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Abstract

Traffic management strategies contribute to alleviating urban traffic congestion by improving the efficiency

of urban road networks. Network traffic flow models are vital to improving the effectiveness of traffic

management strategies by estimating traffic states and describing traffic dynamics. Despite having robust

theoretical foundations, existing network traffic flow models struggle to model complex and dynamic real-

world traffic data - especially the variance and heterogeneity in large-scale urban networks. These challenges

arise from both the inherent dynamics of traffic flows and external factors such as changes in travel demand

and traffic control. Many studies used machine learning (ML) methods to estimate traffic states with high

accuracy, but ML methods have limited interpretations since the relationship between the variables is not

explicitly visible. To ease these limitations, we propose a hybrid physics-informed machine learning model

with a generalized bathtub model (PIML-GBM), which leverages the interpretability of physical models

and ML methods for their powerful modeling ability. This study tests the proposed PIML-GBM on mobile

location data and a large-scale road network in Indianapolis, United States. The experimental results show

that the proposed PIML-GBM model has superior accuracy and interpretability in estimating traffic state

over existing algorithms.

Keywords: Network Traffic Flow Model, Physics-Informed Machine Learning, Generalized Bathtub

Model, Large-Scale Urban Network, Mobile Location Data

1. Introduction1

Urban traffic congestion occurs due to limited road network supply (such as capacity and the number of2

lanes) and spatio-temporal variations of travel demand. Urban congestion causes travel time losses, traffic3

accidents, and wasted fuel leading to severe air pollution [1]. From 2000 to 2019, the yearly delay time per4

auto commuter increased by about 42% (from 38 to 54 hours), the wasted fuel per auto commuter increased5

by about 47% (from 15 to 22 gallons), and the national congestion cost increased by 2.46 times (from $ 776
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to $ 190 billion) in the United States [2]. In the short term, constructing new infrastructure and extensions7

to existing infrastructure may not be optimal solutions to reduce congestion due to the tremendous cost8

and growth in travel demand induced by increasing road capacity. The efficient way to alleviate traffic9

congestion is to make better use of existing road capacity and improve the efficiency of large urban road10

networks through various traffic management strategies. The first step for developing these management11

strategies is to accurately describe the traffic states (i.e., traffic speed, density, and flow) and identify their12

relationships with travel demand in urban areas.13

1.1. Network Traffic Dynamics Models14

Network-level traffic models have been studied and advanced significantly after the macroscopic fun-15

damental diagram (MFD) was experimentally proven in urban areas using loop detector data (LDD) and16

microsimulation [3, 4]. The MFD describes the stable relationship between average travel speed and average17

vehicle density in homogeneous urban areas [5, 6]. Daganzo (2007) proposed the equilibrium condition of the18

road network as an ordinary differential equation (ODE) to approximate traffic dynamics [7], as shown in19

Figure 1. The proposed accumulation-based model described a road network as a single reservoir system of20

traffic flows based on MFD: dn(t)
dt = f(t)−G(n(t)), where n(t) is the number of vehicles in the road network,21

f(t) is the inflow rate, and G(n(t)) is the outflow rate at time t. In the accumulation-based model, the out-22

flow rate is derived from the travel production P (n(t)) over the average trip length L (i.e., G(n(t)) = P (n(t))
L ).23

For calculating the travel production P (n(t)), the average travel speed v(t) is calculated from the stable rela-24

tionship between the average travel speed and average vehicle density of the MFD. The accumulation-based25

model has been developed into multiple reservoir systems by various researchers [8, 9, 10, 11].

Figure 1: Timeline of Traffic Dynamics Models

26

Though the accumulation-based model scales down the complexity of traffic models by aggregating27

individual road segments, it has four drawbacks that undermine its accuracy in expressing heterogeneous28

traffic dynamics [12]. First, the assumption that all vehicles have constant trip length is not likely to be29

reasonably practical, curtailing the accuracy of the accumulation-based model in depicting traffic dynamics.30

In the real world, trip lengths are sensitive to the OD (i.e., origin-destination) matrix and traffic conditions31

(1st drawback) [13]. Second, there is no sufficient explanation for how far the trip lengths of vehicles have32

progressed (i.e., there is no space dimension) [14]. Mariotte et al. (2017) found that the absence of space33
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dimension caused inaccuracy of travel time evolution when there was a sudden change in demand (2nd34

drawback) [15]. Lastly, Geroliminis and Sun (2011) demonstrated the third and fourth limitations of lower35

accuracy in heterogeneous traffic dynamics: the different degrees of spatial heterogeneity in vehicle density36

during the onset and offset of the peak period (3rd drawback), and the synchronized occurrence of transient37

periods and capacity drop in the offset of congestion (4th drawback) [16].38

For relaxing the assumption of constant trip length, previous studies proposed the trip-based model,39

which assumes that each vehicle i has its trip length Li by accumulating the mean speed obtained from the40

MFD while it exists in the road network [15, 17], as shown in Figure 1. Lamotte et al. (2018) proposed the41

M-model, a hybrid model between accumulation-based and trip-based models to incorporate the remaining42

distance into traffic dynamics models [18]. The M-model described variations in the remaining distance to be43

traveled into the average remaining distance. These studies relaxed the assumption of constant trip length44

in accumulation-based models and were tested in either discrete time-based or event-based simulations, not45

real road networks [15, 17, 18, 19].46

The bathtub model, proposed in 1991 but published in 2020 by Vickrey (2020), is another approach47

to describing traffic dynamics in road networks by extending a single bottleneck model to a network-wide48

traffic model [20], as shown in Figure 1. In the bathtub model, the process of trips entering (leaving) the49

traffic network in urban areas is similar to the inflow (outflow) of water into (out of) a bathtub where50

vehicle density would correspond to the level of water in the bathtub [21]. Since the process of the bathtub51

model is similar to that of the accumulation-based model, the bathtub model has similar assumptions of the52

accumulation-based model: conservation of the number of trips, the network-level speed-density relation,53

and homogeneously distributed congestion. Arnott and Buli (2018) developed a numerical algorithm for the54

solution of the departure-time user equilibrium, as the equilibrium solution of the bathtub model is generally55

analytically intractable [22]. This study demonstrated the traffic dynamics of active trips and travel times56

based on bathtub models under the assumption of constant trip length by delay-differential equations.57

For relaxing the strict assumption of constant trip length, Jin (2020) proposed the generalized bathtub58

model (GBM) in which the trip length distribution is not restricted to a specific distribution function59

[23], as shown in Figure 1. The GBM differs from the accumulation-based and bathtub models because60

it assumes that every vehicle has its individual assigned trip length by controlling its speed to the mean61

speed of the reservoir obtained from the speed-density relation, which is the same as the trip-based model.62

This assumption enables the GBM to describe flow evolution more accurately than accumulation-based and63

bathtub models when inflow is abruptly changed. GBM overcomes the limitations of the accumulation-based64

and bathtub models by modeling the number of vehicles with the information on the remaining trip length65

at all times under heterogeneous trip lengths.66

As bathtub, accumulation-based, and trip-based models can provide the number of vehicles (or traffic67

density) in road networks, traffic operators can elaborate congestion pricing policies, traffic signal controls,68

3



and other traffic management strategies based on GBM, which provides the number of trips with remaining69

trip lengths. Jin et al. (2021) proposed a modeling framework to describe trip dynamics and traffic con-70

gestion in shared mobility systems, as information on remaining distances based on GBM can improve fleet71

management for shared mobility systems [24]. Since several partial differential equations governed GBM72

over a time-distance domain (i.e., time is a time instance and distance is a remaining distance), K(t, x) is73

directly linked to the ”unloading process” of the network. GBM formulates a continuous system of traffic74

dynamics that can be easily discretized for any mesh. As the GBM also uses a stable relationship between75

traffic density and speed, the estimation of the relationship from MFD has a crucial impact on its perfor-76

mance in modeling traffic dynamics. The bathtub model and GBM have been implemented in hypothetical77

networks, not real networks. In this study, we use GBM as the traffic flow model to learn physics knowledge78

since GBM can model heterogeneous trips under a continuous system of traffic dynamics.79

1.2. Limitations of Network Traffic Dynamic Models80

Although existing models (i.e., GBM, bathtub, accumulation-based, trip-based models) have the ad-81

vantage of describing traffic dynamics under theoretically ideal conditions, they suffer from two critical82

challenges related to the variance of real traffic data and calibrations based on real data.83

First, existing models cannot capture the variance of traffic data. These variances come from the in-84

accuracy of data sources (e.g., loop detectors, floating cars, mobile phones), and the stochastic nature of85

traffic. After Geroliminis and Daganzo (2008) experimentally proved that there are relationships between86

variables in traffic state in urban areas with the homogeneity assumption [3], Buisson and Ladier (2009)87

empirically examined the effect of heterogeneity with LDD in Toulouse, France [25]. They showed that88

heterogeneous traffic flows influence the shape and scatter of MFD. Hence, existing models based on MFD89

are insufficient to provide rather accurate traffic state estimation results under real-world data. Knoop et90

al. (2015) proposed a generalized MFD to handle inhomogeneity caused by the variance of real traffic data,91

which is expressed as the standard deviation of densities in road networks [26]. However, this study was92

tested on a 4 x 4 toy network, not real road networks.93

Second, existing models have difficulty calibrating MFD’s parameters with real-world data. The cal-94

ibration of MFD requires significant observed traffic data, potentially requiring significant infrastructure95

installations (e.g., loop detectors) and maintenance costs for data collection. Existing simulation-based96

studies also require that the form and parameters of the speed-density relationship in the MFD to be97

specified [15, 17, 18, 19, 27, 28, 29].98

1.3. Machine Learning Models in Traffic Flow Modeling99

To enhance the accuracy of physical models in describing urban traffic, we introduce machine learning100

(ML) methods. ML methods do not require theoretically ideal assumptions or prior knowledge, and they can101
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directly estimate traffic states from massive traffic data [30]. Some examples of ML methods in transportation102

studies are k-nearest neighbor [31], convolutional neural networks [32, 33], long short-term memory [34],103

graph neural networks [35, 36], and reinforcement learning [37]. Compared to physical models, these ML104

methods can extract nuanced relationships between different traffic state variables considering the variance105

in traffic data. Moreover, the model training process is becoming more convenient with the advancement of106

powerful optimizers (e.g., Adam optimizer [38]).107

One disadvantage of ML methods is that they are developed as “black boxes” with limited interpretation108

because the relationship between input features and output labels is not explicitly visible. To overcome109

these limitations, Raissi et al. (2019) have pioneered the development of physics-informed machine learning110

(PIML), a methodological advancement that facilitates the integration of physical constraints into deep111

learning models, thus aligning the computational approach with established physical principles [39]. Recent112

works proposed PIML models in the transportation area, to harness the advantage of physical traffic models113

as interpretability and ML methods as their powerful modeling ability [40, 41, 42]. However, these models114

were applied only to road segments of highways, not to the road network in urban areas. An extension of115

the network traffic flow model is required to identify urban traffic congestion.116

1.4. Data for Modeling Traffic Dynamics117

In terms of data sources, most studies estimate the relationship between traffic state variables using118

LDD. However, these data collection techniques, including loop detector and camera, have some limitations,119

such as inaccuracy from the detector location [43], the enormous cost of installation, the long computation120

time for real-time estimation [44], and no trip information (e.g., origin, destination, trip length).121

Floating car data (FCD) providing vehicular trajectory data is an alternative to modeling traffic flows122

with trip information [5, 45]. However, the data sparsity of FCD makes it hard to generate the frequent123

trips made by travelers (e.g., residents). With big data analytics and advanced data collection techniques,124

location-based data (LBD) generated from mobile applications is increasingly available and treated as a125

beneficial data source [44, 46]. LBD has two powerful advantages overwhelming other data sources: com-126

prehensive coverage of the population in the urban network and highly variable sampling spatiotemporal127

interval [46]. Furthermore, the distinct characteristics of LBD render it particularly apt for implementing128

GBM, necessitating the distribution of trip length within the road network. Compared to traditional data129

sources such as LDD and FCD, LBD offers an enriched dataset through its superior coverage and adapt-130

ability, traits that are integral for GBM-based models. The capability of LBD to generate comprehensive131

trip-length distributions, combined with its adaptability to diverse spatiotemporal conditions, not only en-132

hances its applicability but also positions it as a leading data source in the field of contemporary traffic133

modeling.134
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1.5. Objectives and Contributions135

This study bridges the gap between network traffic flow models and ML methods by overcoming three136

challenges: (1) the stringent assumptions of physical models, for example, the stable speed-density relation-137

ship, (2) the absence of physical relationships between input and output variables in the training process of138

deep learning models, and (3) the limited applicability of traffic flow models that are tested in hypothetical139

scenarios instead of real large-scale urban networks.140

To achieve this, we propose a PIML model to describe the traffic dynamics for large-scale urban road141

networks with GBM (PIML-GBM). Specifically, we make the following contributions:142

• Estimating and predicting the number of trips with a remaining distance not smaller than x at time143

t (i.e., K(t, x)) using a deep neural network and boundary condition without explicit theoretical144

assumptions, which is regularized by physics knowledge145

• Quantifying the ability of PIML-GBM to capture the randomness and uncertainty of traffic dynamics146

more accurately from the neural network structure by comparing existing solution methods147

• Describing traffic dynamics over a continuous time-distance domain with boundary points of a dis-148

cretized time-distance domain by using the PIML-GBM149

• Implementing GBM to the real road network for estimating traffic states with mobile location-based150

data.151

The remainder of this paper is organized as follows. Section 2 describes the preliminaries of GBM (i.e.,152

definitions of variables and mathematical formulations). Section 3 formulates the framework of PIML-GBM.153

Section 4 describes details of the collected data, data processing procedure, and experiments of PIML-GBM.154

Section 5 presents a case study in the Indianapolis network to evaluate the proposed PIML-GBM and155

discusses the results. Lastly, Section 6 concludes our work and summarizes future research.156

2. Preliminaries157

We first introduce five types of variables and GBM used in this study, including assumptions and math-158

ematical formulations.159

2.1. Definitions of Variables160

There are five types of variables: supply variables (network variables), inflow variables, outflow variables,161

traffic state variables, and active trip variables [23].162
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2.1.1. Supply variables (network variables)163

We consider a road network as a single reservoir, not multiple reservoirs. Supply variables are related to164

the network structure and network speed-density relationship. The network’s total length of road segments165

is defined as Lnet and T denotes the total time step. Let T be a time horizon (i.e., T = [0, T ]). The network166

speed-density relationship follows MFD:167

v(t) = V (ρ(t)), (1)

where v(t) is the average speed of vehicles running on the road network at time t ∈ T, V (·) is the function of168

the density based on MFD, and ρ(t) is the average density per unit road length at time t. The corresponding169

average flow-density relationship can be described by:170

q(t) = ρ(t)v(t) = ρ(t)V (ρ(t)), (2)

where q(t) is the traffic flow at time t.171

2.1.2. Inflow variables (demand variables)172

Inflow variables are entering trip (in-flow) rates (i.e., f(t), F (t)) and distributions of entering trip distance173

(i.e., φ̃(t, x), Φ̃(t, x)). These variables represent the demand pattern of entering trips. We denote the entering174

trip rate at time t by f(t). The cumulative in-flow at t is defined as F (t), which is represented by:175

F (t) =

∫ t

0

f(s)ds. (3)

Let X be a spatial-distance domain (i.e., X = [0, Xmax]), where Xmax is the maximum of trip distance. We176

denote the probability density function of the entering trip’s distance, x ∈ X, at time t as φ̃(t, x) and the177

cumulative distribution function of the entering trips with distances not smaller than x at time t as Φ̃(t, x),178

which satisfy:179 ∫ ∞

0

φ̃(t, x)dx = 1, (4)

180

Φ̃(t, x) =

∫ ∞

x

φ̃(t, s)ds. (5)

Here, φ̃(t, x) ≥ 0, φ̃(t,∞) = 0, Φ̃(t, 0) = 1 and Φ̃(t,∞) = 0. The Φ̃ can be interpreted as the ratio of the181

number of vehicles entering the network at time t and having the travel distance larger than x over the182

number of vehicles entering the network at time t. We denote the average distance of the entering trips at183

time t by B̃(t), which satisfies:184

B̃(t) =

∫ ∞

0

xφ̃(t, x)dx. (6)

2.1.3. Traffic state variables185

Traffic state variables are the probability density function of the remaining trip distance x and the186

average distance of remaining trips of vehicles at time t in a road network. We denote the probability187
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density function of the remaining trip distance x at time t by φ(t, x), which satisfies:188 ∫ ∞

0

φ(t, x)dx = 1, (7)

where φ(t, x) ≥ 0 and φ(t,∞) = 0. Based on the definition of φ(t, x), we define the cumulative distribution189

function of the trips with remaining distances not smaller than x at time t as Φ(t, x), which satisfies:190

Φ(t, x) =

∫ ∞

x

φ(t, s)ds, (8)

where Φ(t, 0) = 1 and Φ(t,∞) = 0. Based on Equation 8, we have: φ(t, x) = −∂Φ(t,x)
∂x . Besides, the average191

distance of remaining trips of vehicles on the road at time t is denoted by B(t):192

B(t) =

∫ ∞

0

xφ(t, x)dx. (9)

2.1.4. Active trip variables193

Active trip variables are the number of active trips (i.e., λ(t)) and the density of active trips (i.e., ρ(t)).194

We denote the number of active trips (traveling vehicles) at time t by λ(t). Consequently, the density of195

vehicles per unit length of the road at time t equals ρ(t) = λ(t)
Lnet

. Based on λ(t) and φ(t, x), we know that196

the density of active trips with a remaining distance x at time t can be expressed as:197

k(t, x) = λ(t)φ(t, x). (10)

Since
∫∞
0

φ(t, x)dx = 1, we have
∫∞
0

k(t, x)dx =
∫∞
0

λ(t)φ(t, x)dx = λ(t). Finally, we define the number of198

trips with a remaining distance not smaller than x at time t by K(t, x):199

K(t, x) = λ(t)Φ(t, x). (11)

The variable K(t, x) is a major variable in the bathtub model. K(t, x) implies that there are exactly200

K(t, x) on-road vehicles having the remaining trip distance at least x at time t. Jin (2020) defined the main201

variable as the number of trips with a remaining distance not smaller than x at time t, K(t, x) [23]. If202

K(t, x) = n, it implies that the n-th longest active trip has a remaining distance of x at time t. K(t, x) can203

provide trip information on remaining trip distances in road networks. For example, there are 100 vehicles in204

a road network at time t (i.e., K(t, 0) = 100) and two cases: 1) half of the vehicles have remaining distances205

of at least 10 miles (i.e., Kcase1(t, 10) = 50) and 2) half of the vehicles have remaining distances of at least206

50 miles (i.e., Kcase2(t, 50) = 50 ≤ Kcase2(t, 10)). If the average speed is the same in two cases, traffic207

operators can predict that the first case (i.e., Kcase1(t, 10) = 50) will alleviate traffic congestion faster than208

the second case (i.e., Kcase2(t, 50) = 50). In summary, the comparison between the two examples illustrates209

the significant role of K(t, x) in determining future network states. The boundary condition between λ(t)210

and K(t, 0) is λ(t) = K(t, 0) because trips with negative distances are assumed to have exited the network211

(i.e., ρ(t) = λ(t)
Lnet

= K(t,0)
Lnet

).212
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2.1.5. Outflow variables213

Outflow variables are the outflow rate of exiting trips (i.e., g(t)) and cumulative outflow rate (i.e., G(t)).214

We can obtain the number of exiting trips from ∆t to t+∆t as follows:215

g(t)∆t =

∫ v(t)∆t

0

k(t, x)dx ≈ k(t, 0)v(t)∆t. (12)

Hence, the outflow rate of exiting trips and cumulative outflow at time t are defined by g(t) and G(t),216

respectively:217

g(t) = k(t, 0)v(t) = λ(t)φ(t, 0)v(t), (13)
218

G(t) =

∫ t

0

g(s)ds. (14)

The variable G(t) implies the total volume of outflow until time t.219

2.2. Generalized Bathtub Model220

GBM is a framework for modeling network traffic dynamics with general distributions of trip distances221

and also can track the evolution of traffic dynamics with remaining trip lengths from three conservation222

laws. GBM has the following assumptions similar to the accumulation-based model:223

• Assumption I: All running vehicles have the same average speed at time t224

• Assumption II: The distance distribution for entering trips is an arbitrary distribution225

• Assumption III: The speed-density relationship in the network follows the network fundamental dia-226

gram.227

Since Assumption III is based on MFD, GBM needs to estimate the speed-density relationship in the network.228

The governing equations of GBM demonstrate the traffic dynamic in road networks:229

N (K,Q; Λ) = 0, (15)

where the operatorN includes three conservation laws of GBM,K is the set ofK(t, x) (i.e., K = {K(t, x)| t ∈230

T and x ∈ X}), Q is the set of traffic variables related to entering trips (i.e., Q = {f(t), Φ̃(t, x) | t ∈ T and231

x ∈ X}), and Λ contains the parameters of GBM. Since the set of traffic variables related to entering trips232

Q is derived from real-world data, we obtain Q from mobile location data. GBM has three conservation233

laws [23]: conservation of total trip-miles, conservation of the total number of active trips, and conservation234

of the number of active trips with remaining distances not smaller than a specific value.235

The first conservation law is to conserve the total trip-miles. At the time t, the remaining trip-miles236

(i.e., λ(t)B(t)) are derived from the sum of the initial trip-miles (i.e., λ(0)B(0)), the trip-miles added until237

time t (i.e.,
∫ t

0
f(s)B̃(s)ds), and the trip-miles traveled until time t (i.e.,

∫ t

0
λ(s)v(s)ds):238

λ(0)B(0) +

∫ t

0

f(s)B̃(s)ds−
∫ t

0

λ(s)v(s)ds = λ(t)B(t). (16)
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Recall that λ(t), B(t), f(t), B̃(t), and v(t) denote the number of active trips (unit: trip), the average distance239

of remaining trips (unit: mile), entering trip rate (unit: trip/hour), the average distance of entering trips240

(unit: mile), and average speed of vehicles (unit: mile/hour), respectively.241

The second conservation law describes the relationship between variables of flows. To conserve the total242

number of active trips, the cumulative outflow until time t (i.e., G(t)) is obtained by subtracting the number243

of running vehicles at time t (i.e., λ(t)) from the sum of the number of initial running vehicles (i.e., λ(0))244

and the cumulative inflow until time t (i.e., F (t)) as follows:245

G(t) = λ(0) + F (t)− λ(t). (17)

To conserve the number of active trips with remaining distances not smaller than any value, Jin (2020)246

formulated the third conservation law in two versions [23]:247

(Continuous Version)
∂

∂t
K(t, x) = v(t)

∂

∂x
K(t, x) + f(t)Φ̃(t, x),

= V (
K(t, 0)

L
)
∂

∂x
K(t, x) + f(t)Φ̃(t, x),

(18)

248

(Discrete Version) K(t+∆t, x) = K(t, x+ v(t)∆t) + f(t)Φ̃(t, x)∆t, (19)

where ∆t is a small time interval. Recall that K(t, x), v(t), f(t), and Φ̃(t, x) are respectively the number of249

trips with remaining distance ≥ x at time t (unit: trip), the average speed of vehicles (unit: mile/hour),250

the entering trip rate (unit: trip/hour), and the ratio of entering trips with distances ≥ x (unit: 1). The251

third conservation law captures traffic dynamics with respect to time t and remaining distance x. Jin (2020)252

derived analytical solutions by using a continuous version of the third conservation law (i.e., Equation 18)253

[23]. However, Jin (2020) used a discrete version of the third conservation law (i.e., Equation 19) in a254

numerical experiment since derivatives of K(t, x) are challenging to be calculated [23]. In this study, we use255

the (continuous version) third conservation law (i.e., Equation 18) in the training of PIML-GBM since our256

PIML-GBM model can calculate the derivatives of K(t, x) from an automatic differentiation technique.257

3. Methodology258

We introduce the proposed PIML-GBM to model the traffic dynamics in large-scale urban networks.259

3.1. Problem statement260

We consider the estimation of the active trip variable in large-scale urban networks. In this study, the261

large-scale urban network corresponds to a homogeneous urban reservoir which is represented. We discretize262

a time-distance domain S into a discretized time-distance domain G = {(tkg , xk
g) | k = 1, ..., Ng} with the263

number of grid points Ng in time and distance, respectively (i.e., G ⊂ S). We can control a resolution level264

of G by setting the number of time grid Nt and distance grid Nd (i.e., Ng = Nt ×Nd). In a time-distance265
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domain S, there are two types of points: (1) observed boundary points O = {(tio, xi
o)|i = 1, ..., No} ⊂ G and266

(2) auxiliary points A = {(tja, xj
a)|j = 1, ..., Na} ⊂ S, where No is the number of observed boundary points267

and Na is the number of auxiliary points.268

The observed boundary points O, which constitute a subset of G, can be recorded from real-world data269

and then K(t, x) is known given ∀(x, t) ∈ O. Let Y = {K(tio, x
i
o)|i = 1, ..., No} be the ground-truth (or270

observed labels). The number of observed boundary points depends on the granularity of a discretized271

time-distance domain G (i.e., No = (Nt + Nx) × 2). Auxiliary points A are virtual points in a time-272

distance domain S and are unique to the framework of PIML. The auxiliary points represent unobserved273

data calculated by GBM. The proposed method can learn physics knowledge from the governing equations274

of the GBM on auxiliary points.275

Observed boundary points are directly compared to the estimated boundary points from our method276

(i.e., data loss) and auxiliary points are used in calculating the physics loss from GBM. The physics loss277

serves to reinforce the underlying governing principles of the GBM model during training neural networks.278

The number of auxiliary points depends on how much we want to learn physics knowledge. In setting the279

number of auxiliary points, there is a trade-off between the amount of knowledge obtained from physics and280

the learning speed. The more auxiliary points we set, the more information about physics that PIML can281

learn. In contrast, the fewer auxiliary points we set, the faster the learning algorithm completes (i.e., the282

lower the computational cost).283

This study has the same assumptions except for Assumption III of GBM as follows:284

• Assumption I: All running vehicles have the same speed at time t285

• Assumption II: The distance distribution for entering trips is a given empirical distribution.286

Since the proposed method directly uses the average speed from real-world data, it can relax Assumption287

III of GBM and thus the estimation of MFD is not required.288

Our research question is how to estimate and predict all values of the active trip variable over a contin-289

uous time-distance domain with a few boundary points and empirical trip length distribution. Estimating290

the active trip variable over a continuous time-distance space is the main challenge since calculating the291

derivatives of the governing equations is strenuous. This paper aims to investigate the performance of a292

machine learning model regularized by a physics-based model for estimating active trip variables over a293

continuous time-distance domain in large-scale urban networks. The main idea is to embed traffic dynamics294

into the machine learning model. We formulate and design the learning algorithm for the machine learning295

model with physics loss derived from the physics-based model.296

11



3.2. Framework of PIML-GBM297

PIML-GBM consists of two main parts: a multi-layer neural network (MNN) and physics-informed298

learning. MNN is parameterized by the network parameters w. The framework of our proposed PIML-299

GBM is graphically described in Figure 2.300

Figure 2: The Framework of Proposed PIML-GBM: (a) Input of the proposed PIML-GBM consists of observed points, auxiliary

points, ground-truth, and trip information. All input data except for auxiliary points A are obtained from real-world data.

(b) The part of training PIML-GBM consists of MNN, an automatic differentiation technique (i.e., PDE solving technique),

and a loss function. MNN estimates the traffic state variable given Otrain by using a fully-connected forward propaga-

tion neural network. We use the automatic differentiation with L-BFGS optimizer for calculating the derivative of residuals

f̂(t, x;w, vr(t), f(t), Φ̃(t, x)). Losses from data and physics information are calculated by Equations (20, 22, and 23).

The input data of PIML-GBM includes observed boundary points O, auxiliary points A, ground-truth301

Y, and trip information (i.e., vr(t), f(t), Φ̃(t, x)), as shown in Figure 2 (a). Input data except for auxiliary302

points are obtained from real-world data. In this study, we employ vr(t), representing the real average speed303

at time t within the road network, instead of v(t). The use of vr(t) offers a significant advantage, as it304

obviates the need for the calibration of the MFD. This simplification streamlines the modeling process and305

has the potential to improve the reliability and applicability of the PIML-GBM We denote the estimation306
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of K(t, x) from MNN as K̂(t, x;w), as shown in Figure 2 (b). In physics-informed learning, there are307

two components: the automatic differentiation technique from Tensorflow and the calculation of total loss.308

Automatic differentiation calculates gradients for minimizing total loss at each learning iteration. The total309

loss Lα is calculated from a weighted sum of data loss Ldata and physics loss Lphy. Data loss Ldata is a310

data discrepancy between the ground-truth K(t, x) and the estimation K̂(t, x;w). Physics loss Lphy to learn311

physics knowledge is a residual derived from the third conservation law (i.e., Equation 18) to train PIML-312

GBM. The physics-informed learning part calculates the total loss using the output of MNN K̂(t, x;w) as313

input. The physics learning part updates network parameters w to estimate K̂(t, x;w) as close as possible to314

the ground-truth K(t, x) when a residual would be closer to zero. The output of PIML-GBM is an optimal315

parameter set w∗ after the training process.316

The goal of PIML-GBM is to find the optimal parameter set w∗ given small samples of317

boundary observations for entering trips, which can estimate the number of active trips with318

remaining distances K(t, x) at any point in a continuous time-distance domain S. The framework319

of PIML-GBM consists of the training dataset, model architecture, and training algorithm.320

3.2.1. Training dataset for PIML-GBM321

The training dataset for PIML-GBM is composed of training points Otrain = {(tio, xi
o)|i = 1, ..., Ntrain},322

training labels Ytrain = {K(tio, x
i
o) | i = 1, ..., Ntrain}, auxiliary points A = {(tja, xj

a)|j = 1, ..., Na}, and323

trip information (i.e., vr(t), f(t), Φ̃(t, x)), as shown in Figure 2 (a). Before sampling the training dataset,324

we normalize all datasets for a stable training process by scaling between 0 and 1. We sample the observed325

boundary dataset (O,Y) into (Otrain,Ytrain) training points with a sample rate rtrain. Since the labels326

are values on a domain of training points Otrain, we denoted the same index of Otrain and Ytrain as i.327

Auxiliary points A are uniformly selected in a continuous time-distance domain S. Since auxiliary points328

are not restricted from real-world data, we can set the granularity of the time-distance domain through the329

number of auxiliary points Na = na × Ntrain for regularization based on physics information from GBM,330

where na is a multiplier of auxiliary points. For example, the observed and auxiliary points with three331

multipliers (na = 1, 10, 100) are described in Figure 3. Increasing the number of auxiliary points in the332

observed dataset enhances the model’s ability to learn from the knowledge embedded in physical traffic flow333

models. However, this augmentation also increases the training time.334

The information for entering trips is obtained from real trip data and vr(t) is the real average speed at335

time t in the road network. The average speed vr(t) used in PIML-GBM is different from the average speed336

v(t) used in GBM: v(t) is estimated by MFD, but vr(t) is directly derived from real trip data.337
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Figure 3: Observed Points and Auxiliary Points over Time-Distance Domain with Various Multipliers (na = 1, 10, 100)

3.2.2. Model architecture338

The PIML-GBM consists of MNN for estimating the traffic state variable K̂(t, x;w), the automatic339

differentiation technique from Tensorflow, and the calculation of total loss, as shown in Figure 2 (b). The340

MNN is a fully connected neural network and consists of two input nodes (x, t), hidden layers with network341

parameters w, and one output node K̂(t, x;w). We initialize w by using the Xavier uniform initializer and342

use Tanh(·) as an activation function of each hidden neuron in MNN. The MNN learns the physics knowledge343

by minimizing the value of loss function with weights w between layers of MNN. We denote the estimated344

traffic state variable from MNN as K̂(tio, x
i
o;w) ∈ K̂train for (tio, x

i
o) ∈ Otrain. The loss function of MNN in345

PIML-GBM consists of data loss and physics loss. First, we define the data loss Ldata as the gap between346

observed traffic state variables (i.e., K(tio, x
i
o)) and estimated traffic state variables (i.e., K̂(tio, x

i
o;w)) given347

(tio, x
i
o) ∈ Otrain:348

Ldata =
1

Ntrain

Ntrain∑
i=1

|K(tio, x
i
o)− K̂(tio, x

i
o;w)|2. (20)

Second, we define the residuals to learn the physics knowledge from the governing equation (i.e., Equation349

18):350

f̂(t, x;w, vr(t), f(t), Φ̃(t, x)) =
∂

∂t
K̂(t, x;w)− vr(t)

∂

∂x
K̂(t, x;w)− f(t)Φ̃(t, x). (21)

A difference between Equation 18 and Equation 21 is to use the average speed at time t from real-world data351

vr(t) in Equation 21 without any explicit assumptions such as MFD. We obtain vr(t) from real-world trip352

data at every time period. The derivatives of the residuals in Equation 21 are calculated by the function of353

TensorFlow ”tf.GradientTape” and parameterized by w. Accordingly, we define the physics loss Lphy from354
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the residuals (i.e., Equation 21):355

Lphy =
1

Na

Na∑
j=1

|f̂(tja, xj
a;w, vr(t

j
a), f(t), Φ̃(t, x))|2

=
1

Na

Na∑
j=1

| ∂
∂t

K̂(tja, x
j
a;w)− vr(t

j
a)

∂

∂x
K̂(tja, x

j
a;w)− f(tja)Φ̃(t

j
a, x

j
a)|2.

(22)

We use the total loss of PIML-GBM with a weight of losses α for training the proposed PIML-GBM as356

follows:357

Lα = αLdata + (1− α)Lphy. (23)

3.3. Training algorithm358

We use the automatic differentiation with the L-BFGS optimizer in Tensorflow for evaluating the deriva-359

tive of residuals since the L-BFGS optimizer can provide a stable solution with fewer iterations than the360

Adam optimizer [47]. The training process is terminated if the loss gap ϵk = |Lk+1
α − Lk

α| between two361

consecutive total losses at iteration k is less than the termination threshold ϵ or the number of iterations362

reaches a predetermined maximum number of iterations (i.e., nmax iter). After the training process, we363

obtain the learned weights of trained PIML-GBM w∗ = argminw Lα. The training algorithm is shown in364

Algorithm 1.365

Algorithm 1 Training Algorithm of Proposed PIML-GBM

Input: Observed dataset {(tio, xi
o,K(tio, x

i
o))}

Ntrain
i=1 ; auxiliary points

{(tja, xj
a,K(tja, x

j
a))}

Na
j=1; average speed vr(t); inflow rate f(t); cumulative distri-

bution function of the entering trips with distances Φ̃(t, x)

Require: L-BFGS optimizer.

Initialization: Initialized network parameters w; termination threshold ϵ; maximum

number of iterations nmax iter; weight of loss functions α; learning rate γ

Procedure:

k ← 0

J0
w = 0

while k < nmax iter or |Lk+1
α − Lk

α| ≥ ϵ do

Calculate Lk
data by Equation 20

Calculate Lk
phy by Equation 22

Calculate Lk
α by Equation 23

wk+1 ← wk − γ · LBFGS(wk,∇wkLk
α) by automatic differentiation

end while

Output: Learned network parameters w∗

366
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All notations employed in this study are comprehensively summarized in the Appendix, referenced as367

Appendix A.368

4. Experiments369

4.1. Data Description370

We obtained LBD data for trip extraction from a mobile phone vendor in Indiana, covering 21 weekdays371

from March 1st to March 29th, 2019. This dataset comprises 14.4 million unique devices and 4.8 billion372

records. The vendor collected the LBD directly from first-party, opt-in mobile devices through server-to-373

server integration. The study area is Marion County, Indiana, United States, as shown in Figure 4 (a). In374

2019, there were 964,582 residents living in the study area [48]. We define nodes as intersections and links375

as road segments. The size of the study area is approximately 396.61 mi2, consisting of 35,742 nodes and376

49,455 links (total length of links = 4851.09 miles).377

Figure 4: Study Area and Trip Patterns: (a) Study area (Marion County, Indiana, United States; Source: Map data

©OpenStreetMap contributors, ©CartoDB attributions), (b) Distribution of trip lengths, and (c) Hourly average enter-

ing trip rate

The weekend records are not included in this study because of their distinct weekday traffic patterns.378
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Each record consists of the anonymous device ID, location information (latitude and longitude), horizontal379

accuracy (meters), timestamp, and so on (device type, OS type, . . . ), as shown in Table 1. The time interval380

between two consecutive records varies from a few seconds to a few minutes.381

Table 1: Description of Mobile Phone Data Used in This Study

Field Description Sample data

Device ID Device ID of unique anonymous user 5054eb6c-5877-462b

ID Type IDFA (iOS) and ADID (Android) adid

Latitude Latitude of the record 39.7678718

Longitude Longitude of the record -86.1582648

Horizontal Accuracy GPS accuracy reported by the device OS 18.0

TimeStamp Timestamp of the record 2019-03-15 08:31:22

... ... ...

4.2. Data Processing382

We extract the trip information (i.e., origin and destination) from the raw mobile data as follows: 1)383

Detecting Home, 2) Extracting Trips, and 3) Filtering.384

The mobile phone data includes location information from a diverse user base, including residents,385

commercial vehicle drivers, tourists, and others. For this study, we define ”valid users” as residents who386

make regular trips within the study area. Initially, we isolate valid trips based on nighttime location data387

(collected between 8 PM and 6 AM) and cluster these data points to estimate each user’s home location.388

The centroid of each cluster serves as the estimated home location. Since mobile phone data includes various389

types of users (such as residents, tourists, commercial vehicle drivers, and drivers on highways), we filter390

users with few records (less than eight days). In other words, we extract users recorded at least eight days,391

a threshold selected by balancing the number of filtered users and the noise in the home locations. After392

detecting the home location, the preprocessed mobile phone data consists of 39,465 valid users.393

In the second step, we extract trips from valid users. Users’ trips are recorded by several consecutive394

records with stay regions (origin and destination) and waypoints on the trip within a short time caused395

by stopping situations (e.g., intersection on the red, traffic jam, and so on). We assume that a new trip396

starts when the time interval between two consecutive records is more than 30 minutes, which is also used397

in previous works [46, 49]. For example, a traveler starts a new trip from home to the company at 8:00:10398

in Figure 5. Due to congestion caused by traffic signals during trips, the spatial distance between records399
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recorded at t2 and t3 is only 15 ft apart, but the time interval is about 4 minutes. In this case, two records400

are considered as waypoints that constitute one trip. On the other hand, since the time interval exceeds 8401

hours, it is treated as a new trip and the records from t6 constitute a new trip. Based on this approach, we402

extract 387,496 trips between two consecutive distinct stay regions from 39,465 valid users.

Figure 5: Example of Trip Extraction: There are two trips. Since the time interval between two consecutive records at t5 and

t6 is larger than 30 minutes, we consider that there are distinct two trips in the example.

403

In the last step, we remove excessively long and short trips, which are challenging to be considered normal404

trips with distances less than 0.5 miles and larger than 75 miles (near the 98th percentile). Finally, this405

study analyzes 34,355 users with 264,620 trips including 4,067,602 waypoints (or data collected points), as406

shown in Figure 4 (b). We calculate trip lengths from each origin to each destination using the GoogleMaps407

API. Since the recorded time interval of LDD is not constant, GoogleMaps API was used to estimate a408

realistic distance considering the geometry of the road rather than the Euclidian distance. In Figure 4 (b),409

trip length statistics are as follows: xQ1
(25th percentile) ≈ 1.42 miles, xQ2

(median) ≈ 3.40 miles, and xQ3
410

(75th percentile) = 8.42 miles. The range spans 0.50 to 74.99 miles and the mean trip length is 6.82 miles411

(i.e., xmin = 0.50, xmax = 74.99, x̄ = 6.82). The percentage of valid users compared to the population of412

census data is 3.56% (=34,565/964,582). Illustrated in Figure 4 (c), the graph depicts the hourly average413

entering trip rate, unveiling a discernible pattern. In particular, there is a conspicuous increase in traffic414

influx around 9 AM, accompanied by a substantial surge from 4 PM to 7 PM, representing the peak hours.415

The average number of trips for one user is about 7.70 trips per month and about 2.19 trips per day when416

the user travels.417

Figure 6 is composed of two sub-figures that elucidate the spatial distribution of our dataset, which418

encapsulates a total of 264,620 trips and 4,067,602 waypoints. Figure 6 (a) presents the distribution of the419

waypoints in the study area, illustrating the complete coverage of the entire road network. This expansive420

coverage serves as a solid foundation for modeling traffic dynamics in large-scale road networks. Figure421

6 (b) focuses on the distribution of waypoints within the downtown region, where a high concentration422

of commercial offices is located. This downtown-centric view enhances the capability of our data set to423
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accurately represent commuting patterns in areas characterized by a high employment density.424

Figure 6: Visualization of Collected Waypoints in Study Area: (a) Distribution of waypoints in Study Area, (b) Distribution

of waypoints in Downtown. (Source: Map data ©OpenStreetMap contributors, ©CartoDB attributions)
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4.3. Experiment Settings425

We set a time-distance domain S with the maximum trip distance Xmax = 75 miles and the time period426

T = one day (i.e., 24 hours) on March 1st, 2019. To discretize the time-distance domain, we let a spatial427

resolution Nx be one mile and a temporal resolution Nt be 15 minutes (i.e., (tg, xg) ∈ G = [0, 96]×[0, 75] and428

Ng = Nt×Nx = 96×75 = 7, 200). After discretizing the time-distance domain, we derive observed boundary429

points (O, Y) from mobile location data with 342 observed boundary points (i.e., No = (Nt + Nx) × 2 =430

(75 + 96)× 2 = 342). We set a sample rate rtrain as 70% and randomly select the training dataset (Otrain,431

Ytrain) with 240 training points (i.e., Ntrain = No × rtrain = 342 × 0.7 ≈ 240) from observed boundary432

points (O, Y). We use a multiplier of auxiliary points as 50 and randomly select 12,000 auxiliary points in433

A ⊂ G (i.e., Na = na ×Ntrain = 240× 50 = 12, 000).434

We derive the entering trip rate f(t), the cumulative distribution function of the entering trips Φ̃(t, x),435

and the average speed of the entering trips vr(t) from the preprocessed trip data (264,620 trips), as shown436

in Figure 7 (a-c). In case of the average speed of the entering trips vr(t), we calculate the speed for each437

trip by dividing the distance and elapsed time between the recorded points to derive the average speed of438

the entering trips vr(t).439

Since the speed-density relationship of MFD is needed to obtain solutions of GBM, we use a function440

(scipy.optimize.curve fit) that automatically adjusts the parameters of a given model function to best match441

the provided data points, provided by the SciPy library. We estimate the speed-density relationship of MFD442

from the collected trip data over 21 days, which is established in [50], as follows:443

V (ρ) = min(30,
122.685

ρ
+ 9.418). (unit: mile/hour) (24)

Figure 7 (d) illustrates the estimated speed-density relationship (i.e., free-flow speed = 30 mile/hour),444

characterized by a coefficient of determination (R2) of 0.4039 and a root mean square error (RMSE) of445

2.5482.446

The proposed PIML-GBM consists of 8 hidden layers of MNN and {25, 30, 35, 40, 45} neurons on447

each hidden layer. Previous studies used 6 - 10 hidden layers and 20 - 60 neurons on each hidden layer448

of MNN [39, 40, 41, 51, 52]. We adopt an automatic differentiation for calculating derivatives using the449

L-BFGS algorithm. We set the maximum iteration of training nmax iter as 15,000, the termination threshold450

ϵ as 1.0 × 10−8 and the learning rate lr as 1.0 × 10−8. The experiments are conducted on an Intel Core451

i7-10700K CPU @ 3.80GH and 32 GB of RAM.452

4.4. Evaluation Metrics and Baselines453

We test the trained PIML-GBM into the discretized time-distance domainG. The testing dataset consists454

of testing points Otest = G = {(tkg , xk
g)|k = 1, ..., Ng} and testing labels Ytest = {K(tkg , x

k
g)|k = 1, ..., Ng}.455
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Figure 7: Plots of Trip Characteristics for Training the Proposed PIML-GBM in Marion County for Observed Time Period:

(a) Entering trip rate f(t), (b) Cumulative distribution function of entering trips Φ̃(t, x), (c) Average speed of entering trips

vr(t), and (d) Estimated speed-density relationship (V (ρ) = min(30, 122.685
ρ

+ 9.418))

Using PIML-GBM trained with learned network parameters w∗, we can estimate traffic state variables456

K̂(tkg , x
k
g ;w

∗) ∈ K̂test for testing dataset k ∈ Otest.457

We use the Mean Absolute Error(MAE), the Root Mean Square Error (RMSE), and the relative L2458

error (Err) to quantify the estimation error between the values of testing labels and estimations of our459

proposed PIML-GBM over the testing dataset (Otest,Ytest) as follows:460

MAE(K̂test,Ytest) =
1

Ng

Ng∑
k=1

|K̂(tkg , x
k
g ;w

∗)−K(tkg , x
k
g)|, (25)

RMSE(K̂test,Ytest) =

√√√√ 1

Ng

Ng∑
k=1

|K̂(tkg , x
k
g ;w

∗)−K(tkg , x
k
g)|2, (26)
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Err(K̂test,Ytest) =

√∑Ng

k=1 |K̂(tkg , x
k
g ;w

∗)−K(tkg , x
k
g)|2√∑Ng

k=1 |K(tkg , x
k
g)|2

. (27)

MAE measures the average magnitude of the estimation errors in the testing dataset. RMSE is the standard461

deviation of estimation errors, giving higher weight to large errors. Err normalizes RMSE, reducing the462

impact from the magnitude of ground-truth values. We use MAE to select the optimal trained PIML-GBM463

because our PIML-GBM aims to estimate a few of large values as well as overall values over the entire464

domain.465

We compare our proposed PIML-GBM to two baselines:466

• Generalized Bathtub Model (GBM): GBM numerically estimates K(t, x) based on the solution467

algorithm proposed by Jin (2020) [23]. The solution algorithm of GBM requires the speed-density468

relationship of MFD estimated in Equation 24. We adopt GBM to verify the outstanding performance469

of the proposed PIML-GBM and to quantify the ability of PIML-GBM to capture the randomness470

and uncertainty of traffic dynamics.471

• Pure Multi-layer Neural Network (PMNN): PMNN shares the same architecture with the472

proposed PIML-GBM except for the physics loss Lphy. Since PMNN has no physics loss, auxiliary473

points A are not used in PMNN. We use PMNN to confirm the impact of adding physics loss in the474

training process.475

5. Results476

This section applies PIML-GBM on real trip data in Marion County, Indiana, United States. First,477

we show the results of trained PIML-GBM with learned network parameters w∗. Second, we compare the478

performance of PIML-GBM with baselines (i.e., GBM and PMNN). Lastly, we conduct a sensitivity analysis479

with respect to the number of neurons on each hidden layer of MNN. We found that the optimal number of480

neurons is 40 on each hidden layer, which is discussed in Section 5.3.481

5.1. Estimation of K(t, x) from PIML-GBM482

In this section, we explore the estimation of K(t, x) using our proposed PIML-GBM model. This model483

is characterized by 40 neurons in each hidden layer, which are chosen from a sensitivity analysis (Section484

5.3). We apply the PIML-GBM to calculate the evaluation metrics, defined by Equations (25)-(27). The485

metrics are visually depicted in Figure 8. In panels (a) and (b) of this figure, we use a logarithm function486

log to represent the values of K(t, x) and K̂(t, x;w) due to the wide range of these values, leading to the487

expressions logK(t, x) and log K̂(t, x;w).488
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Figure 8: Results of Proposed PIML Model with Learned Network Parameters w∗: (a) Ground-truth values of log(K(t, x)),

(b) PIML-GBM estimations of K̂(t, x;w) and evaluation metrics, (c) Loss and Relative L2 error of PIML-GBM.

The performance of the PIML-GBM model is quantified with the following metrics: MAE = 0.022629,489

RMSE = 0.053300, and Err = 0.33946. We observe that the values of K̂(t, x;w) are larger than those of490

K(t, x) for distances (x > 60). However, the estimates align well with the ground-truth values where the491

remaining distance is shorter than 20 miles x < 20, showing the effectiveness of the PIML-GBM model.492

The loss gap of PIML-GBM converges before reaching the maximum iterations, as depicted in Figure 8493

(c). While achieving good accuracy for shorter distances, it exhibits discrepancies for longer distances.494

Quantitative performance metrics further elucidate the model’s capabilities and areas for improvement.495

The rapid convergence of the loss gap is indicative of the model’s ability to learn efficiently.496
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5.2. Model Comparison497

We compare PIML-GBM with two baselines (GBM and PMNN). We can show the outstanding perfor-498

mance of the PIML-GBM by comparing GBM and the impact of physics loss by comparing PMNN. The499

evaluation metrics in Equations (25) - (27) are calculated in Table 2. First, ML-based models (PIML-500

GBM and PMNN) significantly outperform the two baselines in Table 2. Since ML-based methods are501

flexible to theoretical assumptions and capture variance and phenomena from real-world data, PIML-GBM502

and PMNN can overcome limitations from theoretically ideal assumptions that undermine the model’s per-503

formance. Second, we can verify the outstanding performance of ML-based methods because ML-based504

methods particularly outperform GBM. Third, to confirm the impact of physics loss in training, we observe505

that the evaluation metrics of PIML-GBM are significantly smaller than those of PMNN in Table 2. We506

can find that the influence of physics knowledge in training MNN improves the accuracy of PIML-GBM.

Table 2: Evaluation Metrics for GBM, PMNN, and PIML-GBM

Model MAE(K̂test,Ytest) RMSE(K̂test,Ytest) Err(K̂test,Ytest)

(×10−2) (×10−2) (×10−1)

GBM 37.7495 47.4828 2.7272

PMNN 4.6295 10.7184 7.9794

PIML-GBM 2.2629 5.3300 3.3946

507

We visualize the estimations of each model log K̂(t, x;w), values of errors (log K̂(t, x;w)− logK(t, x)),508

and absolute values of errors | log K̂(t, x;w) − logK(t, x)| in Figure 9. The first and second columns of509

Figure 9 are plots of ground-truth’s values and estimations, respectively. The third column of Figure 9510

is values of errors (log K̂(t, x;w) − logK(t, x)) and the fourth column of Figure 9 is the absolute error511

values | log K̂(t, x;w) − logK(t, x)|. There are two colors in the third column of Figure 9: red indicates512

underestimations, and blue indicates overestimations. If the colors in the fourth column of Figure 9 are513

light, it means that the models estimate K̂(t, x;w) close to ground-truth K(t, x).514

First, we can observe that GBM has poor accuracy and there are overestimations and underestimations515

in the third column of Figure 9. In Figure 9, GBM is overestimated on the upper right side of the plot (3)516

and is underestimated on the lower left side of the plot (3). Since GBM assumes the stable relationship517

between speed and density based on MFD, the evolution of K(t, x) in a time-distance domain cannot fully518

capture traffic dynamics from GBM. The plot (4) in Figure 9 shows that significant errors exist over the519

time-distance domain. Second, we can observe that PMNN cannot estimate K̂(t, x;w) in the time-distance520

domain except for boundary points from plots (5) and (6) of Figure 9. Since PMNN without physics loss521
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cannot learn the evolution of K(t,x) from auxiliary points, it focuses on estimating only boundary points.522

Third, PIML-GBM outperforms two baselines in Table 2 and Figure 9. The plot (9) in Figure 9 shows that523

PIML-GBM has fewer underestimations and overestimations than two baselines and better estimation at524

any point in the time-distance domain.525

Figure 9: Comparison between PIML-GBM and the two baselines: (First column) Ground-truth values, (Second column)

Estimations of each model, (Third column) Values of each model’s errors, (Fourth column) Absolute Values of each model’s

errors. In the third column, the red color means underestimation, and the blue color means overestimation.

5.3. Sensitivity Analysis526

This section conducts a sensitivity analysis with respect to the number of neurons in each hidden layer527

of MNN from 25 to 45 neurons, which are shown in previous studies [40, 41, 39, 51, 52]. There is a trade-off528

between accuracy and training speed when setting the number of neurons. We can get more accuracy if we529

set more neurons in each hidden layer, but the training time is longer. Furthermore, we can set more weight530

between physics loss Lphy and data loss Ldata through α. If we set a larger α, we consider data loss Ldata531

is more important than physics loss Lphy.532
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To determine the optimal weight value, denoted by (α∗), we train PIML-GBM models across various (α)533

values in the set {0, 0.1, . . . , 0.9, 1.0}. We then select the best performing (α∗) for each specific number of534

neurons, balancing between physics loss (Lphy) and data loss (Ldata). The evaluation metrics for the PMNN535

and PIML-GBM models with varying numbers of neurons are detailed in Table 3. The results indicate that536

as the number of neurons in PMNN models increases, most evaluation metrics show improvement, although537

there is an exception at 45 neurons. Specifically, PMNN models employing 30 and 35 neurons exhibit nearly538

identical evaluation metrics. In contrast, the evaluation metrics for PIML-GBM do not reveal a clear trend.539

Table 3: Evaluation Metrics of Sensitivity Analysis with PMNN and PIML-GBM

Number of Neurons PMNN PIML-GBM

MAE RMSE Err α∗ MAE RMSE Err

(×10−2) (×10−2) (×10−1) (×10−2) (×10−2) (×10−1)

25 neurons 2.9475 5.1829 3.8177 0.5 2.3723 5.6759 3.4710

30 neurons 4.2792 9.4485 6.9407 0.9 2.5370 5.3285 2.9637

35 neurons 4.2792 9.4485 6.9407 0.7 2.4788 5.4263 3.1421

40 neurons 4.6295 10.7184 7.9794 0.4 2.2629 5.3300 3.3946

45 neurons 4.6220 11.2128 8.3103 0.6 2.3028 5.4240 3.1837

The experimental results show that the proposed PIML-GBM overcomes each limitation of the GBM540

and PMNN by regularizing the model through loss of physics knowledge and using MNN without explicit541

theoretical assumptions in large-scale road networks.542
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6. Conclusion543

In this research, we have addressed the intricate challenge of estimating traffic states within large-scale544

urban road networks. The study introduces the PIML-GBM model, an innovative approach designed to545

leverage the governing equation of the generalized bathtub model to estimate traffic states using mobile546

location data. This model aims to provide a robust solution, capturing the randomness and dynamics of547

urban traffic without relying on rigid theoretical assumptions. Our primary contributions include:548

• Developing a deep neural network within the PIML-GBM model to estimate traffic state variables549

without explicit theoretical constraints.550

• Demonstrating the ability of the PIML-GBM to accurately capture the randomness of traffic dynamics,551

offering critical insights for real-world applications.552

• Modeling traffic dynamics over a continuous time-distance domain while using boundary points from553

a discretized time-distance domain.554

• Illustrating the promising potential of utilizing mobile location data in large-scale road networks.555

The study embarked on a comprehensive examination of the PIML-GBM by contrasting it against556

established numerical solutions, such as GBM and PMNN. We demonstrated the superiority of PIML-GBM557

in modeling traffic dynamics across a continuous time-distance domain using location-based data collected558

from a mobile phone vendor within the Indianapolis road network, United States:559

• Superior Performance of PIML-GBM: The PIML-GBM has exhibited outstanding accuracy560

in estimating the values of K(t, x), particularly in comparison to GBM and PMNN. The model’s561

integration of physics loss in training ensures higher accuracy, as reflected in the evaluation metrics.562

• Adaptation to Real-world Data: Unlike traditional methods that rely on theoretically ideal as-563

sumptions, PIML-GBM, along with PMNN, can capture the complex variance and phenomena from564

real-world data. This adaptability provides a robust foundation for estimating widely ranged values565

and highlights the advantage of employing ML-based methods.566

In summary, the proposed PIML-GBM model marks a significant advancement in the field, providing a567

more nuanced, accurate, and flexible tool for understanding and predicting complex systems. Its integration568

of physics knowledge with machine learning techniques not only bridges the gap between theory and practice569

but also opens new avenues for interdisciplinary research and applications.570

The introduction of the PIML-GBM model marks a crucial development in the field, providing both571

researchers and practitioners with a versatile and precise tool to unravel the complex dynamics of urban572

mobility. The methodological developments and findings of this work illuminate existing challenges and573
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propose pioneering avenues for ongoing investigation, contributing to the development of intelligent, resilient574

urban traffic systems. Despite the significant contributions, certain limitations exist that necessitate future575

works:576

• The governing equations may be compromised due to high noise in real-world traffic data, resulting577

in a loss of physics knowledge. This issue may be mitigated by adding noise to nodes within hidden578

layers and implementing an attention mechanism to discern non-linear features.579

• While the PIML-GBM model effectively estimates current traffic states, predicting future states re-580

mains challenging. Future research could extend the PIML-GBM model to forecast traffic states by581

utilizing a rolling-horizon technique for updating current conditions and employing generative models582

to sample future data.583

In conclusion, this study constitutes a significant step in enhancing our understanding of urban traffic584

systems. The proposed PIML-GBM model offers an intersection of theoretical advancement and practical585

utility that can guide the field’s future direction. It lays the groundwork for future exploration, pushing the586

boundaries of our vision for intelligent and resilient urban traffic networks.587
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Appendix A. Summary Table of All Notations in This Study695

Category Notation Definition

Domain

T Time horizon (temporal domain)

X Spatial (trip-distance) domain

S Time-distance domain

G Discretized time-distance domain

Sets

K Set of the number of trips with remaining distance ≥ x at time t K(t, x)

Q Set of traffic variables related to entering trips

O Set of observed boundary points

A Set of auxiliary points

Y Set of ground-truth (or observed) labels

w Set of neural network parameters

w∗ Set of optimal neural network parameter after the training process

Otrain Set of training points from observed boundary points

Ytrain Set of training labels from observed boundary points

N (K,Q; Λ) Governing equations of GBM

Parameters

Lnet Road network’s total length of road segments

T Total time step

Xmax Maximum of trip distance

Λ Parameters of generalized bathtub model

Ng Number of grid points in discretized time-distance domain G

Nt Number of time grid points in discretized time-distance domain G

Nd Number of distance grid points in discretized time-distance domain G

No Number of observed boundary points in O

Na Number of auxiliary points in A

rtrain Sample rate for training points

na Multiplier of auxiliary points

α Weight between data and physics losses

ϵk Allowable loss gap between consecutive total losses

nmax iter Allowable maximum number of iterations
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Category Notation Definition

Variables and Functions

v(t) Average speed of vehicles running on the road network at time t

ρ(t) Average density per unit road length at time t

V (·) Function of traffic density based on macroscopic fundamental diagram

q(t) Average traffic flow rate at time t

f(t) Entering trip (in-flow) rates at time t

F (t) Cumulative entering trip (in-flow) rates at time t

φ̃(t, x) Probability density function of the remaining trip distance x at time t

Φ̃(t, x) Cumulative distribution function of the entering trips with distances not

smaller than x at time t

B̃(t) Average distance of entering trips at time t

φ(t, x) Probability density function of the remaining trip distance x at time t

Φ(t, x) Cumulative distribution function of the trips with remaining distances

not smaller than x at time t

B(t) Average distance of remaining trips at time t

λ(t) Number of active trips (traveling vehicles) at time t

k(t, x) Density of active trips with a remaining distance x at time t

K(t, x) Number of trips with a remaining distance not smaller than x at time t

g(t) Outflow rate of exiting trips at time t

G(t) Cumulative outflow rate of exiting trips until time t

K̂(t, x;w) Estimation of K(t, x) from MNN in PIML-GBM with neural network

parameter w

Lα Total loss in PIML-GBM

Ldata Data loss in PIML-GBM

Lphy Physics loss in PIML-GBM

vr(t) Average speed in the road network at time t from observed data
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