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Abstract 

Mobility services require accurate demand prediction both in space and time to effectively 

accomplish fleet rebalancing, present efficient on-demand transportation services, and allow 

for advanced ride-sharing with minimum fleet size. Although the optimization of mobility 

services is a widely studied topic, the critical demand prediction component has received less 

attention. In this paper, we aim to develop an efficient method for traffic demand forecasting 

by means of deep learning and hierarchical reconciliation approaches. The concepts, as well as 

the theories behind the proposed approach, are founded on a Hierarchical Time Series (HTS), 

which also adopts Long Short-term Memory (LSTM) as a special kind of Recurrent Neural 

Network (RNN) for the deep learning of the associated time series and producing reliable 

demand predictions. Herein, the proposed approach relies on the proper design of the HTS 

structure to find coherent forecasts for the number of trip departures and its associated 

uncertainty over predefined zones as well as over aggregated collections of these zones for 

applications like mobility service operations. Moreover, an error analysis is essential for 

accomplishing the reconciliation in the HTS structure optimally. The three main stages of the 

proposed approach (i.e., deep learning, error analysis, and optimal reconciliation), which 

independently function within the approach structure, have a remarkable ability to predict the 

demand, control all the forecasts at all levels of the hierarchical structure, and finally lead them 

to their coherent estimates. We evaluate the proposed approach on a large-scale GPS tracking 

dataset of Lyon in France. The proposed method reduces the root mean square error (RMSE) 

by 13.92% and 14.77% for the predefined and aggregated zones, respectively, compared with 

the LSTM using the historical demand and the external features of time at fifteen minutes time 
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resolution. Similarly, the corresponding improvement for mean absolute percentage error 

(MAPE) is 14.87% and 19.23%, respectively.  

Keywords: Traffic Demand Prediction, Artificial Intelligence (AI), Deep Learning, LSTM, 

Hierarchical Time series, Hierarchical Reconciliation 

 

1. Introduction 

Traffic demand forecasting is one of the fundamental issues of any transportation system. Two 

kinds of problems have already received lots of attention: large-scale long-term demand 

prediction (e.g., forecasting typical daily OD matrix) and local short-term traffic state 

estimation (e.g., predicting the demand over the next hour). New mobility service operations 

impose new challenges for demand prediction, as we need high resolution both in space at 

large-scale and in time at short-term to mid-term (e.g., next fifteen minutes or next hours) to 

effectively perform fleet sizing and rebalancing. 

Predicting traffic demands throughout a city can help car-sharing companies pre-allocate more 

cars in high-demand regions or help taxi centers to manage floating taxis by incentivizing 

vacant vehicles to move from the over-supply regions (the zones with more potential vehicles) 

to over-demand ones (the zones with more potential passengers) in advance. The same demand-

supply imbalance exists in mobility-on-demand services such as e-hailing taxis, which have 

gained great popularity in recent years. Traffic demand forecasting can help to dispatch cars 

efficiently and consequently minimize the waiting time for both passengers and drivers (Li and 

Axhausen, 2019; Luo et al., 2021; Xu et al., 2017).  

Traffic demand data varies with time and space and has complicated spatial-temporal 

dependencies. Regarding time dependency, the traffic demand is expected to be high during 

peak hours (morning and evening peaks) and low at night (sleeping hours). It also depends on 

the trend of the nearest historical demand. Furthermore, the traffic in each zone depends not 

only on the variables of that zone but also on all the other zonal variables in the whole area of 

interest, with a stronger impact from nearby zones than distant ones (Ke et al., 2017; Yang et 

al., 2010). The traffic sequence data is also affected by external features like weather conditions 

or events, time-of-day, and day-of-week. Although it is challenging to consider these 

exogenous factors and spatial and temporal dependencies simultaneously, it can help to 

improve the prediction.   
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Traffic demand prediction approaches can be divided into three categories. The first category 

is the statistical methods (Li et al., 2012; Moreira-Matias et al., 2013). Historical Average 

(HA), Auto-Regressive Integrated Moving Average (ARIMA), and Vector Auto-Regressive 

(VAR) are the most well-known statistical methods found in the literature. These algorithms 

are easy to be deployed but only applicable to relatively small datasets, and the capability of 

these approaches to deal with complex and dynamic traffic demand data is limited (Yin et al., 

2021). Traditional machine learning methods (Guan et al., 2018; Li et al., 2018, 2017; Salinas 

et al., 2019)) constitute the second category. These methods, such as Support Vector 

Regression (SVR) and Random Forest Regression (RFR), can process high dimensional traffic 

data and capture non-linear relationships. However, with the advent of deep learning methods 

(Davis et al., 2020; Ke et al., 2017; Liu et al., 2019; Xu et al., 2017), which comprise the third 

category, the full potential of Artificial Intelligence (AI) has been utilized in traffic-related 

prediction applications (Nguyen et al., 2018). Several deep learning architectures, such as 

Convolutional Neural Network (CNN), Graph Convolutional Network (GCN) (Scarselli et al., 

2008), Recurrent Neural Network (RNN) (Rumelhart et al., 1986), and its variants like Long 

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or Gated Recurrent Unit 

(GRU) (Cho et al., 2014), have been used for traffic prediction, see (Yin et al., 2021) for a more 

extensive survey. In the following, we introduce some approaches that have used deep learning 

for traffic demand predictions.  

Cheng et al. (2016) investigated a feature-level data fusion model to predict day-to-day travel 

demand variations based on the origin-destination matrices data of 30 consecutive days on a 

large-scale transportation network. They concluded that the proposed feature-level data fusion 

model, which integrated the feature attributes into long short-term memory (LSTM), 

outperformed the LSTM network and Deep Neural Network (DNN), which did not consider 

the external features.  

Xu et al. (2017) proposed a sequence learning model based on LSTM for predicting taxi 

demands and showed that this approach outperformed the feed-forward neural network and 

naive statistic average predictor. In addition, Mixture Density Networks were added on top of 

LSTM to make the output as the parameters of a mixture distribution of the demand rather than 

directly forecasting the demand value. This probability distribution can be used to extract the 

predicted demand value for each area. They also investigated the effects of adding other 

features such as weather, time, and drop-offs and concluded that the models had close 

performances.  
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In (Ke et al., 2017), a deep learning (DL) approach named fusion convolutional long short-

term memory network (FCL-Net) was employed by the fusion of convolutional techniques and 

LSTM network to predict short-term passenger demand for an on-demand transport service. 

Before feeding the explanatory variables into the DL structure, a tailored spatially aggregated 

random forest was used to rank these explanatory variables, and these ranks were used for 

feature selection. Based on the results, the authors concluded that the FCL-Net model provided 

better predictive performances compared to some statistical, machine learning, and deep-

learning-based methods like HA, Moving Average (MA), ARIMA, Artificial Neural Network 

(ANN), LSTM, CNN, and eXtreme Gradient Boosting (XGBoost). 

Li and Axhausen (2019) implemented six statistical, three machine learning (Random Forest, 

XGBoost, Multi-Layer Perceptron), and three deep learning models (LSTM-Neural Network, 

LSTM-onehot Encoding, and LSTM-Embedding) for short-term traffic demand prediction. 

They concluded that no specific model could get the best performance at all times and in the 

whole area. Based on their results, the six statistical methods have poor performances over the 

entire period and area. Machine learning methods and LSTM-Neural Network have better 

performance than other methods in terms of the SMAPE performance metric. LSTM-onehot 

Encoding and LSTM-Embedding show better performances in terms of RMSE. They compared 

the performance across all the unit areas and showed that LSTM-Neural Network performed 

best in most unit areas in their two datasets. 

Luo et al. (2021) proposed a multi-task deep learning (MTDL) model based on LSTM to 

forecast short-term taxi demands at a multi-zone level. The proposed model was able to predict 

the demand of multiple zones simultaneously in a way that the demand prediction of each zone 

can be conducted by considering the information of zones that can help to improve the 

prediction. They concluded that their proposed method outperformed some benchmark 

algorithms like conventional LSTM, SVM, and k-nearest neighbors (k-NN).  

Traffic demand characteristics change at different levels of temporal and spatial aggregations. 

In many traffic-related studies, authors mentioned that the aggregation level in the temporal 

dimension could affect the prediction accuracy so that aggregating in a longer time window 

results in smoother time series and therefore facilitates the pattern identification on a longer 

time horizon. However, aggregating in a longer time window may cause losing some important 

information at higher frequencies and remarkably diminish the accuracy. Therefore, finding a 

balance is noteworthy (Guo et al., 2007; Li et al., 2019; Oh et al., 2005; Vlahogianni and 

Karlaftis, 2011). Similarly, we can also consider the relationship between granularity and 
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accuracy in the spatial dimension. Generally, it seems that time series aggregated in more 

extensive areas are smoother, and then identifying their general trends is easier. Nonetheless, 

the time series will be noisier if small areas are used for aggregating traffic demands. However, 

in such a case, the data may contain useful information for forecasting the traffic demand in 

the future, especially for mobility service operations. Therefore, appropriate aggregation in the 

spatial and temporal dimensions can be used to improve prediction accuracy. 

A hierarchical time series (HTS) is a collection of time series organized in a hierarchical 

aggregation structure. Forecast reconciliation is the process of improving the prediction 

accuracy by adjusting the forecasts to make them coherent across the hierarchy. This coherence 

can be checked at the spatial or temporal levels in time-series data related to traffic demand. 

For example, at the temporal level, the traffic demands at every hour of a day should add up 

coherently to give the diurnal traffic demand, or at the spatial level, the forecasts of traffic 

demand in initial traffic zones (here Traffic Analysis Zones (TAZ)) should add up to provide 

the forecasts of more extensive areas constructed based on initial traffic zones (here the zones 

designed to meet the requirements of mobility service operations). 

In recent years, hierarchical time series and reconciliation have attracted much attention 

(Hollyman et al., 2021; Mancuso et al., 2021). However, aggregation in spatial and temporal 

dimensions hasn’t been considered widely in the transportation field. Li et al. (Li et al., 2019) 

used a component-wise gradient boosting procedure (CWGB) combined with hierarchical 

reconciliation to predict traffic flow. They restricted their attention to linear base functions in 

one input argument only. In addition, since the correlation between locations varies 

significantly at different hours of a day, the boosting procedure is used separately on 24 hourly 

subsets to accommodate the spatial-temporal interactions in the model. They compared their 

approach with three frequently used methods, i.e., SARIMA, Kalman filter, and random forest, 

and concluded that the proposed approach outperformed these methods or performed at least 

as well as them when the information related to learning was limited.  

In this study, an LSTM approach in combination with hierarchical reconciliation (HR) is 

proposed for short/mid-term forecasting of traffic demand. The proposed approach has three 

main features that make it different from the previous studies. First, the demand prediction for 

a specific area can be adjusted based on the demand forecasting of a group of regions at 

different aggregation levels (spatial levels) and the forecasts in different time resolutions 

(temporal levels). Second, the approach is based on a deep learning technique, LSTM 
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(Hochreiter and Schmidhuber, 1997), combined with an innovative application of HR. Third, 

the deep learning technique and the HR step are linked together via an error analysis, which 

can control the solutions to be in a true feasible space and can finally provide us with the 

expected precision of the forecasted demands.   

The rest of this paper is organized as follows. First, Section 2 describes the methodology of the 

proposed approach in detail, including problem definition, hierarchical time series structure, 

bottom-up approach, top-down approach, deep learning, optimal reconciliation approach, error 

analysis, and method structure. Subsequently, Section 3 is dedicated to numerical experiments, 

which evaluate the performance of the proposed approach for demand prediction in the 

hierarchical time series structure of zones based on the real-world dataset of the floating car in 

Lyon. Finally, Section 4 concludes the main findings of the research.  

2. Methodology 

In the current research, we consider two specific spatial partitioning levels: the initial one 

consists of homogeneously populated areas based on census data, and the second one is the 

aggregation of these zones into larger areas that still fulfill a maximum service time criterion 

for mobility services. In short, those areas should be large enough to allow robust demand 

predictions but small enough to allow pre-positioned vehicles within the area to serve any 

internal requests with a low waiting time for passengers. In the proposed method, apart from 

adopting a deep learning technique for demand prediction, the main idea is that all the predicted 

demands in all zones and regions of the mentioned partitioning levels should be adjusted and 

matched with each other in the hierarchical tree structure.  

2.1. Problem Definition 

The traffic demand prediction problem can be defined as forecasting the number of trips 

initiated (corresponding to potential requests for mobility service) at a future time interval in a 

specific region based on the given historical requesting data (historical traffic demands) as well 

as other features such as time feature (i.e., time-of-day, and day-of-week) and spatial feature 

(i.e., the area identifier). Generally, this problem can be considered a time series forecasting 

problem.  

To forecast the demands accurately, we need to divide the city (or the area of interest) into 

regions and predict the demand based on those regions. In Appendix A, a method for 
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aggregating predefined zones to zones of adequate size for mobility service operations is 

proposed. On the other hand, we should consider a predefined time interval in which the 

variables (such as demand intensity) be aggregated. For instance, in the numerical experiments 

of the current research, intervals with a length of fifteen minutes and one hour have been 

considered for this purpose.   

2.2. Hierarchical Time Series structure 

The collection of time series organized in a hierarchical aggregation structure is called 

Hierarchical Time Series (HTS). In HTS, aggregate forecasts can be generated by adding up 

the disaggregate ones in the same way as the data in the hierarchical aggregation structure. 

Nonetheless, the challenge is to be sure that the predictions are coherent at different aggregation 

levels and add up the forecasts in a way that is consistent with the aggregation structure. 

Therefore, the forecasts at different hierarchy levels must be adjusted (in other words, 

reconciled) regardless of the methods used for initially forecasting the time series. In the 

following, we provide the basic concepts related to HTS, while in Section 2.6, the optimal 

reconciliation will be discussed. 

First of all, consider a two-level hierarchical structure in which level 0 (i.e., “Total”) is the 

most aggregate level of the data, and the 2nd level (the bottom level) contains the most 

disaggregate time series (Fig. 1). Moreover, consider that the total desired area and the level of 

the hierarchical structure are constituted by two sets of zones  iz  and  i
j

z  that form the 1st 

(top) and 2nd (bottom) levels of the HTS structure (see Fig. 1).  

 

 
Fig. 1. Left) a presumed two-level hierarchical tree structure for the zones, and Right) a schematic 

figure of a two-level structure in the spatial domain  
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Hence, in such a two-level hierarchical structure, the zone set  i
j

z  is supposed to be constituted 

by subsets like  1 2
, , ,

i

i i i

N
z z z  (i.e.,    

Up

1 2
1

, , ,
i

N
i i i i

j N
i

z z z z


  ), and the zones belonging to the 

subset  1 2
, , ,

i

i i i

N
z z z  are aggregated together to create the zone i

z  as follows: 

 
1

 
i

N

i i

j
j

z z


   (1) 

where the zones  i
j

z  and  iz constitute the bottom and top levels of the two-level hierarchical 

structure, respectively; Up
N  is the number of the aggregated zones at the top level; also, the 

number of all disaggregated zones at the bottom level 
Down

N  is equal to 
Up

1

N

i

i

N

 , and 

i
N  is the 

number of zones at the bottom level connected to the zone i

z  as the ith aggregated zone at the 

top level. 

 

Definition 1 (Conservation Equation): the demands of all zones  iz  and  i
j

z  at time t  

should satisfy the following equation, herein called Conservation Equation, which means that 

the quantity of demand should be conserved at all levels of the hierarchical structure: 

    
1

 
i

N

i i

j

j

d t d t


   (2) 

where  i

d t  and  i

j
d t  are the demands at time t  in zones i

z  and i

j
z , respectively, and this 

equation of demands is the basic foundation of the two-level hierarchical approach. It is worth 

mentioning that although the current study does not consider any overlap or intersection 

between the zones, in other studies, based on their requirements and applications, it may be 

expected to have zones with overlaps and intersections. In such a case, based on the inclusion-

exclusion principle in set theory, we should expect other additional terms to appear on the right 

side of the conservation equation.  

Accordingly, the conservation equation between the demands (i.e., Eq.(2)) will imply the 

following equation between the top and bottom levels of the hierarchical structure. 

 
Down

 d Sd   (3) 

where the matrix S  is called the summing matrix, the vector d  includes the demands in all the 

levels, and 
Down
d  is comprised of the demands in the bottom level. For instance, for the 

schematic hierarchical tree structure illustrated in Fig. 1, the above equation, as well as the 

corresponding matrices, will be as follows:  
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  (4) 

The definitions above can be easily generalized to any N-level hierarchy of non-overlapping zones.  

2.3. Bottom-up approach 

The above relations can be used for the bottom-up approach (e.g., see (Athanasopoulos et al., 

2009; Hyndman et al., 2011)). In this case, we predict the demands in all zones and all the 

levels via forecasting the demands at the bottom level of the hierarchical structure (the most 

disaggregate level of the data), so no information will be lost due to the aggregation. 

Nevertheless, the bottom-level data can be noisy, and this may result in reduced overall forecast 

accuracy. It is worth mentioning that the predictions are usually more robust at the top level as 

total demand is higher with fewer spatial variations. Therefore, the main disadvantage of this 

approach is that it completely ignores any information about the predictions in the top levels, 

while we need to have a coherent prediction for all the zones, which considers all the gathered 

information and initial demands forecasts. 

2.4. Top-down approach 

In the top-down approach, first, the base forecasts for the top-level time series are generated, 

and then only these predictions are disaggregated down the hierarchy to generate the forecasts 

for the bottom-level time series. In this regard, a set of disaggregation proportions is required 

that represents the relative contribution of the bottom-level time series to the time series at the 

top levels of the hierarchical structure. The generated bottom-level predictions are aggregated 

to make other time series forecasts in the hierarchical structure. In general, the top-down 

approach can be represented as follows (e.g., see (Athanasopoulos et al., 2009; Hyndman et 

al., 2011)): 

 Up Up

Down
ˆ  d SP d   (5) 



 10

where S  is the summing matrix, Up

Down
P  is a proportion matrix between the top and bottom levels, 

which maps the vector of demands Upd at the top-level to the vector of demands at the bottom-

level, and d̂ is the vector of coherent forecasts of demands at all levels. 

The Average Historical Proportions (AHP) and the Proportions of the Historical Averages 

(PHA) are the two most common top-down approaches, which are based on the proportions of 

the historical data (Hyndman and Athanasopoulos, 2018). These approaches seem to generate 

reliable forecasts for the aggregate levels, and therefore they are useful when we have a low 

amount of data. On the other hand, we may have a lack of information due to the aggregation 

and be unable to capture and take advantage of individual time series characteristics such as 

time dynamics and therefore have a less accurate prediction at the bottom-level of the 

hierarchy. The approaches based on historical data generate less accurate forecasts at the 

bottom-level of the hierarchy because they do not consider how the proportions change over 

time (Mancuso et al., 2021). Now, before exploiting the fundamental equations of the HTS 

described in bottom-up and top-down approaches (i.e., Eqs. (3) and (5)), we need to provide 

the HTS with initial forecasts at each level of the hierarchical structure.  

2.5. Deep learning  

In this research, the initial prediction of demands is performed based on Long Short-term 

Memory (LSTM) as a special kind of Recurrent Neural Network (RNN) (Hochreiter and 

Schmidhuber, 1997). Contrary to traditional Artificial Neural Networks (ANNs) that are not 

able to handle the sequential nature of traffic demand data and, in fact, are not able to take into 

consideration the time series characteristics such as temporal dependencies (Luo et al., 2021), 

Recurrent Neural Network (RNN) (Connor et al., 1994) is one of the most popular models that 

can process time series data and overcome this shortcoming by considering the connection 

between units by timestamps. The idea behind RNN is to use a memory in which some relevant 

parts of the past input data are stored and used while predicting the output data in the future. 

However, since RNNs cannot properly fit the time series with long-time lags because of 

vanishing and exploding gradients, the LSTM, as a variant of RNN, is capable of learning long-

term dependencies by remembering information for long periods (Hochreiter and 

Schmidhuber, 1997).  

Each LSTM cell possesses three kinds of gates that allow it to store and update the information 

over a long period (Hochreiter and Schmidhuber, 1997): 1) Forget gate ( f ): decides what kind 
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of information will be thrown away from the cell state, 2) Input gate (i): decides the value we 

need to update, in other words, what new information is going to be stored in the cell state (a 

sigmoid layer), and 3) Output gate (o ): After updating the old cell state, it decides what 

information we are going to output to the next cell based on the cell state. Thus, the core idea 

of the LSTM structure employed by the current research can be summarized by the following 

equations (Hochreiter and Schmidhuber, 1997): 

 

1

1

1

1 1

( )

( )

( )

tanh( )

tanh( )

n df n hf n f

n di n hi n i

n do n ho n co n o

n n n n dc n hc n c

n n n

f W d W h b
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h o c
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



 

               



 



  (6) 

where the input is a training vector sequence of demand 
Train

Train 1,...,n
n N

d


    d  called training 

dataset; the output is a hidden vector sequence 
Train1,...,n

n N

h


    h ; W  indicates the weight matrix; 

b  denotes the bias; c  represents the memory cell; the operator   refers to an element-wise 

vector product (Hadamard product), and the functions   and tanh  are the sigmoid and tangent 

activation functions, respectively (i.e., 1( ) (1 )xx e     and tanh( ) ( )/ ( )x x x x

x e e e e
    ).  

Accordingly, based on the abovementioned LSTM deep learning architecture, if the training 

vector sequence of demand is considered as 
Train1,...,

( )
n

n N

d d t n t


      , a preliminary prediction 

of the demand at time t  will be the last output of the deep learning structure, and it can be 

obtained as follows: 

  
Train1,...,

( )( )
n N

d d t n tt


     LSTM   (7) 

where LSTM denotes the LSTM deep learning network, 
Train

N  is the number of timeslots in 

the training set, and t  is the length of timeslots.  

Accordingly, now the initial values of the demands, predicted via the deep learning approach, 

are ready to be used for finding a reconciliation at hierarchical structure levels.  

2.6. Optimal reconciliation approach 

Overall, according to the HTS approaches discussed so far (see Eqs. (3) and (5)), the 

corresponding equation of the HTS reconciliation can be generalized as follows: 
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ˆ  


d Rd
R SP

  (8) 

In the above relation, the vector d  includes the initial forecasts of all zones as the base 

forecasts, independently obtained by the LSTM without considering the aggregation 

constraints (i.e., at time t  we have 
Train1,...,

( ( ) )( )
n N

t nt t


     dd LSTM ), and it is stacked in the 

same order as the coherent forecasts d̂  (Eq.(4) shows the order in the vector d  including all 

the demands). The matrix R  denotes a “Reconciliation matrix” that reconciles the base 

forecasts d  to generate coherent ones d̂ . Also, P is a matrix that maps the preliminary 

forecasts of all zones d  into the bottom-level (like the matrix Up

Down
P  in the top-down approach 

that maps the vector of demands at the top-level to the vector of demands at the bottom-level), 

and S  is the summing matrix defined by Eqs. (3) and (4).  

In this regard, ideally, we need to find the matrix P that minimizes the error of coherent 

forecasts. Wickramasuriya et al. (Wickramasuriya et al., 2019) showed that the optimal version 

of P can be given by: 

 ( )  
d d

P S W S S W   (9) 

where the matrix 
d

W  is the weight matrix associated with the initial predicted demand d . 

Therefore, considering Eq.(8), the optimal reconciled forecast, which is referred to as the 

“Minimum Trace” estimator or “MinT”, is presented as follows: 

 ˆ ( )
d d

d dS S W S S W    (10) 

where the sign (+) denotes the Moore–Penrose pseudo-inverse, and the weight matrix 
d

W  is 

equal to the Moore–Penrose inverse of the variance-covariance matrix 
d

C associated with the 

base forecast errors of d  (i.e., 
d d

W C ).  

 

2.7. Error Analysis  

In practice, for implementing the idea of MinT and the above-mentioned equation of the 

reconciliation (i.e., Eq.(10)), the matrices 
d

C  and 
d

W  are required to be optimally estimated. 

For this purpose, some approximations are proposed in the literature, such as (Hyndman and 
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Athanasopoulos, 2018) and (Wickramasuriya et al., 2019). Continuing such studies, herein, we 

first aim to find the behavior of the random errors occurring at the initial forecasts of the 

demands obtained by the LSTM and then compute the variance-covariance matrix required by 

the reconciliation. In this regard, we consider the data in three parts: training, validation, and 

test data. After training the deep learning network and obtaining the initial forecasts using the 

training data, the validation part is utilized to analyze random errors occurring at the initial 

forecasts based on the true values of the demands.  

 
Fig. 2. The suggested division of the data used by the proposed method 

 

This validation data as well as its error analysis can then enable us to predict the main behavior 

of the random errors caused by LSTM computations and estimate the variance-covariance 

matrix 
d

C  and the weight matrix 
d

W  associated with the base forecast errors, required by the 

reconciliation (see Eq.(10)). Finally, in the test part of the data, first, we assume there is no 

knowledge of the true values of demands. So, we can run the reconciliation procedures and 

then verify the results via the true values of demands known by the test data. Fig. 2 summarizes 

the suggested division of the data into three parts and its usage in the proposed method. 

Hence, based on the error analysis, the variance-covariance matrix 
d

C  as well as the weight 

matrix 
d

W  can be estimated as follows (e.g., see (Hyndman and Athanasopoulos, 2018) and 

(Wickramasuriya et al., 2019)): 

 ( )diag






d d

d d

C var
W C

  (11) 

where the variance-covariance matrix 
d

C  is considered to be a diagonal matrix whose diagonal 

elements are the elements of the vector 
d

var  including the variances of the initial forecasts (i.e., 

Valid

Valid
1

1 /
N

n n
n

N


 d
var v v );   refers to the element-wise vector product (Hadamard product); 

ZonesN

n
v   is an estimate of the error vector of the th

n  base forecast in the validation data, which 

is obtained by the true value and the initial forecast of the demand in the validation data set; 

and 
Valid

N  and 
Zones

N  are the number of validation data and the number of zones, respectively 

(i.e., Up

Zones Down
NN N  ).  

 

Data 

Usage                           Deep Learning                     Error Analysis       Method Evaluation   

 
   

Whole Data 
Training data Validation  Test data  

 

t 
Time axis    
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The optimal reconciliation approach based on such variance-covariance and weight matrix is 

usually referred to as the Weighted Least Square (WLS), in which the base forecasts are scaled 

by the inverse of the variances. Accordingly, if we have an accurate estimation of the variance-

covariance of the base forecasts, which can be obtained by Eq.(11), the variance-covariance of 

the coherent demand forecasts d̂  can also be estimated by using the properties of the pseudo-

inverse and the uncertainty propagation (variance-covariance propagation) in the MinT 

equation (Eq.(10)) as follows (c.f. (Björck, 1996; Mikhail, 1982)): 

 ˆ ( )
dd

C SS S W S    (12) 

where the diagonal elements of the variance-covariance 
d̂

C  associated with the predicted vector 

present us with the uncertainty and precision of the predicted demands in all zones. 

2.7.1. Filtering  

As we mentioned before, the main advantage of the validation data is that both the initial 

forecasts and their true values are known in this part of the data. This enables us to have an 

accurate insight into the feasible space of the demand predictions. After forming the feasible 

space by the known values of the true demands, projecting the initial forecasts onto it can 

prevent the following forecasts from diverging. In other words, the predictions can also be 

controlled by means of such a feasible space of forecasts, which is constructed by the known 

true values of the demands in the validation data. Moreover, having such reliable space can 

also provide us with confident filtering of the initial data and present us with an accurate 

estimation of the error vector v  required for estimating the variance-covariance matrix 
d

C  (see 

Eq.(11)).  

 
Fig. 3. The projection of the initial forecast on the feasible space formed by true values of the 

forecasts 

Hence, consider a feasible space made by the demands' true values, accompanied by the initial 

forecasts occurring randomly around such space (see Fig. 3). Now, based on the least square 

method, if we have some information about this space (like the true values of the demands in 
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the validation part), at each step, we can project the initial solution d  on this space and find 

the optimum solution in the feasible space. In fact, such projection of the forecasts on the true 

feasible space of the solutions can also be counted as a filtering of the initial predictions, where 

we can also find an estimation of the error vector v . For this purpose, suppose that the 

validation data is comprised of 
Valid

N  epochs such as  Zones

Valid
0 1,2, ,

( ) N

n
n N

t t n t


    d d


  , 

and also, suppose that the true values of the demand vectors in the validation data  
Valid

True

1,2, ,n
n N

d


are known and constitute the columns of the matrix 
Valid

True True True

1 2 N

    D d d d . Now, based on 

the least square method, which aims to minimize the vector v  (i.e., 
2

2
Minv ) (e.g., see 

(Björck, 1996)), the following projection matrix F  is able to project the initial forecast d  on 

the feasible space as follows (e.g., see (Banerjee and Roy, 2014)):  

 
T + T( )


F D D D D
d Fd

  (13) 

where d  is the projection of the initial demand d  on the feasible space, and it is an estimation 

of the true solution Trued . According to the above equation, we can easily realize how the matrix

F  possesses the main property of projection matrices and satisfies F FF . 

In fact, Eq.(13) applies filtering to the initial demand d , and d Fd  is the filtered version of 

the demand vector d . Consequently, we can have an estimation of the error vector v  as 

follows: 

 T + T( ) ( ( ) )   v I F d I D D D D d   (14) 

where ZonesNI   is an identity matrix. Herein, this evaluation of the error is used for estimating 

the required variance-covariance matrix defined by Eq.(11) where ZonesN

n
v   , the estimate of 

the error in the th
n  base forecast of the validation data, is obtained via Eq.(14) (i.e., 

( )
n n
 v I F d ).  

Accordingly, considering the deep learning and the optimal reconciliation as well as the error 

analysis described in this section, the final adapted relation for the optimal reconciliation and 

demand forecasting of all the hierarchical levels at time t can be obtained as follows (see (c.f. 

Eqs. (7), (10), and (13))): 

 Τ Τ

Train1,...,

ˆ ( )( ) ( ) ( ( ) )
n N

t t n t




     d d
S Sd LS WS S M dTWF   (15) 
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where the summing matrix S , the weight matrix 
d

W , and the filtering matrix F  are obtained 

by Equations (4), (11) and (13), respectively.  

2.8. Method structure  

According to the above-motioned steps, the following diagram illustrated in Fig. 4 can also 

summarize the structure of the proposed method. The structure starts with the training data set 

at time 
0

t t  and ends with the coherent reconciled demand forecasts at time 
Max

t t . The 

intervals 
Train 0 Train 0

,T t N t t      , Valid 0 0 Valid
,T t t N t      , and 

Test 0 Valid Max
,T t N t t       represent 

the time intervals associated with the training, validation, and test data sets, respectively. 

  

  

Fig. 4. The structure of the proposed method 

 

According to the methodology, the proposed approach is comprised of three main stages. The 

aims and ideas of these stages can be summed up as follows: 

1- Deep learning: This step of the proposed approach can present us with initial predictions 

of the demands while we know that these initial forecasts could be inaccurate. But its 

main advantage is that this step can provide us with a correct trained model of the 

demands when there is no knowledge about the behavior of the demand time series and 

the stochastic behavior of the demand with respect to the time is hard to model. In this 

step, utilizing other information about the demands as additional input (e.g., external 

features of time) can be beneficial to network training.  

2- Error analysis: The main idea behind this step is to validate and control the initial 

forecasts of deep learning. The initial forecasts released from the first step (i.e., Deep 

learning) are not ready to be used by the hierarchical reconciliation and their random 
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errors need to be investigated and controlled (see Section 2.7). One of the main outputs 

of the error analysis is the weight matrix, which is essentially required by optimal 

reconciliation. Meanwhile, the error analysis step possesses another main output, a 

projection matrix, which provides the proposed approach with a filtering. By means of 

the projection to the feasible space of solutions, the filtering avoids the initial forecasted 

time series diverging from the true solutions (see Section 2.7.1). 

3- Optimal reconciliation: the main idea behind this step is to optimally adjust and match 

all the demands with the hierarchical tree structure of zones (see Fig. 1). This step 

enables the proposed approach to present coherent forecasts of the demands considering 

all the conservation equations of the demands in all levels of the Hierarchical structure. 

3. Numerical experiments 

In this section, we evaluate the effectiveness of our proposed approach on the defined dataset 

and survey how well it can predict the demands in the future by comparing it with the initial 

deep learning and hierarchical methods described in Sections 2.3, 2.4, 2.5, and 2.6. In this 

regard, we aim to separately assess the ideas of the stages that construct the proposed approach. 

Accordingly, the numerical experiments of the research are organized and classified into the 

following parts: 

1- Assessing the effect of external features of time on the deep learning stage when the 

time features are considered as additional inputs of the deep learning network. 

2- Assessing the effectiveness of using both the optimal reconciliation and error analysis 

parts of the proposed method by comparing the forecasts obtained by the proposed 

approach with the LSTM forecasts considering the external features of time. 

3- Assessing the necessity of the hierarchical reconciliation step for enhancing the 

accuracy of demand prediction by comparing the results of the proposed method with 

the ones obtained by the bottom-up approach. 

4- Assessing the role of an accurate weight matrix in the optimal reconciliation via 

comparing the forecasts obtained by the proposed method (using the weight matrix 

approximated by the error analysis) with an Ordinary Least Square (OLS). 

5- Assessing the role of filtering in the proposed approach via comparing the 

reconciliation (without filtering) with the reconciliation accompanied by the filtering in 

the proposed approach.  
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In the following section, details on the data set are presented. Then we go through the details 

of the numerical experiments associated with the above-mentioned assessments of the proposed 

approach.  

3.1. Data 

In our work, we use a floating car dataset (GPS trajectory measurements) provided by the Be-

Mobile group1 from 01/04/2021 to 01/31/2021 in urban and peripheral areas in Lyon, which is 

from 4.576 E
  to 5.222 E

  in longitude and from 45.474 N
 to 46.001 N

 in latitude. This 

dataset includes the sample trajectory points of the floating cars. The sampling rate (the average 

number of samples obtained in one second) is about 0.5-1HZ (i.e., 1 sample per 1-2 seconds). 

Each record provides a segment ID (the longitude and latitude of the start and the end of the 

segments can be extracted from the road network), Vehicle ID, Provider ID, Travel time, and 

GPS timestamp.  

The road network consists of 287,888 road segments characterized by different road attributes, 

such as the length of segments, the average speed in a non-congested situation (the free-flow 

speed), and the longitude and latitude of the start and end points. The study area consists of 

679 TAZ zones (the IRIS2 zones), and the shape file of these zones is co-published by INSEE 

and IGN (2021). The number of trips that start in each zone can be counted during each time-

step length (the time interval), and the historical data of demand intensity in each zone can be 

calculated by aggregating the number of trips started from that zone during each time interval. 

These data sequences (the time series) are fed into the LSTM for sequential pattern learning. 

Herein, in order to avoid using future information in the learning procedure and have a careful 

validation of the predictions as well, the dataset, which includes one-month data (four weeks) 

starting from the first business week of 2021 (i.e., January 4th) and ending at the beginning of 

February 2021 (i.e., January 31st), is divided into three subsets: 1) the training set comprised 

of observations (acquired in the first three weeks), 2) the validation set (consisting of 60 

samples acquired after the training data), and 3) the test set comprised of the remaining 

observations.  

 

                                                           
1 https://be-mobile.com 
2 Ilots Regroupés pour l'Information Statistique  
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3.2. Aggregation of zones 

As mentioned before, we consider two particular partitioning levels in this paper. The first one 

is the specific spatial zoning called IRIS zones that are considered as Traffic Analysis Zone 

(TAZ) data which divides our area of interest into 679 zones. IRIS zoning is the spatial 

subdividing of an urban area based on the census data of its residents. IRIS project almost 

considered the same number of inhabitants in each subarea (about 2000), where the shapes and 

surfaces of the areas are highly variable. In the IRIS zones, the smallest size may include two 

to three streets, and the largest may cover several square kilometers. 

The advantage of using IRIS zones is that it is a well-known partitioning in which the 

population is homogenous. Hence, the demand predictions within the zones are comparable 

regarding their similar population ranges. The problem is that these zones are small, and the 

data can be noisy. So, we need to define another partitioning. Herein, the idea is to aggregate 

the IRIS zones to have bigger ones that are still adequate to run a mobility service. In this 

regard, the second partitioning level is a set of aggregations of IRIS zones that is consistent 

with the requirement of the mobility service operations.  

Therefore, in practice, we want to aggregate the IRIS zones based on the spatial information of 

the zones and some constraints on service time. In this regard, we performed the aggregation 

of the zones to have a new set of zones with an average travel time of 5 to 10 minutes in each 

zone. This time threshold is considered a requirement of the mobility service operations as the 

zones’ sizes are meaningful in terms of mobility service operations, and the service providers 

can manage the drivers in that zone to reach the passengers within an acceptable time interval. 

In Appendix A, you can find the details on how we performed the aggregation of the IRIS 

zones. The new zones divide the area of interest into 139 regions. Figures 5 and 6 illustrate the 

spatial distributions and histograms associated with the average demand per quarter-hour for 

all the old zones (the predefined IRIS zones) and new zones (the aggregated zones) in January 

2021. These results were obtained via the Be-Mobile group's floating car dataset. Due to the 

aggregation, the number of demands has increased in the new zones compared to the old zones 

(see Figures 5 and 6).  
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Old Zones New Zones 

Fig. 5. The spatial distribution of the average demand per quarter-hour for the old and new zones in 

January 2021 

 

 

 
Fig. 6. The histograms of the demand per quarter-hour for the old and new zones in January 2021 

 

3.3. Experimental setup 

The LSTM approach can theoretically be trained with arbitrary sequence lengths. In the current 

research, the time-step length was assumed to be equal to two values, a quarter-hour and an 

hour, and the training data length was three weeks. Therefore, considering a quarter-hour and 

an hour as the time-step lengths, the length of the training sets 
Train

N  (the number of timeslots 

in the training data sets) were 37244 and 3724, respectively (i.e., for a quarter-hour and 

an hour as the time-step lengths, the time series belonging to each zone includes 2016 and 504 

samples on the time axis, respectively). On the other hand, the length of the validation data set 

(i.e., the number of timeslots in the validation data set) belonging to each zone was considered 

to include 60 samples (i.e., the data in 15 and 60 hours after the training data were considered 

Old Zones New Zones 
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as the validation data sets for the time steps quarter-hour and one-hour, respectively). The rest 

of the data was assigned to the test dataset which contained 612 and 108 time-steps for quarter-

hour and one-hour time-step lengths, respectively (see Fig. 2).  

Therefore, based on the prepared data for the Lyon zones, experiments were conducted to 

predict the traffic demand using the proposed method. In the deep learning stage of the 

proposed approach, the hyperparameters associated with the LSTM network should be well-

designed since adjusting and optimizing these parameters can enhance the performance of the 

predictions. The most critical hyperparameters of the LSTM network are the number of hidden 

layers, the number of hidden units per layer, the initial learning rate, and the dropout rate. In 

the current study, for performing the initial predictions by means of the LSTM network, we 

used the following values for the hyperparameters (see Table 1). Herein, in order to have the 

best performance for the initial predictions, these hyperparameters have been tuned via the 

Bayesian optimization (Snoek et al., 2012) by using the validation part of the data. Bayesian 

optimization as a powerful strategy, which employs Bayes Theorem to lead the search to the 

minimum or maximum of an objective function, is usually employed by machine learning 

algorithms to tune the hyperparameters of a given model (e.g., see (Gelbart et al., 2014; Snoek 

et al., 2012)). 

Table 1 
The hyperparameters optimization required for the LSTM predictions 

Hidden layers Hidden units Initial learning rate Dropout rate 

1 200 0.005 0.2 

3.4. Performance metrics 

In the numerical experiments, we needed certain metrics to evaluate the proposed approach's 

performance. Such performance metrics have been introduced in the literature in order to 

measure the quality of the predictions obtained by different approaches. Herein, two widely 

used metrics, called Mean Absolute Percentage Error (MAPE) and Root Mean Square Error 

(RMSE), were used to evaluate the performance of the prediction approaches (Li et al., 2018, 

2019; Luo et al., 2021; Yin et al., 2021). For the zone 
i
z , these metrics are defined over the 

time range as follows: 

 
Time
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dz d
N 

    (17) 

where 
Time

N  is the number of the time slots at which the demand has been predicted, True

ij
d  is the 

true value of the demand in the zone i  at time-step 
j
t j t  , and ˆ

ij
d is the predicted demand. 

The Constant c  is a small number to avoid division by zero when both True

ij
d  and ˆ

ij
d  are zero 

(herein, it is considered that 1c  ). Similarly, for examining the prediction performance over 

the entire area of interest, these metrics can be evaluated over all the zones at a time step as 

follows: 
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where 
Zone

N  is the number of zones.  

In addition to the above-mentioned performance metrics, in the current research, we also 

defined another performance metric based on the absolute error, and we employed it in our 

case study. We call this performance metric Percentage of Success (PS) and present it in a 

tabular form. This metric can give us more details on errors occurring in each forecasted time 

series. In fact, the PS metric presents us with the percentage of success in predicting each time 

series for a specific time interval and error threshold. Hence, the PS metric is defined as 

follows: 

Definition 2 (Percentage of Success (PS)): For an error threshold 0   and a value 

[0,100]   called the percentage of accepted time intervals,  PS ,   as the Percentage of 

Success (PS) metric is defined by the percentage of the zones at which more than   percent of 

the time intervals have been accepted with the absolute error less than  . In other words, the 

PS metric is defined as follows: 

   ,PS ,     100
zone

N

N

       (20) 

where 
zones

N  is the number of zones and 
,

N
 

 is the number of zones at which the percentage of 

accepted time intervals are more than  . Each time interval and its associated predicted 
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demand is considered to be accepted if the absolute error of the predicted demand is less 

than  . So, the number 
,

N
 

 can be counted via the following formula: 

  
Zones

,
1 1

100
   

Time
N N

ij

i j
Time

N H H
N

 
 

 

       
     (21) 

where 
ij

  is the absolute error of the predicted demand of the th

i  zone (
i
z ) at the th

j  time slot 

(
j
t ) (i.e., Trueˆ

ij ij ij
dd  ), 

Time
N is the number of the time slots at which the demand has been 

predicted, and    : 0,1H x   is a Heaviside step function (a unit step function) defined as 

follows: 

  
1 0

0 0

x
H x

x

   
  (22) 

3.5. Experiments and results 

In this section, we compared our approach's final predictions with predictions of the initial 

LSTM and initial hierarchical reconciliation approaches. At first, this section tries to 

demonstrate the impact of considering the external features of time (time-of-day and day-of-

week) as another input of the LSTM network (in addition to historical demands) on the 

predictions of travel demand. Then it presents us with the numerical validations of the proposed 

approach. Fig. 7 illustrates the average RMSE of forecasts in different zones against the time 

(see Eq.(19)), produced by two LSTM approaches 1) the LSTM network that only uses the 

historical demand (called Initial LSTM) and 2) the LSTM network that uses both the historical 

demand and the external features of time (called LSTM Considering Time). The presumed 

IRIS zones and the aggregated zones were considered as old and new zones, respectively. 

Furthermore, the results were provided by the two values of the time step, fifteen minutes (see 

Fig. 7 (a) and (b)) and an hour (see Fig. 7 (c) and (d)). 

As seen in Fig. 7, for the time resolution (time-step length) of fifteen minutes, the LSTM 

considering the external features of time as an additional input could outperform the initial 

LSTM considering only the historical demand, with the 37.78% and 34.9% improvement in 

the mean value of the RMSE for the old and new zones, respectively. In addition, for the time 

resolution (time-step length) equal to one hour, such improvement in the mean value of RMSE 

was 27.39% and 17.39% for the old and new zones, respectively.  
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Similarly, Fig. 8 illustrates the comparison in terms of the MAPE performance metric (see 

Eq.(18)). As shown in Fig. 8, the LSTM network considering the time as a supplementary input 

could also enhance the MAPE performance metric. We can see that the LSTM approach 

considering the time as another input could respectively improve the MAPE of the old and new 

zones by more than 14% and 20% when the time resolution was 15 minutes and could enhance 

their MAPE performance metrics by more than 11% and 18% when the time resolution was 

equal to one hour. 

Old Zones New Zones 

   

Fig. 7. The RMSE performance comparison of two LSTM networks: the comparison between the 

initial LSTM, which considers only the historical demand, with the LSTM that considers both the 

historical demand and the external features of time (time-of-day and day-of-week) for the IRIS zones 

as old zones, and the aggregated zones as new zones, with the time resolutions of 15 minutes (a and 

b), and an hour (c and d) 
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Old Zones New Zones 

   

Fig. 8. The MAPE performance comparison of two LSTM networks: the comparison between the 

initial LSTM, which considers only the historical demand, with the LSTM that considers both the 

historical demand and the external features of time (time-of-day and day-of-week) for the IRIS zones 

as old zones, and the aggregated zones as new zones, with the time resolutions of 15 minutes (a and 

b), and an hour (c and d) 

 

Then, to investigate the effectiveness of using both the hierarchical reconciliation and filtering 

parts of the proposed method, we compared the results of predictions obtained by the proposed 

method with the initial predictions provided by the LSTM using both the historical demand 

and the external features of time. As shown in Figures 9 and 10, the proposed method could 

outperform the initial forecasts of the LSTM that even used both the historical demand and the 

external features of time, in terms of both RMSE and MAPE metrics for both time resolutions, 
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fifteen minutes and one hour. The improvement value of the proposed method, which is based 

on the mean value of the metrics calculated within the prediction interval, is mentioned in each 

figure, and such enhancement in the results can numerically demonstrate the importance of 

reconciliation and filtering in the proposed approach. 

 

Old Zones New Zones 

   

Fig. 9. The comparison of the RMSE performance metric of the proposed method and the LSTM 

considering the historical demand and the external features of time (time-of-day and day-of-week) for 

the IRIS zones (old zones) and aggregated zones (new zones) with the time resolution of fifteen 

minutes (Figures a and b) and an hour (Figures c and d) 
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Old Zones New Zones 

   

Fig. 10. The comparison of the MAPE performance of the proposed method and the LSTM 

considering the historical demand and the external features of time (time-of-day and day-of-week) for 

the IRIS zones (old zones) and aggregated zones (new zones) with the time resolution of fifteen 

minutes (Figures a and b) and an hour (Figures c and d) 

To assess the necessity of the optimal reconciliation, we compared the proposed method with 

the Bottom-Up approach applied to the demand predictions of old zones obtained by the LSTM 

that considers the historical demand, as well as the external features of time, to produce the 

demand predictions of the aggregated zones (new zones). Although the external features of 

time were also considered in the Bottom-Up approach, the results indicated that the proposed 

method accompanying the optimal reconciliation could outperform the Bottom-Up approach 

in predicting the demands of new zones (see Table 2 and Fig. B.1). By comparing the equations 
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of the Bottom-Up approach with the ones of the optimal reconciliation, we can easily realize 

that the equations of the optimal reconciliation are the generalized form of the ones of the 

Bottom-Up approach, which can enable us to seek the optimal solutions in a larger space by 

means of all the initial demands, while the Bottom-Up approach looks for the solutions of the 

top level just within the Bottom level without using any information of the other levels. 

As we mentioned before, the weight matrix is needed to optimally reconcile the demands in all 

the zones. If we suppose that the weight matrix is equal to an identity matrix (I), such a case of 

the problem can be referred to as an Ordinary Least Square (OLS) when there exist no weights 

between the observations. Applying this approach is straightforward and fast but considers 

neither the statistical correlations between the time series nor their accurate uncertainties. 

 Table 2 shows the results of the proposed method in comparison with the results of ordinary 

least square hierarchical reconciliation (called LSTM+HR_OLS) in terms of the RMSE and 

MAPE (see also Figures B.2 and B.3). As we can see in this table (as well as the mentioned 

figures), the proposed method could make more accurate predictions. Regarding the RMSE, 

the average performance of the forecasts by the time step of fifteen minutes has improved by 

10.94% and 10.05% for the old and new zones, respectively. By the time step of one hour, the 

improvement is equal to 9.65% for the old zones and 8.92% for the new zones (see Table 2 and 

Fig. B.2).  

Regarding the MAPE, the average performance of the demands forecasted via the proposed 

method for fifteen minutes time resolution compared with OLS hierarchical reconciliation has 

improved by 12.58% and 14.83% for old and new zones, respectively. In addition, the 

improvement for one-hour time resolution is 14.44% for old zones and 10.76% for new zones 

(see Table 2 and Fig. B.3). 

Table 2 
The percentage of improvement in the performance metrics’ mean value of the proposed approach in 
comparison with the other approaches  
 

 Old Zones New Zones 
 15 minutes  One hour 15 minutes One hour 

 RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE 

Bottom-Up - - - - 12.61 17.92 10.45 13.26 
LSTM+HR_OLS 10.94 12.58 9.65 14.44 10.05 14.83 8.92 10.76 
LSTM+HR_WLS 11.23 12.68 9.11 14.2 8.29 13.22 6.54 9.57 
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Considering the weight matrix as Eq.(11), the approach can be referred to as Weighted Least 

Square (WLS). To investigate the effectiveness of the filtering part of the proposed approach, 

we compared the demand forecasts of the proposed method with the ones obtained just by 

applying the WLS hierarchical reconciliation to the LSTM initial predictions (without applying 

the filtering stage to them), considering the historical demand and the external features of time 

(called LSTM+HR_WLS). As in Table 2 (as well as Figures B.4 and B.5), the filtering part of 

the proposed approach could enhance the results and cause certain improvements in the average 

RMSE and MAPE of old and new zones. 

Finally, based on the Percentage of Success (PS) metric (see Definition 2), we could perform 

another comparison between the performance of the proposed approach, the Initial LSTM, and 

the LSTM Considering Time. 

Tables 3, 4, and 5 present the Percentage of Success (PS) for the proposed method and the two 

cases of the LSTM. In the first case, just the historical demand has been considered as the input 

of the LSTM network for forecasting the demands, and in the second case, both the historical 

demand and the external features of time (time-of-day and day-of-week) have been adopted as 

the input. As seen in these tables, the Percentage of Success has been computed for four values 

of the error threshold   (2, 4, 6, and 8 demands) and three values of  , the percentage of 

accepted time intervals (50%, 70%, and 90%). Moreover, all the PS values have been evaluated 

for the two values of the time step length (the time resolution), i.e., fifteen minutes and one 

hour. Accordingly, by comparing the table associated with the proposed method with the ones 

of the LSTM, we can easily see that for all the values of the error threshold   and percentage 

Table 3 
The performance of initial LSTM considering the historical demand in terms of Percentage of Success for IRIS 
zones (old zones) and aggregated zones (new zones) with time resolutions of fifteen minutes and one hour (%) 
 

 Percentage of Success (PS) [%] 
  Old Zones New Zones 

   Error <= 2 
demands 

Error <= 4 
demands 

Error <= 6 
demands 

Error <= 8 
demands 

Error <= 2 
demands 

Error <= 4 
demands 

Error <= 6 
demands 

Error <= 8 
demands 

15 
minutes 

90% < AIs 86 95 97 98 38 65 75 86 
70% < AIs 95 98 99 99 64 83 96 96 
50% < AIs 97 99 99 100 82 96 97 99 

 90% < AIs 63 84 92 95 17 38 56 63 
1 hour 70% < AIs 87 95 97 99 41 62 78 90 

 50% < AIs 95 99 99 100 64 88 95 99 
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of accepted intervals (called AIs)  , the proposed approach possesses the highest values 

of the Percentage of Success among the two cases of the LSTM approach. In addition, the 

comparison of Tables 3 and 4 shows the impact of considering the external features of time. 

As seen in these tables, regarding the PS metric, the LSTM considering the external features 

of time as an additional input could outperform the initial LSTM considering only the historical 

demand. 

 

 

 

 

 

Table 4 
The performance of the LSTM considering the historical demand and the external features of time (time-of-day 
and day-of-week) in terms of Percentage of Success for IRIS zones (old zones) and aggregated zones (new zones) 
with time resolutions of fifteen minutes and one hour (%) 
 

 Percentage of Success (PS) [%] 
  Old Zones New Zones 

   Error <= 2 
demands 

Error <= 4 
demands 

Error <= 6 
demands 

Error <= 8 
demands 

Error <= 2 
demands 

Error <= 4 
demands 

Error <= 6 
demands 

Error <= 8 
demands 

15 
minutes 

90% < AIs 89 96 99 99 42 67 91 95 
70% < AIs 97 99 100 100 69 94 99 99 
50% < AIs 99 100 100 100 93 99 100 100 

 90% < AIs 67 88 94 97 20 42 61 67 
1 hour 70% < AIs 90 97 99 100 47 70 91 96 

 50% < AIs 97 99 100 100 66 96 99 99 

Table 5 
The performance of the proposed method in terms of Percentage of Success for IRIS zones (old zones) and 
aggregated zones (new zones) with time resolutions of fifteen minutes and one hour (%) 
 

 Percentage of Success (PS) [%] 
  Old Zones New Zones 

   Error <= 2 
demands 

Error <= 4 
demands 

Error <= 6 
demands 

Error <= 8 
demands 

Error <= 2 
demands 

Error <= 4 
demands 

Error <= 6 
demands 

Error <= 8 
demands 

15 
minutes 

90% < AIs 92 98 99 99 51 83 93 96 
70% < AIs 98 99 100 100 80 96 99 100 
50% < AIs 99 100 100 100 94 99 100 100 

 90% < AIs 72 91 96 98 22 49 64 78 
1 hour 70% < AIs 91 98 99 100 52 80 95 98 

 50% < AIs 98 100 100 100 75 97 99 100 
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4. Conclusions 

In this research, an efficient method for traffic demand forecasting was developed via deep 

learning and hierarchical reconciliation approaches. Herein, we founded the required concepts 

and theories on Hierarchical Time Series (HTS), where we also employed Long Short-term 

Memory (LSTM) for the deep learning and initial forecasting of the associated time series. The 

proper design of the HTS structure enables the proposed approach to present coherent forecasts 

for the demand over predefined zones and aggregated zones for the purposes of mobility 

service operations. Also, deep learning enables the HTS structure to provide reliable 

predictions of the demands. Therefore, the approach propounded by the current research is 

based on three main stages: 1) deep learning, 2) error analysis, and 3) optimal reconciliation, 

where the error analysis step makes a connection between the first and last steps (deep learning 

and optimal reconciliation).  

Based on the presented theories and concepts (see Section 2), the initial forecasts obtained by 

the LSTM are not ready to be directly used by the optimal reconciliation step. Thus, the error 

analysis prepares the initial predictions to be converted to the final forecasts via optimal 

reconciliation. The error analysis controls the remaining errors of the initial prediction attained 

via the LSTM deep learning and prevents their time series from diverging via a filtering 

method. Also, the error analysis finally provides the weight matrix essentially required by the 

optimal reconciliation. Such abilities of the error analysis stage can also enable the proposed 

method to employ other deep learning methods for initially forecasting the demand, where the 

error analysis step can analyze, monitor, and prepare the initial forecasts for the hierarchical 

reconciliation.  

Meanwhile, in this research, concerning the requirements of the demand prediction, we needed 

to aggregate the zones before performing any numerical experiments. Hence, we also proposed 

a method for aggregating the zones in an area based on the least square method. Herein, we 

had a predefined set of IRIS zones, and based on the spatial information of such IRIS zones 

and temporal thresholds, we carried out the aggregation to obtain a new set of zones with an 

average travel time between 5 to 10 minutes in each zone. The procedures and concepts of this 

approach are presented in Section 3 in detail. It is worth mentioning that our proposed approach 

is flexible concerning spatial zoning.  

Furthermore, to examine the proposed approach's abilities and performance, we also conducted 

various numerical experiments and comparisons. Thus, since the proposed approach was 
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founded on its above-mentioned main stages, we tried to assess the proposed method at each 

stage and numerically examine the necessity of each step. For this purpose, the LSTM approach 

was considered as the base approach for initially forecasting the demands. Then we 

investigated how each step of the proposed approach can enhance the initial predictions of the 

LSTM. In the numerical experiments, different performance metrics have been used to 

compare the approaches and assess the proposed method's efficiency. Also, this research 

introduced a performance metric called Percentage of Success (PS) for evaluating the abilities 

of the methods in predicting the demands. The proposed method could surpass different cases 

of the LSTM approach and present the best performance metrics in all the comparisons. For 

instance, according to the defined performance metric PS, the percentage of success for the 

proposed approach could gain the highest values in all the cases of the numerical experiments 

compared with the LSTM approach. 

 

Appendix A. Details on the aggregation of zones 

For clustering and aggregating the IRIS zones into ones with the same travel time (here, 5 to 

10 minutes in each zone), we needed to analyze and look at travel speed data for the area of 

interest. Fig. A.1 shows the distribution of the speed in the city of Lyon as the desired area, 

extracted from the road network of the floating car dataset introduced in Section 3.1. This speed 

is the average speed in a non-congested situation, in other words, the free-flow speed. 

According to this data, the average speed in the desired area was around 50 km/h, and the travel 

distance in 5 minutes was averagely around 4 km. Moreover, this figure illustrates the 

smoothed values of the speed over the region, where the speed was smoothed by a moving 

average with a window size equal to 4 km. 

In this step, we aimed to precisely convert the regular mesh into a deformed one to have the 

same travel time for each mesh element. For this purpose, first, we produced a dense uniform 

grid (a 0.5 0.5km km regular grid) over the area, and then we sought to find the travel time 

between all the gridded points. If we could find the travel time between these dense gridded 

points, we could form the time domain at which the distance between each pair of points 

represents the travel time between them. 
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Fig. A.1. a) the raw data of the speed over the interest area, extracted from the road network of the 
floating car dataset, and b) the speed distribution smoothed by a moving average with a 4km window 

over the Lyon region 

 

In addition, Fig. A.2 shows a 4 4km km regular mesh over the IRIS zones, demonstrating how 

the travel time at each square (element) of the mesh depends on the speed distribution. 

 

 

Fig. A.2. a) the spatial distribution of speed over the region and a 4 4km km regular mesh over the 
IRIS zones: we can see in this figure that the travel time at each square (element) of the mesh depends 

on the speed distribution 
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Definition 3 (Time domain): herein, a 2D Euclidean space such as  2( , )x y     is called a 

time domain where the coordinate difference between each pair of points ( , )x y    indicates 

the travel time between those two points, and at which the coordinate differences x   and 

y   indicate the travel time in the directions of spatial domain x  and y , respectively. 

Thus, in the spatial domain where the dense grid points form a regular uniform grid, we have 

( 1)ij i j
x x d


   and 

( 1)ij i j
y y d


   where 0.5d km , and  ( , )

ij ij
x y  are the known locations of 

the dense grid points in the spatial domain.  

On the other hand, we have the following equations between the unknown locations of the 

points in the time domain, where the distance between each pair of neighboring points indicates 

the travel time between them. Herein, the velocity information obtained from the road network 

of the floating car dataset in the Lyon region was used for forming the following equations 

between each point and its neighboring points. In the following equation, we see that the travel 

time 
ij
t  between two neighbouring points with indices ij  and ( 1)i j  can be estimated by 

the known value of the speed 
ij
v  at the point ( , )

ij ij
x y , where /

ij ij
t d v  . Therefore, we have:  

 ( 1)

( 1)

/

/
ij i j ij ij

ij i j ij ij

x x t d v

y y t d v





            
  (23) 

where  ( , )
ij ij
x y   will be the new locations of the dense grid points in the time domain. For 

finding the new locations of the points in the time domain, we formed the above equation (i.e., 

Eq.(23)) between each point of the grid and its neighbors, and consequently, a big linear 

equation could be formed for all the points of the dense grid. Then we could solve this linear 

equation and find the unknown coordinates  ( , )
ij ij
x y   via the minimum norm solutions of the 

linear equation obtained by Eq.(23).  

Fig. A.3 (a) illustrates the dense grid points in the spatial domain, and similarly, Fig. A.3 (b) 

illustrates these points in the time domain where the distance between the grid points is equal 

to the travel time between them, and their new locations in this time domain were obtained via 

Eq.(23). In this figure, we can easily see that the uniform grid in the spatial domain (Fig. A.3 

(a)) experienced a deformation in the time domain (Fig. A.3 (b)), which means that the speed 

distribution has influenced the locations in the time domain. Besides, we can consider the new 

locations of these dense grid points as reference points that can assign the new coordinate 

( , )x y   of the time domain to each point of the spatial domain ( , )x y . Based on such new 
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coordinates of the reference points in the time domain, we could also achieve the new locations 

of the zones in the time domain. For this purpose, we just considered the zones' middle points 

as the zones' representatives. Then the following equation could present us with the new 

locations of the zones in the time domain, where the proximity and remoteness of the zones are 

identified by the travel time between them. 

 
( ) /

( ) /
n n

n n

z ij z ij ij

z ij z ij ij

x x x x v

y y y y v

          
  (24) 

where ( , )
n n
z z
x y  and ( , )

n n
z z
x y   are the coordinates of the middle point of the zone 

n
z  in the spatial 

and time domain, respectively. Similarly, ( , )
ij ij
x y  and ( , )

ij ij
x y   are respectively the known and 

estimated coordinates of a grid point situated in the vicinity of the middle point of the zone 
n
z

. Also, 
ij
v  is the travel speed at the point ( , )

ij ij
x y . Accordingly, Fig. A.4 shows the new locations 

of the middle points of the IRIS zones in the time domain. In this figure, we can easily identify 

which zones are closer to each other in terms of travel time. 

Then in the time domain, we produced another mesh at which the size of elements (square) 

was 5min 5min , and based on such a mesh in the time domain, we could perform the 

clustering and aggregation of the zones. All zones, whose middle points were located in the 

same t5min 5min elemen  , are aggregated with each other and constitute a new zone (see 

Fig. A.4). 

 

 
 

 

 

Fig. A.3. a) the dense grid points in the spatial domain, defined over the IRIS zones in the Lyon 
region: these points were defined for relating the spatial domain to the time domain, and b) the time 
domain where the dense grid points were deformed to obey the travel times and the proximity and 

remoteness of the points are because of the travel time between them 
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Fig. A.4. the zones in the time domain: the red grid lines constitute a 5min5min mesh in the time 

domain, where zones situated in each 5min5min element (square) form an aggregated zone [unit: s]  
 

Moreover, using the reference points (i.e., via the known locations of the dense grid points in 

both the spatial and time domains), we were also able to transfer the uniform 5min 5min  

mesh grid of the time domain to the spatial domain. In Fig. A.5, the deformed mesh grid shows 

the transferred 5min 5min  mesh grid of the time domain. In this figure, we can clearly see 

how the 5min 5min  mesh grid coincides with the spatial distribution of the speed. We also 

see how the 5min 5min -mesh elements shrink in low-speed regions and, on the other hand, 

how they expand in high-speed areas. 

 
Fig. A.5. the deformed 5min5min-mesh over the Lyon region (the travel time in a deformed element 

(deformed square) is 5min in each direction): we can see the element size conforms with the speed 
distribution where the elements shrink and expand in low-speed and high-speed areas, respectively 

 
Accordingly, Fig. A.6 presents us with the new aggregated zones. In this figure, each new 

aggregated zone is obtained by merging the old zones (the predefined IRIS zones), whose 

middle points are situated in the same 5min 5min -mesh element. Furthermore, Fig. A.7 

 

5 min 

 5 min 
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illustrates the distribution of the average speed and travel time in the new zones, which 

indicates that the travel time within the new zones is around 6 minutes, and it is averagely 

between 2 and 10 minutes for all the new zones.   

 

 
Fig. A.6. The new zones obtained by the aggregation of the IRIS zones (old zones)  

 

 

 

Fig. A.7. The average speed and travel time in the new zones 

 

Appendix B. Plots 

Herein, Fig. B.1 illustrates the comparison of the performance of the proposed method and the 

Bottom-Up approach considering the historical demand and the external features of time (in 

terms of RMSE and MAPE performance metrics). The LSTM considering the historical 

demand and the external features of time in combination with ordinary least square hierarchical 

reconciliation (LSTM+HR_OLS) and the proposed method are compared in Figures B.2 and 
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B.3. Finally, we can see the comparison of the LSTM considering the historical demand and 

the external features of time in combination with weighted least square hierarchical 

reconciliation (LSTM+HR_WLS) and the proposed method in Figures B.4 and B.5. The results 

are shown for IRIS zones (old zones) and aggregated zones (new zones) with time resolutions 

of fifteen minutes and one hour. 

 

RMSE MAPE 

   

Fig. B.1. The comparison of the RMSE performance of the proposed method and Bottom-Up 

approach considering the historical demand and the external features of time (time-of-day and day-of-

week) for the aggregated zones (new zones) with time resolutions of fifteen minutes (Figures a and b) 

and an hour (Figures c and d) 
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Old Zones New Zones 

   

Fig. B.2. The comparison of the performance of the proposed method and the LSTM considering the 

historical demand and the external features of time (time-of-day and day-of-week) in combination 

with ordinary least square hierarchical reconciliation (LSTM+HR_OLS) in terms of RMSE 

performance metric for IRIS zones (old zones) and aggregated zones (new zones) with time 

resolutions of fifteen minutes (Figures a and b) and an hour (Figures c and d) 
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Old Zones New Zones 

   

Fig. B.3. The comparison of the performance of the proposed method and the LSTM considering the 

historical demand and the external features of time (time-of-day and day-of-week) in combination 

with ordinary least square hierarchical reconciliation (HR_OLS) in terms of MAPE performance 

metric for IRIS zones (old zones) and aggregated zones (new zones) with time resolutions of fifteen 

minutes (Figures a and b) and an hour (Figures c and d) 
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Old Zones New Zones 

   

Fig. B.4. The comparison of the performance of the proposed method and the LSTM considering the 

historical demand and the external features of time (time-of-day and day-of-week) in combination 

with weighted least square hierarchical reconciliation (HR_WLS) in terms of RMSE performance 

metric for IRIS zones (old zones) and aggregated zones (new zones) with time resolutions of fifteen 

minutes (Figures a and b) and an hour (Figures c and d) 
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Old Zones New Zones 

   

Fig. B.5. The comparison of the performance of the proposed method and the LSTM considering the 

historical demand and the external features of time (time-of-day and day-of-week) in combination 

with weighted least square hierarchical reconciliation (HR_WLS) in terms of MAPE performance 

metric for IRIS zones (old zones) and aggregated zones (new zones) with time resolutions of fifteen 

minutes (Figures a and b) and an hour (Figures c and d) 
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