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The design of network-wide traffic management schemes or transport policies for urban areas requires compu-
tationally efficient traffic models. The macroscopic fundamental diagram (MFD) is a promising tool for such
applications. Unfortunately, empirical MFDs are not always available, and semi-analytical estimation meth-
ods require a reduction of the network to a corridor which introduces substantial inaccuracies. We propose
a semi-analytical methodology to estimate the MFD for realistic urban networks, without the information
loss induced by the reduction of networks to corridors. The methodology is based on the method of cuts, but
applies to networks with irregular topologies, accounts for different spatial demand patterns, and determines
the upper bound of network flow. Thereby, we consider flow conservation and the effects of spillbacks, both
at the network level. Our framework decomposes a given network into a set of corridors, creates a hyper-
network including the impacts of source terms, and then treats the dependencies across corridors (e.g. due
to turning flows and spillbacks). Based on this hypernetwork, we derive the free-flow and capacity branch
of the MFD. The congested branch is estimated by considering gridlock characteristics and utilizing recent
advancements in MFD research. We showcase the applicability of the proposed methodology in a case study
with a realistic setting based on the Sioux Falls network. We then compare the results to the original method
of cuts, and a ground truth derived from the cell transmission model. The results reveal that our method
is over five times more accurate than the state of the art in estimating the network-wide capacity and jam
density. Moreover, they clearly indicate the MFD’s dependency on spatial demand patterns. Compared to
simulation-based MFD estimation approaches, the potential of the proposed framework lies in the modeling
flexibility, explanatory value, and reduced computational cost.

Key words : macroscopic fundamental diagram, method of cuts, network modeling, traffic flow theory,
variational theory

History :

1. Introduction1

Population growth in large metropolitan areas leads to disruptions in the transportation system.2

Improving its efficiency essentially requires the design of appropriate traffic monitoring and control3

schemes. Aggregated traffic models based on the macroscopic fundamental diagram (MFD) (e.g4

Daganzo 2007, Geroliminis and Daganzo 2008) are powerful tools, consistent with traffic flow theory,5

for modeling system dynamics in large urban areas. These models require the definition of regions6

in the city network, where traffic conditions are approximately homogeneous, thus showing a clear7

relationship between travel production and the accumulation of vehicles. Such models have a wide8

range of applications, including the design of control strategies, pricing schemes, public transport9

priority and traffic management (see Johari et al. (2021) for an overview), or even the network-wide10

monitoring of emissions (Batista, Tilg, and Menéndez 2022).11

The respective traffic models require the estimation of the MFD to describe aggregated traffic12

state dynamics. Microscopic simulations can be used in the absence of real data and for hypothetical13
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scenario analyses. Unfortunately, these have high computational costs, require laborsome calibration,14

and their results remain sensitive to the specific demand patterns. Alternatively, analytical solutions15

exist for estimating the MFD (e.g. Ambühl et al. 2020). However, limited or unavailable a-priori16

knowledge limits their application. Another possibility is to use semi-analytical approaches, such as17

the method of cuts (MC) (Daganzo and Geroliminis 2008, Leclercq and Geroliminis 2013, Laval and18

Castrillón 2015, Tilg, Amini, and Busch 2020). So far, however, these methods only explicitly model19

single corridors, which are defined as an ordered sequence of links. Hence, their application is limited20

to small and regular synthetic urban networks, where the difference between the MFD of an abstract21

corridor and that of the whole network is minor. Hitherto, the literature lacks a comprehensive22

framework to semi-analytically estimate MFDs for realistic, complex urban networks.23

This can lead to major limitations as the topological mapping of a network into a single corridor is24

not necessarily accurate. Existing approaches implicitly assume that network supply characteristics25

are relatively regular and show low variability throughout the network (i.e. similar signal offsets,26

green-to-cycle ratios, block length, etc.). Thus, the average network characteristics can be mapped27

into a single corridor. This means, however, that for realistic network, the variability of the network28

is lost, leading to inaccuracies in the approximated MFD. For example, the capacity of a single29

corridor is typically constrained by the most restrictive intersection, but we know that networks30

are much more complex than that. Also, the aggregation of a network to one corridor simplifies31

demand-related aspects. This might be particularly problematic for general networks, since in many32

cases multiple routes connect the same origin-destination (OD) pair. Furthermore, existing methods33

implicitly assume that traffic dynamics evolve in a similar manner on all corridors in the network.34

This occurs rarely in urban networks with complex demand patterns. Furthermore, diverging flows35

at intersections inevitably lead to undersaturated conditions at downstream links. Neglecting this36

contradicts the network-wide flow conservation. Lastly, the effects of spillbacks may propagate to37

adjacent corridors. These aspects make the need for a valid approximation of the network MFD38

obvious.39

We should note that in many cases, the observed macroscopic performance of an urban network40

is substantially lower than the idealized MFD which refers to a theoretical upper bound for traffic41

conditions in a corridor (Daganzo 2007). The reason for this lies in the observed traffic heterogeneity,42

non-stationary traffic states, and the path-flow distribution of the demand (Mahmassani, Saberi,43

and Zockaie 2013, Knoop, Van Lint, and Hoogendoorn 2015, Leclercq et al. 2015, Geroliminis and44

Sun 2011, Mazloumian, Geroliminis, and Helbing 2010). These observed aggregated traffic states are45

herein denoted as the realized MFD (Ambühl et al. 2021, Loder et al. 2019). Unfortunately, the46

two different MFD notions are currently used interchangeably. Both MFD types are very similar47

for a corridor, under steady-state conditions, and homogeneous demand. However, they might differ48
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significantly for general networks. Simply put, the idealized MFD corresponds to stationary flows49

resulting from a spatial demand pattern that perfectly utilizes the given supply. Thus, the ambiguity50

of results stemming from models that simplify the network to a corridor, as required by existing51

semi-analytical approaches, and neglecting the network-specific influence of demand-related aspects,52

becomes apparent. First approaches to tackle these issues are reported in Geroliminis and Boyacı53

(2012) and Xu, Yu, and Gayah (2020), which incorporate turning flows at intersections. The for-54

mer study analyzes these effects on a simulation basis and focuses on incoming turns. The second55

one models the effects merely stochastically. Neither of them describes network-wide spillbacks nor56

models network conservation explicitly, which is important to identify the underlying mechanisms57

for congestion dynamics. Only such understanding enables the proper design of measures to mit-58

igate congestion and increase urban network capacities. Our proposed methodology addresses this59

by considering the effects of turning ratios on the network MFD. The realized MFD is especially60

important because it replicates observed traffic states based on which further applications can be61

designed (e.g. traffic control, transport planning, analysis of local bottleneck effects at the network62

level). Additionally, as we will discuss later, it could potentially be extended to also estimate the63

idealized MFD, although this is left for future research.64

In this paper, we propose a framework using semi-analytical methods to estimate the realized MFD65

at the network level. Thereby, we do not rely on extensive empirical traffic data sets or computation-66

ally expensive microscopic simulations. In contrast, we develop a framework based on semi-analytical67

methods, but do not reduce the network to a corridor. We focus on a single region and explicitly68

consider flow conservation as well as the effects of spillbacks. Thus, we can account for the effects of69

different demand patterns on the realized MFD. Hereafter, we refer with ‘MFD’ to the realized one70

unless explicitly stated otherwise. The contributions are threefold:71

First, we develop a framework to semi-analytically estimate the network MFD. So far, existing72

methods were not able to account for spatial demand patterns and the related violation of the con-73

servation of flows at intersections from the corridor perspective. Our framework proposes a way to74

address this challenge. We decompose a given network into a set of corridors and construct a hyper-75

network in the spirit of the original MC. The decomposition maintains the connection of different76

corridors and thus, enables us to consider the network-wide effects of spillbacks. This is a major dif-77

ference to current approaches, where multiple corridors are either reduced to a single one or modeled78

as being largely independent of each other, which may lead to inaccurate traffic state estimations.79

Second, we propose three different approaches to derive the maximum flows at intersections, and80

two different approaches to approximate the network-wide jam density. To our best knowledge, no81

method exists so far to approximate the network-wide jam density. With the maximum flows at82

intersections and the network-wide jam density, the MFD is then estimated following the philosophy83
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of the original MC. The proposed approaches vary in terms of modeling complexity, computational84

cost, and estimation accuracy. Thus, they offer high flexibility and enable the choice of a case-specific85

MFD estimation. Moreover, they shed light on the effects of related assumptions and thereby provide86

additional explanatory value.87

Third, we evaluate the proposed framework using a realistic network. Within this case study, we88

compare the proposed approaches to the state of the art for such networks and the cell transmission89

model (CTM) (Daganzo 1994, 1995) acting as a ground truth. Thereby, we provide proof of our90

concept and test the framework for a range of different input parameters.91

The remainder of this paper is organized as follows. First, we provide a brief summary of the existing92

attempts to extend the original MC for realistic networks with turning flows and their drawbacks.93

Then, we present the framework to estimate the MFD at the network level. Subsequently, we conduct94

a case study for the realistic network of Sioux Falls. Finally, we draw conclusions and outline potential95

avenues for future work. In the appendix, we provide a nomenclature table (Appendix ??), additional96

background on variational theory (VT) and the MC (Appendix ??), a discussion of the framework’s97

main assumptions (Appendix ??), methodological details (Appendix ?? and ??), and the results of98

a sensitivity study (Appendix ??).99

2. Extension attempts of the original method of cuts to the network100

level101

This section briefly describes the deficiencies of current MC-based approaches to estimate the network102

MFD. The original MC is based on the concept of VT and was introduced by Daganzo and Geroliminis103

(2008). Vt itself was formulated by Daganzo (2005a,b) to solve complex and heterogeneous kinematic104

wave theory (KWT) problems. More background on both theories are provided in appendix ??.105

The MFD approximation by the MC is independent of the corridor demand since a single corridor106

without any turning flows only involves one OD pair. In this context, the demand only refers to the107

loading, and the idealized MFD covers all stationary loading levels. From the network perspective,108

however, demand distribution in the form of path flows can lead to heterogeneous link flows which109

can have a strong influence on the shape of both the realized and the idealized MFD. Applying MC110

to networks requires a reduction of the network to a single corridor. This inevitably introduces a bias111

with respect to the actual demand distribution and supply conditions.112

Daganzo and Geroliminis (2008) originally proposed to identify a representative corridor of the113

network and apply the MC to find the network MFD. This represents the already mentioned reduction114

of the network’s complexity to a single corridor. In Girault et al. (2016), the authors reduced a115

bidirectional grid network to four corridors representing each cardinal direction. They applied the MC116

to each corridor and subsequently averaged the resulting corridor MFDs. This approach neglects some117
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of the inter-dependencies such as spillback propagation between corridors. Moreover, the network118

reduction implicitly assumes that the most constraining intersection is saturated when the capacity119

is reached. However, this is not necessarily the case when turning flows occur, as some vehicles might120

turn before such an intersection, and thus reducing the maximum throughput. Aghamohammadi and121

Laval (2022) proposed a maximum likelihood approach for the method of Laval and Castrillón (2015)122

to improve the estimation of the idealized MFD for networks. While their results are promising, the123

methodology still builds upon a single corridor. Although it is not explicitly stated in these original124

papers, they implicitly aim at estimating the idealized MFD since they rely on the concept of the125

original MC.126

Some initial attempts have been made to incorporate the effects of turning flows into MC. Since127

these approaches only consider a specific set of turning ratios, they implicitly focus on the realized128

MFD. Geroliminis and Boyacı (2012) modeled the effects of inflows for the estimation of a route-129

specific MFD, although they did not attempt to estimate network MFDs. They modeled inflows as130

bottlenecks but did not thoroughly incorporate them in the estimation procedure. Therefore, their131

resulting MFD describes traffic dynamics for a certain route and not for the full corridor. Recall that132

we defined a corridor as an ordered sequence of links. In distinction to that, we define a route as133

an ordered sequence of links a vehicle travels from its origin to its destination. Thus, certain routes134

might correspond to a corridor, others might not. Xu, Yu, and Gayah (2020) extended the stochastic135

model of Laval and Castrillón (2015) to account for turning flows. The authors proposed to estimate136

the effects of turning flows as a Markov process based on a two-ring model. They modeled turning137

flows with a global ratio which was kept constant across intersections in the network. Therefore, they138

again simplified the network to a single corridor. Other analytical approaches (Gan, Jin, and Gayah139

2017, Jin, Gan, and Gayah 2013) are also based on the two-ring model and are therefore limited to140

very regular and simplified network topologies.141

3. Network method of cuts142

In an attempt to overcome the mentioned drawbacks of existing methods, we propose a framework143

based on the MC that applies to realistic networks with varying turning flows at each intersection.144

Thereby, we include network-wide traffic dynamics, do not reduce the entire network to a single145

corridor, and thus consider its original topology. Hereafter, we refer to this framework as ‘nMC’. It146

consists of the following three steps:147

• Step 0 initializes the problem by defining required supply and demand characteristics. This148

consists of the definition of the network topology, signal control settings, and turning ratios.149

Note that this implies an indirect definition of routes, and thus reflects the observed spatial150

demand pattern for a specific case. These parameters describe the physical road network N151
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composed by a set of directed links and intersections, as well as the demand that exists for that152

network.153

• Step 1 transforms N into a hypernetwork G which is the basis for deriving the MFD. Recall154

that a hyperlink represents a physical corridor in the original MC. Analogously, a hypernetwork155

represents the physical road network in time and space and can be seen as a multi-dimensional156

variational graph. To generate G, we decompose N into a set of corridors, define the structure157

of the hypernetwork G, and exogenously derive the costs for horizontal edges in G. For this, we158

propose three different approaches with varying modeling complexity, computational cost, and159

estimation accuracy. These approaches are labeled as ‘network variational theory’ (nVT), which160

is based on an extension of VT to networks (Tilg et al. 2021), ‘full spillbacks’ (FS), and ‘limited161

spillbacks’ (LS). They are further explained in Section 4.162

• Step 2 derives the cuts based on which the free-flow branch, the capacity, as well as the congested163

branch of the MFD are estimated. In the spirit of the original MC, moving observers travel164

through G in order to estimate stationary traffic states. This step includes the approximation of165

the network-wide jam density and the utilization of symmetries in the propagation of free-flow166

and congested traffic states across the network. Again, two different approaches are proposed,167

namely the network variational theory (nVT) and the queue propagation (QP) approach, which168

are explained in Section 5.3.169

Figure 1 summarizes the overall framework.170

Step 0: Initialize network

Step 1: Generate hypernetwork Step 2: Derive cuts

Derive free-flow branch

Derive capacity branch

Derive congested branch

- Estimate the network-wide jam density
- Approach 1: Network variational theory (nVT)
- Approach 2: Queue propagation (QP)
- Perform density transformation

Decompose

Derive hypernetwork structure

Exogenously consider impacts of source
terms on edge costs
- Approach 1: Network variational theory (nVT)
- Approach 2: Full spillbacks (FS)
- Approach 3: Limited spillbacks (LS)

Realized network

MFD

Figure 1 Flowchart of the proposed framework, the nMC.

4. Generation of a hypernetwork171

The representation of N as a hypernetwork G is key to our framework. It allows us to derive the172

cuts similar to the original MC (see Appendix ??) while accounting for source terms and network-173

wide spillback propagation. These cuts are the basis to find the network MFD. In the following, we174

list our main assumptions. A more detailed discussion about these assumptions is provided in the175

Appendix ??:176

• We only consider unimodal networks.177
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• We assume that stationary states exist and can be reached for any spatial demand pattern if178

the temporal change is slow.179

• We only consider signalized intersections without modeling conflicting streams explicitly.180

• We assume that vehicles follow a FIFO discipline on all links and at diverges (Newell 1993).181

• Our framework only applies to cases where vehicles at intersections can either remain on the182

main corridor or change to a single adjacent corridor.183

• We assume turning ratios to be constant across time.184

We generate a hypernetwork G representing a physical road network N including signal settings185

and turning flows. First, N is decomposed into a set of corridors C. Second, the structure of a186

hypernetwork G is defined. Third, the cost of edges in G are specified. The costs of horizontal edges in187

the hypernetwork, which represent maximum flows, are derived depending on the proposed methods188

applied, i.e. nVT, FS, or LS. This concludes the generation of the hypernetwork G. The resulting189

maximum flows in G represent the network traffic at the capacity level.190

4.1. Network decomposition191

The decomposition of the physical road network N into a set of non-overlapping corridors facilitates192

the generation of G. Furthermore, this set of corridors is an input to the MFD estimation (see193

Section 5.1). Tilg et al. (2021) described such a decomposition in the context of VT. Following their194

methodology is advantageous for our framework, as their proposed network VT solution method, the195

‘nVT’, can be utilized to derive the hypernetwork (see Section 4.3.1). We provide a brief summary196

of the decomposition method in Appendix ??.197

4.2. Structure of the hypernetwork198

The set of corridors C allows us to generate a hypernetwork G representing the maximum traffic flows199

in the entire network N . This includes the generation of a hyperlink for each corridor along with200

intersections and corresponding turning ratios α according to the physical network topology. Hence,201

in contrast to the original MC where only single corridors could be modeled, G represents networks202

where multiple edges downstream and upstream of an intersection might exist. This expansion of the203

concept of the corridor-specific hyperlink to a network-wide hypernetwork G represents one of the204

major cornerstones of our framework.205

Figure 2a illustrates an example of a decomposed network based on which we further introduce our206

notation. It shows two corridors C connected at an intersection I. The indices denoted as superscripts207

i, j refer to a specific corridor. The index k as subscript refers to an intersection and the link directly208

upstream of it. The subscript is unique in combination with the corridor-related index. For example,209

the intersection I i
k is the kth intersection on corridor Ci. Similar to that, subscripts of maximum210

flows q̃ indicate intersections, and superscripts the corridor to which the flow refers. For example, the211
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a) Physical road network N . b) Hypernetwork G.

Figure 2 Example of a network with two corridors and a corresponding hypernetwork excerpt.

variable q̃i
k describes the maximum cycle-based average flow on corridor Ci upstream of intersection212

I i
k. By maximum flow, we do not refer to the capacity, but the maximum flow that can be sustained213

on average during one cycle as a function of both the demand and the supply. The indices of turning214

ratios α denote the origin and destination corridor of the corresponding flows at a given intersection.215

For example, the turning ratio αij
k describes the ratio of the flow aiming to change from Ci to Cj at216

intersection I i
k = Ij

k.217

The network N can be translated into a hypernetwork G, see Figure 2b. For a single corridor, the218

graph G consists of horizontal and slanted edges, the latter with slopes equal to u or w. The duration219

of green and red phases is denoted with g and r, respectively. Subscripts denote the intersection to220

which these phases refer, while superscripts refer to the corresponding corridors. For example, gi
k is221

the duration of the green phase at intersection I i
k on corridor Ci. The horizontal edges have associated222

costs z equal to the maximum flow q̃ passing a moving observer traveling along the respective edge.223

In the original MC, this flow is zero during red times, i.e. q̃ = 0, and equal to the link capacity224

during green times, i.e. q̃ = qmax (see Appendix ??). However, the occurrence of inflows and outflows225

at intersections might affect the observed maximum flow, and consequently the related costs z. For226

example, the maximum flow q̃i
k during a green phase at an intersection I i

k might be reduced when a227

net outflow occurs at the upstream intersection I i
k−1. Also, if the inflow at an intersection I i

k exceeds228

the capacity of the downstream intersection I i
k+1, spillbacks occur after a while, potentially affecting229

q̃i
k.230

These examples highlight the importance of the inclusion of effects of turning flows and indicate231

that such impacts can be represented via q̃. Thus, we aim at modifying the costs z of horizontal232

edges to represent the effects of source terms. As explained before, these effects need to be considered233
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exogenously. Therefore, we propose three different methods to exogenously determine the effects of234

source terms on the maximum flows q̃ at intersections, and adapt the costs of related edges in G.235

4.3. Exogenous consideration of source terms236

To complete the generation of the hypernetwork G, we exogenously account for the effects of source237

terms at intersections which represent inflows and outflows. In particular, we modify the costs of238

horizontal edges in G representing green phases. Thereby, we include both demand- and supply-related239

aspects, such as undersaturated intersection approaches and the occurrence of spillbacks coming240

from the downstream intersection. Note that while the edge costs in G shall represent maximum241

flows, similar to the original MC, the hypernetwork allows deriving an upper bound for flows during242

free-flow traffic states as well. For this purpose, we present three different approaches of decreasing243

modeling complexity and computational cost at the expense of lower accuracy:244

1. Approach 1 - Network variational theory (nVT): Based on the nVT proposed by Tilg et al.245

(2021), this approach allows to accurately consider spillback propagation including circular246

dependencies at the network scale according to the KWT.247

2. Approach 2 - Full spillbacks (FS): This approach builds on analytical formulations and includes248

spillback propagation throughout the network and thus related circular dependencies.249

3. Approach 3 - Limited spillbacks (LS): Here, we only consider spillback propagation within links.250

The capacity reduction from downstream intersections will affect the upstream ones but will251

not further propagate into the network. Therefore, circular dependencies cannot be considered252

with this approach.253

In the following subsections, we first describe the utilization of nVT within the framework and254

highlight the synergies between nVT and nMC. Then, we introduce the mathematical framework for255

the approximate approaches FS and LS. Finally, we set up an optimization problem to derive the256

maximum flows at each intersection, which correspond to the network capacity state, and thus the257

costs for the hypernetwork.258

4.3.1. Approach 1 - Network variational theory (nVT) The ‘nVT’ as proposed by Tilg259

et al. (2021) enables one to describe the evolution of traffic states in a signalized network with260

precision and efficiency. Its advantage compared to other macroscopic traffic models is the ability261

to model complex intra-link bottlenecks. Its advantage compared to microscopic simulation models262

is the numerical efficiency. Moreover, nVT requires the same inputs as nMC and builds upon a263

numerical grid similar to a hypernetwork. This leads to further synergies, as the hypernetwork G can264

be utilized for such a numerical grid. While it promises a high accuracy compared to the approximate265

approaches (FS and LS), it requires the highest modeling and computational efforts to derive the266

costs for horizontal edges in G.267



Tilg et al.: From corridor to network MFDs
Article submitted to Transportation Science; manuscript no. (Please, provide the manuscript number!) 11

Cumulative count The numerical grid is defined by the time-step length ∆t, the spatial step length268

∆x = u∆t, the length of each corridor C ∈ C, and the length of the analysis period (see Appendix ??).269

The latter has to be chosen such that stationary traffic states are reached on each link L ∈ L, since270

the MFD is based on such stationary traffic states. In other words, the total computation time of the271

numerical grid needs to be sufficiently long such that stationary states can be reached. Lastly, turning272

ratios α ∈ A are input parameters. Note that this grid has some overlap with the hypernetwork G273

(e.g. at intersections) but is generally more fine-meshed as grid nodes also cover space within links.274

The nVT finds the cumulative count N at each node P (x, t) in the numerical grid. For a given275

node P (x, t) within links, the classical VT formulation applies (see Appendix ??). Furthermore, Tilg276

et al. (2021) proposed to exogenously account for the effects of source terms at the points P which277

are exactly at, and right downstream of an intersection. The corresponding formulations ensure the278

correct propagation of free-flow and congested traffic states across intersections despite the existing279

discontinuities in the Moskowitz surface at such locations. The result is the precise cumulative count280

N at each point in the numerical grid. For further details on the methodology, please refer to Tilg281

et al. (2021).282

Edge costs The cumulative count N(x, t) found by nVT lets us now derive the costs for horizontal283

edges zi
k in the hypernetwork G. Recall that these costs correspond to the flow which would pass a284

moving observer traveling along such edges. Such moving observers always travel until the termination285

of a red phase in the original MC, which includes the entire green phase. Hence, it is sufficient to derive286

the green phase-specific average flows from the nVT solution to specify the costs of horizontal edges287

in G. We measure the difference in N which occurs during the beginning and the end of green phases288

at all intersections to calculate the costs z. These costs consider both, the fact that intersections289

can be undersaturated due to net outflow at the upstream intersection, and spillbacks which block290

certain parts of the green phase. In both cases, the costs of the corresponding edge are effectively291

reduced. More formally, we can determine the costs zi
k related to a green phase at intersection I i

k as:292

zi
k =

N i
k,s − N i

k,e

gi
k

. (1)

where N i
k,s and N i

k,e denote the cumulative count at intersection I i
k at the start and end of a green293

phase, respectively. Note that the numerator is always positive, as N is a monotonic increasing294

function in t. Moreover, it is necessary to derive the spillback duration. Again, such durations can295

be extracted from the nVT solution by analyzing the Moskowitz surface.296

The nVT approach can deliver a high accuracy of flows within the network in accordance with297

KWT. However, it involves a comparably high modeling complexity and computational cost. In order298

to reduce both, we develop a conceptually simpler and computationally more efficient approach to299

derive the costs for the hypernetwork as shown in the following subsection.300
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4.3.2. Approach 2 - Full spillbacks (FS) The FS approach enables one to consider congestion301

propagation throughout the network. Thus, we label this approach ‘Full spillbacks’. Compared to302

the nVT approach it simplifies traffic dynamics, thus it requires a lower computational effort and303

modelling complexity. It applies to use cases where a fast and simple MFD estimation is essential.304

This section formulates a framework to approximate maximum flows q̃ considering the inter-305

dependencies between different intersections I ∈ I in the network N . First, we consider demand-306

related aspects and the network-wide conservation of flows. Second, we account for supply reductions307

due to spillbacks. The main assumptions are a triangular link FD and that traffic signals at all308

intersections I have a common cycle length.309

Demand The demand-induced reductions of maximum flows q̃k,d due to source terms need to be310

represented in G. This is of particular importance for the estimation of the capacity branch of the311

MFD. The index d indicates that this maximum flow is constrained by the demand. Note that such312

effects were implicitly included in the original MC, e.g. undersaturated intersections due to upstream313

bottlenecks. However, source terms eliminate the possibility for such an implicit consideration. The314

following example lets us derive the key formulation to represent demand-related effects in our model.315

Consider a case where net outflows at the intersection I i
k−1 lead to flows at the downstream link316

Li
k and intersection I i

k that are lower than the link capacity qmax. This is illustrated in an excerpt of317

the time-space diagram corresponding to Ci in Figure 3.318

Figure 3 Influence of undersaturated links.

The figure shows a link Li
k between two intersections, I i

k−1 and I i
k, on corridor Ci. The red and green319

lines represent the signal phases at both intersections. Shock waves with the slopes u and w are shown320

as black lines. We assume turning ratios such that the total flow during gi
k is undersaturated, i.e.321

q̃i
k < qmax(gi

k/ci
k) where ci

k denotes the cycle length at I i
k. The shock waves illustrating the propagation322

of the queue from Ik are shown as orange and blue lines. The orange shock wave results from323

flows staying on Ci, i.e. retaining flows, which join the queue. Thus, the queue grows with speed324

w(1 − α̃ij
k−1). The blue shock wave results from turning flows from Cj which join the queue. Thus,325
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the queue grows with wα̃ji
k−1. Assuming a triangular FD, the parameter α̃ can be derived as shown326

in Appendix ?? and written as:327

α̃ = α
u

u + w(1 − α) . (2)

This example shows that the maximum flow q̃i
k can be undersaturated since the flow which discharges328

from the queue does not last for the entire green phase gi
k. Accounting for intersection-specific signal329

settings, we can describe the demand q̃i
k,d for an entire cycle as:330

q̃i
k,d = q̃i

k−1(1 − αij
k−1)gi

k−1

gi
k

+ q̃j
k−1αji

k−1
ri

k−1

gi
k

. (3)

This equation describes the maximum flow q̃i
k,d which can occur considering demand only. Note331

that if a net inflow exists, i.e. q̃i
k,d > qmax, the demand exceeds the link capacity qmax. To address332

such cases, the required supply-related constraints are introduced in the following.333

Supply Next, we model the effects of spillbacks on the maximum flows, i.e. q̃k,s, denoted by the334

additional subscript s. Note that such effects are implicitly considered in the original MC as flow335

conservation is kept. However, the occurrence of inflows and outflows at intersections might lead to a336

violation of flow conservation at the corridor level even though it is still satisfied at the network level.337

Therefore, in order to consider the effects of spillbacks, we propose to find the most constraining338

spillback duration σk exogenously as explained in the following. Note that the assumption of a FIFO339

diverge implies that a spillback occurring on a single link downstream of Ik affects all other outgoing340

links of Ik, too, if there is turning demand. Below, we derive the spillback duration and incorporate341

that into q̃k,s by means of an example.342

Recall that flow conservation applies at the link level despite the existence of source terms as so far343

we have assumed those source terms are located at intersections. Thus, we can derive the duration344

σk during which a spillback in a link affects the upstream intersection Ik by applying traditional345

concepts of traffic flow theory.346

Figure 4 displays an example of such a spillback occurrence for the stationary case. It shows an347

excerpt of a time-space diagram for a link Li
k+1 between two intersections, I i

k and I i
k+1. The red and348

green lines represent the signal phases at both intersections. Shock waves with the slopes u and w349

are shown as black lines. For this case, we assume turning ratios such that the total flow during350

gi
k+1 is oversaturated, i.e. the demand exceeds the intersection capacity q̃i

k+1,d > qmax(gi
k+1/ci

k+1). The351

queue grows with speed w while saturation flows reach the queue. Once vehicles from upstream of352

I i
k join the queue, its propagation speed changes. This is highlighted by the blue and orange curves353

in the figure. The blue curve represents a queue growth due to inflows from the adjacent corridor354

(i.e. turning vehicles coming from corridor Cj to Ci), similar to Figure 3. The orange one represents355

a queue growth due to the straight flows (i.e. vehicles staying on Ci). Once the orange shock wave356
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Figure 4 Spillback occurrence in a time-space diagram.

reaches I i
k the flow of the corresponding upstream link is blocked, and the queue spills over to this357

link. This marks the beginning of the spillback duration, ti
k,b. The spillback ends once the queue at358

I i
k dissolves again at the time instant ti

k,e. The total duration of the spillback impact is denoted as359

σi
k. This blockage affects the capacity of upstream links and the demand for downstream links on all360

adjacent corridors. Note that ti
k,e occurs during a red phase in the shown example, and the following361

considerations refer to that case. Nevertheless, the concept is valid for ti
k,e occurring during a green362

phase as well. The equations can be derived analogously.363

First, we calculate the spillback impact ending time ti
k,e which can be found from the time-space364

diagram:365

ti
k,e = ri

k+1 + li
k

w
. (4)

Then, we derive the parameter τ i
k, which denotes the time between the beginning of the active366

phase and ti
k,e. Considering the offset oi

k, we derive the parameter as follows:367

τ i
k = mod(ti

k,e, c
i
k) − oi

k. (5)

where mod is the modulo operator which calculates the remainder of the division of ti
k,e and ci

k.368

To facilitate the estimation of σi
k, we shift our perspective from the time-space diagram to a369

cumulative plot, as illustrated in Figure 5. We then resort to the illustrative and well-established370

technique of comparing cumulative counts N at different locations introduced as the 3-detector371

problem by Newell (1993). As described in Tilg et al. (2021), a discontinuity in the Moskowitz372

function N occurs at intersections with source terms. Thus, it is important to note that the following373

explanations always refer to a link segment where the flow conservation applies and no discontinuity374

exists. Correspondingly, we derive the cumulative count N i
k+1 at the downstream intersection I i

k+1,375

and N i
k+δx at an infinitesimally small distance downstream of I i

k, denoted as I i
k+δx. Furthermore, we376

assume the spillback duration at I i
k and I i

k+δx to be the same, σi
k = σi

k+δx. The count N i
k+1 represents377
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the cumulative curve corresponding to the supply, and N i
k+δx the demand. Since we are interested378

in deriving the spillback impact duration at I i
k+δx, we shift N i

k+1 by lik/w in the temporal dimension,379

and li
k κmax in the N-dimension, where κmax is the link jam density. Figure 5 illustrates the shifted

Figure 5 Spillback occurrence in a cumulative plot.

380

cumulative curves, where N i
k+1 and N i

k+δx are depicted as a solid and as a dashed curve, respectively.381

Both N-curves refer to a single cycle length c. This is sufficient, as we assume a common cycle length382

for all intersections, and analyze stationary states which occur periodically with such cycle length.383

The maximum cumulative count during the respective cycle is denoted with the subscript c. Based384

on both cumulative curves, we can derive the spillback impact duration σi
k as follows.385

The cumulative count N i
k+1,c is equal to the product of the maximum flow q̃i

k+1,s at the downstream386

intersection I i
k+1 and the corresponding green phase:387

N i
k+1,c = gi

k+1q̃i
k+1. (6)

Note that this formula already contains the flow q̃i
k+1 which is calculated based on eq.(13). That388

is, this flow can itself be impacted by spillbacks at the respective intersection. This dependency389

shows the recursive nature of this approach, and it allows us to model the propagation of spillbacks390

downstream of I i
k. Since q̃i

k+1 can be reduced by spillback from all links downstream of I i
k, this391

equation allows to account for circular dependencies within the network. Nevertheless, we assume a392

uniform spread of the effects of any constraint within the green phase.393

The cumulative count related to the demand N i
k+δx,c equals the sum of the inflows for one cycle.394

Building upon eq.(3), we can write:395

N i
k+δx,c = q̃i

k(1 − αij
k )gi

k + q̃j
kαji

k ri
k. (7)
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The comparison of both N-curves lets us determine the spillback duration σi
k at intersection I i

k.396

More specifically, we can determine the actual cumulative plot at I i
k as the lower envelope of both N-397

curves. The spillback begins once the flow is constrained by the cumulative curve at the downstream398

intersection, I i
k+1. During that period, the flow is zero. We determine the difference between the399

demand and the capacity accounting for the spillback:400

∆N i
k = N i

k+δx,c − N i
k+1,c = q̃i(1 − αij)gi

k + q̃jαjiri
k − gi

k+1q̃i
k+1. (8)

Next, we determine the part of ∆N i
k which remains after subtracting the blocked vehicles during401

τ i
k, denoted as δN i

k. This simplifies the notation to derive σi
k.402

δN i
k = ∆N i

k − τ i
kq̃j

kαji
k . (9)

Note that a positive δN i
k corresponds to a case where σi

k > τ i
k, i.e. the spillback spans both phases.403

This case is illustrated in Figure 5. On the other hand, a negative δN i
k corresponds to the case where404

σi
k < τ i

k, i.e. where the spillback only occurs during the red phase.405

To derive the total spillback impact duration σi
k, we distinguish between the two cases referring to406

the sign of δN i
k:407

σi
k =


τ i

k + δNi
k

q̃i
k

(1−αij) , if δN i
k > 0

τ i
k + δNi

k

q̃
j
k

αji
, otherwise.

(10)

With this equation, one can calculate the spillback duration due to a queue on Ci, which can be408

relevant for both corridors Ci and Cj at the intersection I i
k. To approximately account for a FIFO409

diverge behavior, we propose to calculate ∆Nk for all outgoing links, and subsequently consider410

the maximum ∆Nk to compute σk. During a stationary state, the inflow and outflow in a link are411

balanced by the spillback duration. Thus, the maximum ∆Nk is required to ensure all flows are412

stationary. Note that this is an approximation, as we neglect the fact that spillbacks can also affect413

inflows on adjacent links. However, this approach does not aim at an extremely precise estimation of414

σk, but at estimating the spillback duration sufficiently precise for an accurate MFD estimation at415

the network level.416

The total spillback duration σi
k is further divided into the corridor-specific blockage times, which417

are denoted as σi−→i
k and σi−→j

k . These depend on the length of σi
k, i.e. whether the spillback lasts418

only during one signal phase, or spans two phases. Note that σi
k can occur during two phases at a419

maximum, as we assume a common cycle length for all intersections and therefore the theoretically420

maximum blockage duration equals to the red phase at the downstream intersection which cannot421

exceed a cycle length. As we assume that ti
k,e occurs during a red phase, σi−→j

k is either τ i
k or σi

k, if422
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σi
k < τ i

k. Similar to that, σi−→i
k is the difference of the total spillback duration and τ i

k, or equal to zero423

in σi
k < τ i

k. To cover both cases, we write:424

σi−→i
k = max(0, σi

k − τ i
k),

σi−→j
k = min(τ i

k, σi
k).

(11)

It is left to the interested reader to verify that the framework can be derived analogously for the425

other case, where ti
k,e occurs during an active green phase.426

Eventually, the corridor-specific spillback impacts allow us to derive the respective capacity con-427

straints. Therefore, we can formulate the reduction of maximum flows on corridor Ci and corridor428

Cj due to spillbacks on corridor Ci:429

q̃i−→i
k,s = qmax(1 − σi−→i

k

gi
k

),

q̃i−→j
k,s = qmax(1 − σi−→j

k

ri
k

).
(12)

Maximum flows The maximum flow on each link is then the minimum of the demand (eq.(3)) and430

the supply (eq.(12)):431

q̃i
k = min

(
q̃i

k,d, q̃i−→i
k,s , q̃j−→i

k,s

)
. (13)

This equation is formulated for each link and results in a non-linear system of equations. Its432

structure assembles widely applied concepts such as the CTM or VT. For network entry and exit links,433

the demand and supply parts have to be treated separately. For example, there are no demand-related434

restrictions for links on which flows enter the network. Similarly, there are no capacity constraints435

for links on which flows exit the network. These links represent origin and destination nodes within436

the network.437

The inter-dependencies of flows q̃i
k can make the framework complex. Hence, to further simplify438

the description of network-wide traffic dynamics, we propose another approach which is introduced439

in the following section.440

4.3.3. Approach 3 - Limited spillbacks (LS) The ‘Limited spillback’ (LS) approximate441

approach is similar to the FS, with the difference that we further simplify the consideration of442

spillbacks at downstream intersections. More specifically, the effects of spillbacks are only considered443

at the intersection level and not across entire corridors. To that end, we need to adapt eq.(6) as444

explained in the following.445

We modify the way to estimate the cumulative count Nk+1,c representing the maximum number446

of vehicles passing the downstream intersection Ik+1 during a cycle. In this approach, Nk+1,c is equal447

to the product of the link capacity qmax at the downstream intersection Ik+1 and the corresponding448

green phase:449

N i
k+1,c = gi

k+1q̃i
max. (14)
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Note that this represents the essential assumption of the LS approach, i.e. queues blocking I i
k+1 are450

not considered in deriving σi
k. In other words, spillbacks propagating from links downstream are not451

considered here. This assumption might decrease the accuracy of the method for certain cases but452

further simplifies the overall modelling complexity.453

The modification of the method to derive Nk+1,c further affects the computation of ∆N i
k. Based454

on eq.(8) and eq.(14) above, we write:455

∆N i
k = N i

k+δx,c − N i
k+1,c = q̃i(1 − αij)gi

k + q̃jαjiri
k − gi

k+1q̃i
max. (15)

The difference in the demand and the capacity ∆N i
k can then be put into eq.(9), and thus enables456

one to follow the procedure described for the previous approach to eventually calculate the flows q̃i
k.457

4.3.4. Maximum network flows To finally specify the costs for the hypernetwork, the flows458

q̃i
k must be chosen such that the network-wide average flow is maximized. The network-wide max-459

imum does not necessarily result from maximum inflows at origin links, since these can lead to460

congestion within the network. Turning ratios are critical to define local capacity reductions that461

trigger spillbacks. These internal bottlenecks might become active at network inflows lower than qmax462

and the corresponding congestion can limit the maximum flows inside the network. Therefore, the463

maximum network-wide average flow is reached at the highest network inflows where the effects of464

activated internal bottlenecks still remain low. To treat this problem adequately within the FS and465

LS approach, we formulate an optimization problem based on eq.(13). The capacity of a network is466

defined by the maximum stationary flows possible. We define the inflows at origin links as decision467

variables. Therefore, the equivalent of eq.(13) for origin links, i.e. the link index k = 1, can be written468

as follows:469

q̃i
1 = min

(
λiqmax, q̃i−→i

1,s , q̃j−→i
1,s

)
. (16)

where the parameter λ is a factor to determine the demand at origin links as the share of qmax.470

This factor is found within an optimization problem and corresponds to the highest demand level471

possible where the effects of internal bottlenecks are low such that the network-wide average flows472

are maximized. The overall optimization problem for all links in the network can be formulated as:473

max
λi

n∑
i=1

q̃i
k (17a)

s.t. 0 ≤ λi ≤ 1 (17b)

since all constraints are effectively included in eq.(13). For the nVT approach, we can also find the474

capacity state of the network with eq.(17). However, the maximum flows q̃ are obtained based on475

eq.(1), since the cost of horizontal edges in G corresponds to these flows.476
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5. Derivation of cuts477

The previous section describes three approaches with different levels of modelling complexity to478

define the costs of horizontal edges in G representing green phases, which include the effects of source479

terms on network-wide traffic state evolution for the capacity state. Building upon G, in this section,480

we propose a method to estimate the realized network MFD. Thereby, we apply methods from the481

original MC and utilize recent findings in MFD-related research. First, we estimate the free-flow482

branch by deriving cuts from G. Similar to Leclercq and Geroliminis (2013), moving observers are free483

to choose any path in G, and are not restricted to one direction as in Daganzo and Geroliminis (2008).484

Second, we approximate the capacity branch also based on G. Finally, we estimate the network-wide485

jam density, and exploit the symmetry of the link FD indicated in Laval and Castrillón (2015) and486

Daganzo and Knoop (2016) to derive the congested branch.487

5.1. Free-flow branch488

Similar to the original MC, we rely on the concept of (virtual) moving observers that travel through489

the network. We aim at estimating the free-flow branch of each route MFD to be able to aggregate490

them to the free-flow branch of the network MFD. However, flow conservation within a route might491

be violated when source terms exist, and thus MC cannot be directly applied (see Appendix ??). To492

address this, we propose an approximate approach. It is based on the commonly known notion of493

path flows, which we will refer to as route flows to avoid any confusion with the term path as used494

in Section 2.495

Route flows consist of vehicles which share a common route from an origin to a destination, and496

flow conservation applies. Thus, we can apply the original MC by deriving hyperlinks for these routes497

from the hypernetwork G. Spillback effects are accounted for as the costs are derived from G, and498

demand-related effects are not considered as flow conservation applies. The general cost of an edge499

representing a green phase relates to the share of the route flow to the total flow at the specific500

intersection approach. By deriving all route MFDs, and subsequently taking the route length-weighted501

average, one can approximate the network MFD. Note that this corresponds to the aggregation of502

traffic states according to Edie’s definitions (Edie 1963).503

Unfortunately, the number of routes connecting each OD pair can become intractable for realistic504

networks. Hence, to reduce the number of evaluated routes, we conjecture that the network MFD is505

estimated sufficiently well when the network variability is covered by the evaluated hyperlinks. The506

corresponding set of routes is non-overlapping and includes each intersection approach. Note that507

such a set is given by the set of corridors C defined by the network decomposition in Section 4.1. We508

derive the cuts corresponding to forward-moving observers as described in the original MC for each509

hyperlink. Eventually, we average the route-specific free-flow branches to derive the one corresponding510

to the network MFD.511
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5.2. Capacity branch512

To derive the capacity branch of the network MFD, we fully utilize the hypernetwork G. It already513

includes estimates for the maximum flows on each link, q̃k. The computation of these flows considered514

both decreased demand due to a net outflow, and spillback induced capacity reductions. We take the515

link-weighted average to derive the network-wide capacity, as proposed in Geroliminis and Daganzo516

(2008). Note that phenomena such as the short-blocks problem (e.g. Daganzo and Lehe 2016) are517

taken into account in our methods to define the hypernetwork as we consider related spillback effects518

explicitly.519

5.3. Congested branch520

To conclude the estimation of the MFD we approximate its congested branch as follows. First, we521

estimate the network jam density Kmax. Then, we exploit a symmetry in the evolvement of free-flow522

and congested traffic states considering the estimation for Kmax. This symmetry was shown by Laval523

and Castrillón (2015), Daganzo and Knoop (2016) concerning the FD which exists when a canonical524

density transformation is applied. This aspect reflects the symmetric propagation of free-flow and525

congested traffic states throughout a link. They utilized this symmetry also for the MFD. Our main526

assumption here is that the symmetry still holds when the network jam density is reduced. We discuss527

this assumption in the Appendix ??.528

5.3.1. Network jam density To our best knowledge, no explicit attempts to estimate the529

network-wide jam density in the context of MFD approximation exist. The network jam density530

differs from the link jam density because the network is not necessarily fully jammed in case of531

gridlock (Daganzo, Gayah, and Gonzales 2011, Mahmassani, Saberi, and Zockaie 2013, Mazloumian,532

Geroliminis, and Helbing 2010).533

First, we let the traffic in the physical network reach the capacity state. Then, we define virtual links534

at the destination nodes in the network, hereafter referred to as ‘destination links’, and simultaneously535

set their capacity to zero. This results in queues originating on those links which propagate through536

the network until a gridlock state is reached. By approximating the queue growth throughout the537

network, we can derive the network jam density Kmax. Note that gridlocks in reality might occur538

due to an interplay of many different aspects such as outflow reductions due to spillbacks, driver539

heterogeneity, restrictive internal bottlenecks such as traffic lights, and additional demand generation540

inside or at the fringe of the given network. Nevertheless, we assume that reducing the outflow541

capacities at destination links leads to the highest number of jammed links in the network. Therefore,542

it results in the highest value for the network jam density which is preferable as we look for the MFD543

as an upper bound.544
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Approach 1 - Network variational theory (nVT) Similar to estimating the cost of horizontal edges in545

G, we propose an approach based on nVT to estimate the network-wide jam density Kmax. It has the546

advantage of being accurate as few assumptions are involved. On the other hand, this approach has547

a comparably high modeling complexity and computational cost. Alternatively, any other numerical548

solution method to solve network KWT problems applies. However, there exist synergies between549

nVT and the nMC framework proposed in this paper which we intend to utilize (see Section 4.3.1).550

To estimate Kmax, we let the network reach the capacity state as in the estimation of costs for551

G, and then block the destination links as described above. This leads to queues being propagated552

throughout the entire network. Once the system reaches a stationary state, the link density can be553

derived by evaluating the difference of the Moskowitz function in the spatial dimension for each link,554

and subsequently dividing it by the link length:555

Ki
k =

N i
k,x=0 − N i

k,x=li
k

li
k

. (18)

Then, the network-wide jam density is calculated as:556

Kmax =
∑

i,k Ki
k∑

i,k li
k

, (19)

Approach 2 - Queue propagation (QP) We propose a second approach which simplifies traffic557

dynamics compared to nVT. This leads to a reduction in estimation accuracy, but also decreases the558

computational cost involved.559

We assume the capacity of destination links at the boundary of N to be zero and trace the560

propagation of queues throughout the network. Thus, we label this approach as ‘queue propagation’561

(QP). Once a stationary gridlock state is reached, we derive the number of vehicles per link, and562

subsequently, take the link-weighted average to derive Kmax.563

For each link Li
k we derive the time instant ti

k,dq when the queue starts to grow at the link’s564

downstream end, and approximate the time when it reaches the link’s upstream end, ti
k,uq. Note that565

the latter time instant equals to ti
k−1,dq, i.e. the time when the queue reaches the upstream link Li

k−1,566

if no earlier blockage from an adjacent link occurs. To derive ti
k,uq, we distinguish between two cases.567

In the first case, we focus on links where no spillback occurred when the network was at capacity,568

i.e. q̃i
k < qi

k,s. Such a case is displayed in Figure 6. It shows a time-space diagram for the link Li
k569

between two intersections I i
k−1 and I i

k.570

The left part of the figure reflects the traffic conditions for the network capacity state (see Sec-571

tion 4.3.2). At time ti
k,dq a queue reaches the intersection I i

k from downstream. Note that ti
k,dq can572

result from downstream links from both corridors, Ci and Cj . However, the earlier queue is decisive573

for the further propagation, as we assume FIFO diverging behavior. If the earliest queue arrives from574
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Figure 6 Queue growth for undersaturated links.

Cj , it occurs during a red phase on Ci. The queue on link Li
k starts to grow with the start of the575

respective red phase, as vehicles stopping due to a red light will not be able to continue their travel576

once the green phase starts due to the existing queue downstream. Formally, the time when the queue577

starts to grow at the downstream end of link Li
k can be written as:578

ti
k,dq = min

(
⌊
tj
k+1,uq

ci
k

⌋ci
k, ti

k+1,uq

)
, (20)

where the ⌊.⌋ is the floor function, which ensures ti
k,dq starts with a cycle and therefore with the red579

phase if the decisive queue comes from Cj .580

From this time onward, the capacity at I i
k is reduced to zero and the queue starts to grow on581

link Li
k. During the occurrence of discharging flows, the queue grows with speed w as shown in the582

figure. In case that flows from the upstream intersection I i
k−1 reach the queue, it grows with speeds583

w(1 − α̃ij
k−1) and wα̃ji

k−1. The growth of the queue is displayed as a double line in the figure. For the584

sake of simplicity, we neglect the impact of discharging flows which are supposed to be small in the585

considered case, and approximate the growth as the cycle-based average of the blue and orange shock586

waves:587

ti
k,uq = ti

k,dq + li
k

w

ci
k

ri
kα̃ji

k−1 + gi
k(1 − α̃ij

k−1)
. (21)

In the second case, we focus on an intersection I i
k+1 that is oversaturated when the network is at588

capacity state, and therefore a spillback occurs. Thus, the queue grows faster as in the first case since589

incoming flows are typically close to saturation.590

This is shown in Figure 7 as a time-space diagram for link Li
k+1 between the intersections I i

k and591

I i
k+1. Note that a spillback occurs at I i

k denoted as σi
k. In the figure, a queue reaches I i

k+1 at ti
k+1,dq592

from downstream. The queue grows with speed w as long as saturation flow reaches it. Closer to593

I i
k, the queue grows depending on the inflows with speed w(1 − α̃ij

k−1) and wα̃ji
k−1, and reaches I i

k at594
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Figure 7 Queue growth for oversaturated links.

ti
k+1,uq. If ti

k+1,dq equals the beginning of the red phase ri
k+1, we can calculate ti

k+1,uq based on eq.(10)595

in Section 4.3.2, i.e. by deriving the spillback time σi
k. Contrarily, if ti

k+1,dq is close to the beginning of596

the green phase gi
k+1, the queue grows with speed w nearly all the time. However, if ti

k+1,dq is exactly597

equal to the beginning of the green time, the queue starts growing at the beginning of the previous598

red phase. To describe this formally, we introduce the parameter γ = [0,1], as shown in the figure,599

which is 1 if ti
k,dq = ri

k, and close to 0 if ti
k,dq is close to gi

k. To approximate all cases in between, we600

linearly interpolate between γ = (0,1]. The case of γ = 0 is treated separately.601

ti
k+1,uq =

ti
k+1,dq + lik+1

w
+ γi

k+1(ri
k+1 − σi

k) , if γi
k+1 > 0

ti
k+1,dq + lik+1

w
− σi

k , otherwise.
(22)

With equations (20)-(22) we approximate congestion propagation throughout the network. How-602

ever, a blocked intersection due to a queue on Ci also blocks flows to Cj due to the FIFO diverging603

behavior. This leads to reduced inflows to the respective link. In the extremal case, the entire link on604

Cj might become empty due to such a blockage. This is essentially the reason for Kmax being smaller605

than the link jam density κmax. To account for such cases, we trace the last vehicle which enters and606

exits a link. A corresponding example is illustrated in Figure 8. In this example, a blockage occurs607

at intersection I i
k−1 at ti

k−1,dq. This is due to a queue reaching the intersection from the adjacent608

corridor Cj , which is not shown in the figure. The remaining vehicles on link Li
k join the existing609

queue at I i
k, and leave the link at ti

k,dq during the respective green phase. In this example, no queue610

from downstream of I i
k occurs at ti

k,dq and therefore the link Li
k becomes empty. In contrast to the611

cases described above, the flows at I i
k are reduced to zero due to a lack of demand and not due to a612

queue-induced blockage.613
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Final vehicle

Figure 8 Downstream effects of spillbacks.

To describe this formally, let ci
k,f denote the beginning of the cycle in which the final vehicle reaches614

the existing queue at the downstream end of the link.615

ci
k,f = ci

k⌊
ti
k−1,dq + lik

u

ci
k

⌋, (23)

The remaining flow relevant to ci
k,f is denoted as qi

k,f . It can be derived based on inflows at the616

upstream intersection. The ratio of the remaining flow to the saturation flow qmax corresponds to the617

part of the green phase where flows larger than zero occur at I i
k. Thus, the time ti

k,dq when q = 0 is618

equal to the red phase ri
k of the cycle ci

k,f , and the part of the green time until the intersection is619

cleared.620

ti
k,f = ci

k,f + ri
k + gi

k

qi
k,f

qmax

, (24)

To account for this, we rewrite eq.(20):621

ti
k,dq = min

(
⌊
tj
k+1,uq

ci
k

⌋ci
k, ti

k+1,uq, ti
k,f

)
. (25)

This completes the set of equations required to track congestion propagation throughout the net-622

work for the gridlock case. The equations (21), (22), and (25) are applied for each link Li
k on a623

corridor Ci of the set C. However, the queues from an adjacent corridor might reach an intersection624

earlier than the current one being evaluated with the equations. Thus, an iterative approach needs to625

be employed until the resulting times ti
k,uq and ti

k,dq converge. This further ensures the consideration626

of circular dependencies.627

Subsequently, we estimate the maximum density per link Ki
k during the gridlock state. Thereby, we628

consider that a link might not fully load due to a blockage from an adjacent corridor at the upstream629

intersection. The time span needed to fully load the link is ti
k,uq − (ti

k,dq − li
k/u), which is based on630

the equations above. However, the actual loading duration for a link is max(ti
k−1,dq − ti

k,dq + li
k/u,0),631
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since ti
k−1,dq also accounts for blockages from adjacent corridors. The maximum operator is applied632

to exclude infeasible values. We approximate the actual maximum density per link as follows:633

Ki
k = κmax

max(ti
k−1,dq − ti

k,dq + li
k/u,0)

ti
k,uq − ti

l,dq + li
k/u

, (26)

Based on Ki
k for each link, we eventually apply eq.(19) to derive Kmax.634

5.3.2. Density transformation In order to finish the estimation of the congested branch of635

the network MFD, we utilize the symmetry between the free-flow and congested branch, as suggested636

by Laval and Castrillón (2015), Daganzo and Knoop (2016).637

More specifically, we transform densities of the free-flow and capacity MFD branch:638

κ′ = κ − 1
2

(
1 + q

u + w

uw

)
. (27)

where κ′ denotes the transformed density. Note that this equation is based on a normalized FD639

with qmax = 1 and κmax = 1. Based on the estimation of the free-flow and the capacity branch in640

Sections 5.1 and 5.2, we know the corresponding (κ, q) values. As noted in Laval and Castrillón641

(2015), the respective transformed densities range between [−0.5,0].642

6. Case study643

In this section, we conduct a case study to test our framework for the network of Sioux Falls. Thereby,644

we apply the nMC to estimate the network-wide realized MFD, the current state-of-the-art methods,645

and the CTM to derive a ground truth.646

6.1. Case study design647

6.1.1. Network initialization The case study is conducted based on the bi-directional Sioux648

Falls network as shown in Figure 9. For the sake of simplicity, we alter the original Sioux Falls649

network slightly by only considering intersections with four or fewer legs, and we disallow left-turns650

at intersections. In total, the network consists of 23 intersections, shown as filled and empty circles,651

connected by 36 bi-directional links, as highlighted by the arrows. All intersections are controlled by652

a fixed signal control scheme with a cycle time of 90 s, and a green and red phase each of 45 s. All653

offsets are set to zero. We assume an identical FD for all links, characterized by qmax = 1800 veh/h,654

u = 10 m/s, and w = −5 m/s.655

We define origin and destination nodes as those with less than four legs. They are shown as filled656

circles in the figure. At these nodes, we add virtual links which serve as origin and destination links657

and thereby allow to consider demand generation within the network. Additionally, we randomly658

select reasonable but different turning ratios for each intersection between 0.25 ≤ α ≤ 0.75. These659

limits are chosen to exclude extremal turning ratios which lead to special and rather unrealistic660
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Figure 9 Sioux Falls network for the case study.

spillback occurrences in the network, as numerical investigations have shown. More importantly, the661

chosen turning ratios lead to an inter-dependency of traffic dynamics across the entire network. This662

includes the propagation of spillbacks within and across corridors, i.e. circular dependencies exist663

in our experiment. This becomes clear when considering that turning ratios at all intersections are664

non-zero and that the network is bidirectional. Thus, circular flows can occur between any set of at665

least four intersections forming a rectangle within the network.666

6.1.2. Ground truth In order to further evaluate our MFD estimation results, we compare it667

to a ground truth derived from the CTM which is a macroscopic, time- and space-discrete traffic668

model. We implement the same network topology and the total simulation time to 2 h. We set the669

simulation time step to ∆t = 0.25 s, and the spatial step size to ∆x = u∆t to satisfy the Courant-670

Friedrichs-Lewy condition (Courant, Friedrichs, and Lewy 1928). Setting a lower time-step was not671

feasible due to the high computational cost.672

To derive the full range of the MFD with the CTM, we define several scenarios which are char-673

acterised by a constant inflow level and an exogenous reduction of the capacity at destination links.674

The former aspect is required in order to fully load the network and to reach capacity. The latter675

measure is applied to create significant congestion spreading throughout the network and affecting676

the stationary network-wide traffic state accordingly. While heavy congestion can generally occur677

in networks also without the explicit reduction of outflows, e.g. due to very restrictive intersection678

control, this procedure facilitates the replicability of the experiments and the reproducibility of the679

corresponding results. We consider multiple inflow and exogenous capacity reduction levels for the680

CTM simulation. More specifically, we specify ten different inflow levels between 0 and 900 veh/h681

per origin link, and 20 different capacity reduction factors between 0 and 1 at destination links. In682
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each scenario, the network is initially empty and the same level of inflow and capacity reduction683

applies to all origin and destination links, respectively. Subsequently, the network is loaded with the684

specified inflow, and traffic dynamics are simulated until a stationary state is reached. If a congested685

traffic state is to be obtained in a scenario, the respective exogenous capacity reduction at destination686

links applies once the network is stationary at the capacity level. This ensures the transition from a687

stationary state. To plot the related MFD, we aggregate flow and density values for one cycle length688

once stationary states are reached at the end of the simulation. We verify the existence of a network-689

wide stationary traffic state by ensuring that no differences exist between the average densities of690

the last two cycles in each simulation run.691

Note that the CTM includes a certain error in the calculated density and flow values due to the692

numerical diffusion. This error converges to zero with a decreasing time step ∆t. The chosen time-693

step represents a reasonable trade-off between accuracy and computational cost. Nevertheless, the694

ground truth results should be treated accordingly when being interpreted.695

6.1.3. Proposed approaches The network geometry and topology as well as the triangular696

fundamental diagram are the main input data for the proposed approaches to derive the hypernetwork697

and estimate the network-wide jam density. The approximate approaches do not require any further698

data. The nVT, however, necessitates the specification of a numerical grid. Furthermore, the total699

computation period is set to 2 h to reach stationary traffic states, and the time-step is set to ∆t = 0.1 s.700

This small time-step highlights the lower computational cost and consequently increased accuracy701

of nVT compared to the CTM. In order to estimate Kmax, the capacity of destination links is set702

to zero after 1.5 h. This ensures that the stationary traffic states related to the network capacity are703

reached before the gridlock state occurs.704

6.1.4. State of the art We choose the MC by Daganzo and Geroliminis (2008), by Leclercq705

and Geroliminis (2013), and the stochastic MC by Laval and Castrillón (2015) as state of the art for706

this case study. Hereafter, we abbreviate them with ‘Dag’, ‘Lec’, and ‘Lav’. Note that none of these707

methods explicitly account for the effects of source terms, i.e. the exchange of flows across corridors.708

Furthermore, these methods implicitly focus on the idealized MFD for corridors. Still, we consider709

them as state of the art for estimating the realized MFD as no better alternatives exist to our best710

knowledge. More specifically, methods that estimate the MFD while accounting for turning flows in711

realistic networks do not exist since the reported studies all apply to simplistic networks such as712

regular grids or two-ring networks.713

6.2. Results and discussion714

6.2.1. Impact of hypernetwork generation method We compare the MFDs estimated by715

our proposed framework with the one derived by the ‘Dag’, ‘Lec’, and ‘Lav’ methods, as well as with716
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the CTM ground truth. The results are displayed in Figure 10. The x-axis displays the network-wide717

average density K in veh/km, and the y-axis the network-wide average flow Q in veh/h. The CTM718

results are shown as grey diamonds. The MFDs from the proposed framework are based on the nVT719

approach, as well as on the FS and LS approaches to derive G combined with the QP approximation720

for the network jam density. They are displayed as a solid black curve, a dashed black curve, and a721

dotted black curve, respectively. The MFD resulting from the state-of-the-art methods are shown as722

solid, dashed, and dotted grey curves.723

Figure 10 Resulting MFDs from the proposed framework based on the nVT, the FS-QP, and the LS-QP approach,
the state-of-the-art methods represented by the original method of cuts by Daganzo and Geroliminis
(2008) (‘Dag’) and by Leclercq and Geroliminis (2013) (‘Lec’), the stochastic approximation by Laval
and Castrillón (2015) (‘Lav’), and the CTM ground truth.

The ground truth MFD reaches a capacity of ca. 670 veh/h, and a network-wide jam density of ca.724

94 veh/km.725

The nVT approach to derive the hypernetwork and estimate the network-wide jam density results726

in the most accurate MFD estimation as indicated in the figure. The capacity is ca. 25 veh/h lower727

than the one of the CTM, while the network-wide jam density is the same. The reason for this is728

that nVT itself solves the KWT problem at the network level accurately, and its integration into729

the hypernetwork generation, as well as into the estimation of Kmax, let the overall framework profit730

from such accuracy. As expected, the estimated MFDs resulting from the hypernetwork built based731

on the approximate approaches are less accurate. The first approach, abbreviated as ‘FS-QP’, which732

includes network-wide spillback propagation, estimates Qmax as accurately as the nVT approach,733
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with an error of 25 veh/h. However, here the difference results from an overestimation rather than an734

underestimation. The error in the jam density estimation is ca. 8 veh/h. The second one, abbreviated735

as ‘LS-QP’, which does not consider network-wide spillback propagation overestimates the capacity736

by ca. 75 veh/h and the jam density by ca. 10 veh/km. In reality, an accurate capacity branch737

estimation is more important as the congested branch is rarely observed (e.g. Loder et al. 2019).738

Thus, we adjudge the increased modeling complexity of the FS approach as valuable for the presented739

case.740

The differences in the network-wide capacity and the jam density estimation by the nVT approach741

and the approximate ones are due to the assumptions made within the approximations. In particu-742

lar, averaging the downstream spillback impact uniformly on the downstream capacity neglects the743

temporal component of the spillback occurrence. However, such temporal aspects impact the further744

propagation of the spillback, i.e. to what share it is propagated to corridors Ci and Cj . Similar to745

that, we assume the inflow into a link as the equally weighted mean of both retaining and turning746

flows to derive Kmax. The shorter a link is the more likely these assumptions are violated.747

The results from the state-of-the-art methods substantially differ from the ground truth. Both748

the capacity and the jam density are significantly overestimated. However, this is expected, as these749

methods cannot account for the effects of turning flows on the network MFD. In other words, they750

cannot account for the effects of spatial demand patterns which is important to derive an estimate751

for the realized MFD as our results clearly show.752

Given the error included in the ground truth and the magnitude of improvement compared to the753

results of the state-of-the-art methods, the differences in Qmax and Kmax appear to be small for all754

MFDs resulting from our proposed framework. Moreover, these first results indicate that indeed the755

overall estimation accuracy is the highest for the nVT approach and the consideration of spillback756

propagation throughout the network in the FS approach is valuable.757

6.2.2. Computational costs The modeling complexity of the nVT approach is clearly the high-758

est compared to the approximate ones. This is not surprising, as it numerically solves the underlying759

KWT problem at the network level. For the case study settings, the nVT takes 4 h 50 min to derive760

the MFD. The FS-QP approach consists of more decision variables in the optimization problem761

than the LS-QP one and thus has the higher complexity of the two. Both approaches take 1.2 min762

for the case study settings and are thus substantially cheaper than the nVT from a computational763

perspective. The computational cost of the nVT strongly scales with the chosen time-step and the764

spatial extent of the network (Tilg et al. 2021). For example, if the time-step is set to ∆t = 1 s, the765

computation time is only 14.3 minutes for the case study. The other two methods scale primarily766

with the number of intersection legs in the network.767
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The computation times for these three approaches are of the magnitude of some minutes, while768

the CTM requires several days to derive the MFD for this case study. The methods were evaluated769

on a computer with an Intel(R) Xeon(R) W-2145 CPU with 3.70 GHz and 64 GB RAM. This high770

computational time for the ground truth results from the small time-step (even though it is still 2.5771

times larger than that used in the nVT approach), the resulting large number of cells, the necessity772

to reach stationary states and to replicate the simulation for multiple demand levels. Similar or even773

larger computational requirements could be equally expected from other simulations. Furthermore,774

note that the optimization procedure integrated in the nMC framework ensures that highest network-775

wide flows are found, while the CTM-related MFD only represents a point-wise evaluation of traffic776

states which can miss the true capacity.777

6.2.3. Sensitivity analysis Here, we further analyze the nMC framework with respect to two778

specific aspects. First, we evaluate how the selection of routes impacts the estimation of the free-flow779

branch. Second, we investigate the impact of turning ratios on the estimation of the MFD. Below,780

we describe the main results from the sensitivity analysis. The details are provided in Appendix ??.781

• Route selection: As described in Section 5.1, the free-flow branch is estimated based on a782

specific set of routes. This is done to reduce modeling complexity and computational burden783

while providing a reasonable approximation of the network MFD. The sensitivity analysis reveals784

that indeed the estimation’s accuracy is further increased by considering more routes in the785

process. In the end, the selection of routes of the MFD estimation is use-case dependent and786

the choice represents a trade-off between computational burden and estimation accuracy.787

• Turning ratios: In order to assess the impact that spatial demand patterns have on the MFD,788

we first analyze the variability of the resulting MFDs associated with different demand pat-789

terns compared to the ground truth. The significant variability in the results indicates that the790

MFD indeed depends on the spatial demand pattern in the network. This further shows that791

a framework to estimate the MFD for specific spatial demand patterns is beneficial. Despite792

the assumption regarding the existence of stationary states, which might be violated in reality,793

the approximated MFDs can be useful. Furthermore, we compare the results from our proposed794

framework to the state of the art and the ground truth for several cases of different sets of795

turning ratios to assess the quality of our approach. The results clearly show the substantial796

improvement in the estimation accuracy regarding the network-wide capacity and jam density797

of all three proposed methods. On average, the estimated capacity and jam density are more798

than five times closer to the ground truth value than those estimated with the state of the art799

methods.800
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7. Conclusion801

In this paper, we propose a framework, the nMC, to estimate the network-wide realized MFD with-802

out relying on extensive empirical data or microscopic simulations. Its flexibility allows to trade-off803

modeling complexity and computational cost against estimation accuracy. We base our framework804

on the well-established original MC (Daganzo and Geroliminis 2008, Leclercq and Geroliminis 2013)805

and follow its philosophy while exogenously accounting for the effects of source terms at intersec-806

tions. The framework consists of two main steps after the problem initialization. First, we build a807

hypernetwork that reflects the network flows in the capacity state. For this purpose, we propose808

three different methods, a precise one based on the nVT (Tilg et al. 2021) and two approximate ones809

based on analytical formulations. The hypernetwork is the basis to derive the network MFD. Similar810

to the original MC, we derive cuts to approximate the free-flow branch of the MFD. Moreover, the811

hypernetwork allows us to efficiently estimate the network capacity. Last, we estimate the congested812

branch of the network MFD by approximating the maximum density in the network during gridlock,813

and utilizing symmetries of the underlying link FD. We thoroughly investigate the proposed frame-814

work in a case study. This includes the comparison to a ground truth provided by the CTM, as well815

as to the MC (Daganzo and Geroliminis 2008, Leclercq and Geroliminis 2013, Laval and Castrillón816

2015) as state-of-the-art for realistic networks. Furthermore, we analyze our framework’s robustness817

to different spatial demand patterns. The results demonstrate that the proposed framework enables818

one to estimate the realized network MFD sufficiently well for a realistic network. Moreover, they819

evidently show the improvement of the estimation accuracy of the network-wide capacity and jam820

density by our proposed framework compared to existing methods.821

Our methodology allows estimating the realized MFD for realistic urban networks without the822

information loss induced by the reduction of networks to a single corridor as implicitly done by exist-823

ing methods. Therefore, our framework is able to account for different spatial demand patterns and to824

determine the upper bound of the network-wide average flow. The potential of this methodology lies825

in its flexibility, and reduced computational cost compared to simulation-based studies. Moreover, it826

sheds light on the impact of specific assumptions on the realized MFD estimation. Note that existing827

approximation methods for realistic networks neglect the effects of demand patterns. Following the828

empirical study of Ambühl et al. (2021) and the theoretical work by Leclercq and Paipuri (2019)829

which establish the demand-dependency of the MFD from a temporal perspective, our framework is830

methodological proof that the effects of the spatial aspects of demand on the realized MFD cannot831

be neglected as well. One field of application is the calibration of aggregate traffic models for large832

metropolitan regions (Mariotte et al. 2020).833

Future work includes the derivation of the idealized MFD based on our proposed framework. This834

can be achieved by integrating the nMC into an optimization framework with turning ratios as835
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decision variables and the maximum network-wide flow as the objective value. This would lead to836

the maximum MFD while considering the effects of spatial demand patterns on network-wide traffic837

states as well as spatial dependencies of traffic dynamics. Moreover, multi-modal aspects can be838

incorporated by modeling the effects of buses on traffic flow and integrating a passenger model. The839

incorporation of the nVT facilitates the modeling of such aspects as moving or stationary intra-link840

bottlenecks. This can be modeled as such a type of bottleneck, and therefore can be interesting841

for estimating the three-dimensional MFD (Geroliminis, Zheng, and Ampountolas 2014). Similar842

extensions of the MC exist already for the corridor level (Dakic et al. 2020, Chiabaut 2015), and are843

therefore promising starting points for this research direction. Last, by integrating continuous source844

terms (Laval, Costeseque, and Chilukuri 2016) in nVT, the effects of generated and finished trips845

along links can potentially be modeled. This could then be incorporated in the nMC framework to846

offer the user multiple demand generation methods.847
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