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Abstract

This paper is devoted to the general solvability of multi-dimensional backward stochastic differ-

ential equations (BSDEs) with interactively quadratic generators in the non-Markovian setting.

Some general structural conditions on the generator g of BSDEs are demonstrated to guarantee

existence and uniqueness of the local and global solutions, which admit that g has a general

growth in state variable y, and the ith component gi of g depends quadratically not only on

the ith row zi of the state variable z, but also the jth row zj of z for j 6= i. For these multi-

dimensional BSDEs of non-Markovian interactively quadratic generators, we first establish an

existence and uniqueness result on the local bounded solution and then several existence and

uniqueness results on the global bounded and unbounded solutions. They unify and strengthen

some existing works in the non-Markovian setting, and also incorporate some interesting exam-

ples, one of which partially answers an open problem posed in Jackson [25]. A comprehensive

investigation on the bounded solution of one-dimensional quadratic BSDEs with unbounded

stochastic parameters is carried on for deriving our main results.

Keywords: Multi-dimensional BSDE, Interactively quadratic generator, BMO martingale,

Bounded solution, Unbounded solution, Existence and uniqueness.
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1. Introduction

Let T ∈ (0,+∞), (Bt)t∈[0,T ] be a d-dimensional Brownian motion defined on a complete

probability space (Ω,F ,P), and (Ft)t∈[0,T ] be the augmented filtration generated by B. Consider
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the following backward stochastic differential equation (BSDE in short):

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T ], (1.1)

where the terminal value ξ is a d-dimensional FT -measurable random vector, the generator

function g(ω, t, y, z) : Ω× [0, T ]×Rn×Rn×d → Rn is (Ft)-progressively measurable for each pair

(y, z), and the solution (Yt, Zt)t∈[0,T ] is a pair of (Ft)-progressively measurable processes taking

values in Rn × Rn×d which almost surely satisfies BSDE (1.1). Bismut [3] initially introduced

this kind of equations in the linear version, Bismut [4] studied a specifically structural matrix-

valued nonlinear case, and Pardoux and Peng [36] first established the existence and uniqueness

of a multidimensional (n > 1) and nonlinear BSDE, where the generator g is uniformly Lipschitz

continuous with respect to the state variables (y, z). Since then, there has been an increasing

interest for BSDEs and the theoretical results have also been applied to a wide range of various

fields such as mathematical finance, stochastic control, partial differential equations (PDEs),

etc. Interested readers are refereed to El Karoui et al. [13], Kobylanski [30], El Karoui and

Hamadene [12], Hu et al. [23], Frei and Dos Reis [21], Kramkov and Pulido [32], Escauriaza

et al. [14], Tian [39], Weston [40] among others.

For one-dimensional (n = 1) quadratic BSDEs with bounded terminal values, where the

generator g has a quadratic growth in the state variable z, the first existence and uniqueness

result is due to Kobylanski [30], see also Tevzadze [38], Briand and Elie [6], Fan [15] and

Luo and Fan [34] for more details. Existence and uniqueness of the unbounded solution for

one-dimensional quadratic BSDEs with unbounded terminal values was further investigated in

Briand and Hu [7, 8], Delbaen et al. [10], Barrieu and El Karoui [1], Delbaen et al. [11], Fan

et al. [16] and Fan et al. [17]. However, for the case of multidimensional quadratic BSDEs,

the situation is more complicated and there are no general existence theory. In particular, a

counterexample of multidimensional quadratic BSDE with a simple generator and a bounded

terminal value which fails to have a global bounded solution on [0, T ] was constructed in Frei and

Dos Reis [21]. At the same time, many applications have been found in various domains such

as financial price-impact models, financial market equilibrium problems for several interacting

agents, nonzero-sum risk-sensitive stochastic differential games, stochastic equilibria problems

in incomplete financial markets and so on. This has attracted many efforts on this topic in recent

years. Under a smallness assumption on the terminal value, Tevzadze [38] established the first

existence and uniqueness result for multidimensional quadratic BSDEs with bounded terminal

values, which inspired many scholars to investigate the bounded or unbounded solution under

different types of “smallness” assumptions on the terminal value, the terminal time and the

generator, see for example Frei [20], Jamneshan et al. [27], Kramkov and Pulido [32, 31], Harter
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and Richou [22] and Kardaras et al. [28]. Furthermore, in the Markovian setting, Cheridito and

Nam [9] proved the global solvability of a special multi-dimensional quadratic BSDE related

to a forward BSDE, and Xing and Žitković [42] addressed a large class of system of quadratic

BSDEs under the Bensoussan-Frehse (BF) condition initially put forward in Bensoussan and

Frehse [2] and the a priori boundedness (AB) condition (see (AB) in Section 2 for details) on the

generator, see Weston and Zitkovic [41] and Escauriaza et al. [14] for more information on this

topic. Recently, Jackson and Zitkovic [26] and Jackson [25] further extended the result of [42] to

the non-Markovian multi-dimensional quadratic BSDEs, while an additional Malliavin-regular

condition on the generator is required except for the (BF) condition and the (AB) condition.

We have to mention the following several important works on the bounded solution in

the non-Markovian setting and without the smallness assumptions and the Malliavin-regular

condition on the terminal time, the terminal value and the generator. That is, Cheridito and

Nam [9] considered multidimensional BSDEs with projectable quadratic generators and sub-

quadratic generators, Hu and Tang [24] addressed the global solvability of a class of multi-

dimensional BSDEs with diagonally quadratic generators, namely, the ith component gi of the

generator g admits only a quadratic growth on the ith row zi of the matrix z and is bounded

on zj for each j 6= i, which answers an open problem arising from a nonzero-sum risk-sensitive

stochastic differential game posed in El Karoui and Hamadene [12], Fan et al. [17] made a

remarkable improvement on the result of [24] by imposing a strictly quadratic condition of gi in

zi such that gi can have a sub-quadratic growth on zj for any j 6= i, and Luo [35] investigated a

kind of multidimensional BSDEs with triangularly quadratic generators, in which gi may depend

quadratically on zj for any 1 ≤ j ≤ i in a special form. Very recently, Fan et al. [19] generalized

the result of [17] to the case of multi-dimensional quadratic backward stochastic volterra integral

equations, and Weston [40] applied the result of [17] to prove the global existence of a Radner

equilibrium in a limited participation economy models.

The present paper focuses on the local and global solvability for a large class of multidi-

mensional BSDEs with interacting quadratic generators and bounded and unbounded terminal

values in the non-Markovian setting, in which gi depends quadratically not only on zi, but

also zj for each j 6= i. Our results unify and strengthen some corresponding known results in

the non-Markovian setting such as [24], [35] and [17], and show that under some circumstance,

existence and uniqueness of the solution can be guaranteed when some part of the generator g is

small enough, which can be compared with some known corresponding results mentioned in the

last second paragraph. More specifically, we first establish an existence and uniqueness result

on the local bounded solution of the multidimensional quadratic BSDEs with bounded terminal
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values (see Theorem 2.3 in Section 2) under general assumptions, see assumptions (B1) and

(B2) in Section 2 for details. The assumption (B1) means that gi may satisfy anyone of the fol-

lowing three different cases with respect to zi: a strictly quadratic growth, a general quadratic

growth and a linear growth. The gi can also have a general growth in y, a quadratic growth

in zj for j 6= i but with a small enough constant θ when needed, and an interacting quadratic

growth like the inner product of zi and zj for j < i. We would like to mention that generally

speaking, the parameters of processes defined in assumptions (B1) and (B2) (namely, α, ᾱ, α̃

and v) are all unbounded and stochastic, and satisfy different integrability conditions, which

is an endogenous requirement for desired conclusions, and on the other hand, provides conve-

nience for the study on the unbounded solution of multidimensional quadratic BSDEs. Then,

under, respectively, an a priori boundedness assumption and two stronger assumptions than

(B1) (see (AB), (C1a) and (C1b) in Section 2), based on Theorem 2.3 we further establish three

existence and uniqueness results on the global bounded solution of multi-dimensional quadratic

BSDEs, see Theorems 2.6, 2.10 and 2.14 in Section 2 for details. These results totally cover the

corresponding results posed in Hu and Tang [24], Luo [35] and Fan et al. [17], and some ideas to

prove them are borrowed from there. The proofs involve the contraction mapping argument, the

uniform a priori estimate on the solution and the utilization of the induction technique based

on some delicate a priori estimates on the solution, where the problem on the bounded solution

of one-dimensional quadratic BSDEs with unbounded stochastic parameters is comprehensively

investigated by virtue of the BMO martingale (bounded oscillation martingale) tool, Girsanov’s

transform and some useful inequalities, and some new results are explored, see Propositions A.1

to A.3 in the Appendix for details. As a natural application of Theorems 2.10 and 2.14, by

means of the invertible linear transformation method we address solvability of three kinds of

special structured systems of BSDEs, see Theorems 2.20, 2.22 and 2.23 in Section 2 for more

details, which can be respectively compared with Theorems 6.9 and 6.19 of Jackson [25] and

Theorem 3.1 of Xing and Žitković [42]. By the way, by Proposition 2.24 and Corollary 2.25 in

Section 2 we answer partially the open problem 6.25 of Jackson [25] on solvability of a special

system of BSDEs. Finally, according to Theorems 2.6, 2.10 and 2.14, we establish three exis-

tence and uniqueness results for the unbounded solution of multi-dimensional quadratic BSDEs

with the unbounded BMO terminal values, where the generator g needs to be bounded in y,

see assumptions (D1) and (D2) as well as Theorems 2.26, 2.27 and 2.31 in Section 2 for details.

The method of proof is to transfer the BSDE with an unbounded terminal value into one with

a bounded terminal value and a generator satisfying the assumptions of Theorems 2.6, 2.10

and 2.14. These results also improve some existing results in the non-Markovian setting.
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The rest of the paper is organized as follows. In the next section, we introduce some

notations used throughout this paper, state the main results, and present some interesting

examples and remarks to illustrate the novelty of our results. The proofs of some of the results

are also provided in this section when they are not very long. In Section 3 we prove the

solvability of local bounded solution (Theorem 2.3), and in Section 4 we prove solvability of

global bounded solution (Theorems 2.10 and 2.14). The solvability of global unbounded solution

(Theorems 2.26 and 2.27) is finally proved in Section 5. In Appendix, we present and prove some

auxiliary results for the bounded solution of one-dimensional quadratic BSDEs with unbounded

stochastic parameters, including existence, uniqueness and several important a priori estimates.

2. Notations and statement of main results

2.1. Notations

First, let us fix a terminal time T ∈ (0,∞) and two positive integers n and d. Let a ∧ b :=

min{a, b}, a ∨ b := max{a, b}, a+ := a ∨ 0, a− := −(a ∧ 0) and

0∑
j=1

bj =

n∑
j=n+1

bj = 0

for any real bj . And, denote by | · | the Euclidean norm, z> the transpose of vector (or matrix)

z, 1A the indicator of set A, and sgn(x) := 1x>0 − 1x≤0.

In the whole paper, all processes are (Ft)t∈[0,T ]-progressively measurable, and all equalities

and inequalities between random variables and processes are understood in the senses of P−a.s.

and dP×dt−a.e., respectively. We need the following spaces of random variables and processes:

• L∞(Rn): all Rn-valued and FT -measurable random variables ξ satisfying

‖ξ‖∞ := ess sup
ω∈Ω

|ξ(ω)| < +∞.

• Sp(Rn) for p ≥ 1: all Rn-valued continuous adapted processes (Yt)t∈[0,T ] such that

‖Y ‖Sp := E

[
sup
t∈[0,T ]

|Yt|p
] 1
p

< +∞.

• S∞(Rn): all Y ∈
⋂
p≥1 Sp(Rn) such that

‖Y ‖S∞ := ess sup
(ω,t)∈Ω×[0,T ]

|Yt(ω)| =
∥∥∥ sup
t∈[0,T ]

|Yt|
∥∥∥
∞
< +∞.
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• M∞: all real-valued non-negative progressively measurable process (Yt)t∈[0,T ] satisfying

‖Y ‖M∞ := sup
τ∈T[0,T ]

∥∥∥∥Eτ [∫ T

τ
Ysds

]∥∥∥∥
∞
< +∞,

here and hereafter T[a,b] denotes the set of all (Ft)-stopping times τ valued in [a, b] ⊂ [0, T ],

and Eτ stands for the conditional expectation with respect to Fτ .

• L∞: all Y ∈M∞ satisfying

‖Y ‖L∞ :=

∥∥∥∥∫ T

0
Ysds

∥∥∥∥
∞
< +∞.

• Hp(Rn×d) for p ≥ 1: all Rn×d-valued progressively measurable processes (Zt)t∈[0,T ] such

that

‖Z‖Hp := E

[(∫ T

0
|Zs|2ds

) p
2

] 1
p

< +∞.

• BMO(Rn×d): all Z ∈ H2(Rn×d) such that

‖Z‖BMO := sup
τ∈T[0,T ]

∥∥∥∥Eτ [∫ T

τ
|Zs|2ds

]∥∥∥∥
1
2

∞
< +∞.

We write L∞(R) := L∞(R1), S∞(R) := S∞(R1), Sp(R) := Sp(R1) for p ≥ 1, Hp(R) :=

Hp(R1×1) for p ≥ 1, and BMO(R) := BMO(R1×1). By H[a,b], we denote the restriction to the

subinterval [a, b] of the space H of processes on [0, T ], i.e. the space of all processes which are

restrictions to the interval [a, b] of processes in H. It is noted that the process
(∫ t

0 ZsdBs

)
t∈[0,T ]

is an n-dimensional BMO martingale for each Z ∈ BMO(Rn×d). We refer to Kazamaki [29] for

more details on the BMO theory. For the reader’s convenience, here we would like to recall the

well-known John-Nirenberg inequality (see for example Lemma A.1 in Hu and Tang [24]): Let

the process Z belong to the space of BMO(R). If ‖Z‖2BMO ≤ 1/2, then for any τ ∈ T[0,T ],

Eτ
[
exp

(∫ T

τ
|Zs|2ds

)]
≤ 1

1− ‖Z‖2BMO

≤ 2.

Throughout the paper, we also always fix four real-valued non-negative progressively mea-

surable processes

(vt)t∈[0,T ] ∈ BMO(R), (α̃t)t∈[0,T ] ∈ L∞, (ᾱt)t∈[0,T ] ∈M∞

and (αt)t∈[0,T ] as well as a deterministic nondecreasing continuous function φ(·) : [0,+∞) →

[0,+∞) and several real constants β, λ, λ̄, θ, c, c̄ ≥ 0, 0 < γ̄ ≤ γ and δ ∈ [0, 1).

Finally, for i = 1, · · · , n, denote by zi, yi and gi respectively the ith row of matrix z ∈ Rn×d

and the ith component of the vector y ∈ Rn and the generator g ∈ Rn. In addition, for some
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real r > 0 and some time sub-interval [a, b] ⊂ [0, T ], we let E∞[a,b](r) represent the set of all

real-valued non-negative progressively measurable process (α̂t)t∈[0,T ] satisfies

‖α̂‖E∞
[a,b]

(r) :=
1

r
ln

(
sup

τ∈T[a,b]

∥∥∥∥Eτ [exp

(
r

∫ b

τ
α̂sds

)]∥∥∥∥
∞

)
< +∞.

We also denote E∞[0,T ](r) by E∞(r) simply.

Remark 2.1. Let [a, b] ⊂ [0, T ]. By virtue of the inequality exp(x) > x for x ≥ 0, the John-

Nirenberg inequality and Hölder’s inequality, it is not difficult to verify the following assertions.

(i) The assertion α̂ ∈ BMO(R) holds if and only if α̂2 ∈M∞, and ‖α̂2‖M∞ = ‖α̂‖2BMO.

If α̂ ∈ L∞[a,b], then α̂ ∈ E∞[a,b](r) for each r > 0, and ‖α̂‖E∞
[a,b]

(r) ≤ ‖α̂‖L∞[a,b].

If α̂ ∈ E∞[a,b](r) for some r > 0, then α̂ ∈M∞[a,b], and ‖α̂‖M∞
[a,b]
≤ 1

r exp
{
r‖α̂‖E∞

[a,b]
(r)

}
.

In addition, for any 0 < r < r̄, we have E∞(r) ⊂ E∞[a,b](r) and E∞[a,b](r̄) ⊂ E
∞
[a,b](r).

(ii) If α̂1 ∈ E∞[a,b](r) for some r > 0 and α̂2 ∈ L∞[a,b], then α̂ := α̂1 + α̂2 ∈ E∞[a,b](r). Moreover,

‖α̃‖E∞
[a,b]

(r) ≤ ‖α̂1‖E∞
[a,b]

(r) + ‖α̂2‖L∞
[a,b]

.

(iii) If α̂1 ∈ E∞[a,b](pr) and α̂2 ∈ E∞[a,b](qr) for some r > 0 and p, q > 1 satisfying 1
p + 1

q = 1, and

α̂3 ∈ L∞[a,b], then α̂ := α̂1 + α̂2 + α̂3 ∈ E∞[a,b](r). Moreover, we have

‖α̂‖E∞
[a,b]

(r) ≤ ‖α̂1‖E∞
[a,b]

(pr) + ‖α̂2‖E∞
[a,b]

(qr) + ‖α̂3‖L∞
[a,b]

.

Let the Rn-valued function g(ω, t, y, z) : Ω× [0, T ]×Rn ×Rn×d → Rn be (Ft)-progressively

measurable for each (y, z) ∈ Rn × Rn×d, and consider the following multidimensional BSDE:

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T ], (2.1)

or, equivalently,

Y i
t = ξi +

∫ T

t
gi(s, Ys, Zs)ds−

∫ T

t
ZisdBs, t ∈ [0, T ], i = 1, · · · , n, (2.2)

where ξ is an FT -measurable Rn-valued random vector, and the solution (Y,Z) is a pair of

(Ft)-progressively measurable processes with values in Rn × Rn×d.

2.2. Local bounded solution of multi-dimensional quadratic BSDEs

We first introduce the following two assumptions on the quadratic growth generator g.

(B1) For each fixed i = 1, · · · , n, either of the following three conditions holds:
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(i) f := gi or f := −gi satisfies that dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d,

γ̄

2
|zi|2 − ᾱt(ω)− φ(|y|)−

n∑
j=i+1

(λ̄|zj |1+δ + θ|zj |2)− c̄
i−1∑
j=1

|zj |2 ≤ f(ω, t, y, z)

≤ αt(ω) + φ(|y|) +
∑
j 6=i

(λ|zj |1+δ + θ|zj |2) +
γ

2
|zi|2;

(ii) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ Rn × Rn×d, we have

|gi(ω, t, y, z)| ≤ α̃t(ω) + φ(|y|) + |zi|
(
vt(ω) + φ(|y|) + c

i−1∑
j=1

|zj |
)

+
γ

2
|zi|2;

(iii) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ Rn × Rn×d, we have

|gi(ω, t, y, z)| ≤ ᾱt(ω) + φ(|y|) + λ̄|z|+ θ
∑
j 6=i
|zj |2.

(B2) For i = 1, · · · , n, gi satisfies that dP×dt−a.e., for any (y, ȳ, z, z̄) ∈ Rn×Rn×Rn×d×Rn×d,

|gi(ω, t, y, z)− gi(ω, t, ȳ, z̄)|

≤ φ(|y| ∨ |ȳ|)
{(

vt(ω) + |z|1+δ + |z̄|1+δ
)
|y − ȳ|+ (vt(ω) + |z|+ |z̄|)

i∑
j=1

|zi − z̄i|

+
[(
vt(ω) + |z|δ + |z̄|δ

)
+ θ (vt(ω) + |z|+ |z̄|)

] n∑
j=i+1

|zj − z̄j |
}
.

Remark 2.2. Concerning assumptions (B1) and (B2), we make the following remarks.

(i) It is easy to see that gi satisfying assumptions (B1)(i), (B1)(ii) and (B1)(iii) together

with assumption (B2) admits, respectively, a strictly quadratic growth, a general quadratic

growth and a linear growth in zi. The gi can also have a general growth in y, a quadratic

growth in zj for j 6= i but with a small enough constant θ when needed, and an interacting

quadratic growth like the inner product of zi and zj for j < i.

(ii) Assumptions (B1)(i) and (B2) are more general than those of Luo [35, Theorem 2.2],

where for each i = 1, · · · , n, gi has a strictly quadratic growth in zi and a stronger growth

and continuity in the unknown variables y and z.

(iii) The following assumptions (B1’) and (B2’) are used in Theorem 2.1 of Fan et al. [17]:

(B1’) For each i = 1, · · · , n, gi satisfies that dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d,

|gi(ω, t, y, z)| ≤ α̃t(ω) + φ(|y|) +
γ

2
|zi|2 + λ

∑
j 6=i
|zj |1+δ;
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(B2’) For i = 1, · · · , n, gi satisfies that dP× dt− a.e., for any (y, ȳ, z, z̄) ∈ R2n ×R2(n×d),

|gi(ω, t, y, z)− gi(ω, t, ȳ, z̄)|

≤ φ(|y| ∨ |ȳ|)
[

(1 + |z|+ |z̄|) (|y − ȳ|+ |zi − z̄i|) +
(

1 + |z|δ + |z̄|δ
)∑
j 6=i
|zj − z̄j |

]
.

It is easy to check that assumption (B2) is strictly weaker than assumption (B2’), while

assumptions (B1) and (B1’) do not cover each other.

(iv) In assumption (B1), the set of integers {1, · · · , n} is divided into two disjoint parts I1 and

I2, both of which can be ∅, such that I1 + I2 = {1, · · · , n}, gi satisfies either of (B1)(i),

(B1)(ii) and (B1)(iii) for i ∈ I1, and −gi satisfies (B1)(i) for i ∈ I2. Now, we define, for

each (ω, t, y, z) ∈ Ω× [0, T ]× Rn × Rn×d,

ḡi(ω, t, y, z) :=


gi(ω, t, ȳ, z̄), i ∈ I1;

−gi(ω, t, ȳ, z̄), i ∈ I2

(2.3)

with

ȳi :=


yi, i ∈ I1;

−yi, i ∈ I2

and zi :=


zi, i ∈ I1;

−zi, i ∈ I2.

It is not hard to verify that ḡi satisfies either of (B1)(i), (B1)(ii) and (B1)(iii) for all

i = 1, · · · , n. Therefore, in assumption (B1) we can without loss of generality assume that

gi satisfies either of (B1)(i), (B1)(ii) and (B1)(iii) for all i = 1, · · · , n. Furthermore, it

is clear that ḡ defined by (2.3) satisfies assumption (B2) as soon as g satisfies it.

The following Theorem 2.3 establishes a general existence and uniqueness result on the local

bounded solution of multi-dimensional BSDEs with interacting quadratic generators.

Theorem 2.3. Let ξ ∈ L∞(Rn), α ∈ E∞(pγ) for some p > 1 and the generator g satisfy

assumptions (B1) and (B2). Then, there exist two constants ε0 > 0 and θ0 > 0 depending

only on (‖ξ‖∞, ‖α‖E∞(pγ), ‖ᾱ‖M∞ , ‖α̃‖L∞ , ‖v‖BMO, n, γ, γ̄, λ, λ̄, c, δ, T, p) and φ(·) together with

a bounded subset Bε0 of the product space S∞[T−ε0,T ](R
n) × BMO[T−ε0,T ](Rn×d) such that when

θ ∈ [0, θ0], BSDE (2.1) has a unique local solution (Y,Z) on the time interval [T − ε0, T ] with

(Y,Z) ∈ Bε0. Moreover, the above conclusion holds still for p = 1 when λ = 0 and θ0 = 0.

Remark 2.4. It follows from (ii) and (iii) of Remark 2.2 that Theorem 2.3 strengthens Luo

[35, Theorem 2.2], and that Theorem 2.3 and Fan et al. [17, Theorem 2.1] do not cover each

other. In addition, it follows from Fan et al. [17, Remark 2.2] that Fan et al. [17, Theorem 2.1]

extends Theorem 2.2 of Hu and Tang [24]. However, it can be easily checked that Theorem 2.3

and Hu and Tang [24, Theorem 2.2] also do not cover each other.
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2.3. Global bounded solution of multi-dimensional quadratic BSDEs

In this subsection, we will present three existence and uniqueness results on the global

bounded solution of multi-dimensional BSDE (2.1). For the first one, let us introduce the

following a priori boundedness assumption (AB) on the generator g, which was used in Jackson

[25] and Jackson and Zitkovic [26]. Interested readers are refereed to Xing and Žitković [42]

and Escauriaza et al. [14] for the other versions of this assumption.

(AB) There exists a finite collection {ak} = (a1, · · · , aK) of vectors in Rn such that

(i) the collection of (a1, · · · , aK) positively span Rn, i.e., for any a ∈ Rn there exist

nonnegative constants λ1, · · · , λK such that λ1a1 + · · ·+ λKaK = a;

(ii) Almost everywhere in Ω× [0, T ], for any k = 1, · · · ,K and any (y, z) ∈ Rn × Rn×d,

we have a>k g(ω, t, y, z) ≤ α̃t(ω) + γ|a>k z|2.

The following proposition can be proved by an identical way as in Lemma 6.6 of Jackson

[25] and Proposition 3.8 of Jackson and Zitkovic [26]. We omit its proof here.

Proposition 2.5. Let ξ ∈ L∞(Rn) and the generator g satisfy assumption (AB). Assume that

for some h ∈ (0, T ], BSDE (2.1) has a solution (Y,Z) ∈ S∞[T−h,T ](R
n)× BMO[T−h,T ](Rn×d) on

the time interval [T − h, T ]. Then, there exists a positive constant K̃ > 0 depending only on

(‖ξ‖∞, ‖α̃‖L∞ , {ak}, γ) and being independent of h such that

‖Y ‖S∞
[T−h,T ]

+ ‖Z‖2BMO[T−h,T ]
≤ K̃.

With Theorem 2.3 and Proposition 2.5 in hands, we can closely follow the proof of Theorem

4.1 in Cheridito and Nam [9] to prove the following Theorem 2.6, which is our first result on

the global bounded solution of multi-dimensional BSDE (2.1). All details are omitted here.

Theorem 2.6. Let ξ ∈ L∞(Rn), α ∈ E∞(pγ) for some p > 1 and the generator g satisfy

assumptions (B1), (B2) and (AB). Then, there exists a positive constant θ0 > 0 depending only

on (‖ξ‖∞, ‖α‖E∞(pγ), ‖ᾱ‖M∞ , ‖α̃‖L∞ , ‖v‖BMO, n, γ, γ̄, λ, λ̄, c, δ, T, p) and φ(·) such that when θ ∈

[0, θ0], BSDE (2.1) admits a unique global solution (Y,Z) ∈ S∞(Rn)× BMO(Rn×d) on [0, T ].

By Theorem 2.6 and (i) of Remark 2.1, the following result is immediate.

Corollary 2.7. Let α, ᾱ, α̃ ∈ L∞ and the generator g satisfy assumptions (B1), (B2) and

(AB) with θ = 0. Then for each ξ ∈ L∞(Rn), BSDE (2.1) admits a unique global solution

(Y,Z) ∈ S∞(Rn)× BMO(Rn×d) on the time interval [0, T ].
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Remark 2.8. We have the following remarks.

(i) Compared with Jackson and Zitkovic [26, Theorem 3.5], the Malliavin regular condition

on the generator g is not required in Theorem 2.6 due to a distinct strategy of the proof.

From this point of view, Theorem 2.6 strengthens Jackson and Zitkovic [26, Theorem 3.5].

(ii) By [17, Theorem 2.1], Proposition 2.5 and an identical argument as that in the proof of

Cheridito and Nam [9, Theorem 4.1], it can be checked that the conclusion of Corollary 2.7

still holds when (B1) and (B2) are replaced with (B1’) and (B2’) in (iii) of Remark 2.2.

(iii) In our opinion, the (AB) condition of the generator g is not easily verified in the multi-

dimension case. In particular, it seems that the generator g satisfying this condition is

forced to be bounded in the state variable y, which is a strong restriction. Consequently,

in the sequel we will search for some better conditions on the generator g to guarantee

existence and uniqueness of the global solution of multi-dimensional BSDE (2.1).

In order to obtain the second result on the global bounded solution of multi-dimensional

BSDE (2.1), the assumption (B1) needs to be strengthened to the following assumption (C1a).

Before that, we introduce the following notations. For each i = 1, · · · , n and any M ∈ Rn and

x ∈ R, denote by M(x; i) the vector in Rn whose ith component is x and whose jth component

is M j for j 6= i. And, For each i = 1, · · · , n and any H ∈ Rn×d and w ∈ R1×d, denote by

H(w; i) the matrix in Rn×d whose ith row is w and whose jth row is Hj for j 6= i.

(C1a) For each fixed i = 1, · · · , n, either of the following three conditions holds:

(i) The random field f := gi or f(ω, t, y, z) := −gi(ω, t, y(−yi; i), z(−zi; i)) satisfies that

dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d,

γ̄

2
|zi|2 − ᾱt(ω)− β|y| −

n∑
j=i+1

(λ̄|zj |1+δ + θ|zj |2)− c̄
i−1∑
j=1

|zj |2 ≤ f(ω, t, y, z)

≤ αt(ω) +
[
β|y|1yi>0 + φ(|y|) 1yi<0

]
+
∑
j 6=i

(λ|zj |1+δ 1yi<0 + θ|zj |2) +
γ

2
|zi|2;

(ii) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ Rn × Rn×d, we have

−
[
β|yi|1yi<0 + φ(|y|) 1yi>0

]
− li(ω, t, z) ≤ gi(ω, t, y, z)

≤
[
β|yi|1yi>0 + φ(|y|) 1yi<0

]
+ li(ω, t, z)

with

li(ω, t, z) := α̃t(ω) + |zi|
(
vt(ω) + c

i−1∑
j=1

|zj |
)

+
γ

2
|zi|2;
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(iii) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ Rn × Rn×d, we have

−
[
β|yi|1yi<0 + φ(|y|) 1yi>0

]
− l̄i(ω, t, z) ≤ gi(ω, t, y, z)

≤
[
β|yi|1yi>0 + φ(|y|) 1yi<0

]
+ l̄i(ω, t, z)

with

l̄i(ω, t, z) := ᾱt(ω) + λ̄|z|+ θ
∑
j 6=i
|zj |2.

Remark 2.9. It is clear that the generator g satisfying assumptions (C1a) and (B2) can have

a general growth in the state variable y and a general quadratic growth in the state variable z.

And, in assumption (C1a), g has a diagonally quadratic growth in z when θ = 0 and c = c̄ = 0,

and a triangularly quadratic growth in z when θ = 0 and c > 0 or c̄ > 0. In addition, by a similar

argument to (iv) of Remark 2.2, in assumption (C1a) we can without loss of generality assume

that gi satisfies either of conditions (C1a)(i), (C1a)(ii) and (C1a)(iii) for all i = 1, · · · , n.

Theorem 2.10. Let ξ ∈ L∞(Rn), α ∈ E∞(pγ exp(βT )) for some p > 1 and the genera-

tor g satisfy assumptions (C1a) and (B2). Then, there exists a θ0 > 0 depending only on

(‖ξ‖∞, ‖α‖E∞(pγ exp(βT )), ‖ᾱ‖M∞ , ‖α̃‖L∞ , ‖v‖BMO, n, β, γ, γ̄, λ, λ̄, c, δ, T, p) such that when θ ∈

[0, θ0], BSDE (2.1) admits a unique global solution (Y, Z) ∈ S∞(Rn)×BMO(Rn×d) on the time

interval [0, T ]. Moreover, the above conclusion holds still for p = 1 when λ = 0 and θ0 = 0.

We would like to mention that Theorem 2.10 can be compared with Theorem 2.3 and Remark

2.5 of Jamneshan et al. [27] to observe the role of θ in assumptions (C1a) and (B2) for existence

and uniqueness of the bounded solution of multi-dimensional interacting quadratic BSDEs.

By virtue of Theorem 2.10 and (i) of Remark 2.1, the following corollary is immediate.

Corollary 2.11. Let α, ᾱ, α̃ ∈ L∞ and the generator g satisfy assumptions (C1a) and (B2)

with θ = 0. Then, for each ξ ∈ L∞(Rn), BSDE (2.1) admits a unique global solution (Y,Z) ∈

S∞(Rn)× BMO(Rn×d) on the time interval [0, T ].

Remark 2.12. It is easy to verify that if g satisfies those assumptions in Luo [35, Theorem 2.3],

then assumption (C1a)(i) with λ = θ = 0 holds for each gi with i = 1, · · · , n, and assumption

(B2) with θ = 0 holds. Consequently, Corollary 2.11 strengthens Luo [35, Theorem 2.3]. In

particular, in order to obtain the global solvability of BSDE (2.1), in Luo [35, Theorem 2.3]

the interacting term (zi)>zj can not appear in gi for 1 ≤ j < i ≤ n. While the situation in

Corollary 2.11 is different because gi with this type of term can satisfy (C1a)(ii) and (C1a)(i),

see the next subsection for more details. Finally, we especially mention that multidimensional
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BSDEs with this type of interacting term appear in many applications, such as price impact

models (see Kramkov and Pulido [32]), incomplete stochastic equilibria (see Xing and Žitković

[42], Kardaras et al. [28], Escauriaza et al. [14], Weston [40]), and risk-sensitive nonzero-sum

stochastic games (see Xing and Žitković [42], Jackson and Zitkovic [26], Jackson [25]).

Finally, let us further demonstrate the third existence and uniqueness result on the global

bounded solution. In stating it, the following assumption (C1b) on the generator will be used,

which is strictly stronger than (B1) with θ = 0. It should be noted that assumptions (C1b) and

(C1a) with θ = 0 do not cover each other.

(C1b) The set of integers {1, · · · , n} is divided into three pairwise disjoint parts J1, J2 and J3,

any of which can be ∅, such that J1 + J2 + J3 = {1, · · · , n}. For each fixed i ∈ {1, · · · , n},

either of the following three conditions holds:

(i) If i ∈ J1, then the random field f := gi or f(ω, t, y, z) := −gi(ω, t, y(−yi; i), z(−zi; i))

satisfies that dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d,

γ̄

2
|zi|2 − ᾱt(ω)− β|y| − λ̄

∑
j∈J1

|zj |1+δ ≤ f(ω, t, y, z)

≤ αt(ω) +
[
β|y|1yi>0 + φ(|y|) 1yi<0

]
+ λ

∑
j∈J1

|zj |1+δ +
γ

2
|zi|2;

(ii) If i ∈ J2, then dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d, we have

−
[
β|y|1yi<0 + φ(|y|) 1yi>0

]
− l̃i(ω, t, z) ≤ gi(ω, t, y, z)

≤
[
β|y|1yi>0 + φ(|y|) 1yi<0

]
+ l̃i(ω, t, z)

with

l̃i(ω, t, y, z) := α̃t(ω) + |zi|
(
vt(ω) + φ(|y|) + c

i−1∑
j=1

|zj |
)

+
γ

2
|zi|2;

(iii) If i ∈ J3, then dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d, we have

−
[
β|y|1yi<0 + φ(|y|) 1yi>0

]
− l̂(ω, t, z) ≤ gi(ω, t, y, z)

≤
[
β|y|1yi>0 + φ(|y|) 1yi<0

]
+ l̂(ω, t, z)

with

l̂(ω, t, z) := ᾱt(ω) + λ̄
∑
j∈J3

|zj |.

Remark 2.13. By a similar analysis to (iv) of Remark 2.2, in assumption (C1b) we can without

loss of generality assume that gi satisfies either of conditions (C1b)(i), (C1b)(ii) and (C1b)(iii)

for all i = 1, · · · , n. In addition, in assumption (C1b)(i) it creates no essential difference to

replace the term
∑

j∈J1
|zj |1+δ with

∑
j∈J1,j 6=i |z

j |1+δ.
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Theorem 2.14. Let α, ᾱ, α̃ ∈ L∞ and the generator g satisfy assumptions (C1b) and (B2)

with θ = 0. Then, for each ξ ∈ L∞(Rn), BSDE (2.1) admits a unique global solution (Y,Z) ∈

S∞(Rn)× BMO(Rn×d) on the time interval [0, T ].

Remark 2.15. We have the following remarks.

(i) It is easy to check that assumptions (C1b)(ii)-(iii) generalize assumption (H3.2) used in

Fan et al. [19]. Consequently, Theorem 2.14 strengthens Fan et al. [19, Theorem 3.6], and

then Fan et al. [17, Theorems 2.4] and Hu and Tang [24, Theorem 2.3].

(ii) The following two assumptions (B3’) and (B4’) together with (B1’) and (B2’) in (ii) of

Remark 2.2 are used in Theorem 2.5 of Fan et al. [17]:

(B3’) For each i = 1, · · · , n, gi satisfies that dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d,

gi(ω, t, y, z) sgn(yi) ≤ αt(ω) + β|y|+ λ
∑
j 6=i
|zj |1+δ +

γ

2
|zi|2;

(B4’) For i = 1, · · · , n, f := gi or f := −gi satisfies that dP× dt− a.e.,

f(ω, t, y, z) ≥ γ̄

2
|zi|2 − ᾱt(ω)− β|y| − λ̄

∑
j 6=i
|zj |1+δ, ∀(y, z) ∈ Rn × Rn×d.

It is clear that assumptions (B1’)-(B4’) are equivalent to (C1b) with J1 = {1, · · · , n} and

J2 = J3 = ∅. Consequently, Theorem 2.14 strengthens Fan et al. [17, Theorem 2.5].

(iii) Let the assumptions of Theorem 2.14 be satisfied except that θ = 0. It can also be proved

that the conclusion of Theorem 2.14 holds still when θ is smaller than a constant θ0 > 0

depending only on ‖ξ‖∞ and those parameters in assumption (C1b).

(iv) Let l ∈ (1, 2], (at)t∈[0,T ], (bt)t∈[0,T ] ∈ S∞(Rn) and the generator be defined as follows:

g(ω, t, y, z) := at(ω)|y|+ bt(ω) sin(|z|l), ∀(ω, t, y, z) ∈ Ω× [0, T ]× Rn × Rn×d.

According to (iii) of this remark, we know that for each ξ ∈ L∞(Rn), there exists a constant

θ0 > 0 such that when ‖b‖S∞1l=2 ≤ θ0, BSDE (2.1) with this generator g admits a unique

global solution (Y, Z) ∈ S∞(Rn) × BMO(Rn×d) on the time interval [0, T ]. It seems that

this conclusion can not be obtained by any existing results, to the best of our knowledge.

2.4. Examples of application

First of all, Jamneshan et al. [27] addressed the following two-dimensional BSDE:
Y 1
t = ξ1 +

∫ T

t

(
θ1|Z1

s |2 + ϑ1|Z2
s |2
)

ds−
∫ T

t
Z1
sdBs,

Y 2
t = ξ2 +

∫ T

t

(
ϑ2|Z1

s |2 + θ2|Z2
s |2
)

ds−
∫ T

t
Z2
sdBs, t ∈ [0, T ],

(2.4)
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where ξi ∈ L∞(R) and θi, ϑi ∈ R, i = 1, 2. According to Theorem 2.10, we see that if θ1θ2 6= 0,

then for each ξ ∈ L∞(R2), there exists a constant θ0 > 0 depending only on (θ1, θ2, ‖ξ‖∞) such

that for each pair (ϑ1, ϑ2) satisfying |ϑ1|, |ϑ2| ≤ θ0, the system of BSDEs (2.4) admits a unique

global solution (Y, Z) ∈ S∞(R2)×BMO(R2×d) on the time interval [0, T ]. This conclusion can

be compared with Theorem 2.3 and Remark 2.5 posed in Jamneshan et al. [27].

On the other hand, in the case of θ1 = ϑ1 = 0, ϑ2 = 1 and θ2 = 1/2, Frei and Dos Reis [21]

showed that for some ξ ∈ L∞(R2), the system of BSDEs (2.4) fails to have a global bounded

solution on the time interval [0, T ], see Theorem 2.1 of Frei and Dos Reis [21] for more details.

However, for the case of ϑ1 = 0 and ϑ2θ2 < 0 (for example, ϑ2 = 1 and θ2 = −1/2), by

Corollary 2.11 we know that for each ξ ∈ L∞(R2), the system of BSDEs (2.4) admits a unique

global solution (Y,Z) ∈ S∞(R2)× BMO(R2×d) on the time interval [0, T ].

Furthermore, we consider the following variant of the system of BSDEs (2.4):
Y 1
t = ξ1 +

∫ T

t

(
θ1|Z1

s |2 + ϑ1|Z2
s |
)

ds−
∫ T

t
Z1
sdBs,

Y 2
t = ξ2 +

∫ T

t

(
ϑ2|Z1

s |2 + θ2|Z2
s |2 + lZ1

s (Z2
s )>
)

ds−
∫ T

t
Z2
sdBs, t ∈ [0, T ],

(2.5)

where l ∈ R, ξi ∈ L∞(R) and θi, ϑi ∈ R, i = 1, 2 such that θ2ϑ2 < 0. Without loss of generality,

we assume that ϑ2 < 0 and θ2 > 0. Observe that

− l2

2θ2
|Z1
s |2 −

θ2

2
|Z2
s |2 ≤ lZ1

s (Z2
s )> ≤ −ϑ2

2
|Z1
s |2 −

l2

2ϑ2
|Z2
s |2

and then

θ2

2
|Z2
s |2 − (

l2

2θ2
− ϑ2)|Z1

s |2 ≤ ϑ2|Z1
s |2 + θ2|Z2

s |2 + lZ1
s (Z2

s )> ≤ (θ2 −
l2

2ϑ2
)|Z2

s |2. (2.6)

We get that the generator f := g1 satisfies (C1a)(i) for θ1 6= 0 and (C1a)(iii) for θ1 = 0, and

f := g2 satisfies (C1a)(i). It follows from Corollary 2.11 that for each ξ ∈ L∞(R2), the system

of BSDEs (2.5) admits a unique global solution (Y, Z) ∈ S∞(R2) × BMO(R2×d) on the time

interval [0, T ]. In addition, it is clear that when ϑ2 = 0, the above conclusion holds still.

We proceed by considering the following three-dimensional BSDEs, which is another variant

of the system of BSDEs (2.4):

t ∈ [0, T ]; Y 1
t = ξ1 +

∫ T

t

(
ϑ1|Z1

s |2 + θ1|Z3
s |
)

ds−
∫ T

t
Z1
sdBs,

Y 2
t = ξ2 +

∫ T

t

(
ϑ2|Z1

s |2 + θ2|Z2
s |2 + l21Z

2
s (Z1

s )> + k2|Z3
s |
)

ds−
∫ T

t
Z2
sdBs,

Y 3
t = ξ3 +

∫ T

t

(
ϑ3|Z1

s |2 + θ3|Z2
s |2 + κ3|Z3

s |2
)

ds−
∫ T

t
Z3
sdBs

+

∫ T

t

(
l31Z

3
s (Z1

s )> + l32Z
3
s (Z2

s )> + l33Z
1
s (Z2

s )> + k3|Z2
s |
)

ds,

(2.7)
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where ξi ∈ L∞(R), θi, ϑi ∈ R for i = 1, 2, 3, κ3, l21, l31, l32, l33, k2, k3 ∈ R with

θ2ϑ2 < 0, κ3θ3 < 0, κ3ϑ3 < 0 and l233 < 4θ3ϑ3.

Without loss of generality, we assume that θ2 > 0, ϑ2 < 0, κ3 > 0, θ3 < 0 and ϑ3 < 0. Observe

that there exists a unique real ε ∈ (0, 1] satisfying

l233 = 4(1− ε)2θ3ϑ3

and

ϑ3(1− ε)|Z1
s |2 + θ3(1− ε)|Z2

s |2 + l33Z
1
s (Z2

s )> = −(1− ε)
∣∣∣√|ϑ3|Z1

s − sgn(l33)
√
|θ3|Z2

s

∣∣∣2 .
Combining a similar argument to (2.6), we can directly verify that

∆s ≤
(
κ3 −

l231

4εϑ3
− l232

4εθ3

)
|Z3
s |2

and

∆s ≥
κ3

2
|Z3
s |2 −

(
1

2
+
l231

κ3
− ϑ3

)
|Z1
s |2 −

(
l233

2
+
l232

κ3
− θ3

)
|Z2
s |2,

where

∆s := ϑ3|Z1
s |2 + θ3|Z2

s |2 + κ3|Z3
s |2 + l31Z

3
s (Z1

s )> + l32Z
3
s (Z2

s )> + l33Z
1
s (Z2

s )>.

Consequently, the generator g of the system of BSDEs (2.7) satisfies assumption (C1a). It

follows from Corollary 2.11 that for each ξ ∈ L∞(R2), the system of BSDEs (2.7) admits a

unique global solution (Y,Z) ∈ S∞(R2)× BMO(R2×d) on the time interval [0, T ]. In addition,

it can also be proved that when ϑ2 = k2 = 0, κ3θ3 < 0, κ3ϑ3 < 0, l31 = l32 = 0 and l233 = 4θ3ϑ3

holds or ϑ2 = k2 = 0 and θ3 = ϑ3 = l33 = k3 = 0 holds, the above conclusion holds still.

Finally, let us present several specific examples of multi-dimensional solvable BSDEs with in-

teracting quadratic generators, to which one of Theorem 2.10, Corollary 2.11 and Theorem 2.14

can apply, but any existing results can not, to the best of our knowledge.

Example 2.16. We have the following assertions.

(i) Assume that the generator g := (g1, · · · , gn)> is defined as follows: for each i = 1, · · · , n,

and (ω, t, y, z) ∈ Ω× [0, T ]× Rn × Rn×d,

gi(ω, t, y, z) := α̃t(ω) + (−1)i
( i−1∑
j=1

aij |zj |2 − aii|zi|2 +
n∑

j=i+1

aij |zj |1+δ
)

+ hi(y, z),

where A := (aij)n×n is any nonnegative matrix with ai,i > 0 for each i = 1, · · · , n, and

for each i = 1, · · · , n, hi(y, z) : Rn × Rn×d → R is any Lipschitz continuous function.
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It is not hard to verify that this generator g satisfies assumption (B2) with θ = 0, and

for each i = 1, · · · , n, f := gi or f(ω, t, y, z) := −gi(ω, t, y(−yi; i), z(−zi; i)) satisfies

assumption (C1a)(i) with θ = 0. Then, from Corollary 2.11 we can conclude that for

each ξ ∈ L∞(Rn), BSDE (2.1) with this generator g admits a unique global solution

(Y,Z) ∈ S∞(Rn) × BMO(Rn×d) on the time interval [0, T ]. We would like to mention

that in order to satisfy assumption (C1a)(i), it is generally required that the signs of |zi|2

and |zj |2 for j < i should be opposite.

(ii) Let n = d and the generator g(y, z) := zy for each (y, z) ∈ Rn ×Rn×n. It is easy to check

that this generator g satisfies assumption (B2) with θ = 0, and for each i = 1, · · · , n,

f := gi(y, z) = ziy satisfies assumption (C1b)(ii). It then follows from Theorem 2.14 that

for each ξ ∈ L∞(Rn), BSDE (2.1) with this generator g admits a unique global solution

(Y,Z) ∈ S∞(Rn)× BMO(Rn×d) on the time interval [0, T ].

(iii) Assume that the generator g := (g1, · · · , gn)> is defined as follows: for each i = 1, · · · , n,

and (ω, t, y, z) ∈ Ω× [0, T ]× Rn × Rn×d,

gi(ω, t, y, z) := α̃t(ω) + |zi|
(
vt(ω) + e|y|

)
+ e−yi |zi|

3
2 + zi

i∑
j=1

cij(z
j)>,

where C = (cij)n×n is any real matrix. It is easy to verify that this generator g satisfies

assumption (B2) with θ = 0, and for each i = 1, · · · , n, f := gi satisfies assumption

(C1b)(ii). Then, according to Theorem 2.14, we can conclude that for each ξ ∈ L∞(Rn),

BSDE (2.1) with this generator g admits a unique global solution (Y, Z) ∈ S∞(Rn) ×

BMO(Rn×d) on the time interval [0, T ].

(iv) Let n = 5 and d = 2. Assume that for each (ω, t, y, z) ∈ Ω × [0, T ] × Rn × Rn×d, the

generator g is defined as follows:

g(ω, t, y, z) :=



g1

g2

g3

g4

g5


(ω, t, y, z) :=



e−y
1 − |y|+ |z1|2 − |z2|

4
3 + sin |z3|

|y| cos |y| − |z2|2 + |z1|
5
4 − cos |z4|

|y|+ z3(2z1 − 3z2)> + z3A(z3)> − arcsin |z5|

2|y| sin |y|+ |z4| − |z5|+ arccos |z1|

y1 + 3y3 − y4 + y5 − |z4|+ 2|z5| − arctan |z2|


with the matrix

A :=

 1 1

0 0
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It is easy to check that this generator g satisfies (B2) with θ = 0, and that f := gi satisfies

(C1b)(i) for i = 1, 2, (C1b)(ii) for i = 3, and (C1b)(iii) for i = 4, 5. Then, according to

Theorem 2.14, we can conclude that for each ξ ∈ L∞(Rn), BSDE (2.1) with this generator

g admits a unique global solution (Y, Z) ∈ S∞(Rn)× BMO(Rn×d) on [0, T ].

2.5. Connections to existing results

With an invertible linear transformation as in Xing and Žitković [42] and Weston [40], we

immediately have the following result after an application of Itô formula.

Proposition 2.17. Let A ∈ Rn×n be a real invertible matrix, and A−1 its inverse. Then,

(Y,Z) ∈ S∞(Rn)×BMO(Rn×d) is a solution of BSDE (2.1) if and only if (Ȳ , Z̄) := (AY,AZ) ∈

S∞(Rn)× BMO(Rn×d) is a solution of the following BSDE

Ȳt = ξ̄ +

∫ T

t
ḡ(s, Ȳs, Z̄s)ds−

∫ T

t
Z̄sdBs, t ∈ [0, T ], (2.8)

where ξ̄ := Aξ and

ḡ(ω, t, ȳ, z̄) := Ag(ω, t, A−1ȳ, A−1z̄), ∀(ω, t, ȳ, z̄) ∈ Ω× [0, T ]× Rn × Rn×d.

Since the condition (AB) is invariant under an invertible linear transformation of Rn, as

shown in Remark 2.12 of Xing and Žitković [42], we immediately have from Corollary 2.7 and

Proposition 2.17 the following assertion.

Theorem 2.18. Let α, ᾱ, α̃ ∈ L∞ and the generator g satisfy (AB). If there is a real invertible

matrix A ∈ Rn×n such that the generator ḡ defined in Proposition 2.17 satisfies (B1) and (B2)

with θ = 0, then for each ξ ∈ L∞(Rn), the system of BSDEs (2.1) admits a unique global

solution (Y, Z) ∈ S∞(Rn)× BMO(Rn×d).

From Proposition 2.17, we easily see the following slight extension of Theorem 2.1 of Frei

and Dos Reis [21] .

Theorem 2.19. Let θ1 = ϑ1 = 0 and θ2ϑ2 > 0. Then, there is a terminal value ξ ∈ L∞(R2)

such that the system of BSDEs (2.4) has no global solution (Y, Z) ∈ S∞(R2)× BMO(R2×d).

Proof. We use a contradiction argument. Suppose that for any ξ ∈ L∞(R2), the system of

BSDEs (2.4) admits a global solution (Y,Z) ∈ S∞(R2)× BMO(R2×d). Define

(Ȳ , Z̄) :=

 √2θ2ϑ2 0

0 2ϑ2

 (Y,Z).
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Then, we have from Proposition 2.17 that (Ȳ , Z̄) ∈ S∞(R2)×BMO(R2×d) solves the following

system of BSDEs
Ȳ 1
t =

√
2θ2ϑ2ξ

1 −
∫ T

t
Z̄1
sdBs,

Ȳ 2
t = 2ϑ2ξ

2 +

∫ T

t

(
|Z̄1
s |2 +

1

2
|Z̄2
s |2
)

ds−
∫ T

t
Z̄2
sdBs, t ∈ [0, T ],

which is a contradiction to Theorem 2.1 of Frei and Dos Reis [21] as ξ is arbitrary. The proof

is then complete.

The following theorem is a nonlinear extension of Theorem 6.9 of Jackson [25] with a different

proof.

Theorem 2.20. Define the generator g as follows: ∀(ω, t, y, z) ∈ Ω× [0, T ]× Rn × Rn×d,

g(ω, t, y, z) := f(ω, t, y, z) + zh(b>z),

where b := (b1, · · · , bn)> ∈ Rn with b1 6= 0, the vector function h : R1×d → Rd is Lipschitz

continuous, and f : Ω × [0, T ] × Rn × Rn×d → Rn has the following stronger continuity than

assumption (B2): dP× dt− a.e., for each (y, ȳ, z, z̄) ∈ Rn × Rn × Rn×d × Rn×d,

|f(ω, t, y, z)− f(ω, t, ȳ, z̄)| ≤ φ(|y| ∨ |ȳ|)
(
vt(ω) + |z|δ + |z̄|δ

)
(|y − ȳ|+ |z − z̄|) , (2.9)

and the following growth: dP× dt− a.e.,

|b>f(ω, t, y, z)| ≤ α̃t(ω) + β|y|+ γ

2
|b>z|2, ∀(y, z) ∈ Rn × Rn×d (2.10)

and

|f i(ω, t, y, z)| ≤ α̃t(ω) + β|y|+ γ

2
|zi|2, i = 2, · · · , n. (2.11)

Then, for each ξ ∈ L∞(Rn), BSDE (2.1) admits a unique global solution (Y,Z) ∈ S∞(Rn) ×

BMO(Rn×d).

Proof. The following matrix

A :=


b1 b2 · · · bn

1

. . .

1

 (2.12)

is invertible. For each (ȳ, z̄) ∈ Rn × Rn×d, let (y, z) := A−1(ȳ, z̄), and then (ȳ, z̄) = A(y, z).

Clearly, ȳ1 = b>y, z̄1 = b>z, ȳi = yi and z̄i = zi for each i = 2, · · · , n. By (2.9)-(2.13) together
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with the Lipschitz continuity of h, the following generator

ḡ(ω, t, ȳ, z̄) := Ag(ω, t, A−1ȳ, A−1z̄) = Af(ω, t, A−1ȳ, A−1z̄) +


z̄1h(z̄1)

z̄2h(z̄1)
...

z̄nh(z̄1)

 (2.13)

satisfies Assumptions (B2) with θ = 0, and (C1b)(ii). From Theorem 2.14 we see that for

each ξ ∈ L∞, the system of BSDEs (2.8) admits a unique global solution (Ȳ , Z̄) ∈ S∞(Rn) ×

BMO(Rn×d). Finally, by Proposition 2.17 we know that (A−1Ȳ , A−1Z̄) ∈ S∞(Rn)×BMO(Rn×d)

is just the desired unique solution of (2.1). The proof is complete.

Remark 2.21. If the generator f is Lipschitz continuous in the last two variables (y, z) and

bounded in the last variable z, then (2.9)-(2.11) hold naturally. On the other hand, if b1 = 0 but

bi0 6= 0 for some i0 > 1, Theorem 2.20 is still true when (2.11) is satisfied for all integer i 6= i0

instead of for all i ≥ 2, just using an obvious invertible transformation in the proof.

Similar to the proof of Theorem 2.20, we have the following Theorem 2.22.

Theorem 2.22. Consider the following generator g: ∀(ω, t, y, z) ∈ Ω× [0, T ]× Rn × Rn×d,

g(ω, t, y, z) := f(ω, t, y, z) + zh
(
b>z

)
+ ah̄

(
b>z

)
,

where a := (a1, · · · , an)> ∈ Rn and b := (b1, · · · , bn)> ∈ Rn with a1 6= 0 and b>a 6= 0, the

vector function h : R1×d → Rd is Lipschitz continuous, the function h̄ : R1×d → R satisfies that

h̄(0) = 0 and

|h̄(w1)− h̄(w2)| ≤ L(1 + |w1|+ |w2|)|w1 − w2|, ∀w1, w2 ∈ R1×d, (2.14)

and f : Ω × [0, T ] × Rn × Rn×d → Rn has the continuity (2.9) and the following growth:

dP× dt− a.e.,

|f(ω, t, y, z)| ≤ α̃t(ω) + β|y|, ∀(y, z) ∈ Rn × Rn×d. (2.15)

Then, for each ξ ∈ L∞(Rn), BSDE (2.1) admits a unique global solution (Y, Z) ∈ S∞(Rn) ×

BMO(Rn×d).

It is quite related to Theorem 6.19 of Jackson [25], which requires the a priori boundedness

condition (AB) and the Malliavin regular condition on the generator g. However, both do not

cover each other.
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Proof. The following matrix

A :=



b1 b2 b3 · · · bn

−a2 a1

−a3 a1

...
. . .

−an a1


(2.16)

has the determinant det(A) = an−2
1 b>a 6= 0, and is thus invertible. For each (ȳ, z̄) ∈ Rn×Rn×d,

let (y, z) := A−1(ȳ, z̄), and then (ȳ, z̄) = A(y, z). Clearly, ȳ1 = b>y, z̄1 = b>z, ȳi = −aiy1 +a1y
i

and z̄i = −aiz1 + a1z
i for each i = 2, · · · , n. From (2.9) and (2.14)-(2.17) together with the

Lipschitz continuity of h, we see that the following generator

ḡ(ω, t, ȳ, z̄) := Af(ω, t, A−1ȳ, A−1z̄) +


z̄1h(z̄1) + b>ah̄(z̄1)

z̄2h(z̄1)
...

z̄nh(z̄1)

 (2.17)

satisfies Assumptions (B2) with θ = 0, and (C1b)(ii). Proceeding identically as in Theorem 2.20,

we have the desired assertion.

Furthermore, the following Theorem 2.23 and Theorem 3.1 of Xing and Žitković [42] do not

cover each other.

Theorem 2.23. Define the generator g := (g1, · · · , gn)> as follows: for each (ω, t, y, z) ∈

Ω× [0, T ]× Rn × Rn×d,
g1(ω, t, y, z) := f1(ω, t, y, z) + z1h(b>z)− h̄1(b>z)− 1

b1

n∑
j=2

ajbj |zj |2;

gi(ω, t, y, z) := f i(ω, t, y, z) + zih(b>z)− h̄i(b>z) + ai|zi|2, i = 2, · · · , n,

(2.18)

where a := (0, a2, · · · , an)> ∈ Rn and b := (b1, · · · , bn)> ∈ Rn with b1 6= 0, the vector function

h : R1×d → Rd is Lipschitz continuous with Lipschitz constant L > 0 and |h(0)| ≤ L, the vector

function h̄ = (h̄1, · · · , h̄n)> : R1×d → Rn satisfies that h̄(0) = 0 and

|h̄(w1)− h̄(w2)| ≤ L(1 + |w1|+ |w2|)|w1 − w2|, ∀w1, w2 ∈ R1×d, (2.19)

and f = (f1, · · · , fn)> : Ω× [0, T ]×Rn×Rn×d → Rn satisfies that dP×dt−a.e., |f(ω, t, 0, 0)| ≤

α̃t(ω) and for each (y1, y2, z1, z2) ∈ Rn × Rn × Rn×d × Rn×d,

|f(ω, t, y1, z1)− f(ω, t, y2, z2)| ≤ β|y1 − y2|+ γ|z1 − z2|. (2.20)

21



Assume further that

either inf
w∈R1×d

[
wh(w)− b>h̄(w)− γ̄

2
|w|2

]
≥ −c or sup

w∈R1×d

[
wh(w)− b>h̄(w) +

γ̄

2
|w|2

]
≤ c,

(2.21)

and for each i = 2, · · · , n,

either ai > 0 and inf
w∈R1×d

[
h̄i(w)− γ̄

2
|w|2

]
≥ −c or ai < 0 and sup

w∈R1×d

[
h̄i(w) +

γ̄

2
|w|2

]
≤ c.

(2.22)

Then, for each ξ ∈ L∞(Rn), BSDE (2.1) with the generator g defined in (2.18) admits a unique

global solution (Y, Z) ∈ S∞(Rn)× BMO(Rn×d).

Proof. We only give the proof when the first conditions of (2.21) and (2.22) are satisfied. The

other cases are proved identically.

Let the invertible matrix A be defined in (2.12). For each (ȳ, z̄) ∈ Rn × Rn×d, let (y, z) :=

A−1(ȳ, z̄), and then (ȳ, z̄) = A(y, z). i.e., ȳ1 = b>y, z̄1 = b>z, ȳi = yi and z̄i = zi for

each i = 2, · · · , n. From (2.19), (2.20), (2.23) and the Lipschitz continuity of h, the following

generator

ḡ(ω, t, ȳ, z̄) := Af(ω, t, A−1ȳ, A−1z̄) +


z̄1h(z̄1)− b>h̄(z̄1)

z̄2h(z̄1)− h̄i(z̄1) + ai|z̄2|2
...

z̄nh(z̄1)− h̄n(z̄1) + an|z̄n|2

 (2.23)

satisfies Assumption (B2) with θ = 0. Furthermore, we have from (2.20) that

|Af(ω, t, A−1ȳ, A−1z̄)| ≤ |A|αt(ω) + β|ȳ|+ γ|z̄|. (2.24)

From (2.19), (2.21), (2.23) and (2.24) together with the Lipschitz continuity of h, we see that

ḡ1 satisfies assumption (C1a)(i) with θ = 0 since

ḡ1(ω, t, ȳ, z̄) ≥ γ̄

2
|z̄1|2 − c− |A|αt(ω)− β|ȳ| − γ|z̄|

and

ḡ1(ω, t, ȳ, z̄) ≤ |A|αt(ω) + β|ȳ|+ γ|z̄|+ L|z̄1|(1 + |z̄1|) + L|b|(1 + |z̄1|)|z̄1|.

From (2.19), (2.22), (2.23) and (2.24) together with the Lipschitz continuity of h and Young’s

inequality, we see that for each i = 2, · · · , n, ḡi satisfies (C1a)(i) with θ = 0 since

ḡi(ω, t, ȳ, z̄) ≥ ai|z̄i|2 − L|z̄i|(1 + |z̄1|)− L(1 + |z̄1|)|z̄1| − |A|αt(ω)− β|ȳ| − γ|z̄|

≥ ai
2
|z̄i|2 −

(
L2

2ai
+ L

)
|z̄1|2 − L|z̄i| − L|z̄1| − |A|αt(ω)− β|ȳ| − γ|z̄|
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and

ḡi(ω, t, ȳ, z̄) ≤ ai|z̄i|2 + L|z̄i|(1 + |z̄1|)− γ̄

2
|z̄1|2 + c+ |A|αt(ω) + β|ȳ|+ γ|z̄|

≤
(
ai +

L2

2γ̄

)
|z̄i|2 + L|z̄i|+ c+ |A|αt(ω) + β|ȳ|+ γ|z̄|.

Consequently, we have from Corollary 2.11 that for each ξ ∈ L∞, the system of BSDEs (2.8)

with the generator ḡ defined in (2.23) admits a unique global solution (Ȳ , Z̄) ∈ S∞(Rn) ×

BMO(Rn×d). Finally, by Proposition 2.17 we know that (A−1Ȳ , A−1Z̄) ∈ S∞(Rn)×BMO(Rn×d)

is just the desired unique solution of the system of BSDEs (2.1). The proof is complete.

The following proposition and its corollary partially answer the problem 6.25 of Jackson

[25].

Proposition 2.24. Assume that n = 2 and d = 1. Consider the following generator g

g(z) :=

 g1(z)

g2(z)

 =

 z>A1z + z>k1 + l1

z>A2z + z>k2 + l2

 , z ∈ R2,

where Ai ∈ R2×2, ki ∈ R2 and li ∈ R for i = 1, 2. Assume further that there exist three constants

a, b, ι ∈ R with a 6= 0 such that

aA1 + bA2 = ι

 a

b

 (a, b) =

 a2ι abι

abι b2ι

 (2.25)

and either α11 = 0 and α22 6= 0 or α11α22 < 0 withα11 α12

α12 α22

 :=
1

a2

 1 0

−b a

A2

 1 −b

0 a


Then for each ξ ∈ L∞(R2), BSDE (2.1) admits a unique global solution (Y, Z) ∈ S∞(R2) ×

BMO(R2×1).

Proof. For simplicity, we only prove the case of k1 = k2 = 0 and l1 = l2 = 0. Let

A :=

 a b

0 1

 .

For each z̄ ∈ R2, let

z := A−1z̄ =
1

a

 1 −b

0 a

 z̄.

Then, in view of (2.25), we have

ḡ1(z̄) := ag1(z) + bg2(z) =
1

a2
z̄>

 1 0

−b a

 (aA1 + bA2)

 1 −b

0 a

 z̄ = ι (z1)2
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and

ḡ2(z̄) = g2(z) = z>A2z =
1

a2
z̄>

 1 0

−b a

A2

 1 −b

0 a

 z̄.

According to the conditions of Proposition 2.24 combined with an argument similar to (2.6),

we know that ḡ satisfies assumptions (B2) and (C1b) with θ = 0. Proceeding identically as in

Theorem 2.20, we have the desired assertion.

The following result is a direct consequence of Proposition 2.24

Corollary 2.25. Assume that n = 2 and d = 1. Consider the following generator g

g(z) :=

 g1(z)

g2(z)

 =

 z1(z1 + z2)− α

2
(z1)2

z2(z1 + z2)− β

2
(z2)2

 , z ∈ R2,

where α, β ∈ R∗ are two constants. If 1/α + 1/β = 1, then for each ξ ∈ L∞(R2), BSDE (2.1)

admits a unique global solution (Y,Z) ∈ S∞(R2)× BMO(R2×1).

Proof. In Proposition 2.24, let k1 = k2 = 0, l1 = l2 = 0,

A1 :=

 1− α

2

1

2
1

2
0

 and A2 :=

 0
1

2
1

2
1− β

2

 .

There are two cases: α = 2 and α 6= 2. In the case of α = 2, we have A1 = A2. When

a = 1, b = −1 and ι = 0, we have (2.25), α11 = 0 and α22 = 1, and thus all assumptions of

Proposition 2.24 are satisfied. In the other case of α 6= 2, we take a = 1−α/2 6= 0, b = 1− β/2

and ι = 1. Since α+ β = αβ, we have

a+ b

2
= 1− α+ β

4
= 1− α+ β

2
+
αβ

4
=
(

1− α

2

)(
1− β

2

)
= ab.

It can also be directly verified that all of (2.25), α11 = 0 and α22 6= 0 hold, and then all

assumptions of Proposition 2.24 are satisfied. Thus, the desired assertion follows immediately

from Proposition 2.24.

2.6. Global unbounded solution of multi-dimensional quadratic BSDEs

In this subsection, we will present three existence and uniqueness results on the global un-

bounded solution of multi-dimensional BSDE (2.1). For this, let us first introduce the following

assumption (D2), which is strictly stronger than the previous assumption (B2). In particular,

the generator g satisfying (B2) can have a general growth in the state variable y, while the

generator g satisfying (D2) can only have a linear growth in y.

24



(D2) For i = 1, · · · , n, gi satisfies that dP×dt−a.e., for each (y, ȳ, z, z̄) ∈ Rn×Rn×Rn×d×Rn×d,

|gi(ω, t, y, z)− gi(ω, t, ȳ, z̄)| ≤ γ (vt(ω) + |z|+ |z̄|)
(
|y − ȳ|+

i∑
j=1

|zi − z̄i|
)

+
[
γ
(
vt(ω) + |z|δ + |z̄|δ

)
+ θ (vt(ω) + |z|+ |z̄|)

] n∑
j=i+1

|zj − z̄j |.

The following is the first existence and uniqueness result of this subsection.

Theorem 2.26. Let the generator g satisfy Assumptions (B1), (D2) and (AB) with θ = 0 and

φ(·) ≡ 0, and let

ξ = ξ̄ +

∫ T

0
HsdBs

with ξ̄ ∈ L∞(Rn) and H ∈ BMO(Rn×d). When gi satisfies (ii) in assumption (B1) and violates

(B1) (i) and (iii), and −gi violates (B1) (i), we further assume that H i ≡ 0. If α, |H|2 ∈ L∞,

then BSDE (2.1) admits a unique global solution (Y,Z) on the time interval [0, T ] such that(
Y −

∫ ·
0
HsdBs, Z

)
∈ S∞(Rn)× BMO(Rn×d).

The second existence and uniqueness result requires the following assumption (D1), which

is strictly stronger than the previous assumption (C1a), for g admits a general growth in the

state variable y in (C1a), instead of only a linear growth in y in (D1).

(D1) For each fixed i = 1, · · · , n, either of the following three conditions holds:

(i) f := gi or f := −gi satisfies that dP× dt− a.e., for any (y, z) ∈ Rn × Rn×d,

γ̄

2
|zi|2 − ᾱt(ω)− β|y| −

n∑
j=i+1

(λ̄|zj |1+δ + θ|zj |2)− c̄
i−1∑
j=1

|zj |2 ≤ f(ω, t, y, z)

≤ αt(ω) + β|y|+
∑
j 6=i

(λ|zj |+ θ|zj |2) +
γ

2
|zi|2;

(ii) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ Rn × Rn×d, we have

|gi(ω, t, y, z)| ≤ α̃t(ω) + β|yi|+ |zi|
(
vt(ω) + c

i−1∑
j=1

|zj |
)

+
γ

2
|zi|2;

(iii) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ Rn × Rn×d, we have

|gi(ω, t, y, z)| ≤ ᾱt(ω) + β|yi|+ λ̄|z|+ θ
∑
j 6=i
|zj |2.

The following Theorem 2.27 and Jamneshan et al. [27, Theorem 2.6] do not cover each other,

and so are Theorem 2.27 and Frei [20, Proposition 2.1].
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Theorem 2.27. Let the generator g satisfy assumptions (D1) and (D2) with β = 0, and let

ξ = ξ̄ +

∫ T

0
HsdBs

with ξ̄ ∈ L∞(Rn) and H ∈ BMO(Rn×d). When gi satisfies (ii) in assumption (D1) and vi-

olates (D1) (iii) and (i), and −gi violates (D1) (i), we further assume that H i ≡ 0. If

α ∈ E∞(pγ) for some p > 1, and |H|2 ∈ E∞(2p̄(qγ)2) for some p̄ > 1 with q = p/(p −

1) such that 1/p + 1/q = 1, then there exists a positive constant θ0 > 0 depending only

on (‖ξ̄‖∞, ‖α‖E∞(pγ), ‖ᾱ‖M∞ , ‖α̃‖L∞ , ‖v‖BMO, ‖|H|2‖E∞(2p̄(qγ)2), n, γ, γ̄, λ, λ̄, c, δ, T, p) such that

when θ ∈ [0, θ0], BSDE (2.1) admits a unique global solution (Y,Z) on [0, T ] such that(
Y −

∫ ·
0
HsdBs, Z

)
∈ S∞(Rn)× BMO(Rn×d).

Remark 2.28. By the John-Nirenberg inequality, if ‖H‖BMO ≤ 1/(
√

2p̄qγ), then |H|2 ∈

E∞(2p̄(qγ)2). And, the existence and uniqueness of the solution for the multi-dimensional BSDE

appearing in Theorem 3.1 of Kramkov and Pulido [32] can be derived from Theorem 2.27.

In view of (i) of Remark 2.1, the following corollary follows immediately from Theorem 2.27.

Corollary 2.29. Let the generator g satisfy (D1) and (D2) with β = 0 and θ = 0, and let

ξ = ξ̄ +

∫ T

0
HsdBs

with ξ̄ ∈ L∞(Rn) and H ∈ BMO(Rn×d). When gi satisfies (ii) in assumption (D1) and violates

(D1) (iii) and (i), and −gi violates (D1) (i), we further assume that H i ≡ 0. If α, |H|2 ∈ L∞,

then BSDE (2.1) admits a unique global solution (Y,Z) on the time interval [0, T ] such that(
Y −

∫ ·
0
HsdBs, Z

)
∈ S∞(Rn)× BMO(Rn×d).

Remark 2.30. It can be verified that if the constant c appearing in (ii) of assumption (D1)

vanishes, then the condition of Hi ≡ 0 appearing in Theorem 2.27 and Corollary 2.29 can be

weakened to the condition that both |H i| and |H i|v belongs to L∞.

The following Theorem 2.31 is the last existence and uniqueness result of this subsection.

It can be identically proved as Theorem 2.27 via Theorem 2.14, and the proof is omitted here.

Theorem 2.31. Let the generator g satisfy assumptions (B1) and (D2) with β = θ = c = c̄ = 0

and φ(·) ≡ 0, and

ξ = ξ̄ +

∫ T

0
HsdBs
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with ξ̄ ∈ L∞(Rn) and H ∈ BMO(Rn×d). When gi satisfies (ii) in assumption (B1) and violates

(B1) (iii) and (i), and −gi violates (B1) (i), we further assume that |H i|2, |H i|v ∈ L∞. If

α ∈ E∞(pγ) for some p > 1, and |H|2 ∈ E∞(2p̄(qγ)2) for some p̄ > 1 with q = p/(p − 1) such

that 1/p+ 1/q = 1, then BSDE (2.1) admits a unique global solution (Y,Z) such that(
Y −

∫ ·
0
HsdBs, Z

)
∈ S∞(Rn)× BMO(Rn×d).

3. Local unbounded solution: proof of Theorem 2.3

Let us begin with the following technical lemma which will be used later.

Lemma 3.1. Let r > 0, δ̄ ∈ [0, 1), i ∈ {1, · · · , n}, t̄ ∈ [0, T ] and V, V̄ ∈ BMO[t̄,T ](Rn×d) such

that

2nθ
( i−1∑
j=1

‖V̄ j‖2BMO[t̄,T ]
+ ‖V ‖2BMO[t̄,T ]

)
≤ 1.

(i) Define

ᾰs := α̂s +

i−1∑
j=1

(
λ|V̄ j

s |1+δ̄ + θ|V̄ j
s |2
)

+
n∑

j=i+1

(
λ|V j

s |1+δ̄ + θ|V j
s |2
)
, s ∈ [t̄, T ]. (3.1)

If α̂ ∈ E∞[t̄,T ](pr) for some p > 1, then ᾰ ∈ E∞[t̄,T ](r). And, for each t ∈ [t̄, T ], we have

‖ᾰ‖E∞
[t,T ]

(r) ≤ ‖α̂‖E∞
[t,T ]

(pr) +
ln 2

r
+ Cp,n,r,λ,δ̄

i−1∑
j=1

‖V̄ j‖
2 1+δ̄

1−δ̄
BMO[t,T ]

(T − t)

+Cp,n,r,λ,δ̄

n∑
j=i+1

‖V ‖
2 1+δ̄

1−δ̄
BMO[t,T ]

(T − t),
(3.2)

where

Cp,n,r,λ,δ̄ := λ
1− δ̄

2

(
pnrλ(1 + δ̄)

p− 1

) 1+δ̄
1−δ̄

. (3.3)

Moreover, it is clear that the previous conclusion holds also for p = 1 when λ = 0 and

θ = 0 if we let Cp,n,r,λ,δ̄ := 0 when λ = 0 and p = 1.

(ii) Define

ᾰs := α̂s + c
i−1∑
j=1

|V̄ j
s |2 +

n∑
j=i+1

(
λ̄|V j

s |1+δ̄ + θ|V j
s |2
)
, s ∈ [t̄, T ]. (3.4)

If α̂ ∈M∞[t̄,T ], then ᾰ ∈M∞[t̄,T ]. And, for each t ∈ [t̄, T ],

‖ᾰ‖M∞
[t,T ]
≤ 1 + ‖α̂‖M∞

[t,T ]
+ c

i−1∑
j=1

‖V̄ j‖2BMO[t,T ]
+ nλ̄‖V ‖1+δ̄

BMO[t,T ]
(T − t)

1−δ̄
2 . (3.5)
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(iii) Define

ᾰs := α̂s +

i−1∑
j=1

(
λ̄|V̄ j

s |+ θ|V̄ j
s |2
)

+

n∑
j=i+1

(
λ̄|V j

s |+ θ|V j
s |2
)
, s ∈ [t̄, T ]. (3.6)

If α̂ ∈M∞[t̄,T ], then ᾰ ∈M∞[t̄,T ]. And, for each t ∈ [t̄, T ], we have

‖ᾰ‖M∞
[t,T ]
≤ 1 + ‖α̂‖M∞

[t,T ]
+ λ̄

( i−1∑
j=1

‖V̄ j‖BMO[t,T ]
+

n∑
j=i+1

‖V j‖BMO[t,T ]

)
(T − t)

1
2 . (3.7)

Proof. (i) Since V, V̄ ∈ BMO(Rn×d), it follows from Young’s inequality that for p > 1, λ ≥ 0,

0 ≤ t̄ ≤ t ≤ s ≤ T and j = 1, · · · , n, we have

λ|V j
s |1+δ̄ = λ

((pnrλ(1 + δ̄)

p− 1

) 1+δ̄
1−δ̄ ‖V j‖

2 1+δ̄
1−δ̄

BMO[t,T ]

) 1−δ̄
2

×
( (p− 1)|V j

s |2

pnrλ(1 + δ̄)‖V j‖2BMO[t,T ]

) 1+δ̄
2

≤ p− 1

2pnr‖V j‖2BMO[t,T ]

|V j
s |2 + Cp,n,r,λ,δ̄‖V j‖

2 1+δ̄
1−δ̄

BMO[t,T ]

(3.8)

and

λ|V̄ j
s |1+δ̄ ≤ p− 1

2pnr‖V̄ j‖2BMO[t,T ]

|V̄ j
s |2 + Cp,n,r,λ,δ̄‖V̄ j‖

2 1+δ̄
1−δ̄

BMO[t,T ]
, (3.9)

where the constant Cp,n,r,λ,δ̄ is defined in (3.3). For p > 1, let q := p
p−1 > 1 such that 1

p + 1
q = 1.

By (3.8) and (3.9) we know that for each t ∈ [t̄, T ], ᾰs ≤ α̂s + ᾰ1,t
s + ᾰ2,t

s , s ∈ [t, T ], where

ᾰ1,t
s :=

i−1∑
j=1

1

2qnr‖V̄ j‖2BMO[t,T ]

|V̄ j
s |2 +

n∑
j=i+1

1

2qnr‖V j‖2BMO[t,T ]

|V j
s |2 + θ

( i−1∑
j=1

|V̄ j
s |2 + |Vs|2

)
and

ᾰ2,t
s := Cp,n,r,λ,δ̄

( i−1∑
j=1

‖V̄ j‖
2 1+δ̄

1−δ̄
BMO[t,T ]

+
n∑

j=i+1

‖V j‖
2 1+δ̄

1−δ̄
BMO[t,T ]

)
.

It follows from Hölder’s inequality and the John-Nirenberg inequality that for each t ∈ [t̄, T ]

and τ ∈ T[t,T ],

Eτ
[
exp

(
qr

∫ T

τ
ᾰ1,t
s ds

)]
≤

i−1∏
j=1

(
Eτ
[

exp
( 1

2‖V̄ j‖2BMO[t,T ]

∫ T

τ
|V̄ j
s |2ds

)]) 1
n

×

(
Eτ
[

exp
(
nθ

∫ T

τ

( i−1∑
j=1

|V̄ j
s |2 + |Vs|2

)
ds
)]) 1

n

×
n∏

j=i+1

(
Eτ
[

exp
( 1

2‖V j‖2BMO[t,T ]

∫ T

τ
|V j
s |2ds

)]) 1
n

≤ 2,
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which means that ᾰ1,t ∈ E∞[t,T ](qr) and ‖ᾰ1,t‖E∞
[t,T ]

(qr) ≤ ln 2
qr . On the other hand, it is clear that

∥∥ᾰ2,t
∥∥
L∞

[t,T ]

= Cp,n,r,λ,δ̄

( i−1∑
j=1

‖V̄ j‖
2 1+δ̄

1−δ̄
BMO[t,T ]

+
n∑

j=i+1

‖V j‖
2 1+δ̄

1−δ̄
BMO[t,T ]

)
(T − t), t ∈ [t̄, T ].

It then follows from (iii) of Remark 2.1 that ᾰ ∈ E∞(r) and for each t ∈ [t̄, T ],

‖ᾰ‖E∞
[t,T ]

(r) ≤ ‖α̂‖E∞
[t,T ]

(pr) +
ln 2

qr

+Cp,n,r,λ,δ̄

( i−1∑
j=1

‖V̄ j‖
2 1+δ̄

1−δ̄
BMO[t,T ]

+

n∑
j=i+1

‖V j‖
2 1+δ̄

1−δ̄
BMO[t,T ]

)
(T − t),

from which the desired conclusion (3.2) follows immediately.

(ii) It follows from Hölder’s inequality that for each t ∈ [t̄, T ], j = 1, · · · , n and τ ∈ T[t,T ],

Eτ
[∫ T

τ
|V j
s |1+δ̄ds

]
≤
(
Eτ
[∫ T

τ
|V j
s |2ds

]) 1+δ̄
2

(T − t)
1−δ̄

2 ≤ ‖V j‖1+δ̄
BMO[t,T ]

(T − t)
1−δ̄

2 .

Then, the desired conclusion (3.5) follows from (3.4) and the previous inequality.

(iii) It follows from Hölder’s inequality that for each t ∈ [t̄, T ], j = 1, · · · , n and τ ∈ T[t,T ],

Eτ
[∫ T

τ
|V j
s |ds

]
≤ ‖V j‖BMO[t,T ]

(T − t)
1
2 and Eτ

[∫ T

τ
|V̄ j
s |ds

]
≤ ‖V̄ j‖BMO[t,T ]

(T − t)
1
2 .

Then, the desired conclusion (3.7) follows from (3.6) and the previous inequality.

Now, we can give the proof of Theorem 2.3. Assume first that ξ ∈ L∞(Rn), α ∈ E∞(pγ) for

some real p > 1 and the generator g satisfies assumptions (B1) and (B2). Define

C1 :=
2 + γ̄

γ̄

{
7 +

ln 2

γ
+ 3‖ξ‖∞ + ‖α‖E∞(pγ) + 2 ‖ᾱ‖M∞ + Cp,n,γ,λ,δT + 2c̄

}
+

4(γ + 1)

γ2
exp {2γ (‖ξ‖∞ + ‖α̃‖L∞ + 1)}

(
5 + ‖α̃‖L∞ + 2n‖v‖2BMO + 2nc2

)
+2c0 exp

(
2λ̄2T

) (
73 + ‖ξ‖2∞ + 4‖ᾱ‖2M∞ + nλ̄2T

)
and

C2 :=
2 + γ̄

γ̄
(2Cp,n,γ,λ,δT + 4c̄) +

8nc2(γ + 1)

γ2
exp {4γ (‖ξ‖∞ + ‖α̃‖L∞ + 1)}

+2nc0λ̄
2T exp

(
2λ̄2T

)
,

where the uniform constant c0 > 0 is defined in (i) of Proposition A.3 in Appendix, and

Cp,n,γ,λ,δ := λ
1− δ

2

(pnγλ(1 + δ)

p− 1

) 1+δ
1−δ

+ 1. (3.10)

Furthermore, let C0
1 := 0 and for i = 1, · · · , n, recursively define

Ci1 := Ci−1
1 + C1 + C2

[
Ci−1

1

] 1+δ
1−δ . (3.11)
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Finally, define K := Cn1 and let the constant ε satisfy

0 < ε ≤ min

{
T,

1

[1 + φ(K)]2
,

1

nCp,n,γ,λ,δK
1+δ
1−δ

,

(
1

1 + 2nλ̄K
1+δ

2

) 2
1−δ

,
1

1 + n2λ̄2K

}
. (3.12)

It is clear that all these constants defined above (except ε) depend only on ‖ξ‖∞, ‖α‖E∞(pγ),

‖ᾱ‖M∞ , ‖α̃‖L∞ , ‖v‖BMO, n, γ, γ̄, λ, λ̄, c, δ, T and p, and that ε also depends on φ(·).

In the sequel, for each H ∈ Rn×d, i ∈ {1, · · · , n} and z(1) · · · , z(i) ∈ R1×d, define by

[z(1), · · · , z(i), H i+1, · · · , Hn]

the matrix in Rn×d whose jth row is z(j) for j = 1, · · · , i and Hj for j = i+1, · · · , n with i 6= n.

Given a pair of processes (U, V ) ∈ S∞[T−ε,T ](R
n)× BMO[T−ε,T ](Rn×d) and a real θ satisfying

‖U‖S∞
[T−ε,T ]

+ ‖V ‖2BMO[T−ε,T ]
≤ K and 0 ≤ θ ≤ 1

4nK
. (3.13)

We will first prove that for each i = 1, · · · , n, the following one-dimensional BSDE

Y i
t = ξi +

∫ T

t
f i(s, Zis)ds−

∫ T

t
ZisdBs, t ∈ [T − ε, T ] (3.14)

admits, successively, a unique solution (Y i, Zi) in the space S∞[T−ε,T ](R) × BMO[T−ε,T ](R1×d),

where for each (ω, t, z) ∈ Ω× [T − ε, T ]× R1×d,
f1(ω, t, z) := g1

(
ω, t, Ut(ω), [z, V 2

t (ω), · · · , V n
t (ω)]

)
,

f i(ω, t, z) := gi
(
ω, t, Ut(ω), [Z1

t (ω), · · · , Zi−1
t (ω), z, V i+1

t (ω), · · · , V n
t (ω)]

)
, i = 2, · · · , n.

Moreover, it holds that for each i = 1, · · · , n,

‖Y i‖S∞
[T−ε,T ]

+ ‖Zi‖2BMO[T−ε,T ]
≤ C1 + C2

i−1∑
j=1

‖Zj‖
2 1+δ

1−δ
BMO[T−ε,T ]

, (3.15)

i∑
j=1

(
‖Y j‖S∞

[T−ε,T ]
+ ‖Zj‖2BMO[T−ε,T ]

)
≤ Ci1 ≤ K (3.16)

and

2nθ
( i∑
j=1

‖Zj‖2BMO[T−ε,T ]
+ ‖V ‖2BMO[T−ε,T ]

)
≤ 1. (3.17)

In particular, letting i = n in (3.16) yields that

‖Y ‖S∞
[T−ε,T ]

+ ‖Z‖2BMO[T−ε,T ]
≤ K. (3.18)

For this, let us use an induction argument to prove the following proposition.

Proposition 3.2. We have the following two assertions.
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(a) For i = 1, BSDE (3.14) admits a unique solution (Y 1, Z1) in the space S∞[T−ε,T ](R) ×

BMO[T−ε,T ](R1×d), and inequalities (3.15)-(3.17) hold.

(b) For i = 2, · · · , n, assume that for each l = 1, · · · , i− 1, the following BSDE

Y l
t = ξl +

∫ T

t
f l(s, Z ls)ds−

∫ T

t
Z lsdBs, t ∈ [T − ε, T ] (3.19)

admits, successively, a unique solution (Y l, Z l) in the space S∞[T−ε,T ](R)×BMO[T−ε,T ](R1×d),

and the following inequalities hold:

‖Y l‖S∞
[T−ε,T ]

+ ‖Z l‖2BMO[T−ε,T ]
≤ C1 + C2

l−1∑
j=1

‖Zj‖
2 1+δ

1−δ
BMO[T−ε,T ]

, (3.20)

l∑
j=1

(
‖Y j‖S∞

[T−ε,T ]
+ ‖Zj‖2BMO[T−ε,T ]

)
≤ C l1 ≤ K (3.21)

and

2nθ
( l∑
j=1

‖Zj‖2BMO[T−ε,T ]
+ ‖V ‖2BMO[T−ε,T ]

)
≤ 1. (3.22)

Then, BSDE (3.14) also admits a unique solution (Y i, Zi) ∈ S∞[T−ε,T ](R)×BMO[T−ε,T ](R1×d),

and the inequalities (3.15)-(3.17) also hold.

Proof. We first prove the assertion (b). Assume that for some i ∈ {2, · · · , n} and each l =

1, · · · , i− 1, BSDE (3.19) admits a unique solution (Y l, Z l) ∈ S∞[T−ε,T ](R)×BMO[T−ε,T ](R1×d),

and the inequalities (3.20)-(3.22) hold. Since the generator g satisfies assumption (B2), it follows

from the definition of f i that dP× dt− a.e. on Ω× [T − ε, T ], for each (z, z̄) ∈ R1×d × R1×d,

|f i(t, z)− f i(t, z̄)| ≤ φ(‖U‖S∞
[T−ε,T ]

)
(
vt + 2

i−1∑
j=1

|Zjt |+ 2|Vt|+ |z|+ |z̄|
)
|z − z̄|,

which means that on Ω× [T − ε, T ], f i satisfies assumption (A5) in Appendix with β̄ = 0,

k = φ(‖U‖S∞
[T−ε,T ]

) and v̄ = v + 2
i−1∑
j=1

|Zj |+ 2|V | ∈ BMO[T−ε,T ](R).

And, since g satisfies assumption (B1), in view of (ii) of Remark 2.2, we need only to consider

the following three cases:

(1) gi satisfies (i) of assumption (B1). For this case, it follows from the definition of f i that

dP× dt− a.e. on Ω× [T − ε, T ], for each z ∈ R1×d, we have

γ̄

2
|z|2 − α̇t ≤ f i(t, z) ≤ α̌t +

γ

2
|z|2, (3.23)

where

α̌t := αt + φ(|Ut|) +

i−1∑
j=1

(
λ|Zjt |1+δ + θ|Zjt |2

)
+

n∑
j=i+1

(
λ|V j

t |1+δ + θ|V j
t |2
)
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and

α̇t := ᾱt + φ(|Ut|) + c̄
i−1∑
j=1

|Zjt |2 +
n∑

j=i+1

(
λ̄|V j

t |1+δ + θ|V j
t |2
)
.

Since α ∈ E∞[T−ε,T ](pγ), ᾱ ∈M∞[T−ε,T ] and φ(|U |) ∈ L∞[T−ε,T ], in view of (ii) of Remark 2.1, (3.13)

and (3.22) with l = i− 1, using (i) and (ii) of Lemma 3.1 with r = γ, δ̄ = δ, t̄ = T − ε, V̄ = Z,

ᾰ = α̌ and α̂ = α+ φ(|U |) (resp. ᾰ = α̇ and α̂ = ᾱ+ φ(|U |)) we can deduce that

‖α̌‖E∞
[t,T ]

(γ) ≤ ‖α‖E∞
[t,T ]

(pγ) + φ(K)(T − t) +
ln 2

γ
+ nCp,n,γ,λ,δK

1+δ
1−δ (T − t)

+Cp,n,γ,λ,δT
i−1∑
j=1

‖Zj‖
2 1+δ

1−δ
BMO[t,T ]

< +∞, t ∈ [T − ε, T ]
(3.24)

and

‖α̇‖M∞
[t,T ]

≤ 1 + ‖ᾱ‖M∞
[t,T ]

+ φ(K)(T − t) + nλ̄K
1+δ

2 (T − t)
1−δ

2

+c
i−1∑
j=1

‖Zj‖2BMO[t,T ]
< +∞, t ∈ [T − ε, T ],

(3.25)

where the constant Cp,n,γ,λ,δ is defined in (3.10). Combining (3.23), (3.24) and (3.25) yields

that on Ω× [T − ε, T ], the generator f i satisfies assumption (A1) in Appendix with β̄ = 0 and

ϕ(·) ≡ 0. Since f i also satisfies assumption (A5), it follows from Proposition A.1 that BSDE

(3.14) admits a unique solution (Y i, Zi) ∈ S∞[T−ε,T ](R)×BMO[T−ε,T ](R1×d). Moreover, we have

‖Y i‖S∞
[t,T ]

+ ‖Zi‖2BMO[t,T ]
≤ 2 + γ̄

γ̄

{
2 +

ln 2

γ
+ 3‖ξi‖∞ + ‖α‖E∞

[t,T ]
(pγ) + 2 ‖ᾱ‖M∞

[t,T ]

+3φ(K)(T − t) + (Cp,n,γ,λ,δT + 2c̄)
i−1∑
j=1

(
‖Zj‖

2 1+δ
1−δ

BMO[t,T ]
+ ‖Zj‖2BMO[t,T ]

)
+nCp,n,γ,λ,δK

1+δ
1−δ (T − t) + 2nλ̄K

1+δ
2 (T − t)

1−δ
2

}
, t ∈ [T − ε, T ].

(3.26)

Then, it follows from (3.26) and (3.12) together with the definitions of C1 and C2 that the

desired inequality (3.15) holds. Moreover, in view of the following inequality

a
1+δ
1−δ + b

1+δ
1−δ ≤ (a+ b)

1+δ
1−δ , ∀ a, b ≥ 0,

combining (3.15) and (3.21) with l = i− 1 as well as (3.11) we can derive that inequality (3.16)

also holds. Finally, the desired inequality (3.17) follows from (3.13) and (3.16). Consequently,

the assertion (b) is proved in this case.

(2) gi satisfies (ii) of assumption (B1). For this case, it follows from the definition of f i that

dP× dt− a.e. on Ω× [T − ε, T ], for each z ∈ R1×d, we have

|f i(t, z)| ≤ α̈t + ūt|z|+
γ

2
|z|2,

32



where

α̈ := α̃+ φ(|U |) ∈ L∞[T−ε,T ] and ū := c
i−1∑
j=1

|Zj |+ φ(|U |) + v ∈ BMO[T−ε,T ](R).

This means that on Ω× [T − ε, T ], the generator f i satisfies assumption (A3) in Appendix with

β̄ = 0 and ϕ(·) ≡ 0. Since f i also satisfies assumption (A5), it follows from Proposition A.2 in

Appendix that BSDE (3.14) has a unique solution (Y i, Zi) ∈ S∞[T−ε,T ](R)×BMO[T−ε,T ](R1×d).

Moreover, in view of (3.13) and (3.12), we have for each t ∈ [T − ε, T ],

‖Y i‖S∞
[t,T ]

+ ‖Zi‖2BMO[t,T ]
≤ 4(γ + 1)

γ2
exp

{
4γ
(
‖ξi‖∞ + ‖α̃‖L∞

[t,T ]
+ 1
)}

×
(

5 + ‖α̃‖L∞
[t,T ]

+ 2n‖v‖2BMO[t,T ]
+ 2nc2

i−1∑
j=1

‖Zj‖2BMO[t,T ]

)
.

(3.27)

Then, it follows from (3.27) together with the definitions of constants C1 and C2 that the desired

inequality (3.15) holds. And, in the same way as in (1) we can deduce that (3.16) and (3.17)

also hold. Thus, the assertion (b) is proved in this case.

(3) gi satisfies (iii) of assumption (B1). For this case, it follows from the definition of f i

that dP× dt− a.e. on Ω× [T − ε, T ], for each z ∈ R1×d, we have

|f i(t, z)| ≤ ᾰt + λ̄|z|, (3.28)

where

ᾰt := ᾱt + φ(|Ut|) +

i−1∑
j=1

(
λ̄|Zjt |+ θ|Zjt |2

)
+

n∑
j=i+1

(
λ̄|V j

t |+ θ|V j
t |2
)
.

Since ᾱ ∈M∞[T−ε,T ] and φ(|U |) ∈ L∞[T−ε,T ], in view of (3.13) and (3.22) with l = i−1, using (iii)

of Lemma 3.1 with t̄ = T − ε, V̄ = Z and α̂ = ᾱ+φ(|U |) we can deduce that, in view of (3.12),

‖ᾰ‖M∞
[t,T ]

≤ 1 + ‖ᾱ‖M∞
[t,T ]

+ φ(K)(T − t) + nλ̄K
1
2 (T − t)

1
2 + λ̄

√
T
i−1∑
j=1

‖Zj‖BMO[t,T ]

≤ 3 + ‖ᾱ‖M∞
[t,T ]

+ λ̄
√
T
i−1∑
j=1

‖Zj‖BMO[t,T ]
< +∞, t ∈ [T − ε, T ].

(3.29)

Combining (3.28) and (3.29) yields that on Ω× [T − ε, T ], the generator f i satisfies assumption

(A4) in Appendix with α̇ = ᾰ, β̄ = 0 and ϕ(·) ≡ 0. Since f i also satisfies assumption (A5), it

follows from Proposition A.3 in Appendix that BSDE (3.14) admits a unique solution (Y i, Zi)

in the space S∞[T−ε,T ](R)× BMO[T−ε,T ](R1×d). Moreover, we have for each t ∈ [T − ε, T ],

‖Y i‖S∞
[t,T ]

+
∥∥Zi∥∥2

BMO[t,T ]
≤ 2c0 exp

(
2λ̄2T

) (
73 + ‖ξi‖2∞ + 4‖ᾱ‖2M∞

[t,T ]

)
+2nc0λ̄

2T exp
(
2λ̄2T

) i−1∑
j=1

‖Zj‖2BMO[t,T ]
,

(3.30)
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where the uniform constant c0 > 0 is defined in (i) of Proposition A.3. Then, it follows from

(3.30) together with the definitions of C1 and C2 that the desired inequality (3.15) holds. And,

in the same way as in (1) we can deduce that (3.16) and (3.17) hold. Thus, the assertion (b) is

also proved in this case.

Next, we prove the assertion (a). Indeed, in view of (3.13), by applying the above argument

to i = 1 we can deduce that for i = 1, BSDE (3.14) admits a unique solution (Y 1, Z1) in the

space S∞[T−ε,T ](R)×BMO[T−ε,T ](R1×d) and (3.15) holds. In addition, in the case of i = 1, (3.16)

is just (3.15), and (3.17) is trivially satisfied by (3.13). Thus, the assertion (a) is also true, and

the proof of Proposition 3.2 is then complete.

Now, for each real ε > 0 satisfying (3.12), define the following complete metric space

Bε :=
{

(U, V ) ∈ S∞[T−ε,T ](R
n)× BMO[T−ε,T ](Rn×d) : ‖U‖S∞

[T−ε,T ]
+ ‖V ‖2BMO[T−ε,T ]

≤ K
}
,

which is a closed convex subset in the Banach space S∞(Rn)× BMO(Rn×d) with the norm

‖(U, V )‖Bε :=
√
‖U‖2S∞

[T−ε,T ]
+ ‖V ‖2BMO[T−ε,T ]

, ∀ (U, V ) ∈ Bε.

Based on Proposition 3.2, we know that those assertions from (3.14) to (3.18) are all true. Thus,

in the case of 0 ≤ θ ≤ 1/4nK we can define the following map from Bε to itself:

Γ : (U, V ) ∈ Bε 7→ Γ(U, V ) := (Y,Z) ∈ Bε,

where for each i = 1, · · · , n, (Y i, Zi) (the ith component of Y and the ith row of Z) is the

unique solution of BSDE (3.14) in the space S∞[T−ε,T ](R)× BMO[T−ε,T ](R1×d).

It remains to show that there exists a real ε0 > 0 satisfying (3.12) and a real θ0 ∈ (0, 1/4nK]

(both depending only on ‖ξ‖∞, ‖α‖E∞(pγ), ‖ᾱ‖M∞ , ‖α̃‖L∞ , ‖v‖BMO, n, γ, γ̄, λ, λ̄, c, δ, T, p and

φ(·)) such that in the case of θ ∈ [0, θ0], Γ is a contraction in Bε0 .

In the sequel, let 0 ≤ θ ≤ 1/4nK. For any fixed ε satisfying (3.12) as well as (U, V ) ∈ Bε

and (Ũ , Ṽ ) ∈ Bε, we set

(Y,Z) := Γ(U, V ), (Ỹ , Z̃) := Γ(Ũ , Ṽ ).

That is, for i = 1, · · · , n and t ∈ [T − ε, T ], we have

Y i
t = ξi +

∫ T

t
gi(s, Us, Vs(Zs, Z

i
s; i))ds−

∫ T

t
ZisdBs

and

Ỹ i
t = ξi +

∫ T

t
gi(s, Ũs, Ṽs(Z̃s, Z̃

i
s; i))ds−

∫ T

t
Z̃isdBs.
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Here and hereafter, for each i = 1, · · · , n, w ∈ R1×d and H, H̄ ∈ Rn×d, we denote by H(H̄, w; i)

the matrix in Rn×d whose ith row is w, and whose jth row is H̄j for j = 1, · · · , i− 1 with i 6= 1

and Hj for j = i+ 1, · · · , n with i 6= n. Then, for each i = 1, · · · , n and τ ∈ T[T−ε,T ], we have

Y i
τ − Ỹ i

τ +

∫ T

τ

(
Zis − Z̃is

)
dBs

−
∫ T

τ

(
gi(s, Us, Vs(Zs, Z

i
s; i))− gi(s, Us, Vs(Zs, Z̃is; i))

)
︸ ︷︷ ︸

:=∆1,i
s

ds

=

∫ T

τ

(
gi(s, Us, Vs(Zs, Z̃

i
s; i))− gi(s, Ũs, Ṽs(Z̃s, Z̃is; i))

)
︸ ︷︷ ︸

:=∆2,i
s

ds.

(3.31)

It follows from assumption (B2) that for each s ∈ [T − ε, T ] and each i = 1, · · · , n, we have

|∆1,i
s | ≤ φ(|Us|)

(
vs + 2|Vs|+ 2|Zs|+ |Z̃s|

)
|Zis − Z̃is| (3.32)

and

|∆2,i
s | ≤ φ(|Us| ∨ |Ũs|)

[
ṽs|Us − Ũs|+ v̂s

i−1∑
j=1

|Zjs − Z̃js |+
√
n(v̆s + θv̂s)|Vs − Ṽs|

]
(3.33)

with

ṽs := vs + 3|Vs|1+δ + 2|Ṽs|1+δ + 3|Zs|1+δ + 5|Z̃s|1+δ, (3.34)

v̂s := vs + |Vs|+ |Ṽs|+ |Zs|+ 2|Z̃s| (3.35)

and

v̆s := vs + |Vs|δ + |Ṽs|δ + |Zs|δ + 2|Z̃s|δ. (3.36)

For i = 1, · · · , n, define Gs(i) :≡ 0, s ∈ [0, T − ε) and

Gs(i) =:

(
Zis − Z̃is

)>
|Zis − Z̃is|2

1|Zis−Z̃is|6=0
∆1,i
s , s ∈ [T − ε, T ].

By (3.32) we know that for each i = 1, · · · , n and s ∈ [T − ε, T ],

∆1,i
s =

(
Zis − Z̃is

)
Gs(i) and |Gs(i)| ≤ φ(|Us|)

(
vs + 2|Vs|+ 2|Zs|+ |Z̃s|

)
. (3.37)

Then for each i = 1, · · · , n, B̃t(i) := Bt−
∫ t

0 Gs(i)ds is a Brownian motion under the probability

measure Pi defined by

dPi

dP
:= exp

{∫ T

0
Gs(i)dBs −

1

2

∫ T

0
|Gs(i)|2ds

}
,

and from the definition of Bε, there exists a constant K̄ > 0 such that

‖[G(i)]>‖2BMO[T−ε,T ]
≤ K̄ := 4[φ(K)]2

(
‖v‖2BMO + 9K

)
.
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Furthermore, it follows from Theorem 3.3 in Kazamaki [29] that there exist constants 0 < L1 ≤ 1

and L2 ≥ 1 depending only on K̄ such that for any M ∈ BMO(Rn×d) or M ∈ BMO(R1×d), we

have, for each i = 1, · · · , n,

L1‖M‖BMO[T−ε,T ]
≤ ‖M‖BMO[T−ε,T ](Pi) ≤ L2‖M‖BMO[T−ε,T ]

, (3.38)

where

‖M‖BMO[T−ε,T ](Pi) := sup
τ∈T[T−ε,T ]

∥∥∥∥Eiτ [∫ T

τ
|Zs|2ds

]∥∥∥∥
1
2

∞

and Eiτ denotes the conditional expectation with respect to Fτ under the measure Pi.

It follows from (3.31) and (3.37) that

Y i
τ − Ỹ i

τ +

∫ T

τ

(
Zis − Z̃is

)
dB̃s(i) =

∫ T

τ
∆2,i
s ds, i = 1, · · · , n, τ ∈ T[T−ε,T ].

Taking square and then the conditional mathematical expectation under Pi on both sides of the

last equation, in view of (3.33) and the definition of Bε together with Hölder’s inequality we

can deduce that for each i = 1, · · · , n and τ ∈ T[T−ε,T ],

|Y i
τ − Ỹ i

τ |2 + Eiτ
[∫ T

τ

∣∣∣Zis − Z̃is∣∣∣2 ds

]
≤ 3[φ(K)]2Eiτ

[(∫ T

τ
ṽsds

)2
]
‖U − Ũ‖2S∞

[T−ε,T ]

+3[φ(K)]2

{
Eiτ

[(∫ T

τ
|v̂s|2ds

)2
]} 1

2 i−1∑
j=1

{
Eiτ

[(∫ T

τ
|Zjs − Z̃js |2ds

)2
]} 1

2

+3n[φ(K)]2

{
Eiτ

[(∫ T

τ
|v̆s + θv̂s|2ds

)2
]} 1

2
{
Eiτ

[(∫ T

τ
|Vs − Ṽs|2ds

)2
]} 1

2

.

(3.39)

It follows from the energy inequality for BMO martingales (see for example Section 2.1 in

Kazamaki [29]) together with (3.38) that for each i = 1, · · · , n and τ ∈ T[T−ε,T ],

i−1∑
j=1

{
Eiτ

[(∫ T

τ
|Zjs − Z̃js |2ds

)2
]} 1

2

≤ 5

i−1∑
j=1

‖Zj − Z̃j‖2BMO[T−ε,T ](Pi)

≤ 5L2
2

i−1∑
j=1

‖Zj − Z̃j‖2BMO[T−ε,T ]

and {
Eiτ

[(∫ T

τ
|Vs − Ṽs|2ds

)2
]} 1

2

≤ 5‖V − Ṽ ‖2BMO[T−ε,T ](Pi) ≤ 5L2
2‖V − Ṽ ‖2BMO[T−ε,T ]

.

Furthermore, in view of (3.34)-(3.36), using Hölder’s inequality and the energy inequality for

BMO martingales together with (3.38) and the definition of Bε we can derive, see the argument

in pages 1078-1079 of Hu and Tang [24] for details, that for each i = 1, · · · , n and τ ∈ T[T−ε,T ],

Eiτ

[(∫ T

τ
ṽsds

)2
]
≤ 5εL2

2‖v‖2BMO + 235ε1−δ (1 + 5L4
2K

2
)
,
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{
Eiτ

[(∫ T

τ
|v̂s|2ds

)2
]} 1

2

≤ 25L2
2

(
‖v‖2BMO + 7K

)
,

and {
Eiτ

[(∫ T

τ
|v̆s + θv̂s|2ds

)2
]} 1

2

≤ 50θ2L2
2

(
‖v‖2BMO + 7K

)
+ 5
√
εL2

2‖v‖2BMO + 5ε1−δ (4 + 35L2
2K
)
.

(3.40)

Combining those inequalities from (3.38) to (3.40) yields that for each i = 1, · · · , n,

‖Y i − Ỹ i‖2S∞
[T−ε,T ]

+ L2
1‖Zi − Z̃i‖2BMO[T−ε,T ]

≤ C3ε
1−δ

2

(
‖U − Ũ‖2S∞

[T−ε,T ]
+ ‖V − Ṽ ‖2BMO[T−ε,T ]

)
+ 2nθ2C4‖V − Ṽ ‖2BMO[T−ε,T ]

+C4

i−1∑
j=1

‖Zj − Z̃j‖2BMO[T−ε,T ]
,

and then,

‖Y i − Ỹ i‖2S∞
[T−ε,T ]

+ ‖Zi − Z̃i‖2BMO[T−ε,T ]

≤ C3ε
1−δ

2 + 2nC4θ
2

L2
1

(
‖U − Ũ‖2S∞

[T−ε,T ]
+ ‖V − Ṽ ‖2BMO[T−ε,T ]

)
+
C4

L2
1

i−1∑
j=1

‖Zj − Z̃j‖2BMO[T−ε,T ]
,

(3.41)

where

C3 := 15L2
2[φ(K)]2

{
5T

1+δ
2 L2

2‖v‖2BMO + 235T
1−δ

2
(
1 + 5L4

2K
2
)

+5nT
δ
2L2

2‖v‖2BMO + 5nT
1−δ

2
(
4 + 35L2

2K
)}

and

C4 := 375L4
2[φ(K)]2

{
‖v‖2BMO + 7K

}
.

Next, in view of (3.41), by induction for i we can deduce that for each i = 1, · · · , n,

i−1∑
j=1

‖Y i − Ỹ i‖2S∞
[T−ε,T ]

+

i−1∑
j=1

‖Zi − Z̃i‖2BMO[T−ε,T ]

≤ C3ε
1−δ

2 + 2nC4θ
2

L2
1

Ci5

(
‖U − Ũ‖2S∞

[T−ε,T ]
+ ‖V − Ṽ ‖2BMO[T−ε,T ]

)
,

where

Ci5 := i

[
1 +

C4

L2
1

+ · · ·+
(
C4

L2
1

)i−2
]

+

(
C4

L2
1

)i−1

.

In particular, letting i = n in the last equation yields that

∥∥∥(Y − Ỹ , Z − Z̃)∥∥∥2

Bε
≤ C3ε

1−δ
2 + 2nC4θ

2

L2
1

Cn5

∥∥∥(U − Ũ , V − Ṽ )∥∥∥2

Bε
.
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Consequently, there exist two very small positive numbers ε0 and θ0 such that for each θ ∈ [0, θ0],

the solution map Γ is a contraction on the previously given set Bε0 .

Finally, we remark that in view of (i) of Lemma 3.1, all above arguments remain valid for

p = 1 when λ = θ = 0. The proof of Theorem 2.3 is then completed.

4. Global bounded solution: proof of Theorems 2.10 and 2.14

To prove the existence of global bounded solution, we need to establish some uniform esti-

mates of the solution.

4.1. Proof of Theorem 2.10

In order to prove Theorem 2.10, we need to the following proposition.

Proposition 4.1. Let ξ ∈ L∞(Rn), α ∈ E∞(pγ exp(βT )) for some p > 1 and the generator g

satisfy assumption (C1a). Assume that for some h ∈ (0, T ], BSDE (2.1) has a solution (Y,Z) ∈

S∞[T−h,T ](R
n) × BMO[T−h,T ](Rn×d) on the time interval [T − h, T ]. Then, there exists a K̃ >

0 depending only on (‖ξ‖∞, ‖α‖E∞(pγ exp(βT )), ‖ᾱ‖M∞ , ‖α̃‖L∞ , ‖v‖BMO, n, β, γ, γ̄, λ, λ̄, c, δ, T, p)

and being independent of h such that for θ ∈ [0, 1/(4nK̃)], we have

‖Y ‖S∞
[T−h,T ]

+ ‖Z‖2BMO[T−h,T ]
≤ K̃.

Moreover, the above conclusion holds still for p = 1 when λ = 0 and θ0 = 0.

Proof. We only prove the case of p > 1. The other case can be proved in the same way.

First of all, define an increasing non-negative real-valued function Φ : [0,+∞) → [0,+∞)

as follows:

Φ(x) :=
2(1 + βT ) + γ̄

γ̄
exp (2βT )

[
2 + 2nλ̄T

1−δ
2 +

ln 2

γ
+ ‖α‖E∞(pγ exp(βT )) + 2 ‖ᾱ‖M∞ + 3x

]
+

4(γ + 1)

γ2
exp {2γ exp(βT ) (‖ξ‖∞ + ‖α̃‖L∞)}

[
2 + βT exp(βT ) (‖ξ‖∞ + ‖α̃‖L∞)

+‖α̃‖L∞ + n‖v‖2BMO[t,T ]

]
+ 2c0 exp

(
2βT + 2λ̄2T

) (
7 + 6‖ᾱ‖2M∞ + x2

)
,

and define the following four constants:

C̄1 := Φ(‖ξ‖∞), C̄2 :=
6β(1 + βT ) + 3βγ̄

γ̄
exp (2βT ) ,

C̄3 :=
2(1 + βT ) + γ̄

γ̄
exp (2βT )

(
Cp,n,β,γ,λ,T + 2nλ̄

)
+ 12nc0λ̄

2T exp
(
2λ̄2T

)
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and

C̄4 :=
4c̄(1 + βT ) + 2cγ̄

γ̄
exp (2βT ) +

4nc2(γ + 1)

γ2
exp {2γ exp(βT ) (‖ξ‖∞ + ‖α̃‖L∞)} ,

where the uniform constant c0 > 0 is defined in (i) of Proposition A.3 in Appendix, and

Cp,n,β,γ,λ,T :=
nγ(pλ)2

2(p− 1)
exp(βT ). (4.1)

Note that (Y,Z) ∈ S∞[T−h,T ] × BMO[T−h,T ] is a solution of BSDE (2.2) on [T − h, T ]. Then

for each i = 1, · · · , n, (Y,Z) also solves the following BSDE:

Y i
t = ξi +

∫ T

t
f i(s, Y i

s , Z
i
s)ds−

∫ T

t
ZisdBs, t ∈ [T − h, T ], (4.2)

where for each (ω, t, y, z) ∈ Ω× [T − h, T ]× R× R1×d,

f i(t, y, z) := gi(t, Yt(y; i), Zt(z; i)). (4.3)

In the sequel, let the constant θ always satisfy

4nθ‖Z‖2BMO[T−h,T ]
≤ 1. (4.4)

We will first prove that for each i = 1, · · · , n and each t ∈ [T − h, T ], if T − t ≤ 1, then

‖Y i‖S∞
[T−t,T ]

+ ‖Zi‖2BMO[T−t,T ]

≤ C̄1 + C̄2‖Y ‖S∞
[T−t,T ]

(T − t) + C̄3‖Z‖2BMO[T−t,T ]
(T − t)

1−δ
2 + C̄4

i−1∑
j=1

‖Zj‖2BMO[T−t,T ]
.

(4.5)

Indeed, for any fixed i = 1, · · · , n, since g satisfies assumption (C1a), in view of (ii) of Re-

mark 2.9, we need to consider the following three cases.

(1) gi satisfies (i) of assumption (C1a). In this case, it follows from (4.3) that dP× dt− a.e.

on Ω× [T − h, T ], for each (y, z) ∈ R× R1×d, we have

f i(t, y, z) 1y>0 ≤ α̌t + β|y|+ γ

2
|z|2 and f i(t, y, z) ≥ γ̄

2
|z|2 − α̇t − β|y|, (4.6)

where

α̌t := αt + β|Yt|+
∑
j 6=i

(
λ|Zjt |+ θ|Zjt |2

)
and

α̇t := ᾱt + β|Yt|+ c̄
i−1∑
j=1

|Zjt |2 +
n∑

j=i+1

(
λ̄|Zjt |1+δ + θ|Zjt |2

)
.

Since α ∈ E∞[T−h,T ](pγ exp(βT )), ᾱ ∈M∞[T−h,T ] and |Y | ∈ L∞[T−h,T ], in view of (ii) of Remark 2.1

as well as (4.4), applying (i) of Lemma 3.1 with

r = pγ exp(βT ), δ̄ = 0, t̄ = T − h, V = V̄ = Z, ᾰ = α̌ and α̂ = α+ β|Y |
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and (ii) of Lemma 3.1 with

δ̄ = δ, t̄ = T − h, V = V̄ = Z, ᾰ = α̇ and α̂ = ᾱ+ β|Y |

we can deduce that

‖α̌‖E∞
[t,T ]

(γ exp(βT )) ≤ ‖α‖E∞
[t,T ]

(pγ exp(βT )) + β‖Y ‖S∞
[t,T ]

(T − t) +
ln 2

γ exp(βT )

+Cp,n,β,γ,λ,T ‖Z‖2BMO[t,T ]
(T − t) < +∞, t ∈ [T − h, T ]

(4.7)

and

‖α̇‖M∞
[t,T ]

≤ 1 + ‖ᾱ‖M∞
[t,T ]

+ β‖Y ‖S∞
[t,T ]

(T − t) + nλ̄‖Z‖1+δ
BMO[t,T ]

(T − t)
1−δ

2

+c̄
i−1∑
j=1

‖Zj‖2BMO[t,T ]
< +∞, t ∈ [T − h, T ],

(4.8)

where the constant Cp,n,β,γ,λ,T is defined in (4.1). Combining (4.6), (4.7) and (4.8) yields that

on Ω × [T − h, T ], the generator f i satisfies the second inequality for the case of y > 0 and

the first inequality in assumption (A1) with β̄ = β and ϕ(·) ≡ 0. It then follows from (i) of

Proposition A.1 that for each t ∈ [T − h, T ] such that T − t ≤ 1, we have

‖Y i‖S∞
[t,T ]

+ ‖Zi‖2BMO[t,T ]
≤ 2(1 + βT ) + γ̄

γ̄
exp (2βT )

{
2 + 2nλ̄T

1−δ
2 +

ln 2

γ

+3‖ξi‖∞ + ‖α‖E∞(pγ exp(βT )) + 2 ‖ᾱ‖M∞ + 3β‖Y ‖S∞
[t,T ]

(T − t)

+
(
Cp,n,β,γ,λ,T + 2nλ̄

)
‖Z‖2BMO[t,T ]

(T − t)
1−δ

2 + 2c̄
i−1∑
j=1

‖Zj‖2BMO[t,T ]

}
.

(4.9)

Then, it follows from (4.9) together with the definitions of constants C̄1, C̄2, C̄3 and C̄4 that

the desired inequality (4.5) holds in this case.

(2) gi satisfies (ii) of assumption (C1a). For this case, it follows from (4.3) that dP×dt−a.e.

on Ω× [T − h, T ], for each (y, z) ∈ R× R1×d, we have

f i(t, y, z)sgn(y) ≤ α̃t + β|y|+ ūt|z|+
γ

2
|z|2,

where

ū := c
i−1∑
j=1

|Zj |+ v ∈ BMO[T−h,T ](R).

This means that on Ω× [T − h, T ], the generator f i satisfies the first inequality for the case of

y < 0 and the second inequality for the case of y > 0 in (A3) with α̈ = α̃ and β̄ = β. It then

follows from (i) of Proposition A.2 that for each t ∈ [T − h, T ],
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‖Y i‖S∞
[t,T ]

+ ‖Zi‖2BMO[t,T ]
≤ 4(γ + 1)

γ2
exp

{
2γ exp(βT )

(
‖ξi‖∞ + ‖α̃‖L∞

)} (
2 + ‖α̃‖L∞

+βT exp(βT )
(
‖ξi‖∞ + ‖α̃‖L∞

)
+ n‖v‖2BMO[t,T ]

+ nc2
i−1∑
j=1

‖Zj‖2BMO[t,T ]

)
.

(4.10)

Then, it follows from (4.10) together with the definitions of constants C̄1, C̄2, C̄3 and C̄4 that

the desired inequality (4.5) holds in this case.

(3) gi satisfies (iii) of assumption (C1a). For this case, it follows from (4.3) that dP×dt−a.e.

on Ω× [T − h, T ], for each (y, z) ∈ R× R1×d, we have

f i(t, y, z) sgn(y) ≤ ᾰt + β|y|+ λ̄|z|, (4.11)

where

ᾰt := ᾱt +
∑
j 6=i

(
λ̄|Zjt |+ θ|Zjt |2

)
.

In view of (4.4), using (iii) of Lemma 3.1 with δ̄ = δ, t̄ = T − h, V = V̄ = Z and α̂ = ᾱ we can

deduce that

‖ᾰ‖M∞
[t,T ]
≤ 1 + ‖ᾱ‖M∞

[t,T ]
+ λ̄
√
n‖Z‖BMO[t,T ]

(T − t)
1
2 < +∞, t ∈ [T − h, T ]. (4.12)

Combining (4.11) and (4.12) yields that on Ω × [T − h, T ], the generator f i satisfies the first

inequality for the case of y < 0 and the second inequality for the case of y > 0 in assumption (A4)

with α̇ = ᾰ and β̄ = β. It then follows from (i) of Proposition A.3 that for each t ∈ [T − h, T ],

‖Y i‖S∞
[t,T ]

+
∥∥Zi∥∥2

BMO[t,T ]
≤ 2c0 exp

(
2βT + 2λ̄2T

) (
7 + ‖ξi‖2∞ + 6‖ᾱ‖2M∞

)
+12nc0λ̄

2T exp
(
2λ̄2T

)
‖Z‖2BMO[t,T ]

(T − t).
(4.13)

Then, it follows from (4.13) together with the definitions of constants C̄1, C̄2, C̄3 and C̄4 that

the desired inequality (4.5) holds in this case.

Furthermore, in view of (4.5), by induction for i it is not difficult to derive that for each

i = 2, · · · , n and each t ∈ [T − h, T ], if T − t ≤ 1, then

i∑
j=1

(
‖Y j‖S∞

[t,T ]
+ ‖Zj‖2BMO[t,T ]

)
≤
(
C̄1 + C̄2‖Y ‖S∞

[T−t,T ]
(T − t) + C̄3‖Z‖2BMO[T−t,T ]

(T − t)
1−δ

2

)
C̄i5,

(4.14)

where

C̄i5 := i
(

1 + C̄4 + · · ·+
(
C̄4

)i−2
)

+
(
C̄4

)i−1
. (4.15)

In particular, letting i = n in (4.14) yields that for each t ∈ [T − h, T ], if T − t ≤ 1, then

‖Y ‖S∞
[t,T ]

+ ‖Z‖2BMO[t,T ]
≤ C̄1C̄

n
5 + C̄2C̄

n
5 ‖Y ‖S∞[T−t,T ]

(T − t)

+C̄3C̄
n
5 ‖Z‖2BMO[T−t,T ]

(T − t)
1−δ

2 .
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Then, we have

‖Y ‖S∞
[T−ε,T ]

+ ‖Z‖2BMO[T−ε,T ]
≤ 2C̄1C̄

n
5 , (4.16)

where

ε := min

{
h, 1,

1

2C̄2C̄n5
,
( 1

2C̄3C̄n5

) 2
1−δ

}
> 0.

Finally, for m ≥ 1, we define successively the following constants:

C̄1
1 := 2C̄1C̄

n
5 and C̄m+1

1 := C̄m1 + 2Φ(C̄m1 )C̄n5 , (4.17)

where C̄n5 is defined in (4.15). And, we let m0 be the unique positive integer satisfying T − h ∈

[T −m0ε, T − (m0 − 1)ε), or equivalently,

h

ε
≤ m0 <

h

ε
+ 1. (4.18)

If m0 = 1, it then follows from (4.16) and (4.17) that

‖Y ‖S∞
[T−h,T ]

+ ‖Z‖2BMO[T−h,T ]
≤ C̄1

1 = C̄m0
1 .

If m0 = 2, it then follows from (4.16) and (4.17) that

‖YT−ε‖∞ ≤ ‖Y ‖S∞
[T−ε,T ]

≤ C̄1
1 . (4.19)

Now, consider the following system of BSDEs

Yt = YT−ε +

∫ T−ε

t
g(s, Ys, Zs)ds−

∫ T−ε

t
ZsdBs, t ∈ [T − h, T − ε].

In view of (4.19) and the definition of the function Φ(·), by virtue of Propositions A.1 to A.3

we can use a similar argument as that obtaining (4.5) to get that for each i = 1, · · · , n,

‖Y i‖S∞
[T−h,T−ε]

+ ‖Zi‖2BMO[T−h,T−ε]

≤ Φ(C̄1
1 ) + C̄2‖Y ‖S∞

[T−h,T−ε]
ε+ C̄3‖Z‖2BMO[T−h,T−ε]

ε
1−δ

2 + C̄4

i−1∑
j=1

‖Zj‖2BMO[T−h,T−ε]
.

And, in view of the definition of ε, by induction and a similar argument as that from (4.14) to

(4.16) we can further get that

‖Y ‖S∞
[T−h,T−ε]

+ ‖Z‖2BMO[T−h,T−ε]
≤ 2Φ(C̄1

1 )C̄n5 .

Combining the last inequality and (4.16) yields that, in view of (4.17),

‖Y ‖S∞
[T−h,T ]

+ ‖Z‖2BMO[T−h,T ]
≤ C̄1

1 + 2Φ(C̄1
1 )C̄n5 = C̄2

1 = C̄m0
1 ,

Proceeding the above computation gives that if m0 satisfies (4.18), then

‖Y ‖S∞
[T−h,T ]

+ ‖Z‖2BMO[T−h,T ]
≤ C̄m0

1 = C̄
dhε e
1 =: K̃, (4.20)
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where C̄m0
1 is defined in (4.17), and dxe stands for the minimum of integers which is equel to

or bigger than x ∈ R. Then, the desired conclusion follows from (4.4) and (4.20). The proof is

complete.

Proof of Theorem 2.10. With Theorem 2.3 and Proposition 4.1 in hands, we can closely follow

the proof of Theorem 4.1 in Cheridito and Nam [9] to prove our Theorem 2.10. All the details

are omitted here.

4.2. Proof of Theorem 2.14

To prove Theorem 2.14, we need to the following proposition.

Proposition 4.2. Let ξ ∈ L∞(Rn), α, ᾱ, α̃ ∈ L∞ and the generator g satisfy assumption

(C1b). Assume that for some h ∈ (0, T ], BSDE (2.1) has a solution (Y,Z) ∈ S∞[T−h,T ](R
n) ×

BMO[T−h,T ](Rn×d) on the time interval [T − h, T ]. Then, there exists a K̃ > 0 depending only

on (‖ξ‖∞, ‖α‖L∞ , ‖ᾱ‖L∞ , ‖α̃‖L∞ , ‖v‖BMO, n, β, γ, γ̄, λ, λ̄, δ, T ) and being independent of h such

that

‖Y ‖S∞
[T−h,T ]

≤ K̃.

Proof. Let ξ ∈ L∞(Rn) and α, ᾱ, α̃ ∈ L∞ such that

‖ξ‖∞ ≤ C1 and

∥∥∥∥∫ T

0
(αt + ᾱt + α̃t)dt

∥∥∥∥
∞
≤ C2 (4.21)

for two positive constants C1 and C2. Denote respectively by n1, n2 and n3 the number of

elements in J1, J2 and J3 such that n1 +n2 +n3 = n. Since the generator g satisfies assumption

(C1b), in view of (i) of Remark 2.13, we need to consider the following three cases.

(1) For i ∈ J1, gi satisfies (i) of assumption (C1b). In this case, for each t ∈ [T − h, T ], we

have, with λ̃ := λ+ λ̄ and α̂t(ω) := αt(ω) + ᾱt(ω),

gi (ω, t, Yt(ω), Zt(ω)) sgn(Y i
t (ω)) ≤ α̂t(ω) + β|Yt(ω)|+ λ̃

∑
j∈J1

|Zjt (ω)|1+δ +
γ

2
|Zit(ω)|2

and

gi (ω, t, Yt(ω), Zt(ω)) ≥ γ̄

2
|Zit(ω)|2 − α̂t(ω)− β|Yt(ω)| − λ̃

∑
j∈J1

|Zjt (ω)|1+δ.

Note that (Y i, Zi) ∈ S∞[T−h,T ](R)×BMO[T−h,T ](R1×d) is a solution of BSDE (2.2) on [T −h, T ].

According to Lemma A.2 in Fan et al. [17] and in view of the last two inequalities together with

(4.21), we can get that for each i ∈ J1 and t ∈ [T − h, T ],

exp
(
γ|Y i

t |
)
≤ exp

(
γ(C1 + C2) + βγ

∫ T

t
‖Y ‖S∞

[s,T ]
ds
)

×Et
[

exp
(
γλ̃
∑
j∈J1

∫ T

t
|Zjs |1+δds

)] (4.22)
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and

Et
[
exp

(
γ̄

2
ε0

∫ T

t
|Zis|2ds

)]
≤ Et

[
exp

(
6ε0‖Y i‖S∞

[t,T ]
+ 3ε0

∥∥∥∥∫ T

0
α̂tds

∥∥∥∥
∞

+3ε0β

∫ T

t
|Ys|ds+ 3ε0λ̃

∑
j∈J1

∫ T

t
|Zs|1+δds

)]
≤ exp

(
6ε0

∑
j∈J1

‖Y j‖S∞
[t,T ]

+ 3ε0C2 + 3ε0β

∫ T

t
‖Y ‖S∞

[s,T ]
ds
)

×Et
[

exp
(

3ε0λ̃
∑
j∈J1

∫ T

t
|Zjs |1+δds

)]
,

(4.23)

where

ε0 :=
γ̄

9

∧ γ

24
> 0.

Furthermore, in view of (4.23), by Hölder’s inequality we obtain that for t ∈ [T − h, T ],

Et
[

exp
( γ̄ε0

2n1

∑
j∈J1

∫ T

t
|Zjs |2ds

)]
≤ exp

(
6ε0

∑
j∈J1

‖Y j‖S∞
[t,T ]

+ 3ε0C2 + 3ε0β

∫ T

t
‖Y ‖S∞

[s,T ]
ds
)

×Et
[

exp
(

3ε0λ̃
∑
j∈J1

∫ T

t
|Zjs |1+δds

)]
.

(4.24)

By Young’s inequality, observe that for each pair of a, b > 0,

ab1+δ =
((1 + δ

2

) 1+δ
1−δ

a
2

1−δ
) 1−δ

2
( 2

1 + δ
b2
) 1+δ

2 ≤ b2 +
1− δ

2

(1 + δ

2

) 1+δ
1−δ

a
2

1−δ . (4.25)

Letting a = 12n1λ̃/γ̄ and b = |Zs| in (4.25), we have for each j ∈ J1,

3ε0λ̃|Zjs |1+δ =
γ̄ε0

4n1

(12n1λ̃

γ̄
|Zjs |1+δ

)
≤ γ̄ε0

4n1
|Zjs |2 + C3, s ∈ [0, T ], (4.26)

with

C3 :=
γ̄ε0(1− δ)

8n1

(1 + δ

2

) 1+δ
1−δ
(12n1λ̃

γ̄

) 2
1−δ

.

Coming back to (4.24), by (4.26) and Hölder’s inequality we derive that for t ∈ [T − h, T ],

Et
[

exp
( γ̄ε0

2n1

∑
j∈J1

∫ T

t
|Zjs |2ds

)]
≤ exp

(
12ε0

∑
j∈J1

‖Y j‖S∞
[t,T ]

+ 6ε0C2 + 2C3T + 6ε0β

∫ T

t
‖Y ‖S∞

[s,T ]
ds
)
.

(4.27)

On the other hand, it follows from (4.22) and Jensen’s inequality that

exp
(
γ
∑
j∈J1

|Y j
t |
)
≤ exp

(
n1γ(C1 + C2) + n1γβ

∫ T

t
‖Y ‖S∞

[s,T ]
ds

)
×Et

[
exp

(
n1γλ̃

∑
j∈J1

∫ T

t
|Zjs |1+δds

)]
, t ∈ [T − h, T ].

(4.28)
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By letting a = 2n2
1γλ̃/γ̄ε0 and b = |Zs| in (4.25), we have for each j ∈ J1,

n1γλ̃|Zjs |1+δ =
γ̄ε0

2n1

(
2n2

1γλ̃

γ̄ε0
|Zs|1+δ

)
≤ γ̄ε0

2n1
|Zjs |2 + C4, s ∈ [0, T ], (4.29)

where

C4 :=
γ̄ε0(1− δ)

4n1

(
1 + δ

2

) 1+δ
1−δ
(

2n2
1λ̃γ

γ̄ε0

) 2
1−δ

.

Combining (4.27)-(4.29) yields that for each t ∈ [T − h, T ],∑
j∈J1

|Y j
t | ≤ n1(C1 + C2) +

C4T

γ
+

6ε0C2 + 2C3T

γ
+

12ε0

γ

∑
j∈J1

‖Y j‖S∞
[t,T ]

+β
(
n1 +

6ε0

γ

)∫ T

t
‖Y ‖S∞

[s,T ]
ds.

And, it follows from the definition of ε0 that∑
j∈J1

‖Y j‖S∞
[t,T ]
≤ C5 + 2β

(
n1 +

1

4

)∫ T

t
‖Y ‖S∞

[s,T ]
ds, t ∈ [T − h, T ], (4.30)

where

C5 := 2n1(C1 + C2) +
2C4T

γ
+

12ε0C2 + 4C3T

γ
.

By taking square in both sides of (4.30) and using Hölder’s inequality, we can conclude that for

each t ∈ [T − h, T ],∑
j∈J1

‖Y j‖2S∞
[t,T ]
≤
(∑
j∈J1

‖Y j‖S∞
[t,T ]

)2
≤ 2C2

5 + 8β2T (n1 + 1)2
∫ T

t
‖Y ‖2S∞

[s,T ]
ds. (4.31)

(2) For i ∈ J2, gi satisfies (ii) of assumption (C1b). In this case, for each t ∈ [T − h, T ], we

have

gi (ω, t, Yt(ω), Zt(ω)) sgn(Y i
t (ω)) ≤ α̃t(ω) + β|Yt(ω)|+ v̄t(ω)|Zit(ω)|+ γ

2
|Zit(ω)|2

with

v̄t(ω) := vt(ω) + φ(|Yt(ω)|) + c

i−1∑
j=1

|Zjt (ω)| ∈ BMO[T−h,T ](R).

Note that (Y i, Zi) ∈ S∞[T−h,T ](R)×BMO[T−h,T ](R1×d) is a solution of BSDE (2.2) on [T −h, T ].

In view of the last inequality, by using Itô-Tanaka’s formula and Girsanov’s transform, a similar

argument to that from (A.11) to (A.12) yields that for each j ∈ J2 and t ∈ [T − h, h],

|Y i
t | ≤ ‖ξi‖∞ + ‖α̃‖L∞ + β

∫ T

t
‖Y ‖S∞

[s,T ]
ds,

and then, in view of (5.2),∑
j∈J2

‖Y j‖S∞
[t,T ]
≤ n2(C1 + C2) + n2β

∫ T

t
‖Y ‖S∞

[s,T ]
ds.
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By taking square in both sides of the last inequality and using Hölder’s inequality, we can

conclude that for each t ∈ [T − h, T ],∑
j∈J2

‖Y j‖2S∞
[t,T ]
≤
(∑
j∈J2

‖Y j‖S∞
[t,T ]

)2
≤ 2n2

2(C1 + C2)2 + 2Tn2
2β

2

∫ T

t
‖Y ‖2S∞

[s,T ]
ds. (4.32)

(3) For i ∈ J3, gi satisfies (iii) of assumption (C1b). In this case, for each t ∈ [T − h, T ], we

have

gi (ω, t, Yt(ω), Zt(ω)) sgn(Y i
t (ω)) ≤ ᾱt(ω) + β|Yt(ω)|+ λ̄

∑
j∈J3

|Zjt (ω)|,

and then, in view of inequality 2ab ≤ 2εa2 + 1
2εb

2 for each a, b ≥ 0 and ε > 0,

2
∑
j∈J3

Y j
t (ω)gj (ω, t, Yt(ω), Zt(ω))

≤ 2
∑
j∈J3

|Y j
t (ω)|

(
ᾱt(ω) + β|Yt(ω)|+ λ̄

∑
j∈J3

|Zjt (ω)|
)

≤
∑
j∈J3

[
2ᾱt(ω)|Y j

t (ω)|+ 2β|Yt(ω)|2 +
∑
j∈J3

(
2n3λ̄

2|Y j
t (ω)|2 +

1

2n3
|Zjt (ω)|2

)]
≤ 2ᾱt(ω)

∑
j∈J3

|Y j
t (ω)|+ 2n3

(
β + n3λ̄

2
)
|Yt(ω)|2 +

1

2

∑
j∈J3

|Zjt (ω)|2.

Note that for each i ∈ J3, (Y i, Zi) ∈ S∞[T−h,T ](R)× BMO[T−h,T ](R1×d) is a adapted solution of

BSDE (2.2) on [T − h, T ]. In view of the last inequality together with (4.21), applying Itô’s

formula to
∑

j∈J3
|Y j
s |2 yields that for each t ∈ [T − h, h],

∑
j∈J3

|Y j
t |2 +

1

2
Et
[ ∫ T

t

∑
j∈J3

|Zjs(ω)|2ds
]

≤ Et
[∑
j∈J3

|ξj |2
]

+ Et
[ ∫ T

t

(
2ᾱs

∑
j∈J3

|Y j
s |+ 2n3

(
β + n3λ̄

2
)
|Ys|2

)
ds
]

≤ C1 + 2C2

∑
j∈J3

‖Y j‖S∞
[t,T ]

+ 2n3

(
β + n3λ̄

2
) ∫ T

t
‖Y ‖2S∞

[s,T ]
ds,

and then ∑
j∈J3

‖Y j‖S∞
[t,T ]
≤ 2C1 + 4C2

2 + 4n3

(
β + n3λ̄

2
) ∫ T

t
‖Y ‖2S∞

[s,T ]
ds. (4.33)

Finally, adding (4.31), (4.32) and (4.33) up together yields that

‖Y ‖2S∞
[t,T ]
≤ C6 + C7

∫ T

t
‖Y ‖2S∞

[s,T ]
ds, t ∈ [T − h, T ]

with C6 := 2C2
5 + 2n2

2(C1 + C2)2 + 2C1 + 4C2
2 and

C7 := 8β2T (n1 + 1)2 + 2Tn2
2β

2 + 4n3

(
β + n3λ̄

2
)
.

It then follows from Gronwall’s inequality that

‖Y ‖2S∞
[t,T ]
≤ C6 exp(C7(T − t)) ≤ C6 exp(C7T ) =: K̃, t ∈ [T − h, T ],
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which yields the desired conclusion. The proof is complete.

Proof of Theorem 2.14. With Theorem 2.3 and Proposition 4.2 in hands, we can closely follow

the proof of Theorem 4.1 in Cheridito and Nam [9] to prove our Theorem 2.10. All the details

are omitted here.

5. Global unbounded solution: proof of Theorems 2.26 and 2.27

5.1. Proof of Theorem 2.26

Proof of Theorem 2.26. Define

ḡ(t, y, z) := g
(
t, y +

∫ t

0
HsdBs, z +Ht

)
, (ω, t, y, z) ∈ Ω× [0, T ]× Rn × Rn×d. (5.1)

Consider the following multi-dimensional BSDE

Ȳt = ξ̄ +

∫ T

t
ḡ(s, Ȳs, Z̄s)ds−

∫ T

t
Z̄sdBs, t ∈ [0, T ], (5.2)

or, equivalently,

Ȳ i
t = ξ̄i +

∫ T

t
ḡi(s, Ȳs, Z̄s)ds−

∫ T

t
Z̄isdBs, t ∈ [0, T ], i = 1, · · · , n. (5.3)

It is not difficult to check that BSDE (5.2) (or BSDE (5.3)) admits a unique global solution

(Ȳ , Z̄) ∈ S∞(Rn) × BMO(Rn×d) if and only if BSDE (2.1) (or BSDE (2.2)) admits a unique

global solution (Y,Z) := (Ȳ +
∫ ·

0 HsdBs, Z̄ +H) on the time interval [0, T ] such that(
Y −

∫ ·
0
HsdBs, Z

)
∈ S∞(Rn)× BMO(Rn×d).

Consequently, in view of Corollary 2.7, for completing the proof of Theorem 2.26 it suffices

to prove that the generator ḡ defined in (5.1) also satisfies assumptions (B1), (D2) and (AB)

with θ = 0. In view of assumptions of the generator g and parameters (α, ᾱ, α̃,H), it is

straightforward to verify the above assertion. The proof is then complete.

5.2. Proof of Theorem 2.27

Proof of Theorem 2.27. By an identical argument as in the proof of Theorem 2.26, we can

conclude that in view of Theorem 2.10, for completing the proof of Theorem 2.27 it suffices to

prove that the generator ḡ defined in (5.1) also satisfies assumptions (D1) and (D2) with β = 0

and some other appropriate parameters when the constant θ is smaller than a given constant

θ̄0 depending only on p, p̄ and γ. Clearly, ḡ satisfies (D2) since g satisfies it.
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In the sequel, we will prove that the generator ḡ also satisfies assumption (D1) with β = 0

and some other appropriate parameters under the given conditions. Assume that α ∈ E∞(pγ)

for some real p > 1, and |H|2 ∈ E∞(2p̄(qγ)2) for some p̄ > 1 with q = p/(p − 1) such that

1/p+ 1/q = 1. Define the following constants:

ε :=
p− 1

p+ 1
, p̂ :=

(p+ 3)p̄+ p− 1

2(p+ 2p̄− 1)
> 1, p̃ :=

p+ 1

2p̂
> 1 and q̃ :=

p+ 1

p− 2p̂+ 1
> 1.

It is clear that 1/p̃+ 1/q̃ = 1. Note that g satisfies assumption (D1) with β = 0. By a similar

argument to (iv) of Remark 2.2, in assumption (D1) we can without loss of generality assume

that f = gi satisfies either of conditions (D1)(i), (D1)(ii) and (D1)(iii) with β = 0 for all

i = 1, · · · , n. Thus, for i = 1, · · · , n, we need to consider the following three cases.

(1) gi satisfies (D1)(i) with β = 0. For this case, it follows from the definition of ḡ that

dP× dt− a.e., for each (y, z) ∈ Rn × Rn×d, we have

ḡi(ω, t, y, z) ≤ αt(ω) +
∑
j 6=i

(
λ|zj +Hj

t (ω)|+ θ|zj +Hj
t (ω)|2

)
+
γ

2
|zi +H i

t(ω)|2

and

ḡi(ω, t, y, z) ≥ γ̄

2
|zi +H i

t(ω)|2 − ᾱt(ω)−
n∑

j=i+1

(
λ̄|zj +Hj

t (ω)|1+δ + θ|zj +Hj
t (ω)|2

)
−c̄

i−1∑
j=1

|zj +Hj
t (ω)|2.

Note that for each a, b ≥ 0, it holds that

(a+ b)2 ≤ 2a2 + 2b2, (a+ b)1+δ ≤ 2a1+δ + 2b1+δ,

(a+ b)2 ≤ (1 + ε)a2 +

(
1 +

1

ε

)
b2 and (a+ b)2 ≥ 1

2
a2 − b2.

We know that dP× dt− a.e., for each (y, z) ∈ Rn × Rn×d,

γ̄

4
|zi|2 − α̂t(ω)−

n∑
j=i+1

(
2λ̄|zj |1+δ + 2θ|zj |2

)
− 2c̄

i−1∑
j=1

|zj |2 ≤ ḡi(ω, t, y, z)

≤ ᾰt(ω) +
∑
j 6=i

(
λ|zj |+ 2θ|zj |2

)
+
γ(1 + ε)

2
|zi|2

(5.4)

with

ᾰt(ω) := αt(ω) +
∑
j 6=i

(
λ|Hj

t (ω)|+ 2θ|Hj
t (ω)|2

)
+
γ(1 + ε)

2ε
|H i

t(ω)|2

and

α̂t(ω) := ᾱt(ω) + 2c̄

i−1∑
j=1

|Hj
t (ω)|2 +

γ̄

2
|H i

t(ω)|2 +

n∑
j=i+1

(
2λ̄|Hj

t (ω)|1+δ + 2θ|Hj
t (ω)|2

)
.
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By virtue of ᾱ ∈M∞ and H ∈ BMO(Rn×d) together with the fact that

α̂ ≤ 2nλ̄+ ᾱ+
(

2c̄+
γ̄

2
+ 2nλ̄+ 2θ

)
|H|2,

we can deduce that

α̂ ∈M∞. (5.5)

On the other hand, from the definitions of constants q, p̂, p̃, q̃, ε and ᾰ it is not difficult to verify

that pγ = p̃p̂γ(1 + ε) and that there exists two very small positive constants ε̄ and θ̄0 such that

ᾰ ≤ α+
nλ2

4ε̄
+ (ε̄+ 2θ + qγ)|H|2 and (ε̄+ 2θ̄0 + qγ)q̃p̂γ(1 + ε) = 2p̄(qγ)2.

Then, it follows from the integrability condition of α and |H|2 that α ∈ E∞(p̃p̂γ(1 + ε)) and

(ε̄ + 2θ + qγ)|H|2 ∈ E∞(q̃p̂γ(1 + ε)) for each θ ∈ [0, θ̄0]. Note that 1/p̃ + 1/q̃ = 1. By (iii) of

Remark 2.1 we know that for each θ ∈ [0, θ̄0],

ᾰ ∈ E∞(p̂γ(1 + ε)). (5.6)

Combining (5.4), (5.5) and (5.6) yields that the generator ḡi satisfies (i) of assumption (D1)

with parameters (ᾰ, α̂, 0, γ(1 + ε), γ̄/2, 2c, λ, 2λ̄, 2θ) instead of (α, ᾱ, β, γ, γ̄, c, λ, λ̄, θ).

(2) gi satisfies (D1)(ii) with β = 0, but does not satisfy (i) or (iii) in assumption (D1). Note

that we have H i ≡ 0 in this case. It follows from the definition of ḡ that dP×dt−a.e., for each

(y, z) ∈ Rn × Rn×d, we have

|ḡi(ω, t, y, z)| ≤ α̃t(ω) + |zi|
(
v̄t(ω) + c

i−1∑
j=1

|zj |
)

+
γ

2
|zi|2

with

v̄t(ω) := vt(ω) + c

i−1∑
j=1

|Hj
t (ω)| ≤ vt(ω) +

√
nc|Ht(ω)|.

And, it follows from v ∈ BMO(R) and H ∈ BMO(Rn×d) that v̄ ∈ BMO(R), which means that

ḡi satisfies (ii) of assumption (D1) with parameters (α̃, 0, v̄, c, γ) instead of (α̃, β, v, c, γ).

(3) gi satisfies (D1)(iv) with β = 0. In this case, it follows from the definition of ḡ that

dP× dt− a.e., for each (y, z) ∈ Rn × Rn×d, we have

|gi(ω, t, y, z)| ≤ α̌t(ω) + λ̄|z|+ 2θ
∑
j 6=i
|zj |2

with

α̌t(ω) := ᾱt(ω) + λ̄|Ht(ω)|+ 2θ
∑
j 6=i
|Hj

t (ω)|2 ≤ ᾱt(ω) + λ̄|Ht(ω)|+ 2θ|Ht(ω)|2.

And, it follows from ᾱ ∈ M∞ and H ∈ BMO(Rn×d) that α̌ ∈ M∞, which means that ḡi

satisfies (iv) of assumption (D1) with parameters (α̌, 0, λ̄, 2θ) instead of (ᾱ, β, λ̄, θ).

All in all, we have proved the desired conclusion. Theorem 2.27 is then proved.
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Appendix A. Several auxiliary results on the bounded solution of one-dimensional

BSDEs with unbounded coefficients

We collect here some general results concerning the uniform estimate of (bounded) solution

to scalar-valued BSDEs. We give some brief proofs for completeness. Let the real-valued

function f(ω, t, y, z) : Ω × [0, T ] × R × R1×d → R be (Ft)-progressively measurable for each

(y, z) ∈ R× R1×d, and consider the following one-dimensional BSDE:

Yt = η +

∫ T

t
f(s, Ys, Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T ], (A.1)

where η ∈ L∞(R), and the solution (Y,Z) is a pair of (Ft)-progressively measurable processes

with values in R× R1×d such that Y ∈ S∞(R).

Assume that β̄, δ̄ ≥ 0 are two given constants, ϕ(·) : [0,+∞)→ [0,+∞) is a nondecreasing

continuous function, and α̌ ∈ E∞(γ exp(β̄T )), α̇ ∈M∞, α̈ ∈ L∞, ū ∈ BMO(R), v̄ ∈ BMO(R)

are five real-valued non-negative progressively measurable processes.

We introduce the following assumptions on the generator f :

(A1) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ R× R1×d, we have

γ̄

2
|z|2 − α̇t(ω)− β̄|y| ≤ f(ω, t, y, z) ≤ α̌t(ω) +

[
β̄|y|1y>0 + ϕ(|y|) 1y<0

]
+
γ

2
|z|2.

(A2) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ R× R1×d, we have

γ̄

2
|z|2 − α̇t(ω)− β̄|y| ≤ −f(ω, t,−y,−z) ≤ α̌t(ω) +

[
β̄|y|1y>0 + ϕ(|y|) 1y<0

]
+
γ

2
|z|2.

(A3) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ R× R1×d, we have

−
[
β̄|y|1y<0 + ϕ(|y|) 1y>0

]
− h(ω, t, z) ≤ f(ω, t, y, z)

≤
[
β̄|y|1y>0 + ϕ(|y|) 1y<0

]
+ h(ω, t, z)

with

h(ω, t, z) := α̈t(ω) + ūt(ω)|z|+ γ

2
|z|2.

(A4) Almost everywhere in Ω× [0, T ], for any (y, z) ∈ R× R1×d, we have

−α̇t(ω)−
[
β̄|y|1y<0 + ϕ(|y|) 1y>0

]
− λ̄|z| ≤ f(ω, t, y, z)

≤ α̇t(ω) +
[
β̄|y|1y>0 + ϕ(|y|) 1y<0

]
+ λ̄|z|.

(A5) Almost everywhere in Ω × [0, T ], for any (y, ȳ, z, z̄) ∈ R × R × R1×d × R1×d, we have for

some k > 0,

|f(ω, t, y, z)− f(ω, t, ȳ, z̄)| ≤ β̄|y − ȳ|+ k (v̄t(ω) + |z|+ |z̄|) |z − z̄|.
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Proposition A.1. Assume that the generator f satisfies assumption (A1) (resp. (A2)).

(i) For any solution (Y,Z) of BSDE (A.1) such that Y ∈ S∞(R), we have Z ∈ BMO(R1×d)

and for each t ∈ [0, T ],

‖Y ‖S∞
[t,T ]

+ ‖Z‖2BMO[t,T ]

≤ 2(1 + β̄T ) + γ̄

γ̄
exp(2β̄T )

(
3‖η‖∞ + ‖α̌‖E∞

[t,T ]
(γ exp(β̄T )) + 2 ‖α̇‖M∞

[t,T ]

)
.

(A.2)

And, if the generator f only satisfies the second inequality for the case of y > 0 and the

first inequality in (A1) (resp. (A2)), the above conclusion (A.2) still holds.

(ii) BSDE (A.1) admits a minimal (resp. maximal) solution (Y, Z) such that Y ∈ S∞(R) in

the sense that for any solution (Ȳ , Z̄) of BSDE (A.1) such that Ȳ ∈ S∞(R), we have for

each t ∈ [0, T ], P− a.s., Yt ≤ Ȳt (resp. Yt ≥ Ȳt). Moreover, Z ∈ BMO(R1×d).

(iii) If the generator f further satisfies assumption (A5), then BSDE (A.1) admits a unique

solution (Y,Z) such that Y ∈ S∞(R). Moreover, Z ∈ BMO(R1×d).

Proof. We only give the proof when the generator f satisfies assumption (A1). The other case

can be proved in the same way.

(i) Let (Y,Z) be a solution of BSDE (A.1) such that Y ∈ S∞(R). For each integer m ≥ 1

and each stopping time τ ∈ T[0,T ], define the following stopping time

στm := T ∧ inf

{
s ∈ [τ, T ] :

∫ s

τ
|Zs|2ds ≥ m

}
with convention inf ∅ =∞. It follows from the first inequality in assumption (A1) that for each

m ≥ 1 and each t ∈ [0, T ],

γ̄

2
Eτ
[∫ στm

τ
|Zs|2ds

]
≤ |Yτ |+ Eτ

[
|Yστm |+

∫ στm

τ

(
α̇s + β̄|Ys|

)
ds

]
, τ ∈ T[t,T ].

Sending m→ +∞ in previous inequality and using Fatou’s lemma yields that for each t ∈ [0, T ],

γ̄

2
Eτ
[∫ T

τ
|Zs|2ds

]
≤ ‖η‖∞ + ‖α̇‖M∞

[t,T ]
+ (1 + β̄T )‖Y ‖S∞

[t,T ]
, τ ∈ T[t,T ],

which means that Z ∈ BMO(R1×d), and for each t ∈ [0, T ],

γ̄

2
‖Z‖2BMO[t,T ]

≤ ‖η‖∞ + ‖α̇‖M∞
[t,T ]

+ (1 + β̄T )‖Y ‖S∞
[t,T ]

. (A.3)

Furthermore, define the function

u(t, x) := exp

(
γ exp(β̄t)x+ γ

∫ t

0
exp(β̄s)α̌sds

)
, (t, x) ∈ [0, T ]× R.
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In view of the second inequality for the case of y > 0 in assumption (A1), by applying Itô-

Tanaka’s formula to u(s, Y +
s ) we can deduce that for each m ≥ 1 and t ∈ [0, T ],

exp(γY +
t ) ≤ Et

[
exp

(
γ exp(β̄T )η+ + γ exp(β̄T )

∫ T

t
α̌sds

)]
,

≤ exp
(
γ exp(β̄T )‖η‖∞

)
exp

(
γ exp(β̄T )‖α̌‖E∞

[t,T ]
(γ exp(β̄T ))

)
and then,

Y +
t ≤ exp(β̄T )

(
‖η‖∞ + ‖α̌‖E∞

[t,T ]
(γ exp(β̄T ))

)
. (A.4)

On the other hand, from the first inequality in assumption (A1) we can also get that for each

m ≥ 1 and t ∈ [0, T ],

Y −t = (−Yt)+ ≤ Et
[
η− +

∫ T

t

(
α̇s + β̄|Ys|

)
ds

]
,

which together with (A.4) yields that for each t ∈ [0, T ],

|Yt| ≤ exp(β̄T )
(
‖η‖∞ + ‖α̌‖E∞

[t,T ]
(γ exp(β̄T ))

)
+ ‖η‖∞ + ‖α̇‖M∞

[t,T ]
+ β̄Et

[∫ T

t
|Ys|ds

]
.

And, it follows from Gronwall’s inequality that

‖Y ‖S∞
[t,T ]
≤ exp(2β̄T )

(
2‖η‖∞ + ‖α̌‖E∞

[t,T ]
(γ exp(β̄T )) + ‖α̇‖M∞

[t,T ]

)
, t ∈ [0, T ]. (A.5)

Finally, the desired conclusion (A.2) follows from (A.5) and (A.3) immediately.

(ii) In view of assumption (A1), it is easy to verify that for each integer m ≥ 1, the following

function

fm(ω, t, y, z) := inf
{
f(ω, t, ȳ, z̄) + (m+ β̄)|y − ȳ|+m|z − z̄| : (ȳ, z̄) ∈ R× R1×d} ,

(ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d

is well defined and an (Ft)-progressively measurable process for each (y, z). It is also not difficult

to prove that fm is uniformly Lipschitz continuous in the state variables (y, z) and also satisfies

assumption (A1) with the same parameters for each m ≥ 1, and that the sequence {fm}∞m=1

converges increasingly uniformly on compact sets to the generator f as m tends to +∞. Then,

dP× dt− a.e., for each (y, z) ∈ R× R1×d and m ≥ 1, we have

|fm(ω, t, y, z)| ≤ α̌t(ω) + α̇t(ω) + ϕ(|y|) + β̄|y|+ γ

2
|z|2, (A.6)

and then

|fm(ω, t, 0, 0)| ≤ α̌t(ω) + α̇t(ω) + ϕ(0), (A.7)

which means that

E

[(∫ T

0
|fm(s, 0, 0)|ds

)2
]
< +∞.
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Consequently, by the classical results (see for example Theorems 3 and 2 in Fan et al. [18]) we

know that for each m ≥ 1, the following BSDE

Y m
t = η +

∫ T

t
fm(s, Y m

s , Zms )ds−
∫ T

t
Zms dBs, t ∈ [0, T ]

admits a unique solution (Y m, Zm) ∈ S2(R) × H2(R1×d), and Y m converges increasing point-

wisely to a process Y . Moreover, by the classical a priori estimate on the L2 solution (see

for example Proposition 3.2 in Briand et al. [5]) we know that there exists a uniform constant

c0 > 0 such that for each m ≥ 1 and t ∈ [0, T ],

Et

[
sup
s∈[t,T ]

|Y m
s |2

]
≤ c0 exp

(
2(m+ β̄)T + 2m2T

)
Et

[
|η|2 +

(∫ T

t
|fm(s, 0, 0)|ds

)2
]
,

which together with (A.7) and the facts that η ∈ L∞(R), α̌ ∈ E∞(γ) and α̇ ∈ M∞ yields that

Y m ∈ S∞(R) for each m ≥ 1, and then Zm ∈ BMO(R1×d) by (i).

In the sequel, it follows from (i) that there exists a uniform constant A > 0 which is

independent of m such that dP× dt− a.e., we have supm≥1 |Y m
t (ω)| ≤ A and, in view of (A.6),

∀ (y, z) ∈ [−A,A]× R1×d, |fm(ω, t, y, z)| ≤ α̌t(ω) + α̇t(ω) + ϕ(A) + β̄A+
γ

2
|z|2.

Thus, we can apply the monotonic stability result Proposition 3.1 in Luo and Fan [34] to obtain

the existence of a process Z ∈ H2(R1×d) such that Y ∈ S∞(R) and (Y,Z) is a solution of BSDE

(A.1). And, it follows from (i) that Z ∈ BMO(R1×d).

It remains to show that (Y, Z) is the minimal solution. For this, let (Ȳ , Z̄) be any solution

of BSDE (A.1) such that Ȳ ∈ S∞(R). By (i) again we know that Z̄ ∈ BMO(R1×d). This means

that (Ȳ , Z̄) ∈ S2(R) × H2(R1×d). Then, since fm is uniformly Lipschitz continuous in (y, z)

and fm ≤ f for each m ≥ 1, it follows from the classical comparison theorem on the L2-solution

that for each m ≥ 1 and t ∈ [0, T ], P − a.s., Y m
t ≤ Ȳt, and letting m → ∞ yields that Y ≤ Ȳ ,

which is the desired conclusion.

(iii) Let the generator f further satisfy assumption (A5), and (Y,Z) and (Ȳ , Z̄) be the

solution of BSDE (A.1) such that Y ∈ S∞(R) and Ȳ ∈ S∞(R). First of all, from (i) we know

that Z ∈ BMO(R1×d) and Z̄ ∈ BMO(R1×d). Furthermore, define Ŷ := Y − Ȳ and Ẑ := Z − Z̄.

By virtue of Itô-Tanaka’s formula and (A5) we can deduce that for each t ∈ [0, T ],

|Ŷt| ≤
∫ T

t

(
β̄|Ŷs|+ k(v̄s + |Zs|+ |Z̄s|)|Ẑs|

)
ds−

∫ T

t
sgn(Ŷs)ẐsdBs

≤ β̄

∫ T

t
|Ŷs|ds−

∫ T

t
sgn(Ŷs)Ẑs

[
dBs − ksgn(Ŷs)(v̄s + |Zs|+ |Z̄s|)

Ẑ>s

|Ẑs|
1|Ẑs|6=0ds

]
.

(A.8)
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Since all of processes v̄, Z, Z̄ belong to BMO(R1×d), it is easy to verify that the process

Mt := k

∫ t

0
sgn(Ŷs)(v̄s + |Zs|+ |Z̄s|)

Ẑs

|Ẑs|
1|Ẑs|6=0dBs, t ∈ [0, T ]

is a BMO martingale. Define

dP̃
dP

:= exp

{
MT −

1

2
〈M〉T

}
and

B̃t := Bt − k
∫ t

0
sgn(Ŷs)(v̄s + |Zs|+ |Z̄s|)

Ẑ>s

|Ẑs|
1|Ẑs|6=0ds, t ∈ [0, T ].

Then, P̃ is a new probability, and B̃ is a Brownian motion with respect to P̃. Then, taking the

obvious conditional mathematical expectation with respect to P̃ in (A.8) and utilizing Gronwall’s

inequality yields that |Ŷt| = 0 for each t ∈ [0, T ], which is the desired conclusion.

Proposition A.2. Assume that the generator f satisfies assumption (A3).

(i) For any solution (Y,Z) of BSDE (A.1) such that Y ∈ S∞(R), we have Z ∈ BMO(R1×d)

and for each 0 ≤ t ≤ r ≤ T , it holds that

‖Y ‖S∞
[t,T ]

+ ‖Z‖2BMO[t,r]
≤ 4(γ + 1)

γ2
exp

{
4γ exp(β̄T )

(
‖η‖∞ + ‖α̈‖L∞

[t,T ]

)}
×
(

2 + β̄T exp(β̄T )
(
‖η‖∞ + ‖α̈‖L∞

[t,T ]

)
+ ‖α̈‖L∞

[t,T ]
+ ‖ū‖2BMO[t,T ]

)
.

(A.9)

And, if the generator f only satisfies the first inequality for the case of y < 0 and the

second inequality for the case of y > 0 in (A3), the above conclusion (A.9) still holds.

(ii) BSDE (A.1) admits a solution (Y, Z) such that Y ∈ S∞(R). Moreover, Z ∈ BMO(R1×d).

(iii) If the generator f further satisfies assumption (A5), then BSDE (A.1) admits a unique

solution (Y, Z) such that Y ∈ S∞(R). Moreover, Z ∈ BMO(R1×d).

Proof. (i) Let (Y,Z) be any solution of BSDE (A.1) such that Y ∈ S∞(R). For each stopping

time τ ∈ T[0,T ] and each integer m ≥ 1, define the following stopping time

στm := T ∧ inf

{
s ∈ [τ, T ] :

∫ s

τ
|Zs|2ds ≥ m

}
.

Using Itô-Tanaka’s formula to compute exp(2γ|Yt|) and utilizing the first inequality for the case

of y < 0 and the second inequality for the case of y > 0 in assumption (A3), we see that for

each m ≥ 1, t ∈ [0, T ] and τ ∈ T[t,T ],

exp(2γ|Yτ |) + 2γ2Eτ
[∫ στm

τ
exp(2γ|Ys|)|Zs|2 ds

]
≤ Eτ [exp(2γ|η|)] + 2γEτ

[∫ στm

τ
exp(2γ|Ys|)

(
α̈s + β̄|Ys|+ ūt|Zs|+

γ

2
|Zs|2

)
ds

]
.
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Therefore, in view of the basic inequality that 2ab ≤ 2a2 + b2/2 for each a, b ≥ 0,

γ2Eτ
[∫ στm

τ
|Zs|2ds

]
≤ exp(2γ‖η‖∞) + 2γ exp

(
2γ‖Y ‖S∞

[t,T ]

)(
‖α̈‖L∞

[t,T ]
+ β̄T‖Y ‖S∞

[t,T ]

)
+2 exp

(
4γ‖Y ‖S∞

[t,T ]

)
‖ū‖2BMO[t,T ]

+
γ2

2
Eτ
[∫ στm

τ
|Zs|2ds

]
.

Sending m→ +∞ and using Fatou’s lemma yields that Z ∈ BMO(R1×d), and for each t ∈ [0, T ],

we have

‖Z‖2BMO[t,T ]
≤ 2

γ2
exp(2γ‖η‖∞) +

4

γ
exp

(
2γ‖Y ‖S∞

[t,T ]

)(
‖α̈‖L∞

[t,T ]
+ β̄T‖Y ‖S∞

[t,T ]

)
+

4

γ2
exp

(
4γ‖Y ‖S∞

[t,T ]

)
‖ū‖2BMO[t,T ]

.

(A.10)

Furthermore, using Itô-Tanaka’s formula we also have, for each t ∈ [0, T ],

|Yt| ≤ |η|+
∫ T

t

(
α̈s + β̄|Ys|+ ūt|Zs|+

γ

2
|Zs|2

)
ds−

∫ T

t
sgn(Ys)ZsdBs

≤ ‖η‖∞ + ‖α̈‖L∞
[t,T ]

+ β̄

∫ T

t
|Ys|ds

−
∫ T

t
sgn(Ys)Zs

[
dBs − sgn(Ys)

(
ūs

1

|Zs|
1|Zs|6=0 +

γ

2

)
Z>s ds

]
.

(A.11)

Since both of processes ū and Z belong to BMO(R1×d), it is easy to verify that the process

Mt :=

∫ t

0
sgn(Ys)

(
ūs

1

|Zs|
1|Zs|6=0 +

γ

2

)
ZsdBs, t ∈ [0, T ]

is a BMO martingale. Define

dP̃
dP

:= exp

{
MT −

1

2
〈M〉T

}
and

B̃t := Bt −
∫ t

0
sgn(Ys)

(
ūs

1

|Zs|
1|Zs|6=0 +

γ

2

)
Z>s ds, t ∈ [0, T ].

Then, P̃ is a new probability, and B̃ is a Brownian motion with respect to P̃. Then, taking

the obvious conditional mathematical expectation with respect to P̃ in (A.11) and utilizing

Gronwall’s inequality yields that for each t ∈ [0, T ],

‖Y ‖S∞
[t,T ]
≤ exp(β̄T )

(
‖η‖∞ + ‖α̈‖L∞

[t,T ]

)
. (A.12)

Then, the desired conclusion (A.9) follows from (A.10) and (A.12) immediately.

(ii) It is easy to check that for each pair of integers m, l ≥ 1, the following function

fm,l(ω, t, y, z) := inf
{
f+(ω, t, ȳ, z̄) +m|y − ȳ|+m|z − z̄| : (ȳ, z̄) ∈ R× R1×d

}
− inf

{
f−(ω, t, ȳ, z̄) + l|y − ȳ|+ l|z − z̄| : (ȳ, z̄) ∈ R× R1×d

}
,

(ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d
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is well defined and an (Ft)-progressively measurable process for each (y, z). In view of assump-

tion (A3), it is also not hard to verify that fm,l is uniformly Lipschitz continuous in the state

variables (y, z) and also satisfies assumption (A3) with the same parameters for m, l ≥ 1, and

that for each l ≥ 1, the sequence {fm,l}∞m=1 converges increasingly and uniformly on compact

sets to a function f∞,l as m → +∞, and {f∞,l}∞l=1 converges decreasingly and uniformly on

compact sets to the generator f as l → +∞. Then, dP × dt − a.e., for each (y, z) ∈ R × R1×d

and m, l ≥ 1, we have

|fm,l(ω, t, y, z)| ≤ α̈t(ω) +
1

2
ū2
t (ω) + ϕ(|y|) +

γ + 1

2
|z|2, (A.13)

and then

|fm,l(ω, t, 0, 0)| ≤ α̈t(ω) +
1

2
ū2
t (ω) + ϕ(0), (A.14)

which means that

E

[(∫ T

0
|fm,l(s, 0, 0)|ds

)2
]
< +∞.

Consequently, by the classical results we know that for each m, l ≥ 1, the following BSDE

Y m,l
t = η +

∫ T

t
fm,l(s, Y m,l

s , Zm,ls )ds−
∫ T

t
Zm,ls dBs, t ∈ [0, T ]

admits a unique solution (Y m,l, Zm,l) ∈ S2(R)×H2(R1×d), Y m,l converges increasing pointwisely

to a process Y∞,l as m → +∞, and Y∞,l converges decreasing pointwisely to a process Y as

l → +∞. Moreover, by the classical a priori estimate on the L2 solution (see Proposition 3.2

in Briand et al. [5]) we know that there exists a uniform constant c0 > 0 such that for each

m, l ≥ 1 and t ∈ [0, T ],

Et

[
sup
s∈[t,T ]

|Y m,l
s |2

]
≤ c0 exp

(
2mT + 2m2T

)
Et

[
|η|2 +

(∫ T

t
|fm,l(s, 0, 0)|ds

)2
]
,

which together with (A.14), the energy inequality for BMO martingales (see for example Section

2.1 in Kazamaki [29]) and the facts that η ∈ L∞(R) and α̈ ∈ L∞ yields that Y m,l ∈ S∞(R) for

each m, l ≥ 1, and then Zm,l ∈ BMO(R1×d) by (i).

Finally, it follows from (i) that there exists a uniform constant A > 0 which is independent

of m and l such that dP× dt− a.e., we have

sup
m,l≥1

|Y m,l
t (ω)| ≤ A

and, in view of (A.13),

∀ (y, z) ∈ [−A,A]× R1×d, |fm,l(ω, t, y, z)| ≤ α̈t(ω) +
1

2
ū2
t (ω) + ϕ(A) +

γ + 1

2
|z|2.

56



Thus, we can apply twice the monotonic stability result Proposition 3.1 in [34] to obtain the

existence of a process Z ∈ H2(R1×d) such that Y ∈ S∞(R) and (Y,Z) is a desired solution of

BSDE (A.1). And, it follows from (i) that Z ∈ BMO(R1×d).

(iii) In view of (i), (iii) is proved in the same way as (iii) of Proposition A.1.

In the following proposition, the generator g has a linear growth in the state variable z.

Proposition A.3. Assume that the generator f satisfies assumption (A4).

(i) For any solution (Y,Z) of BSDE (A.1) such that Y ∈ S2(R), we have Y ∈ S∞(R) and

Z ∈ BMO(R1×d) and for each t ∈ [0, T ], there exists a uniform constant c0 > 1 such that

‖Y ‖S∞
[t,T ]

+ ‖Z‖2BMO[t,T ]
≤ 2c0 exp

(
2β̄T + 2λ̄2T

) (
1 + ‖η‖2∞ + 2‖α̇‖2M∞

[t,T ]

)
. (A.15)

And, if the generator f only satisfies the first inequality for the case of y < 0 and the

second inequality for the case of y > 0 in (A4), the above conclusion (A.15) still holds.

(ii) BSDE (A.1) admits a minimal (resp. maximal) solution (Y,Z) such that Y ∈ S2(R) in

the sense that for any solution (Ȳ , Z̄) of BSDE (A.1) such that Ȳ ∈ S2(R), we have for

each t ∈ [0, T ], P−a.s., Yt ≤ Ȳt (resp. Yt ≥ Ȳt). Moreover, (Y,Z) ∈ S∞(R)×BMO(R1×d).

(iii) If the generator f further satisfies assumption (A5), then BSDE (A.1) admits a unique

solution (Y, Z) such that Y ∈ S2(R). Moreover, (Y, Z) ∈ S∞(R)× BMO(R1×d).

Proof. (i) Let (Y,Z) be any solution of BSDE (A.1) such that Y ∈ S2(R). In view of the first

inequality for the case of y < 0 and the second inequality for the case of y > 0 in assumption

(A4) and by virtue of the classical a priori estimate on the L2 solution (see Proposition 3.2 in

Briand et al. [5]) we can deduce the existence of a uniform constant c0 > 1 such that for each

t ∈ [0, T ] and each τ ∈ T[t,T ],

Eτ

[
sup
s∈[τ,T ]

|Y m
s |2 +

∫ T

τ
|Zs|2ds

]
≤ c0 exp

(
2β̄T + 2λ̄2T

)
Eτ

[
|η|2 +

(∫ T

τ
α̇sds

)2
]
,

and then, by the energy inequality for BMO martingales and Hölder’s inequality,

‖Y ‖2S∞
[t,T ]

+ ‖Z‖2BMO[t,T ]
≤ c0 exp

(
2β̄T + 2λ̄2T

) (
‖η‖2∞ + 2‖α̇‖2M∞

[t,T ]

)
.

Then, the desired inequality (A.15) follows from the previous inequality immediately, and then

(Y, Z) ∈ S∞(R)× BMO(R1×d).

(ii) Define M := 2c0 exp
(
2β̄T + 2λ̄2T

) (
1 + ‖η‖2∞ + 2‖α̇‖2M∞

)
, ρM (x) := Mx

M∨|x| , x ∈ R and

fM (ω, t, y, z) := f(ω, t, ρM (y), z), (ω, t, y, z) ∈ Ω× [0, T ]× R× R1×d.
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It is easy to verify that the generator fM also satisfies assumption (A4), and that dP×dt−a.e.,

for each (y, z) ∈ R× R1×d, |fM (ω, t, y, z)| ≤ α̇t(ω) + ϕ(M) + λ̄|z|. Then, by Lepeltier and San

Martin [33] we know that the following BSDE

Yt = η +

∫ T

t
fM (s, Ys, Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T ] (A.16)

admits a maximal solution (Ȳ , Z̄) and a minimal solution (Y , Z) in the space S2(R)×H2(R1×d).

We now show that (Ȳ , Z̄) and (Y , Z) are also the desired maximal and minimal solution of

BSDE (A.1). Indeed, since fM satisfies assumption (A4), it follows from (i) and the definition

of fM that both of them belong to the space S∞(R) × BMO(R1×d) and are also solutions of

BSDE (A.1). Furthermore, let (Y,Z) be any solution of BSDE (A.1) such that Y ∈ S2(R).

Then, it follows from (i) and the definition of fM again that (Y, Z) ∈ S∞(R) × BMO(R1×d)

and it is also a solution of BSDE (A.16) in the space S2(R)×H2(R1×d). Consequently, for each

t ∈ [0, T ], we have Y t ≤ Yt ≤ Ȳt, P− a.s., which is the desired conclusion.

(iii) In view of (i), (iii) can be proved in the same way as (iii) of Proposition A.1.
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