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Abstract—Unmanned aerial vehicles (UAVs) offer a promising
solution for enhancing network coverage, reliability, and data
speed in future wireless network generations. However, deploying
UAVs as aerial base stations requires careful consideration of cru-
cial design factors, including three-dimensional (3D) placement
and performance optimization tailored to specific applications.
In this paper, the 3D placement of multiple UAVs, acting as
aerial base stations, is investigated in a dynamic user scenario.
First, a closed-form expression for the coverage probability is
derived. Then, to maximize the network coverage and sum rate
while ensuring reliable and energy efficient system, a joint multi-
objective optimization problem is formulated considering the
real-time user movements. To solve the problem, an improved
Chaos-based Bonobo Optimizer (CBO) scheme is proposed which
combines chaotic maps with the Bonobo Optimizer (BO) al-
gorithm. The obtained results demonstrate the superior per-
formance of the proposed approach compared with different
benchmark algorithms. The results reveal that the proposed CBO
algorithm offers a minimum of 15% and 90 Mbit/s improvements
in coverage and sum rate, respectively.

Index Terms—Unmanned aerial vehicles, Improved Bonobo
Optimizer, Coverage, 3D deployment.

I. INTRODUCTION

The surge in mobile device usage has increased commu-
nication traffic and service demands in wireless networks.
Inconsistent coverage, known as ”coverage holes,” remains
an issue in many areas due to urban developments, natural
disasters, and temporary events [1], [2]. Unmanned aerial
vehicles (UAVs) offer a promising solution to address such
challenges promptly, without a need for new ground-based
base station (BS) establishment. That can significantly enhance
the network efficiency while reducing the time for network
deployment and startup. The mobility and adaptability of
UAVs as well as their ability to establish line-of-sight (LoS)
connections with ground users make them ideal for on-demand
deployment, densely populated areas, and public safety ser-
vices. However, to enhance the coverage and data rate, optimal

design considerations for three-dimensional (3D) placement
and tailored performance are crucial for UAV-assisted mobile
wireless networks.

Numerous research endeavors have been dedicated to en-
hance the coverage of UAV-assisted networks by investigating
optimal placement and effective deployment strategies for
UAVs under the assumption of single-UAV networks. For
instance, the works in [3], [4] presented UAV placement
techniques to expand the coverage [3] or increase the number
of users [4], respectively. The work in [5] focused on ob-
taining the optimal altitude that maximizes the coverage and
minimizes the outage probability. In an attempt to consider
the multiple UAVs case, the authors in [6]–[9] explored the
potential UAVs deployments under the assumption of either
fine-tuning the horizontal positioning of UAVs (keeping the
altitude constant) [6] or optimizing the altitude but at a fixed
horizontal stance [7]–[9]. Additionally, some recent works
[10]–[12] have analyzed the coverage performance under the
impact of small-scale fading in UAV communication systems.
From our best knowledge, these studies often lack closed-form
expressions for coverage probability.

Another critical factor that should be taken into account
is the energy consumption required for UAV’s hovering,
traveling, and onboard components, which mainly affect UAV
flight time and its connectivity with the users. To reflect this,
the authors in [4], [13] introduced 3D UAVs deployments to
minimize transmit power and enhance the energy efficiency.
Other efforts to maximize network lifetime have considered
factors such as optimal cooperative relaying schemes [14],
bandwidth and energy efficiency trade-offs [15], and recharg-
ing operations [16]. However, none of these studies have fully
captured the dynamic nature of UAVs deployment in response
to real-time changes in user distribution and demand.

Motivated by this, this paper tackles the optimization



Fig. 1: Multi-UAVs-assisted wireless network.

challenge of 3D deployment for multiple UAVs in mobile
wireless networks. The objective is to enhance the coverage
performance, system reliability and sum rate while minimizing
the energy consumption in dynamic scenarios. The proposed
approach considers the trade-off between the benefits of UAV
mobility for system adaptability and the associated energy
expenditure. First, to model real-time user movement, we
adopt a Random Waypoint (RWP) mobility model and derive
a closed-form expression for coverage probability tailored
to specific network requirements. Since balancing coverage
enhancement, sum rate, and energy consumption is a complex
task, a non-convex multi-objective optimization problem is
then formulated. To effectively solve the problem, an enhanced
Chaos-based Bonobo Optimizer (CBO) scheme is proposed
that integrates chaotic maps into the original Bonobo Opti-
mizer (BO). Finally, the coverage and sum rate performance of
the proposed CBO scheme is compared with different bench-
marks, including BO, Particle Swarm Optimization (PSO), and
Bat Algorithm (BA) schemes.

The paper is structured as follows. Section II presents the
system and channel modeling of 3D UAVs network. Section III
discusses the performance metrics and derives the coverage.
Section IV optimizes the system performance introducing a
novel enhanced CBO scheme. Numerical results and compar-
isons with other algorithms are presented in Section V. The
paper is finally concluded in Section VI.

II. SYSTEM AND CHANNEL MODELS

A. Dynamic Scenario Under Consideration

Figure 1 depicts the multi-UAV network under consideration
wherein a set of M = {1, 2, . . . ,M} drones operate as
aerial base stations, providing connectivity services to a set
of N = {1, 2, . . . , N} terrestrial users, referred to as ground
users (GUs). Within the 3D Cartesian coordinate framework,
the position of the ith UAV, i ∈ M is specified by coordi-
nates (Xi, Yi, Hi), while the jth GU, j ∈ N is located at
(Xj , Yj , Hj). All UAVs hover at an altitude Hi > 0, and GUs
are assumed to be at ground level with Hj = 0.

In this study, the GUs are mobile according to the Random
Waypoint mobility model (RWP) [17] (see Fig. 2). This model

Fig. 2: Random Waypoint mobility model.

is a commonly used mobility pattern in network simulations
that characterizes the random movement of nodes within a
specified area. It is defined by a sequence of waypoints, where
nodes move from one waypoint to another with randomly
chosen speeds and directions. In the RWP model, each node
begins by staying stationary at a randomly chosen initial
location. Upon commencing movement, the node selects a
random destination within the boundary of the simulation area
and travels towards it with a velocity uniformly distributed
between a predefined minimum and maximum speed. Upon
reaching the destination, the node pauses for a specified time,
chosen from a pre-determined probability distribution, before
selecting a new destination and repeating the process.

Formally, the RWP Mobility model can be described by
the tuple (Pn, vn, θn, Tp,n), where Pn = (xn, yn) represents
the coordinates of the nth Waypoint. Also vn and Ωn are,
respectively, the speed and the direction (with respect to a
global reference) of the node moving towards the nth way-
point. Thus, Tp,n is the pause time at the nth Waypoint before
moving towards the next Waypoint. Figure 2 shows an example
for the GU progresses from a random Waypoint Pn−1 =
(xn−1, yn−1) to the subsequent destination Pn = (xn, yn),
moving at a speed vn, which is sampled from a velocity
distribution f(v). Subsequent to arrival, the UE pauses for a
duration Tp,n, drawn from a pause-time distribution fTp. The
distance traversed during each movement, Dn, is the Euclidean
norm between Waypoints Pn−1 and Pn.

B. Channel Model

Considering the probability of LoS and/or NLoS occurrence,
the channel path loss between the ith UAV and the jth GU is
given by [18]

PLij =

{
PLij,los = ηlos

(
4πf
c

)2
d2ij , with LoS

PLij,nlos = ηnlos
(
4πf
c

)2
d2ij , with NLoS

(1)

where ηlos and ηnlos represent the attenuation factors for LoS
and NLoS links respectively. Also f and c denote for the
carrier frequency and the speed of light, respectively. Thus,
dij is the corresponding distance and is obtained by

dij =
√

(Xi −Xj)2 + (Yi − Yj)2 + (Hi −Hj)2. (2)

The likelihood of establishing a LoS connection is given as

plos(r) =
1

1 + a exp(−b(θ − a))
, (3)

where a and b are environment-dependent constants, θ is the
elevation angle, computed by θ = 180

π tan−1
(
H
r

)
, and r is



the horizontal distance between the UAV and the user. The
complement, pnlos(r) = 1−plos(r), gives the NLoS probability.
Consequently, we define the average path loss as follows:

P̄Lij = plosPLij,los + (1− plos)PLij,nlos. (4)

Therefore, the received power from ith UAV at jth GU’s
location is given by [19]:

Prij (dB) =

{
Pt +G3dB − PL

(dB)
ij,los − ϑLoS, LoS link,

Pt +G3dB − PL
(dB)
ij,los − ϑNLoS, NLoS link,

(5)

where Prij and Pt are the received power at GU and trans-
mit power at UAV, respectively. G3dB is the UAV antenna
gain in dB. Assuming a directional antenna with half beam-
width of θB [20], this gain can further be approximated as
G3dB ≈ 29000

θ2
B

. Also, ϑLoS ∼ N (µLoS, σ
2
LoS) and ϑNLoS ∼

N (µNLoS, σ
2
NLoS) are shadow fading with normal distribution

in dB scale for LoS and NLoS links, respectively. The mean
and variance of the shadow fading for LoS and NLoS links
are (µLoS, σ

2
LoS), and (µNLoS, σ

2
NLoS). The variance depends on

the elevation angle and environment as follows [20]:

σLoS(θj) = k1 exp(−k2θj), (6)

σNLoS(θj) = g1 exp(−g2θj), (7)

where k1, k2, g1, and g2 are environmental-based constants.

III. PERFORMANCE ANALYSIS

To evaluate the system’s efficiency, we consider different
key metrics, including bit error rate (BER), sum rate, and
energy consumption. In addition, a closed-form expression for
the coverage probability at a target BER, Peth , is developed.

A. Bit Error Rate (BER)

For K-ary PAM modulation scheme, the BER at jth GU is
formulated as [21]:

Pe =
2(K − 1)

K log2(K)
Q

(√
6

(K − 1)(2K − 1)
γj

)
, (8)

where K represents the modulation order, and Q(·) is the Q-
function. Also, γj is the signal-to-interference-plus-noise ratio
at jth GU. It is given by

γj =
Prij∑

i′∈M,i′ ̸=i Pri′j +N0
, (9)

where Prij represents the received power from UAV i to GU
j, and N0 denotes the noise power.

B. Sum Rate

The sum rate, Rm, quantifies the total data transmission rate
across all users within the coverage area and is given by

Rm =

N∑
j=1

Rj , (10)

where Rj represents the data rate for j-th GU, given by

Rj = B · log2(1 + γj), (11)

where B denotes for the system bandwidth.

C. Energy Consumption of UAVs

For UAVs in full-speed, the transition power is denoted as
ρfull. The UAV’s velocity v influences its travel time, D

v , from
start to endpoint, where D is the total distance traveled by the
UAV. The energy consumption due to movement (Em) and the
hovering power (ρhov) are respectively given by [22]

Em =
D(ρhov + ρfull)

v
, (12)

ρhov = 3

√
(mUAV · g)3
2πr2uNuκ

, (13)

where mUAV, g, ru, Nu, and κ correspond to the UAV’s
mass, the earth gravity, the radius of propellers, the propellers
numbers, and the air density, respectively.

D. Coverage Probability

In this part, a closed-form expression for the coverage prob-
ability at a target BER threshold is derived. In a noisy channel,
a jth user is considered belonging to the communication area
of a UAV when the BER at this user is below a predefined
threshold Peth . This threshold is also the value to assess the
quality of the channel between the user and UAV. The coverage
probability, Pc, is expressed as:

Pc = P(Pe ≤ Peth), (14)

where P denotes the probability that the BER (Pe) falls below
the threshold Peth . Substituting about Pe from (8) in (14), Pc

is re-written as (15).
By re-arranging (15), it can be given as (16). Note, (15) and

(16) are given at the bottom of this page.
By replacing Prij from (5) and re-arranging, Pc can be

reformulated by (17), shown at the top of the next page. The
final expression for the coverage probability is obtained by
(18) shown at the top of the next page.

Pc = P

[
2(K − 1)

K log2(K)
Q

(√
6

(K − 1)(2K − 1)

Prij∑
i′∈M,i′ ̸=i Pri′j +N0

)
≤ Peth

]
. (15)

Pc = P

[
Prij∑

i′∈M,i′ ̸=i Pri′j +N0
≥ (K − 1)(2K − 1)

6

(
Q−1

(
K log2(K)

2(K − 1)
Peth

))2
]
. (16)



Pc = P

ϑ ≤ Pt +G3dB − P̄L
(dB)
ij −

(
(K − 1)(2K − 1)

6
×
(
Q−1

(
K log2(K)

2(K − 1)
Peth

))2
)

×

 ∑
i′∈M,i′ ̸=i

Pri′j +N0

 . (17)

Pc =plosQ

PLij,los +

(
(K−1)(2K−1)

6
×
(
Q−1

(
K log2(K)

2(K−1)
Peth

))2)
×
(∑

i′∈M,i′ ̸=i Pri′j +N0

)
− Pt −G3dB + µLoS

σLoS



+ pnlosQ

PLij,nlos +

(
(K−1)(2K−1)

6
×
(
Q−1

(
K log2(K)

2(K−1)
Peth

))2)
×
(∑

i′∈M,i′ ̸=i Pri′j +N0

)
− Pt −G3dB + µNLoS

σNLoS

 .

(18)

Based on the derived coverage probability in (18), coverage
is quantified in terms of the number of GUs effectively
covered by UAVi. Consequently, this leads to a binary decision
formulation, which is expressed as follows.

Ci
j =

{
1, if GU j is covered by one UAV − i
0, otherwise . (19)

IV. SYSTEM OPTIMIZATION

A. Problem Formulation

The primary objective is to optimize the UAV’s 3D de-
ployment for maximal coverage and sum rate, and minimal
power consumption while ensuring the system reliability and
mobility. To formulate the problem under consideration, a joint
multi-objective optimization problem is proposed as follows:

max

(
w1 ×

M∑
j=1

Ci
j + w2 ×Rm − w3 × Em

)
, (20)

Subject to:

C1: Pej ≤ Peth , ∀j ∈ {1, 2, · · · ,M}, (21a)
C2: Xmin ≤ Xi ≤ Xmax,

Ymin ≤ Yi ≤ Ymax,

Hmin ≤ Hi ≤ Hmax, ∀i ∈ {1, 2, · · · , N},

(21b)

C3: Emi ≤ Emth , ∀i ∈ {1, 2, · · · , N}. (21c)

It is shown in (20) that three performance metrics are opti-
mized as follows. i) Maximizing the coverage, ii) Maximizing
the sum rate, and iii) Minimizing the energy consumption.
In addition to, the constraint in (21a) is imposed to ensure
the reliability of the system (a) Error rate constraint). In
other words, each user should maintain an adequate error rate
value lower than a predetermined threshold, denoted as Peth .
Also, the constraint in (21b) is required to ensure that each
UAV operate/move within designated 3D spatial limits (b) 3D
spatial limits constraint). Finally, the constraint in (21c) is
included in order to choose from the feasible solutions which
ensure that each UAV’s energy consumption does not exceed a
predefined threshold denoted by Emth

(c) Energy constraint).

B. Problem Solving

To efficiently and accurately solve the optimization prob-
lem under consideration, a novel optimization algorithm is
proposed which integrates the BO with a chaotic map. In the
following, the two key components (i.e., BO and chaotic map)
used in the proposed approach are first illustrated. Then, we
explain the proposed improved CBO algorithm.

1) Bonobo Optimizer (BO): The Bonobo Optimization
(BO) algorithm, as introduced by Das and Pratihar in 2019
[23], represents one of the most contemporary meta-heuristics.
BO draws inspiration from the intricate social behaviors and
reproductive strategies observed in bonobos. Bonobos exhibit
a unique fission-fusion social structure, where they split into
smaller groups for various activities and then come together for
communal tasks. This algorithm models a population of solu-
tions as ”Bonobos,” with the best-performing solution termed
as αbo. The algorithm operates through two main phases: the
positive phase (Pp), which is triggered by improvements in
the fitness value of αbo, indicating progress towards optimal
solutions; and the negative phase (Np), initiated when there is
no improvement, signifying stagnation. Key parameters within
this framework include the Positive Phase Count (ppc) and
Negative Phase Count (npc), which track the consecutive
iterations of improvement or stagnation, respectively, guiding
the optimization process efficiently.

For mating, the process selects the p-th bonobo for mating
with the i-th bonobo by leveraging the bonobos’ natural
fission-fusion social dynamics, where temporary subgroups are
formed to evaluate fitness for mating. The maximum number
of individuals in each subgroup, tsgsmax, is calculated using
the equation tsgsmax = max(2, tsgsfactor ×Ns), where Ns
is the total population size and tsgsfactor is a predetermined
factor affecting subgroup size. Fitness is assessed within each
subgroup, and the member with the highest fitness is compared
to the i-th bonobo. If this member (the potential p-th bonobo)
has higher fitness, it is chosen for mating; otherwise, a random
member from the subgroup is selected. This may result in
selecting of alpha bonobo (αbo) as p-th bonobo, emphasizing
the preference for mating with individuals of higher fitness.



The BO algorithm utilizes four mating strategies, namely
promiscuous, consortship, restrictive, and extra group mating,
to generate new bonobos. The selection of a mating strategy
depends on the phase condition during the current iteration.
The phase probability is used to determine the mating strategy.
A new bonobo is formed in the positive phase if a randomly
generated number r1 lower or equal the value of Pp. The initial
value of Pp is set to 0.5. Eq. (22) describes the formation of
a new bonobo during the positive phase:

new boj = boij +R1 · scab · (αbo
j − boij)

+ (1−R1) · scsb · flag · (bopj − boij),
(22)

where new boj and αbo
j represent the i-th variable of the

newly formed individual and the alpha individual, respectively.
The coefficients scab and scsb stand for sharing coefficients,
R1 is a uniformly distributed random number in the interval
[0, 1], and flag indicates the chosen mating strategy, with 1
representing promiscuous and -1 indicating restrictive.

During the negative phase, the choice between consortship
and extra-group mating strategies is made through a random
selection process. This decision is guided by a random variable
denoted as (r2). Consortship is selected over extra-group
mating when r2 exceeds the probability of extra group mating
(Pxgm). Under these conditions, the new bonobo’s formation
is determined by

new boj =


boij + flag × e−r5 × (boij − bopj ),

if flag = 1∥r6 ≤ Pd

bopj , otherwise
, (23)

where, r5 and r6 are random numbers in [0, 1] and Pd is the
directional probability. In the case of extra group mating, the
equation for bonobo formation are the following:

β1 = e(r24 + r4 − 2/r4). (24)

β2 = e(−r24 + 2r4 − 2/r4). (25)

new boj = boij + β1× (V ar maxj − boij). (26)

new boj = boij + β2× (boij − V ar minj). (27)

new boj = boij + β1× (boij − V ar minj). (28)

new boj = boij + β2× (V ar maxj − boij). (29)

In these equations, β1 and β2 are intermediate parameters
for calculating new boj with r4 is a random number in [0,
1] and r4 ̸= 0. V ar minj and V ar maxj are the lower and
upper boundaries of the j-th variable. More specific conditions
of the application of these equations are in [23]. At the end
of each iteration cycle, the fitness values and optimization
parameters of the bonobo community are updated.

2) Chaotic Map: The concept of chaotic maps is uti-
lized in optimization to leverage the inherent randomness
and deterministic chaos of nonlinear systems for enhancing
algorithm performance. These maps, characterized by ran-
domness, ergodicity, and non-repetition behavior, can replace
random initialization in meta-heuristic algorithms, potentially
improving convergence rates and preventing stagnation in

local optima. Among various chaotic maps, the Sine map is
particularly valued for its ability to generate uniform initial
values between 0 and 1, thus accelerating the optimization
process. This approach is applied to replace random variables
in algorithms, as described by the following equation:

zt+1 =
α

4
sin(πzt), (30)

where zt+1 is the value at the next iteration, zt is the current
value, and α ∈ [0, 4] is a constant parameter.

3) Proposed Solution: CBO: In this part, we present the
structure of our proposed CBO algorithm, which aims to
enhance the optimization performance of the original Bonobo
Optimizer (BO) by incorporating a chaotic map. Our tailored
version of the BO algorithm addresses the problem of UAV
placement within dynamic networks, with the objective of
achieving maximum coverage and minimal energy consump-
tion. The key modifications we have made to the BO algorithm
are as follows:

• Enhanced Initial Mating Probability: We’ve refined our
strategy to favor the exploitation phase over exploration,
targeting more energy-efficient solutions. By updating the
initial extra-group mating probability from 0.5 to 0.9, we
focus on improving existing solutions rather than ventur-
ing into new territories. This adjustment ensures better
stability and energy savings throughout the optimization
process.

• Efficient Starting Point (Initial UAV Placement): We
employ the original BO algorithm to generate the initial
positions of UAVs, taking into account the objectives of
maximizing coverage and rate. It is worth noting that the
quality of the initial positions can significantly impact the
optimization outcome.

• Chaotic Sine Map Integration: To enhance the stochas-
tic behavior of the BO algorithm, we integrate a chaotic
sine map. By generating a random number, denoted as r1,
using the sine chaotic map based on (30), the algorithm
focuses on exploiting solutions near the current solution.

TABLE I. Simulation Parameters

Parameter Value Parameter Value

Pt 30 dBm G3dB 4.53 dB
k1 10.39 k2 0.05
g1 29.06 g2 0.03
f 2 GHz a 9.6
b 0.16 ηlos 1
ηnlos 20 θB 80◦

K 2 B 10 MHz
N0 10−15 w1 0.6
w2 0.2 w3 0.2
Peth 10−6 α 4
z0 0.7

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results obtained
from our proposed algorithm considering the simulation pa-
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Fig. 3: Fitness for (a) Scenario 1 (b) Scenario 2.

rameters shown in Table I and given in [23], [24]. The
simulations are conducted in a 2000 × 2000 m2 area. The user
distributions are assumed to follow the RWP model and they
change every 40 iterations to capture dynamic scenarios. To
ensure reliable results, we run 1000 iterations and average the
outcomes over 20 executions, mitigating the effects of random-
ness. We evaluate the performance of our proposed algorithm
in two distinct scenarios: Scenario 1, which consider 200 users
and 20 UAVs, and Scenario 2, which involve 400 users and
30 UAVs. Our analysis focuses on assessing the algorithm’s
effectiveness in terms of Coverage, Sum Rate, and Fitness.
To demonstrate the superiority of our proposed approach, we
conduct a comparative study against the original BO, BA, and
PSO algorithms.

In Fig. 3, the fitness results for all the algorithms under
consideration are depicted. It is evident that the proposed CBO
algorithm consistently outperforms the other algorithms across
various user distributions for both scenarios. Specifically,
consider iteration t = 200 and scenario 1, the CBO algorithm
achieves a fitness value of 0.73. In comparison, the fitness
values for the BO, PSO, and BA are 0.62, 0.69, and 0.57,
respectively. Moreover, at iteration t = 580 and scenario 2,
the recorded fitness values are 0.845, 0.785, 0.69, and 0.745
for the CBO, BO, PSO, and BA algorithms, respectively.
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Fig. 4: Coverage for (a) Scenario 1 (b) Scenario 2.

In Fig. 4, the coverage results for all considered algorithms
across both scenarios are presented. Notably, the proposed
CBO algorithm consistently demonstrates the highest coverage
percentage for all user distributions in both scenarios. For
instance, let’s examine scenario 1 at iteration t = 700. The total
achieved coverage for CBO is 78%, showcasing improvements
of 16%, 15%, and 20% compared to BO, PSO, and BA,
respectively. Similarly, in scenario 2 at t = 400, the coverage
percentages are 88%, 83%, 77%, and 74% for CBO, BO, PSO,
and BA, respectively.

Fig. 5 presents a comparative performance analysis of the
considered algorithms in terms of sum rate for both scenarios.
The analysis reveals that the CBO algorithm exhibits rapid
initial improvement, surpassing the other methods (BO, PSO,
and BA) and achieving a higher sum rate earlier in the
optimization process. This observation suggests that CBO may
possess an advantageous exploratory capability, enabling it to
escape rapidly from local optima. For instance, at t = 320
in scenario 1, the CBO algorithm achieves a sum rate of
200 Mbit/s. This represents an improvement of 90 Mbit/s,
150 Mbit/s, and 159 Mbit/s compared to BO, PSO, and BA
algorithms, respectively. Furthermore, consider scenario 2 and
t = 200, the achieved sum rate are 640 Mbit/s, 500 Mbit/s,
210 Mbit/s, and 180 Mbit/s for CBO, BO, PSO, and BA,
respectively.
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Fig. 5: Sum rate for (a) Scenario 1 (b) Scenario 2.

VI. CONCLUSION

In this paper, we have focused on the 3D optimal deploy-
ment of multiple UAVs in dynamic scenarios, with a particular
emphasis on the adoption of the RWP mobility model for
simulating realistic user movements. A closed-form expression
for the achievable coverage probability at targeted error rate
performance has been derived considering the probabilistic
LoS and NLoS links. Based on that, a multi-objective opti-
mization problem has been formulated that seeks to balance
the maximization of network coverage and sum rate with the
minimization of UAV power consumption, acknowledging the
inherent trade-offs between the objectives and constraints. To
address the complexity of this problem, a novel enhanced
CBO algorithm has been proposed, which takes the advantages
of both the chaotic maps and the BO algorithm to enhance
optimization efficiency and accuracy. The obtained results
demonstrate that the proposed CBO algorithm significantly
outperforms traditional optimization techniques such as the
BO, PSO, and BA schemes.
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