neuvial (2008), and since the novelty detection procedure from Bates et al. (2023) is the
BH procedure applied to conformal p-values, we can be described it as a thresholding procedure

with threshold T BHα(Ĝ
(n)
m ), where the functional T BHα is defined by

T BHα(F ) := sup

{
t ∈ [0, 1], F (t) ⩾

t

α

}
. (40)

In other words, we haveRα = {i ∈ JmK : p
(n)
i ⩽ T BHα(Ĝ

(n)
m )} and FDP(n)

m (Rα) = FDP(n)
m (T BHα(Ĝ

(n)
m ))

with the notation above.

5.2.2. Joint convergence and application to the FDP and TDP

Following Neuvial (2008),G 7→ T BHα(G) andG 7→ FDP(n)
m (T BHα(G)) are Hadamard differentiable

at Gmixt provided that Gmixt is concave and differentiable and that α > [G′
mixt(0

+)]−1. The following

result complete the picture by studying the convergence of Ĝ
(n)
m .

Proposition 5.2. Under Assumptions 2 and 3, assuming that n/(n + m) → σ2 ∈ [0, 1] and
π0(m) → π0 ∈ (0, 1), we have

√
τn,m

(
Ĝ

(n)
m,0 − I

Ĝ
(n)
m,1 −G

)
L−→

τn,m→+∞

(
σ√
π0
U+

√
1− σ2W

σ√
1−π0

VG +G′√1− σ2W

)
=:

(
Z0

Z1

)
on [D(0, 1)]

2
,

with U, V and W three independent Brownian bridges. As a result,

√
τn,m

(
Ĝ(n)

m −Gmixt

)
L−→

τn,m→+∞

√
π0σ2U+

√
(1− π0)σ2VG +G′

mixt

√
1− σ2W

= π0Z0 + (1− π0)Z1 =: Z on D(0, 1).

Proposition 5.2 is proved in Section B.2. The proof is similar to Proposition 5.1, with the
additional technicality that the decomposition (32) should be considered for the two processes

Ĝ
(n)
m,0 and Ĝ

(n)
m,1. The fact that these decompositions are based on the same process F̂

(n)
cal induces

a dependence between the components that results in the term W in the asymptotic variance.
By using the functional delta method theorem with the BH functionals described above (see

Neuvial (2008), supplementary files from Delattre and Roquain (2016) and Lemma S.2.2 from
Kluger and Owen (2024)), we obtain the following result.

Proposition 5.3. Under Assumptions 2, 3 and 5, assume that BH is applied with a level α >
[G′

mixt(0
+)]−1. If n/(n+m) → σ2 ∈ [0, 1] and π0(m) → π0 ∈ (0, 1), we have the following conver-

gences:

√
τn,m

(
T BHα(Ĝ(n)

m )− Tα
)

L−→
τn,m→+∞

1
1
α −G′

mixt(Tα)
Z(Tα);

√
τn,m

(
FDP(n)

m

(
T BHα(Ĝ(n)

m )
)
− π0α

)
L−→

τn,m→+∞

π0

Gmixt(Tα)
Z0(Tα);

√
τn,m

(
TDP(n)

m

(
T BHα(Ĝ(n)

m )
)
−G(Tα)

)
L−→

τn,m→+∞

G′(Tα)
1
α −G′

mixt(Tα)
Z(Tα) + Z1(Tα),

where Tα = T BHα(Gmixt) and Z0, Z1 and Z are the three processes defined in Proposition 5.2.
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Proposition 5.3 is proved in Section B.3. As a sanity check, we see that Proposition 5.3 reduces
to the result of Neuvial (2008) when n/m tends to infinity (σ2 = 1).

5.2.3. Proof of Theorem 4.1

Theorem 4.1 is obtained from Proposition 5.3 by computing the different asymptotic covariance
functions. For this, we use that (Z0,Z1,Z) can be written asZ0

Z1

Z

 =


σ√
π0
U+

√
1− σ2W

σ√
1−π0

VG +G′√1− σ2W√
π0σ2U+

√
(1− π0)σ2VG +G′

mixt

√
1− σ2W

 ,

with U, V and W being three independent standard Brownian bridges. The result follows from
direct computations.

5.2.4. Proof of Theorem 4.2

Proving Theorem 4.2 is analogue to the proof of Theorem 4.1 above, but starting from weighted
processes. For short, the full description of the proof is postponed to Section C.3. Therein, Propo-
sitions C.3 and C.4 are the analogues of Propositions 5.2 and 5.3, respectively.

6. Conclusion

In this paper we obtained the exact asymptotic distribution of FCP and FDP for conformal
inference methods when both the sizes of the calibration sample and test sample grow simultane-
ously. Our theory covered both the prediction and novelty detection settings, including a potential
distribution shift. Our results quantified exactly how the covariance process is affected by the de-
pendence inherent to the conformal settings, that use the same calibration sample for all the test
examples. First, we proved that the convergence rate τn,m can be largely deteriorated when n/m
vanishes to zero (that is, σ = 0). Otherwise, when n and m are of the same order, the convergence
rate is the usual one (m1/2), but the asymptotic covariance is affected. Nevertheless, when n/m
tends to infinity, the convergence is strictly the same as in the usual independent case. Interest-
ingly, our results can be used to calibrate easily and accurately quantiles for controlling an error
amount when performing conformal inference with large n and m. We also quantified the effects
of doing conformal inference while there is a distribution shift between the calibration sample and
the test sample. We exhibits how this distribution shift acts on the asymptotic behaviour of the
FCP, by changing the mean and the variance, and how the correction with weighted conformal
p-values impacts the asymptotic variance.

While our work paves the way for studying asymptotic convergences in conformal inferences,
it left some open directions for future research. For instance, in case of a distribution shift, the
oracle weight function is mostly unknown, and is often estimated (Jin and Candès, 2023). Finding
the exact asymptotic distribution for the processes using estimated weights is a very interesting
and challenging problem for future investigations.
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Appendix A: Standardisation lemma

In this section, we introduce the standardisation lemma, which will be extensively used in our
proofs. Let us introduce the notation

Ftest,cal(t) = Ftest ◦ F−1
cal (t), t ∈ [0, 1]; (41)

F0,cal(t) = F0 ◦ F−1
cal (t), t ∈ [0, 1], (42)

where by convention F−1
cal (0) denotes the infimum of the support of the distribution given by Fcal

and Ftest,cal(1) = F0,cal(1) = 1. The following lemma holds.

Lemma A.1. Consider either the prediction setting with Assumption 1 (with parameters Fcal,
Ftest) or the novelty detection setting with Assumption 2 (with parameters Fcal, Ftest, F0). If Fcal,
Ftest satisfy Assumption 3, for any weight function w : R ∪ {∞} 7→ R+ with w(+∞) > 0, the
distribution of the w-weighted conformal p-value family under the parameters Fcal, Ftest (and F0)
is the same as the w ◦ F−1

cal -weighted conformal p-value family under the parameters Fcal = I,
Ftest = Ftest,cal (and F0 = F0,cal).

Proof of Lemma A.1. Since Fcal is continuous increasing on its support, we can write almost surely∑
k∈JnK

w(Sk)1Sk⩾Ti
=
∑
k∈JnK

(w ◦ F−1
cal )(Fcal(Sk))1Fcal(Sk)⩾Fcal(Ti)

=
∑
k∈JnK

(w ◦ F−1
cal )(S

′
k)1S′

k⩾T ′
i
,

with S′
k = Fcal(Sk) which are iid uniform and T ′

i = Fcal(Ti) which are iid ∼ Ftest,cal (or either
∼ F0,cal under the null or ∼ Ftest,cal under the alternative, in the novelty detection setting).

Appendix B: Proofs of auxiliary results

In this section, we prove Proposition 5.1, Propositions 5.2 and 5.3. Proofs for the weighted case
are given in Section C.

B.1. Proof of Proposition 5.1

First, the Donsker theorem (Theorem E.3) provides

√
m
(
F̂m,test − Ftest

)
L−→

τn,m→+∞
U ◦ Ftest on D(R),

with U being a standard Brownian bridge. Moreover, by the Glivenko-Cantelli theorem, we have

that (F̂
(n)
cal )n converges in probability on ℓ∞(R) to Fcal. Since by Assumption 3 the inverse map is

continuous at Fcal we obtain that ((F̂
(n)
cal )

−1)n converges in probability on D(0, 1) to F−1
cal .

Second, applying again the Donsker theorem (Theorem E.3), we have

√
n
(
F̂

(n)
cal − Fcal

)
L−→

τn,m→+∞
V ◦ Fcal on D(R),

with V a standard Brownian bridge independent of U. Now, by using the fonctional delta method
with the inverse map (see Lemma E.6) by Assumption 3, we obtain,

√
n
(
(F̂

(n)
cal )

−1 − F−1
cal

)
L−→

τn,m→+∞
(F−1

cal )
′V on D(0, 1), (43)

where (F−1
cal )

′ denotes the derivative of F−1
cal . Again, we use the Hadamard differentiability of the

map φ 7→ Ftest ◦ φ which is true by Assumption 3 (see Lemma E.5) to obtain

√
n
(
Ftest ◦ (F̂ (n)

cal )
−1 − Ftest ◦ F−1

cal

)
L−→

τn,m→+∞
F ′

test ◦ F−1
cal (F

−1
cal )

′V =
(
Ftest ◦ F−1

cal

)′ V on D(0, 1).
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Since for all t ∈ (0, 1), G′(t) =
(
Ftest ◦ F−1

cal

)′
(1− t) and since V is a standard Brownian bridge

if and only if (Vt)t = (V1−t)t is a standard Brownian bridge we obtain the second term in (33) .
Finally, since Dcal and Dtest are independent, we obtain the joint convergence: √

m
[
F̂m,test − Ftest

]
√
n
[
Ftest ◦ (F̂ (n)

cal )
−1(1− I)− Ftest ◦ F−1

cal (1− I)
] L→

(
U ◦ Ftest

G′V

)
on D(R)×D(0, 1),

with U and V two independent standard Brownian bridges. By Slutsky’s Lemma, we obtain the
following joint convergence

√
m
[
F̂m,test − Ftest

]
√
n
[
Ftest ◦ (F̂ (n)

cal )
−1(1− I)− Ftest ◦ F−1

cal (1− I)
]

(F̂
(n)
cal )

−1(1− I)

 L→

 U ◦ Ftest

G′V
F−1

cal (1− I)


on D(R)×D(0, 1)× ℓ∞(0, 1).

Then, using Lemma E.10, we finally obtain√
m
[
F̂m,test ◦ (F̂ (n)

cal )
−1(1− I)− Ftest ◦ (F̂ (n)

cal )
−1(1− I)

]
√
n
[
Ftest ◦ (F̂ (n)

cal )
−1(1− I)− Ftest ◦ F−1

cal (1− I)
]  L→

(
U
(
Ftest ◦ F−1

cal (1− I)
)

G′V

)
on [D(0, 1)]

2
.

Since U
(
Ftest ◦ F−1

cal (1− I)
)
has the same distribution as U(G), we obtain (33).

B.2. Proof of Proposition 5.2

By using Lemma A.1, one can assume without loss of generality that P0 = Pcal = U(0, 1) and
Ptest has for c.d.f. Ftest,cal. By applying the Donsker theorem (Theorem E.3) with the independent
families (Sk, k ⩾ 1), (Ti, i ∈ H0) and (Ti, i ∈ H1) and following the same reasoning as in the proof
of Proposition 5.1, there exist U, V and W three independent standard Brownian bridges such
that

√
m0(m)

[
F̂m,0,test − I

]
√
m1(m)

[
F̂m,1,test − Ftest,cal

]
√
n
[
(F̂

(n)
cal )

−1(1− I)− (1− I)
]

√
n
[
Ftest,cal ◦ (F̂ (n)

cal )
−1(1− I)− Ftest,cal(1− I)

]
(F̂

(n)
cal )

−1(1− I)


L→


U

V(1− Ftest,cal)
W

G′W
1− I

 on [D(0, 1)]
4 × ℓ∞(0, 1),

where we denoted F̂m,r,test the e.c.d.f. of {Ti, i ∈ JmK ∩Hr} for r ∈ {0, 1}. Now, by using Lemma E.10
(or more precisely, an obvious extension of it for 5 joint processes), we obtain



√
m0(m)

[
F̂m,0,test ◦ (F̂ (n)

cal )
−1(1− I)− (F̂

(n)
cal )

−1(1− I)
]

√
m1(m)

[
F̂m,1,test ◦ (F̂ (n)

cal )
−1(1− I)− Ftest,cal ◦ (F̂ (n)

cal )
−1(1− I)

]
√
n
[
(F̂

(n)
cal )

−1(1− I)− (1− I)
]

√
n
[
Ftest,cal ◦ (F̂ (n)

cal )
−1(1− I)− Ftest,cal(1− I)

]


L→


U

V ◦G
W

G′W

 on [D(0, 1)]
4
.
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Now, Ĝ
(n)
m,0 (37) and Ĝ

(n)
m,1 (38) satisfy the following decomposition (obtained similarly to (32)):

√
τn,m

[
Ĝ

(n)
m,0 − I

]
=−

√
τn,m
m

× m

m0

√
m0

[
F̂m,0,test ◦ (F̂ (n)

cal )
−1(1− I)− (F̂

(n)
cal )

−1(1− I)
]

−
√

τn,m
n

√
n
[
(F̂

(n)
cal )

−1(1− I)− (1− I))
]
,

√
τn,m

[
Ĝ

(n)
m,1 −G

]
=−

√
τn,m
m

× m

m1

√
m1

[
F̂m,1,test ◦ (F̂ (n)

cal )
−1(1− I)− Ftest,cal ◦ (F̂ (n)

cal )
−1(1− I)

]
−
√

τn,m
n

√
n
[
Ftest,cal ◦ (F̂ (n)

cal )
−1(1− I)− Ftest,cal(1− I)

]
.

We conclude by using m0/m → π0 ∈ (0, 1), m1/m → 1− π0 ∈ (0, 1), n/(n+m) → σ2 ∈ [0, 1] and
Slutsky’s lemma.

B.3. Proof of Proposition 5.3

By Assumption 5, and since α > [G′
mixt(0

+)]−1, the asymptotic threshold Tα = T BHα(Gmixt) is
well defined and belongs to (0, 1). Now observe that there exists a compact interval [a, b] ⊂ (0, 1)
such that

Tα = sup

{
t ∈ [a, b], Gmixt(t) ⩾

t

α

}
, (44)

To see this, note that since Gmixt ⩽ 1 we have that Tα ⩽ α, hence Tα is smaller than any b ∈ (α, 1).
Now, since Tα > 0, any a ∈ (0, Tα) leads to Tα ∈ (a, b), which leads to (44).

Now consider the functional

T BHα

[a,b] (F ) := sup

{
t ∈ [a, b], F (t) ⩾

t

α

}
, (45)

which is similar to (40) but with a restricted range on t. Equation (44) hence reads as Tα =
T BHα

[a,b] (Gmixt). In addition, we have{∣∣∣Ĝ(n)
m (a)−Gmixt(a)

∣∣∣ ⩽ η
}
⊂
{
T BHα(Ĝ(n)

m ) = T BHα

[a,b] (Ĝ
(n)
m )
}
, (46)

where η = (Gmixt(a)−aα−1)/2, which is positive by the choice of a. Indeed, if |Ĝ(n)
m (a)−Gmixt(a)| ⩽

η, we have Ĝ
(n)
m (a) − aα−1 = Ĝ

(n)
m (a) − Gmixt(a) + Gmixt(a) − aα−1 ⩾ η, which implies that

{|Ĝ(n)
m (a)−Gmixt(a)| ⩽ η} ⊂ {T BHα(Ĝ

(n)
m ) > a}. This proves (46).

Now, T BHα

[a,b] is Hadamard differentiable at Gmixt, tangentially to C[a, b] with a derivative coin-

ciding with the one of T BHα , that is,

(Ṫ BHα

[a,b] )Gmixt

= (Ṫ BHα)Gmixt
.

By the convergence of Proposition 5.2, which holds on D[a, b], we can apply the functional delta
method (see Lemma E.9 for the exact expression of derivatives) to obtain

√
τn,m

(
T BHα

[a,b] (Ĝ
(n)
m )− Tα

)
L−→

τn,m→+∞

1
1
α −G′

mixt(Tα)
Z(Tα);

√
τn,m

(
FDP(n)

m

(
T BHα

[a,b] (Ĝ
(n)
m )
)
− π0α

)
L−→

τn,m→+∞

π0

Gmixt(Tα)
Z0(Tα);

√
τn,m

(
TDP(n)

m

(
T BHα

[a,b] (Ĝ
(n)
m )
)
−G(Tα)

)
L−→

τn,m→+∞

G′(Tα)
1
α −G′

mixt(Tα)
Z(Tα) + Z1(Tα),

where Z0, Z1 and Z are the three processes defined in Proposition 5.2. Now, the same convergences

hold for T BHα(Ĝ
(n)
m ) by using (46) because Ĝ

(n)
m (a) converges in probability to Gmixt(a). This

concludes the proof.
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Appendix C: Proofs for the weighted case

In this section, we state and prove Lemma C.1, Propositions C.2, C.3 and C.4.

C.1. Weighted versions of the Glivenko-Cantelli and Donsker theorem.

Recall that F̂
w,(n)
cal (t) is given by (35). The next result applies both in the prediction and novelty

detection settings and will be used to prove Propositions C.2, C.3 and C.4..

Lemma C.1. Assume Pcal = U(0, 1). Let w a weight function satisfying Assumption 4. Then it
holds

(F̂
w,(n)
cal )−1 P→ (Fw

cal)
−1 on ℓ∞(0, 1),

and

√
n
(
(F̂

w,(n)
cal )−1 − (Fw

cal)
−1
)

L→ ((Fw
cal)

−1)′ρw
(
V
(
V w

cal ◦ (Fw
cal)

−1
)
+
[
I − V w

cal ◦ (Fw
cal)

−1
]
N
)

on D(0, 1),

where V is a standard Brownian bridge and N an independent standard Gaussian random variable.

Note that in the case w ≡ 1 (unweighted case), we recover the convergence presented in Corol-
lary E.7, because Fw

cal = V w
cal = I.

Proof of Lemma C.1. Denote for n ⩾ 1 and t ∈ [0, 1],

K(n)(t) :=
1

n+ 1

n∑
k=1

w(Sk)1Sk⩽t.

Since w is uniformly bounded, the family F = {wt : x ∈ R 7→ w(x)1x⩽t; t ∈ R} is U(0, 1)-Glivenko-
Cantelli, and (K(n))n converges uniformly on [0, 1] in probability to the function K given by

K(t) :=
∫ t

0
w(x) dx (Shorack and Wellner, 1986). Then, by continuity at K of the map of

Lemma E.8, we get that (K(n)/K(n)(1))n converges uniformly (in probability) to Fw
cal. Since

∥F̂w,(n)
cal − K(n)/K(n)(1)∥∞ ⩽ w(+∞)/((n + 1)K(n)(1) + w(+∞)) tends uniformly to 0 a.s.,

(F̂
w,(n)
cal )n converges uniformly (in probability) to Fw

cal. By continuity of the inverse map at Fw
cal

(see Lemma E.6), we obtain that ((F̂
w,(n)
cal )−1)n converges in probability to (Fw

cal)
−1 on ℓ∞(0, 1).

This proves the first statement.
Next, we turn to prove the second statement. Since w is uniformly bounded, the family F =

{wt : x ∈ R 7→ w(x)1x⩽t; t ∈ R} is U(0, 1)-Donsker (Shorack and Wellner, 1986). hence there exist
K = (K(t))t∈[0,1] a Gaussian process such that

√
n
(
K(n) −K

)
L→ K in ℓ∞[0, 1],

where the distribution of K is given by E(K) = 0 and for (s, t) ∈ [0, 1]2,

Cov (K(s),K(t)) =

∫ s∧t

0

w2(x) dx−
∫ s

0

w(x) dx

∫ t

0

w(x) dx;

= K(1)2
(
ρw2V w

cal(s ∧ t)− Fw
cal(t)F

w
cal(s)

)
,

where we used K(1)2ρw2V w
cal(t) =

∫ t

0
w2(x) dx and Fw

cal = K/K(1) by the definition of V w
cal (17),

ρw (16) and Fw
cal (14). We easily check that the condition of the Kolmogorov-Čentsov theorem is

satisfied, so that K has a continuous version. Now, by applying the functional delta method with
the map of Lemma E.8, we obtain

√
n

((
K(n)

K(n)(1)

)
− Fw

cal

)
L→ K

K(1)
− K(1)

K(1)
Fw

cal, in C[0, 1].
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Since
√
n∥F̂w,(n)

cal −K(n)/K(n)(1)∥∞ ⩽
√
nw(+∞)/((n + 1)K(n)(1) + w(+∞)) → 0 a.s., then by

Slustky’s lemma, we obtain

√
n
(
F̂

w,(n)
cal − Fw

cal

)
L→ K

K(1)
− K(1)

K(1)
Fw

cal, in C[0, 1].

And by applying the functional delta method with the inverse map at Fw
cal (see Lemma E.6) we

obtain,

√
n
(
F̂

w,(n)−1
cal − (Fw

cal)
−1
)

L→ ((Fw
cal)

−1)′
(
−K ◦ (Fw

cal)
−1

K(1)
+

K(1)

K(1)
I

)
, in D(0, 1).

To conclude, we identify the covariance of the Gaussian limiting process. For, 1 > t ⩾ s > 0,

Cov
(
−K((Fw

cal)
−1(t))/K(1) +K(1)/K(1)t,−K((Fw

cal)
−1(s))/K(1) +K(1)/K(1)s

)
= ρw2V w

cal((F
w
cal)

−1(s))− Fw
cal((F

w
cal)

−1(t))Fw
cal((F

w
cal)

−1(s))

− sρw2V w
cal((F

w
cal)

−1(t)) + sFw
cal((F

w
cal)

−1(t))

− tρw2V w
cal((F

w
cal)

−1(s)) + tFw
cal((F

w
cal)

−1(s))

+ tsρw2 − ts

= ρw2V w
cal((F

w
cal)

−1(s))− ts− sρw2V w
cal((F

w
cal)

−1(t)) + st

− tρw2V w
cal((F

w
cal)

−1(s)) + st+ tsρw2 − ts

= ρw2 (V w
cal((F

w
cal)

−1(s))− sV w
cal((F

w
cal)

−1(t))− tV w
cal((F

w
cal)

−1(s)) + ts
)
.

Therefore, the last display is equal to

ρw2
(
V w

cal((F
w
cal)

−1(s))− V w
cal((F

w
cal)

−1(s))V w
cal((F

w
cal)

−1(t))

+
[
t− V w

cal((F
w
cal)

−1(t))
] [
s− V w

cal((F
w
cal)

−1(t))
] )

=ρw2 (V w
cal((F

w
cal)

−1(s))
[
1− V w

cal((F
w
cal)

−1(t))
]
+
[
t− V w

cal((F
w
cal)

−1(t))
] [
s− V w

cal((F
w
cal)

−1(t))
])

.

The first term coincides with the covariance term of V(V w
cal ◦ (Fw

cal)
−1) for a standard Brownian

bridge V, while the second term is the covariance of the process
([
t− V w

cal((F
w
cal)

−1(t))
]
N
)
t∈(0,1)

with N ∼ N (0, 1). This concludes the proof for the second statement.

C.2. Prediction setting

The following result is the weighted version of Proposition 5.1.

Proposition C.2. In the prediction setting with Assumptions 1, 3 and 4 and assuming that
n/(n+m) tends to σ2 ∈ [0, 1], we have,√

m
[
F̂m,test ◦ (F̂w,(n)

cal )−1(1− I)− Ftest ◦ (F̂w,(n)
cal )−1(1− I)

]
√
n
[
Ftest ◦ (F̂w,(n)

cal )−1(1− I)− Ftest ◦ (Fw
cal)

−1
(1− I)

]  L→
(

U (Gw)
ρw(Gw)′ [V (Iw) + [I − Iw]N ]

)
on [D(0, 1)]

2
,

where U and V are two independent standard Brownian bridges and N is an independent standard
Gaussian random variable.

Proof. By the Donsker theorem (Theorem E.3), we have

√
m
(
F̂m,test − Ftest,cal

)
L→ U(1− Ftest,cal) on D(0, 1),
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where U is a standard Brownian bridge. By Lemma C.1 (which applies because we can standardize
the calibration set, see Lemma A.1), we have

√
n
(
(F̂

w,(n)
cal )−1 − (Fw

cal)
−1
)

L→ ((Fw
cal)

−1)′ρw
(
U
(
V w

cal ◦ (Fw
cal)

−1
)
+
[
I − V w

cal ◦ (Fw
cal)

−1
]
N
)

on D(0, 1),

where V is a standard Brownian bridge and N is an independent standard Gaussian random
variable. Thus, by independence between Dcal and Dtest, √

m
[
F̂m,test − Ftest,cal

]
√
n
[
Ftest ◦ (F̂w,(n)

cal )−1(1− I)− Ftest ◦ (Fw
cal)

−1
(1− I)

] L→
(

U (1− Ftest,cal)
ρw(Gw)′ [V (Iw) + [I − Iw]N ]

)
on [D(0, 1)]

2
,

where U and V two independent Brownian bridges and N an independent Gaussian r.v.. By

Lemma C.1, we have that (F̂
w,(n)
cal )

−1 P→ (Fw
cal)

−1 on ℓ∞(0, 1) hence by using Lemma E.10 we get√
m
[
F̂m,test ◦ (F̂w,(n)

cal )−1(1− I)− Ftest ◦ (F̂w,(n)
cal )−1(1− I)

]
√
n
[
Ftest ◦ (F̂w,(n)

cal )−1(1− I)− Ftest ◦ (Fw
cal)

−1
(1− I)

]  L→
(
U (1− Ftest,cal ◦ Fw

cal−1(1− I))
ρw(Gw)′ [V (Iw) + [I − Iw]N ]

)
on [D(0, 1)]

2
,

which concludes the proof.

C.3. Novelty detection setting

We define

Ĝ
w,(n)
m,0 (t) =

1

m0(m)

∑
i∈JmK∩H0

1
p
w,(n)
i ⩽t

, t ∈ (0, 1);

Ĝ
w,(n)
m,1 (t) =

1

m−m0(m)

∑
i∈JmK∩Hc

0

1
p
w,(n)
i ⩽t

, t ∈ (0, 1),

the counterparts of Ĝ
(n)
m,0 (37) and Ĝ

(n)
m,1 (38), respectively. Hence, the mixture e.c.d.f.

Ĝw,(n)
m (t) =

1

m

∑
i∈JmK

1
p
w,(n)
i ⩽t

= π0(m)Ĝ
w,(n)
m,0 (t) + (1− π0(m))Ĝ

w,(n)
m,1 (t), t ∈ (0, 1),

is the counterpart of Ĝ
(n)
m (39).

The following result is the weighted version of Proposition 5.2 (with an oracle weight function).

Proposition C.3. In the novelty detection setting with Assumption 2, assume that P0 is absolutely
continuous with respect to Pcal and that the oracle weight function w∗ (11) satisfies Assumption 4.
Under Assumption 3, assuming that n/(n+m) → σ2 ∈ [0, 1] and π0(m) → π0 ∈ (0, 1), we have

√
τn,m

(
Ĝ

w∗,(n)
m,0 − I

Ĝ
w∗,(n)
m,1 −Gw∗

)
L−→

τn,m→+∞

(
σ√
π0
U+ ρw

∗√
1− σ2

(
WIw∗ +

[
I − Iw

∗]
N
)

σ√
1−π0

VGw∗ + (Gw∗
)
′
ρw

√
1− σ2

(
WIw∗ +

[
I − Iw

∗]
N
))

=:

(
Zw∗

0

Zw∗

1

)
on [D(0, 1)]

2
.
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with U, V and W three independent Brownian bridges and an independent standard Gaussian
random variable N . Furthermore,

√
τn,m

(
Ĝw∗,(n)

m −Gw∗

mixt

)
L−→

τn,m→+∞

√
π0σ2U+

√
(1− π0)σ2VGw∗

+ (Gw∗

mixt)
′ρw

∗√
1− σ2

(
WIw∗ +

[
I − Iw

∗
]
N
)

= π0Zw∗

0 + (1− π0)Zw∗

1 =: Zw∗
on D(0, 1).

Proof. We apply twice the argument of the proof of Proposition C.2 to the null and the alternative
processes to obtain U, V and W three independent standard Brownian bridge and an independent
standard Gaussian r.v. N such that,

√
m0(m)

(
F̂m,0,test ◦

(
F̂

w∗,(n)
cal

)−1

(1− I)−
(
F̂

w∗,(n)
cal

)−1

(1− I)

)
√
m1(m)

(
F̂m,1,test ◦

(
F̂

w∗,(n)
cal

)−1

(1− I)− Ftest ◦
(
F̂

w∗,(n)
cal

)−1

(1− I)

)
√
n

(
Fw∗

cal ◦
(
F̂

w∗,(n)
cal

)−1

(1− I)− (1− I)

)
√
n

(
Ftest ◦

(
F̂

w∗,(n)
cal

)−1

(1− I)− Ftest ◦
(
Fw∗

cal

)−1
(1− I)

)


converges when τn,m → +∞ in distribution to

U
V ◦Gw∗

ρw
∗ (W (

Iw
∗)

+
[
I − Iw

∗]
N
)

ρw
∗
(Gw∗

)′
(
W
(
Iw

∗)
+
[
I − Iw

∗]
N
)
 on [D(0, 1)]

4
.

We conclude by using the decomposition (36) on Ĝ
w∗,(n)
m,0 and Ĝ

w∗,(n)
m,1 , the Slutsky lemma and the

continuous mapping theorem.

The following result is the weighted version of Proposition 5.3.

Proposition C.4. Under Assumption 2, assume that P0 is absolutely continuous with respect to
Pcal and that the oracle weight function w∗ (11) satisfies Assumption 4. Under Assumptions 3, and
6, assuming that the targeted level α > [(Gw∗

mixt)
′(0+)]−1, assuming that n/(n + m) → σ2 ∈ [0, 1]

and π0(m) → π0 ∈ (0, 1), we have,

√
τn,m

(
T BHα(Ĝw∗,(n)

m )− T w∗

α

)
L−→

τn,m→+∞

1
1
α − (Gw∗

mixt)
′(T w∗

α )
Zw∗

(T w∗

α );

√
τn,m

(
FDP(n)

m

(
T BHα(Ĝw∗,(n)

m )
)
− π0α

)
L−→

τn,m→+∞

π0

Gw∗
mixt(T w∗

α )
Zw∗

0 (T w∗

α );

√
τn,m

(
TDP(n)

m

(
T BHα(Ĝw∗,(n)

m )
)
−Gw(T w∗

α )
)

L−→
τn,m→+∞

(Gw∗
)
′
(T w∗

α )
1
α − (Gw∗

mixt)
′(T w∗

α )
Zw∗

(T w
α ) + Zw∗

1 (T w
α ),

where Zw∗

0 , Zw∗

1 and Zw∗
are the three processes defined in Proposition C.3.

Proof of Proposition C.4. It is mutatis mutandis the same proof as in Section B.3 by using the
weighted processes and the weighted convergence in distribution delineated in Proposition C.3.

Appendix D: Weighted novelty detection for a general weight function

In this section, we extend Propositions C.3 and C.4 to the case of a general weight function. We
should add the following technical assumption (which was implicitly satisfied in the oracle case):
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Assumption 7. F0 is continuously differentiable.

Let us introduce

p(t) =
π0G

w
0 (t)

Gw
mixt(t)

ζα(t) = 1− (1− π0)
(Gw

0 )
′Gw −Gw

0 (G
w)′

(α−1 − (Gw
mixt)

′(t))Gw
0

where p(t) corresponds to the positive false discovery rate at t (Storey, 2002). Note that in the
oracle case ζα(T w∗

α ) = 0, but ζα(T w
α ) is not necessarily zero for a general w.

Proposition D.1. Under Assumptions 2, 3, 7, assuming that the weight function w satisfies
Assumption 4, and assuming that n/(n+m) → σ2 ∈ [0, 1] and π0(m) → π0 ∈ (0, 1), we have

√
τn,m

(
Ĝ

w,(n)
m,0 −Gw

0

Ĝ
w,(n)
m,1 −Gw

)
L−→

τn,m→+∞

(
σ√
π0
UGw

0
+ (Gw

0 )
′ρw

√
1− σ2 (WIw + [I − Iw]N)

σ√
1−π0

VGw + (Gw)′ρw
√
1− σ2 (WIw + [I − Iw]N)

)
=:

(
Zw
0

Zw
1

)
on [D(0, 1)]

2
.

with U, V and W three independent Brownian bridges and an independent standard Gaussian
random variable N . Furthermore,

√
τn,m

(
Ĝw,(n)

m −Gw
mixt

)
L−→

τn,m→+∞

√
π0σ2UGw

0
+
√

(1− π0)σ2VGw

+ (Gw
mixt)

′ρw
√
1− σ2 (WIw + [I − Iw]N)

= π0Zw
0 + (1− π0)Zw

1 =: Zw on D(0, 1).

The proof of Proposition D.1 is omitted because it is completely analogue to the one of Propo-
sition C.3.

Theorem D.2. Under Assumptions 2, 3, 6, 7, assuming that α > [(Gw
mixt)

′(0+)]−1 and that the
weight function w satisfies Assumption 4. Then if n/(n+m) → σ2 ∈ [0, 1] and π0(m) → π0 ∈ (0, 1),
we have

√
τn,m

(
T BHα(Ĝw,(n)

m )− T w
α

)
L−→

τn,m→+∞

1
1
α − (Gw∗

mixt)
′(T w

α )
Zw(T w

α );

√
τn,m

(
FDP(n)

m (Rw
α )− p (T w

α )
)

L−→
τn,m→+∞

Zw
0 (T w

α )

Gw
0 (T w

α )
p (T w

α ) [1− p (T w
α ) ζα (T w

α )]

− Zw
1 (T w

α )

Gw (T w
α )

p (T w
α ) [1− p (T w

α )] ζα (T w
α ) ;

√
τn,m

(
TDP(n)

m (Rw
α )−Gw(T w

α )
)

L−→
τn,m→+∞

(Gw)′(T w
α )

1
α − (Gw

mixt)
′(T w

α )
Zw(T w

α ) + Zw
1 (T w

α ),

where the three processes (Zw
0 ,Zw

1 ,Zw) are defined in Proposition D.1.

The proof of Theorem D.2 is omitted because completely analogue to the one of Proposition C.4.

Appendix E: Additional tools for asymptotics

E.1. Donsker and Glivenko-Cantelli theorems

The results below can be found in van der Vaart (1998) and Shorack and Wellner (1986).

Theorem E.1 (Glivenko-Cantelli). Let Ftest be a c.d.f., and F̂m,test be an empirical version of Ftest

with m i.i.d. points. Then, ∥∥∥F̂m,test − Ftest

∥∥∥
∞

→ 0 a.s.
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Proposition E.2. Let (Uk)k⩾1 be i.i.d. random variables uniformly distributed over (0, 1). Denote
F(n) the e.c.d.f. the family (Uk)k∈JnK. Then,∥∥∥∥(F(n)

)−1

− I

∥∥∥∥
∞

→ 0 a.s.

Theorem E.3 (Donsker (1952)). Let (Xi)i⩾1 iid real random variables. Let F the cumulative
distribution function of X1 and Fn the empirical cdf of {X1, · · · , Xn}. Then,

√
n (Fn − F )

L→ UF ,

with U a standard Brownian bridge.

Proposition E.4. Let w a weight function satisfying Assumption 4. Then the family of function
F = {wt : x ∈ R 7→ w(x)1x⩽t; t ∈ R} is Pcal-Donsker and Pcal-Glivenko-Cantelli.

E.2. Hadamard differentiability

The three first results below can be found in van der Vaart (1998).

Lemma E.5. Let F : [a, b] → R be a continuously differentiable function. The map T : ϕ 7→
F ◦ ϕ with entries being functions ϕ : T 7→ [a, b] contained in ℓ∞(T ) is Hadamard differentiable
tangentially to C(T ) with derivative:

Ṫϕ(H) = F ′(ϕ)H

Assumption 8. The cumulative distribution function F have a compact support [a, b] in the sense
that that for all x ⩽ a, F (x) = 0, for all x ⩾ b, F (x) = 1 and for all x ∈ (a, b), 0 < F (x) < 1.
Furthermore, F is continuously differentiable on (a, b) with stricly positive derivative.

Lemma E.6. Let F satisfying Assumption 8. Then the inverse map G 7→ G−1 with domain the
set of cumulative distribution function of probability measure on (a, b] with value in ℓ∞(0, 1) is
Hadamard differentiable at F tangentially to C[a, b] with derivative being the map

H 7→ −H ◦ F−1F−1′ = −H ◦ F−1

F ′ ◦ F−1
.

Corollary E.7. Let (Xi)i⩾1 be iid real random variables. Let F be the cumulative distribution
function of X1 and Fn be the empirical cdf of {X1, · · · , Xn}. Denote F−1 and F−1

n the correspond-
ing quantile functions. Assume that F satisfies Assumption 8 with derivative f . Then,

√
n
(
F−1
n − F−1

) L→ U
f ◦ F−1

= (F−1)′U,

with U being a standard Brownian bridge.

Lemma E.8. Let w a weight function satisfying Assumption 4. Denote K : t ∈ [0, 1] →
∫ t

0
w(x) dx.

The map T : F ∈ D[0, 1] → F/F (1) ∈ D[0, 1] is Hadamard differentiable at K tangentially to
C[0, 1] with the following formula:

ṪK(H)(u) =
H

K(1)
− H(1)

K(1)
W,

with W = T (K) = K/K(1).
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Proof of Lemma E.8. Let K ∈ D[0, 1] defined as in the statement. Let (Ht)t∈)0,1] be a family of
function in C[0, 1] with Ht → H ∈ C[0, 1] uniformly on [0, 1]. We have, for t small enough,

T (K + tHt)− T (K) =
K(1) (K + tHt)− (K(1) + tHt(1))K

(K(1) + tHt(1))K(1)

=
K(1)tHt − tHt(1)K

(K(1) + tHt(1))K(1)

= t×
(

Ht

K(1) + tHt(1)
− Ht(1)

K(1) + tHt(1)

K

K(1)

)
.

Hence, we obtain

T (K + tHt)− T (K)

t
−→
t→0

H

K(1)
− H(1)

K(1)

K

K(1)
,

which prove the Hadamard differentiability.

We gather below the formulas of the Hadamard derivatives of the functionals of interest when
studying the asymptotic of the FDP. They are obtained from Neuvial (2008).

Lemma E.9. Let G : [0, 1] → [0, 1] be a continuously differentiable increasing strictly concave
function. If α > [G′(0)]−1, then T BHα is Hadamard differentiable at G tangentially to C[0, 1] with
the following expression for all H ∈ C[0, 1]

(Ṫ BHα)G(H) =
H
(
T BHα(G)

)
α−1 −G′ (T BHα(G))

.

Let (G0, G1) be two continuously differentiable c.d.f. functions from [0, 1] to [0, 1] and let π ∈
(0, 1) such that G = πG0 + (1 − π)G1 is stricly concave. Let α > [G′(0)]−1. In addition, let us
define

ν : (F0, F1) → F0(T BHα(πF0 + (1− π)F1));

Ψ : (F0, F1) →
πF0(T BHα(F ))

F (T BHα(F ))
; (47)

Φ : (F0, F1) → πF1(T BHα(F )), (48)

where F = πF0+(1−π)F1. Then, ν, Ψ and Φ are Hadamard differentiable at (G0, G1) tangentially
to (C[0, 1])2 with the following derivative expressions: for all (H0, H1) ∈ (C[0, 1])2,

ν̇G0,G1(H0, H1) = G′
0

(
T BHα(G)

) H
(
T BHα(G)

)
α−1 −G′ (T BHα(G))

+H0

(
T BHα(G)

)
;

Ψ̇G0,G1(H0, H1) = G′
1

(
T BHα(G)

) H
(
T BHα(G)

)
α−1 −G′ (T BHα(G))

+H1

(
T BHα(G)

)
;

Φ̇G0,G1
(H0, H1) =

1

G (T BHα(G))

(
ν̇G0,G1

(H0, H1)−
πG0

(
T BHα(G)

)
G (T BHα(G))

(Ṫ BHα)G(H)

)
,

where H = πH0 + (1− π)H1.

E.3. Random change of time

We present here a version of the random change of time lemma of Billingsley (1999) (page 151),
which is adapted to the topological spaces D(R), ℓ∞(0, 1) and D(0, 1).
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Lemma E.10. Let (Un, Vn)n be a sequence of random processes in D(R)×D(0, 1), U and V two
random processes in D(R) and D(0, 1), respectively, which are both a.s. continuous and such that

(Un, Vn)
L→ (U,V) in D(R)×D(0, 1). Let (Fn)n be a sequence of random processes in D(0, 1) and

F ∈ D(0, 1) such that (Fn)n converges in probability to F on ℓ∞(0, 1). Assume that for all n ∈ N,
Un ◦ Fn ∈ D(0, 1). Then,

(Un ◦ Fn, Vn)
L→ (U ◦ F,V) on (D(0, 1))2.

Proof of Lemma E.10. Since U and V are continuous, (Un, Vn)n converges in distribution to (U,V)
on ℓ∞(R) × ℓ∞(0, 1) by Lemma E.12. Hence, by Slutsky’s lemma, the sequence (Un, Vn, Fn)n
converges in distribution to (U,V, F ) on ℓ∞(R) × (ℓ∞(0, 1))2. Hence by Lemma E.11 and the
continuous mapping theorem we obtain,

(Un ◦ Fn,V)
L→ U ◦ F on ℓ∞(0, 1).

Since U is continuous, then U◦F is inD(0, 1) and the previous convergence implies the convergence
in (D(0, 1))2.

Note that when using Lemma E.10 in our work, the convergence of the sequence (Un)n is
typically given by the Donsker Theorem, while the convergence of (Fn)n is given by the Glivenko-
Cantelli theorem.

Lemma E.11. Define the following map Ψ : (F1, F2, F3) ∈ ℓ∞(R)× (ℓ∞(0, 1))2 7→ (F1 ◦F3, F2) ∈
(ℓ∞(0, 1))2. For all U ∈ C(R) and (F, V ) ∈ (ℓ∞(0, 1))2, Ψ is continuous at (U, V, F ).

Proof of Lemma E.11. Let U ∈ C(R) and (V, F ) ∈ (ℓ∞(0, 1))2. Let (Un, Vn, Fn)n a sequence in
ℓ∞(R) × (ℓ∞(0, 1))2 which converges to (U, V, F ). Let K ⊂ (0, 1) be a compact set. Let ε > 0.
The set {Fn(x), x ∈ K,n ∈ N} is bounded since ∥Fn − F∥∞,K → 0 and (Fn)n and F belongs in
ℓ∞(0, 1), hence is included in a compact set K ′ of R. Since U is continuous, we have η > 0 such

that for all (x, y) ∈ K ′2, |x− y| ⩽ η implies that |U(x)− U(y)| ⩽ ε. Let N > 0 such that for all
n ⩾ N , ∥Un − U∥∞,K′ ⩽ ε and ∥Fn − F∥∞,K ⩽ η. Then for all n ⩾ N ,

∥Un ◦ Fn − U ◦ F∥∞,K ⩽ ∥Un ◦ Fn − U ◦ Fn∥∞,K + ∥U ◦ Fn − U ◦ F∥∞,K

⩽ ∥Un − U∥∞,K′ + ε

⩽ 2ε,

where the first ε appears since for all x ∈ K, Fn(x) ∈ K ′, F (x) ∈ K ′ and |Fn(x)− F (x)| ⩽ η.
Furthermore for all K̃ a compact subset of (0, 1), ||Vn − V ||∞,K̃ → 0. Hence, Ψ is continuous at
(U, V, F ).

Finally, the following result is classical and shows how a convergence in distribution on D[0, 1]
can imply a uniform convergence (Billingsley, 1999), with the local topology defined in Section 2.3.

Lemma E.12 (Billingsley (1999)). Let (Xn)n be a sequence of random processes on D(0, 1). Let
X ∈ D(0, 1) be a continuous function a.s.. Then, (Xn)n converges in distribution to X on D(0, 1)
if and only if (Xn)n converges in distribution to X on ℓ∞(0, 1)

Appendix F: Useful Lemmas

Lemma F.1. Let (s1, · · · , sn+1) ∈ R ∪ {+∞}, (wk)k∈Jn+1K be a family of positive weight summing
to 1 and µ =

∑
k∈Jn+1K wkδsk be a probability measure on R ∪ {+∞}. Define for all α ∈ (0, 1),

Qα(µ) = inf {x ∈ R : µ ([−∞, x]) ⩾ α} the α-quantile of the probability measure µ. Then, for all
t ∈ R and α ∈ (0, 1), the two following assertions are equivalent:

(i)
∑

k∈Jn+1K wk1sk⩾t ⩽ α

(ii) t > Q1−α(µ)
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Proof of Lemma F.1. First note that, since the weights are summing to 1, (i) is equivalent to∑
k∈Jn+1K wk1sk<t ⩾ 1−α. Now prove that (ii) implies (i). If t > Q1−α(µ), then

∑
k∈Jn+1K wk1sk<t ⩾∑

k∈Jn+1K wk1sk⩽Q1−α(µ) ⩾ 1− α and thus (i) holds.

Conversely, if (i) holds, we have
∑

k∈Jn+1K wk1sk<t ⩾ 1− α > 0 and thus

S := max
k∈Jn+1K

{sk : sk < t} ∈ R

exists. With such a S < t we have
∑

k∈Jn+1K wk1sk⩽S =
∑

k∈Jn+1K wk1sk<t ⩾ 1− α. This proves

S ⩾ Q1−α(µ) by definition of the quantile function. Hence t > Q1−α(µ) and we have proved (ii).

Lemma F.2.
τn,m

m → σ2 ∈ [0, 1] if and only if m
n → σ−2 − 1 ∈ [0,+∞].
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