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In recent years, the advancement of artificial intelligence techniques has led to significant interest in reinforce-
ment learning (RL) within the traffic and transportation community. Dynamic traffic control has emerged as a
prominent application field for RL in traffic systems. This paper presents a comprehensive survey of RL studies in
dynamic traffic control, addressing the challenges associated with implementing RL-based traffic control strate-
gies in practice, and identifying promising directions for future research. The first part of this paper provides a
comprehensive overview of existing studies on RL-based traffic control strategies, encompassing their model
designs, training algorithms, and evaluation methods. It is found that only a few studies have isolated the training
and testing environments while evaluating their RL controllers. Subsequently, we examine the challenges
involved in implementing existing RL-based traffic control strategies. We investigate the learning costs associated
with online RL methods and the transferability of offline RL methods through simulation experiments. The
simulation results reveal that online training methods with random exploration suffer from high exploration and
learning costs. Additionally, the performance of offline RL methods is highly reliant on the accuracy of the
training simulator. These limitations hinder the practical implementation of existing RL-based traffic control
strategies. The final part of this paper summarizes and discusses a few existing efforts which attempt to overcome
these challenges. This review highlights a rising volume of studies dedicated to mitigating the limitations of RL
strategies, with the specific aim of enhancing their practical implementation in recent years.

1. Introduction

Dynamic traffic control is one of the primary research topics in
intelligent transportation system. Road traffic systems can benefit from
dynamic traffic control by mitigating the negative impacts of traffic
congestion, e.g., reducing travel delays, alleviating pollutant emissions,
or improving road traffic safety (Papageorgiou et al., 2003). Over the past
decades, the majority of research in dynamic traffic control has pre-
dominantly concentrated on the development of model-based control
strategies (Siri et al., 2021). Implementing model-based traffic control
strategies in practice faces two significant challenges. Firstly, road traffic
dynamics are inherently complex and typically described by nonlinear
models. Consequently, the optimal control formulations derived from
these nonlinear models are also nonlinear and non-convex. This nonlin-
earity poses difficulties in real-time implementation, particularly when
dealing with large-scale optimization problems (Xi et al., 2013).
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Secondly, the performance of model-based traffic controllers is highly
reliant on the accuracy of the underlying traffic flow models. Numerous
studies have employed closed-form plant and prediction models to
demonstrate their model-based control approaches (Carlson et al., 2010;
Geroliminis et al., 2012; Hegyi et al., 2005). However, given the presence
of various unpredictable factors of human behavior that may affect traffic
dynamics, it becomes challenging to precisely predict the evolution of
traffic processes using a deterministic traffic flow model. Studies have
shown that a mismatch between the prediction model and the real traffic
process can result in diminished performance for model-based controllers
(Han et al., 2020).

To address the challenge of model mismatch, researchers have
developed robust control approaches to optimize traffic control schemes
by considering the worst-case prediction scenario, accounting for un-
certain traffic conditions (Liu et al., 2021; Tettamanti et al., 2013).
However, robust control methods also suffer from high computational
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burden, so their application scenarios remain in small-scale traffic net-
works. In recent years, reinforcement learning (RL), which has been
successfully implemented in the areas of robotics and video games, has
also gained substantial attention in traffic control area. RL offers several
advantages that have the potential to overcome the limitations of
model-based traffic control approaches. One notable advantage is that
RL-based traffic control methods often do not rely on online traffic pre-
dictions and optimizations, resulting in reduced online computation time
compared to model-based optimal control approaches. Moreover, by
training an RL controller using real traffic data, the control policy can be
optimized based on real traffic evaluation, potentially mitigating the
model mismatch problem.

Existing studies on RL-based traffic control strategies have primarily
focused on three aspects. Firstly, RL models have been developed to
address various traffic control problems, such as traffic signal control,
ramp metering, variable speed limits (VSLs), and vehicle motion control,
e.g., Abdulhai et al. (2003), Aradi (2020), Belletti et al. (2017), and Li
et al. (2017). Secondly, efforts have been made to enhance existing RL
training algorithms, aiming for faster convergence and improved per-
formance (El-Tantawy et al., 2013; Li et al., 2016). Lastly, novel RL al-
gorithms have been devised to effectively train RL models for large-scale
traffic control problems (Chen et al., 2020; Chu et al., 2019).

While a considerable number of RL-based traffic control strategies
have been proposed in the literature, field implementation of such stra-
tegies is rather limited. There are several factors that limit the imple-
mentation potential of RL-based traffic control strategy. Firstly, during
the training process, the exploration of random control actions may lead
to additional delays or even unsafe traffic situations, which is unac-
ceptable for traffic authorities. Secondly, given the limited training time
available in real-world settings, there is no guarantee of achieving the
desired level of improvement in traffic performance. Many existing
studies have overlooked these problems by conducting the training of RL
models solely in simulation environments, where random exploration is
also acceptable, and training time can be flexible. Furthermore, when RL
models are trained in simulators, there may be a mismatch between the
training environment and the actual traffic process, potentially resulting
in inferior control performance (Li et al., 2022).

In the literature, several studies have provided comprehensive over-
views and analyses of RL-based traffic control approaches. For instance,
the studies of Haydari and Yilmaz (2020) and Xiao et al. (2021) con-
ducted comprehensive surveys on the broad application of deep RL in
intelligent transportation systems and traffic engineering. These surveys
covered a wide range of areas, including dynamic traffic control, routing
optimization, autonomous driving, and energy management. On the
other hand, Noaeen et al. (2022) and Wei et al. (2021) focused exclu-
sively on literature reviews concerning RL applications for traffic signal
control. The aforementioned studies primarily focus on the advance-
ments and achievements in RL-based traffic control approaches, but they
provide limited discussion on the challenges of implementing these
strategies. Therefore, further exploration and discussion are needed to
address the barriers that hinder the successful deployment of RL strate-
gies in real-world traffic scenarios.

This paper distinguishes itself from other studies on the literature
review of RL-based traffic control approaches in two key aspects.
Firstly, it focuses specifically on RL-based studies in the field of dynamic
traffic control, encompassing traffic signal control, traffic flow man-
agement on freeways, and microscopic traffic control utilizing intelli-
gent vehicles as actuators. Secondly, the paper's objective extends be-
yond summarizing existing RL-based traffic control strategies to
investigate their implementation potentials, considering them from a
traffic engineering perspective. In addition to summarizing studies on
model designs and algorithm architectures, the paper examines the
practical implementation of RL-based traffic control strategies. Two
possible methods of implementation are presented: online RL methods
and offline RL methods. For online RL methods, the assumption is that
RL models are directly trained in a real traffic environment, and the
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exploration and learning costs are explored through microscopic sim-
ulations. Offline RL methods, on the other hand, involve training RL
models in a simulation environment and transferring the optimal con-
trol policies obtained to real traffic processes represented by different
simulation models. Drawing from these investigations, the paper pro-
poses several research directions that hold potential for overcoming the
implementation challenges associated with RL-based traffic control
strategies.

The remaining sections of this paper are organized as follows. Section
2 provides a comprehensive literature review of RL-based traffic control
strategies. Section 3 explores the challenges associated with existing RL
methods in terms of their implementation in real-world scenarios
through microscopic traffic simulation experiments. Section 4 discusses
potential approaches to address these challenges and enhance the field
implementation of RL methods. Section 5 concludes the paper.

2. Literature review

In this section, we provide a comprehensive summary of existing
research studies focusing on RL-based dynamic traffic control strategies.
Section 2.1 presents an overview of RL fundamentals specifically applied
to the domain of dynamic traffic control. Section 2.2 provides a
comprehensive synthesis of agent formulations employed in various RL
models. Finally, in Section 2.3, we discuss the learning algorithms that
have been applied in previous studies on RL-based traffic control
strategies.

2.1. Basics about RL in traffic control

RL concerns the problem of a learning agent that interacts with an
environment to achieve a specific goal. The basic RL framework involves
an agent, responsible for making decisions, and an environment, which
encompasses everything the agent interacts with. Typically, the agent
and the environment interact in discrete time steps. At each timestep k,
the agent takes an action based on the state provided by the environment.
In response, the environment assigns a reward to the agent and presents a
new state, determined by a probability distribution. The reward function
aims to quantify the advantage of taking a specific action in a given state.
The agent's objective at time step k is to maximize the cumulative reward-
to-go over a given time horizon, denoted as G(k):

Gl =3 7R () &)

where Kr denotes the time index when the state of the environment
reaches the terminal state; R(7) is the reward received at time 7; and y**
is the discount factor that defines the relative importance of the reward at
time 7(0 <y < 1).

The behavior of an agent, which involves mapping an observed state
s(k) of the environment to actions, is defined by a policy denoted as .
nla(k)|s(k)] represents the probability of taking action a(k) upon
observing state s(k) at time k. To evaluate a policy, value functions V, and
Q, are defined for a given state s(k) and a given state-action pair Q"[s(k)
a(k)] = max,Q"[s(k),a(k)] as their expected cumulative reward-to-go.

Vils(k)] = Ex [G(k) |s (k)] )

Oxls(k), a(k)] = E4[G(k)|s(k), a(k)] 3

If the expected cumulative reward under policy 7 is greater than or
equal to that under another policy z' for all states, 7 is considered to be
better than or equal to 7. The policy that is better than or equal to all
other policies is defined as the optimal policy, which is denoted as z”. The
optimal state value function and state-action value function are denoted
as V'[s(k)] and Q"[s(k), a(k)], respectively, and V'[s(k)] = max,V"[s(k)],
Q' Is(k), a(k)] = max,Q"[s(k), a(k)].
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The presented basic RL framework can be applied to a traffic control
system, where the traffic dynamics is the environment and the traffic
controller is the agent. The agents are formulated based on the goal of the
control system.

2.2. Agent formulations

In this section, we provide an overview of the agent formulations
employed in existing RL models for freeway traffic control and urban
traffic control, respectively. For large-scale urban traffic control prob-
lems, the coordination of each learning agent within RL strategies be-
comes essential to reduce learning complexity and enhance efficiency.
The ways of coordinating the learning agents in existing RL-based stra-
tegies are summarized and discussed.

2.2.1. RL-based control approaches for freeway traffic

In the realm of RL-based freeway traffic control strategies, the agent
formulations often closely resemble model-based controllers, which are
derived from specific mechanisms described by physical traffic models.
The model-based controllers employ the traffic state on the freeway as
input, representing the state variables in the RL-based controllers. The
decision variables in the model-based controllers directly correspond to
the actions of the RL controllers, and the objective functions are aligned
with the reward functions of the RL controllers. For instance, in a local
ramp metering system, the main advantage lies in improving the
throughput of the bottleneck by preventing capacity drop and spill back.
As a result, the reward in RL-based ramp metering systems is often
associated with the critical occupancy/density of the bottleneck, which
leads to maximum throughput (Davarynejad et al., 2011; Schmidt-Du-
mont and Vuuren, 2015). In the case of coordinated ramp metering
systems, the reward function in RL models should consider the balanced
delay across each bottleneck (Belletti et al., 2017; Han et al., 2022b).

For a VSL control system, there are two commonly used mechanisms
to improve traffic efficiency. When addressing a local bottleneck, it is
commonly assumed that VSLs below the critical speed result in a
fundamental diagram with reduced capacity. By implementing VSLs
upstream of a bottle-neck, the mainstream arriving flow is permanently
decreased to prevent bottleneck activation and the subsequent capacity
drop. Consequently, RL models of VSLs developed based on this mech-
anism exhibit similar state representations to ramp metering models,
with the reward function also being linked to the critical density of the
bottleneck (Li et al., 2017; Wang et al., 2022b). Another application of
VSLs in improving traffic efficiency is the mitigation of jam waves. As the
congestion area of a jam wave propagates upstream, the RL state should
encompass real-time information regarding the jam's location (Han et al.,
2022a).

Besides improving traffic efficiency, ensuring traffic safety and sus-
tainability are also crucial aspects of freeway traffic control. In the works
of Li et al. (2020b) and Wu et al. (2020), reducing crash risks was
considered as one of the primary objectives in their control design. To
this end, the reward functions of their RL models are developed based on
surrogate safety measures. The studies conducted by Li et al. (2021a) and
Zhu and Ukkusuri (2014) have focused on reducing pollutant emissions
as a control objective. As a result, the reward function of their RL models
is designed based on emission models derived from the traffic state.
Several recent studies have developed RL-based strategies for the
microscopic control of connected and autonomous vehicles (CAVs) in
merge situations, with the objective of enhancing the safety and effi-
ciency of the merging zone (Hu et al., 2022; Nishitani et al., 2020; Wang
and Chan, 2017). In these RL models, the state variables encompass the
speeds and positions of both current and surrounding vehicles. The
reward function takes into account safety performance represented by
surrogate safety measures, as well as efficiency performance measures,
such as the average velocity of vehicles in the merging zone.
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2.2.2. RL-based control approaches for urban traffic signals

Given the scrutiny of state-of-the-art RL-based traffic signal control
approaches in recent studies, e.g., Noaeen et al. (2022) and Wei et al.
(2021), this section provides a concise summary of the RL agent formu-
lations employed in urban traffic signal control. Existing RL-based stra-
tegies for urban traffic control encompass various scenarios, including
single intersection control, multi-intersection coordination, and perim-
eter control.

The early works on RL-based traffic signal control date back to the
early 2000s (Abdulhai et al., 2003; Thorpe and Anderson, 1996). In the
context of single intersection signal control, the queue length of each lane
and the current phase provide effective representations of the state var-
iables (El-Tantawy et al., 2014; Li et al., 2016; Touhbi et al., 2017; Zhang
et al., 2018). Some studies have explored the use of images to represent
the state, extracting vehicle positions as an image input for convolutional
neural networks (Genders and Razavi, 2018; Liang et al., 2019; Wei et al.,
2018). The choice of action can involve setting the green duration of a
phase, e.g., Casas (2017), or selecting which phase to activate, e.g.,
Zheng et al. (2019b), depending on the specific traffic signal settings. The
rewards are commonly represented by the surrogate measures of total
travel time for all the vehicles, such as the average queue length, average
delay or throughput.

For RL-based multi intersection signal control, there exist two pre-
vailing agent formulations, namely single global agent formulation and
multi-agent formulation. A single global agent assimilates the state in-
formation from all intersections as input and learns to simultaneously
determine the coordinated actions of all intersections (Nishi et al., 2018;
Van der Pol and Oliehoek, 2016; Wiering, 2000). To address the issue of
an expanding joint action space resulting from an increasing number of
agents to model, some studies have proposed cooperative learning
methods that combine the learning process of a centralized global agent
with each local agent (Tan et al.,, 2019; Zhang et al., 2019). For
multi-agent formulations, it is customary to enrich the ego agent's
observation by incorporating details about the traffic conditions and past
actions of neighboring agents (Chu et al., 2019; Wei et al., 2019; Xu et al.,
2020). This integration enables the agent to optimize its policy by
considering both its own state and the actions performed by neighboring
agents.

Perimeter control utilizes traffic signals to regulate traffic flow up-
stream of a protected network in order to prevent over-saturation
(Aboudolas and Geroliminis, 2013; Keyvan-Ekbatani et al., 2012). In
the literature, RL-based perimeter control strategies have been investi-
gated both in single-region networks (Ni and Cassidy, 2019; Su et al.,
2023), and multi-region networks (Chen et al., 2022; Li and Hou, 2020;
Zhou and Gayah, 2023). These strategies typically employ RL models
with state variables that encompass regional accumulations and traffic
demands. The implementation of the action can follow two approaches:
discrete or continuous. Discrete perimeter control often employs
bang-bang control, with perimeters in an all-open or all-closed state. In
continuous control, the metering rate for each perimeter link is specified.
To evaluate the effectiveness of these strategies, the reward functions
commonly used are based on the trip completion rate of the protected
network.

2.3. Learning algorithms

RL learning algorithms can generally be categorized into model-based
methods and model-free methods. In road traffic systems, the dynamic
evolution of traffic process is influenced by many stochastic human
factors, such as varying driving skills and diverse reactions to distur-
bances. This complexity poses a challenge when attempting to estimate
the state transition of an RL-based traffic control system using a proba-
bility model. Consequently, only a few works have investigated model-
based RL methods in dynamic traffic control. In Wiering (2000), the
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state transition probability of the signal control system was learned from
observed experiences. This method has been further extended in subse-
quent studies to include coordination between agents (Kuyer et al.,
2008), as well as multi-objective priority control for buses and emer-
gency vehicles (Duan et al., 2010). The studies of Khamis et al. (2012)
and Khamis and Gomaa (2012, 2014) proposed a Bayesian method to
estimate the transition probability of non-stationary state in a
multi-agent traffic signal control system. The recent study conducted by
Kunjir et al. (2023) proposed a model-based offline RL method, enabling
the RL agent to learn directly from offline data instead of actively
interacting with the environment.

Most of existing RL-based traffic control systems use model-free
training methods, which can be broadly divided into value-based
methods and policy-based methods. For value-based RL methods, early
attempts usually applied tabular approach such as Q-learning to update
the RL policy (Arel et al., 2010; Li et al., 2017; Lu et al., 2008;
Schmidt-Dumont and Vuuren, 2015; Touhbi et al., 2017). The Q-learning
method estimates the optimal value function Q" using
temporal-difference learning. The Q-value, Qq), stores the value of a
state-action pair, and it is updated according to Eq. (4):

OQps.0) < Qis.a) + Kisa) [R+ymaxQy /) — Qs 4

where R is the observed reward of the transition from the current state s
to the new state s’ under action a; @' denotes the action chosen at state s ;
(s, a) is the step-size parameter which controls how fast the Q-values are
altered. While Q-learning is effective in handling local traffic control
problems such as local ramp metering or individual intersection control,
it is inefficient when the scale of the network gets larger because of the
curse of dimensionality. Therefore, DRL approaches which use neural
networks to approximate the value function have been developed (Gao
et al., 2017; Genders and Razavi, 2016). The DQN family, comprising the
original DQN, Double DQN, Duel DQN, and other variants, has been
extensively investigated in dynamic traffic control strategies (Chen et al.,
2020; Gong et al., 2019; Li et al., 2016; Mnih et al., 2015; Shabestary and
Abdulhai, 2018; Wang et al., 2020; Wei et al., 2018; Xu et al., 2020). In
DQN, the value function Qs 4y is represented by a parameterized neural
network. The parameters of the neural networks are updated by mini-
mizing the following loss function as Eq. (5):

2
L= <R + yme/ixQ(s,,a’;H/) —0(s,qa; 9)) (5)

where R +ymaxQ(s,a;6') R is the estimated Q-value and Q(s, a; 0) is the
a

target Q-value. ¢ is updated by copying the values of 6. It is updated less
frequently than 0 to improve the stability of the training.

Compared to value-based RL methods, policy-based RL methods can
deal with continuous action space. The Policy Gradient (PG) algorithm is
one of the earliest policy-based RL algorithms that have been applied to
dynamic traffic control (Coskun et al., 2018; Mousavi et al., 2017; Rizzo
et al., 2019). The basic idea behind the PG algorithm is to compute the
gradient of the expected cumulative reward with respect to the policy
parameters, and use it to update the policy parameters in the direction of
higher expected reward. The algorithm learns a parameterized policy
that maps states to actions, and the policy is updated iteratively based on
the observed rewards and actions.

Hk+l « ek + (IV(;J(JZ(;) (6)

where J(7y) is the expected cumulative reward under policy z parame-
terized by 6. a is the step-size parameter.

Actor-critic RL algorithms, which further improve the data sampling
efficiency, have also been widely employed in dynamic traffic control
(Aslani et al.,, 2017). In actor-critic algorithms, there are two main
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components: an actor network that learns the policy, and a critic network
that learns the value function. The actor network decides which action to
take in a given state, while the critic network evaluates the quality of the
actor's actions.

Some actor-critic algorithms, such as Deep Deterministic Policy
Gradient (DDPG) and Twin-Delayed Deep Deterministic Policy Gradient
(TD3), learn deterministic policies that directly map states to actions.
These algorithms have been extensively employed in RL-based traffic
control systems (Casas, 2017; Li et al., 2021b; Lu et al., 2023; Tan et al.,
2019; Wu et al., 2020; Zhou et al., 2019). On the other hand, some other
RL traffic control systems utilized actor-critic algorithms that are capable
of learning stochastic policies, which map states to action probability
distribution, as the training methods. Examples of such systems include
advantage actor-critic (A2C), and proximal policy optimization (PPO)
(Chu et al., 2019; Lin et al., 2018; Kreidieh et al., 2018; Pandey et al.,
2020; Peng et al., 2021), among others.

2.4. Evaluation method

Traffic control strategies are commonly evaluated in traffic simula-
tions, with a focus on performance metrics related to traffic efficiency,
safety, and sustainability. The evaluation of RL-based control strategies
aligns with traditional model-based strategies. Traffic efficiency is typi-
cally measured by indicators such as total time spent, throughput,
average travel delay, or average queue length within the network. Safety
performance is often evaluated using surrogate safety measures like time-
to-collision, crash potential index, and conflict index. Sustainability
considerations involve assessing fuel consumption and pollutant emis-
sions estimated from vehicle trajectories. Regarding the testing of traffic
simulators, researchers have employed two main approaches. Some
studies have utilized macroscopic simulations to replicate real-world
traffic dynamics. However, an increasing number of studies opt for
microscopic simulations, such as SUMO, VISSIM, and AIMSUN, which
provide a more comprehensive representation of complex traffic
behavior, including the stochastic nature of driving and routing
decisions.

While many existing RL-based traffic control strategies have demon-
strated superior performance compared to base-line control methods,
such as model-based approaches, it is important to note that the com-
parisons made between them are not always fair. One notable issue in
these comparisons is that the performance of RL controllers is often
evaluated solely at the end of the training process, after the RL agents
have been adequately trained. However, the learning cost incurred dur-
ing the training process, particularly when exploring random actions, has
often been overlooked. Given that many existing RL-based traffic control
strategies employ random exploration, the associated cost of exploring
such actions can be substantial. Furthermore, a significant number of
studies fail to consider the mismatch between the training environment
and the testing environment. Since there is an inherent discrepancy be-
tween a traffic simulator and real traffic processes, the performance of
RL-based strategies may be limited by the accuracy of the simulators. The
optimal control policy obtained from the training environment may be
inferior when transferred to the real traffic environment.

In recent years, an increasing number of studies have taken into ac-
count the mismatch between the training environment and real traffic
process when evaluating RL-based traffic control strategies, as summa-
rized in Table 1. Some studies have employed macroscopic traffic flow
models to establish the training environment and introduced perturba-
tions to traffic demand and model parameters in the testing phase,
thereby replicating this discrepancy (Pandey et al., 2020; Zhou and
Gayah, 2021). Alternatively, certain researchers have employed one
macroscopic traffic flow model for the training environment and a
distinct model for the testing phase to replicate the simulation-to-reality
transfer (Han et al., 2022a). Macroscopic traffic flow models provide
significant advantages in terms of their tractability, interpretability, and
ease of development. Nevertheless, this approach neglects the intricate
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Table 1
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Summary of RL-based traffic control strategies with separate training and testing environments.

Ref. Research problem

Training environment (data)

Testing environment modification

Pandey et al. (2020) Dynamic pricing of express lanes for network
traffic optimization
Perimeter control for two-region urban networks

Resolve freeway jam waves using VSLs

Zhou and Gayah (2021)

Han et al. (2022a)

Zhou and Gayah (2023) Perimeter control for Multi-region urban

networks

Aslani et al. (2018) Signal control for single intersection

Rodrigues and Azevedo
(2019)

Tan et al. (2020)

Wau et al. (2020)

Xie et al. (2022)

Signal control for single intersection

Signal control for single intersection
Differential VSLs for freeway merge bottleneck
Dynamic route guidance for network traffic
optimization

Han et al. (2022b) Local and coordinated ramp metering
Jang et al. (2019)
Chalaki et al. (2020)

Merging control of CAVs
Merging control of CAVs

Macroscopic simulation (CTM and a lane
choice model)

Macroscopic simulation (MFD model)
Macroscopic simulation (CTM)
Macroscopic simulation (MFD model)
Microscopic simulation (AIMSUN)
Microscopic simulation (AIMSUN)
Microscopic simulation (SUMO)
Microscopic simulation (SUMO)
Microscopic simulation (VISSIM)

Macroscopic simulation (METANET)

Microscopic simulation (SUMO)
Microscopic simulation (SUMO)

Changes of parameters in the lane choice model

Changes of parameters in the MFD model
Macroscopic simulation

METANET

Changes of parameters in the MFD model

Disturbances: incidents, detection errors, and
pedestrians' jaywalking

Disturbances: demand surges, incidents, and
detection errors

Disturbance: truck event

Changes of model parameters in SUMO
Changes of model parameters in VISSIM

Microscopic simulation
SUMO

Scaled test bed

Scaled test bed

behaviors of individual drivers and the associated heterogeneity due to
their simplified representation of aggregated traffic dynamics, poten-
tially leading to more favorable outcomes in training RL strategies.

Several researchers have employed microscopic traffic simulations to
establish distinct training and testing environments. For instance, mul-
tiple studies formulated training scenarios involving ordinary traffic
situations, while subjecting the strategies to a range of disruptions during
testing, including truck events (Tan et al., 2020), jaywalking pedestrians
(Aslani et al., 2018), and instances of detection failures (Rodrigues and
Azevedo, 2019). In these investigations, despite the significant influence
of these disturbances on the dynamic evolution of traffic processes, the
underlying behavioral model of vehicles remained unchanged. Several
studies have replicated the environmental mismatch phenomenon by
introducing modifications to the underlying models within microscopic
simulations (Han et al., 2022b; Wu et al., 2020; Xie et al., 2022). These
adjustments to the underlying models are undertaken as a means to more
effectively emulate the environmental mismatch, given that the simula-
tion models can never perfectly reproduce the heterogeneous charac-
teristics of drivers. Nevertheless, it should be noted that the application
of microscopic simulation-based transferability tests in current research
remains predominantly limited to small-scale traffic control scenarios,
such as individual intersections or local freeway bottlenecks.

Instead of relying solely on traffic simulations, some recent studies
have taken a different approach by testing control strategies for con-
nected and autonomous vehicles in scaled test beds that replicate real-
world traffic scenarios. For instance, Jang et al. (2019) proposed an
RL-based strategy to optimize the trajectory of intelligent vehicles,
aiming to enhance traffic operational efficiency in a roundabout scenario.
The RL model was trained using the microscopic simulation tool SUMO
and subsequently tested in a scaled test bed that closely resembled
real-world traffic scenarios. Chalaki et al. (2020) further extended this
approach by integrating an adversarial learner, aiming to improve the
transferability of the control policy from the microscopic simulation to
the scaled test bed. The study demonstrated superior performance
compared to previous approaches. While a scaled test bed is a step closer
to reality compared to simulations, it can only replicate light traffic
streams, involving only a few vehicles, rather than capturing the com-
plexities of traffic flow dynamics.

Table 1 provides a summary of the studies that have considered the
mismatch between the training environment and the testing environ-
ment. Across these studies, while certain RL algorithms have exhibited
greater robustness against the environmental mismatch, it is important to
note that a general trend of performance degradation in simulation-to-
reality transfer has been consistently observed.

3. Challenges for field implementation

There exist numerous challenges that must be addressed prior to the
practical implementation of an RL-based traffic control strategy. In the
literature, only a few studies have examined the feasibility of deploying
their approaches in real-world scenarios. Based on the predominant
sourcing of training data from either traffic simulators or real-world
collections, we present two types of approaches for the practical imple-
mentation of RL-based traffic control strategies, namely online RL and
offline RL. Figure 1(a) showcases the framework for online training,
where the RL agent interacts directly with the real traffic environment to
optimize the control policy. On the other hand, Fig. 1(b) illustrates the
framework for offline RL training, where the agent is initially trained in a
traffic simulation environment. Once a satisfactory level of training is
achieved, the optimized control policy is then transferred to real-world
traffic scenarios.

The online RL training approach entails two significant challenges.
Firstly, the utilization of randomly explored control actions during the
training process may lead to very poor traffic performance, e.g., high
delays and unsafe traffic situations. Secondly, the training process relying
on random exploration necessitates a substantial volume of training data,
which may be impractical to collect due to the limited speed of data
acquisition in the real world, influenced by physical time constraints and
the inherent “slowness” of the traffic process.

The offline RL approach relies on the utilization of a traffic simulator
due to the infeasibility of employing historical field data for training
purposes. This is primarily attributed to the scarcity of effective training
data collected from the field, as real-world traffic flows are regulated by a
limited number of pre-defined control strategies. Additionally, many
practical traffic control systems are not designed specifically to mitigate
traffic congestion or enhancing traffic efficiency. For instance, many
traffic signal control systems and speed control systems solely implement
fixed signal timing plans and predetermined speed limit values. Conse-
quently, the field data obtained from these control systems cannot be
effectively employed for training an RL model.

However, the inherent mismatch between a traffic simulator and the
real traffic process can impose constraints on the effectiveness of RL-based
strategies due to the accuracy limitations of the simulators. While some
studies argue that their RL-based control methods hold promising poten-
tial for field implementation, assuming continuous improvement in the
accuracy of traffic simulators, it is important to note that the stochastic
nature of traffic flow renders it challenging for traffic simulators to reach
the level of descriptive accuracy found in other domains such as Newto-
nian physics. Thus, a major challenge of the offline RL approach revolves
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Fig. 1. Two types of approaches for implementing RL-based traffic control strategies: (a) Online training and (b) Offline training.

around achieving good transferability of the control policy from the
simulation environment to the real-world traffic process.

There may be a third approach to implementing RL that integrates
both offline RL (for pre-training) and online RL (for continual learning).
However, challenges such as the transferability of policies across
different environments in offline RL, as well as the high learning cost
associated with random exploration in online RL, persist. Consequently,
we will not exclusively discuss about this particular implementation
method.

In the literature, while a handful of studies have touched upon the
challenges mentioned in implementing their RL strategies (as observed,
for instance, in Table 1), a systematic analysis that quantifies the learning
cost and assesses the transferability of an RL traffic control strategy,
along with comprehensive evaluations, remains notably absent. To
address this gap and illuminate the limitations inherent in both online
and offline RL implementations, we conduct a simulation test involving
RL-based control strategies within a ramp metering scenario. In Section
3.1, we present the design of the simulation experiment. Section 3.2
evaluates the learning costs associated with the online RL method, while
Section 3.3 focuses on the transferability of the offline RL method.

3.1. Simulation design

A ramp metering scenario is devised as the experimental setup, uti-
lizing a real-life freeway stretch as the test bed, as depicted in Fig. 2. To
simulate the traffic dynamics within the freeway stretch, we employ the
open-source microscopic simulation software, SUMO. For our simulation
experiment, we utilize the default car-following model in SUMO, known
as the Krauss model. The parameter values adopted in this experiment

4,389 m Off-ramp<«————458 m

An active bottleneck on Rongwu freeway, China

~ 000D

are based on the work of Han et al. (2022b), in which the model was
calibrated with real data. Specifically, we set the driver's desired (mini-
mum) time headway to 1.1 s, while the driver imperfection (where
0 denotes perfect driving) is assigned a value of 0.4. The remaining pa-
rameters are set to their default values.

The traffic demand profile of the peak hour is depicted in Fig. 3(a). In
this site, the merge area is an active bottleneck where congestion origi-
nated, as shown in the simulation result in Fig. 3(b). When congestion
occurs, the downstream throughput is reduced as a result of capacity
drop, and the upstream off-ramp is blocked, leading to more severe traffic
congestion.

An RL-based ramp metering controller is designed to regulate the
merge flow and optimize the traffic efficiency. The ramp control system
operates based on a fixed cycle approach, where the cycle length is
predetermined to be 20 s. The maximum queue length of the on-ramp is
set to 120 vehicles. For the RL agent, the state, s(k), is defined as
5(k) = [gm(k = 1), py k), va(k), n(k)] %)
where gn (k —1) is the mainstream arriving flow of the bottleneck at time
step k — 1, measured at location 1 in Fig. 2. pg (k) and vg (k) are the density
and speed of the bottleneck, measured at location 2. n(k) is the queue
length of the on-ramp. The action, a(k), is defined as the green duration
of cycle k. The reward, R(k), is defined as
R(k)= = (ps(K) = p,,)’ ®
where p,, is the critical density of the bottleneck. The model is trained
using a state-of-the-art RL algorithm, namely TD3 (Fujimoto et al., 2018).
The training process comprises 400 episodes, with each episode

~ 0000

On-ramp<«——-200 m—— End of merge

1,161 m

Fig. 2. A graphical representation of the freeway stretch.
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Fig. 4. (A) Performance curve of the training and (b) the speed contour plot with the optimal control policy.

representing a 1-h simulation. The performance curve of the training can
be observed in Fig. 4(a). The performance of the RL controller is signif-
icantly improved after training. Figure 4(b) showcases the traffic per-
formance achieved with the RL controller upon completion of the
training. Notably, the congestion associated with the on-ramp bottleneck
is substantially alleviated, resulting in a 13.7% reduction of the total
travel time.

3.2. Learning cost of online RL

If the proposed RL-based ramp metering strategy is implemented in
practice using the online RL method, additional costs will arise due to
exploration and learning. To evaluate the learning cost associated with
the proposed RL-based control strategy, we compare the performance of
the RL controller with a baseline ramp metering controller throughout
the entire training process. The feedback ramp metering strategy, ALI-
NEA, which has been implemented in many freeways worldwide, is
selected as the baseline control strategy. The comparison between ALI-
NEA and the RL-based strategy is depicted in Fig. 5. Figure 5 illustrates
the relative reduction in total travel time (TTT) achieved by the RL-based
strategy in comparison to the baseline ALINEA for each training episode.

During the first 50 episodes, the RL controller exhibits notably inferior
performance compared to ALINEA, resulting in a higher TTT ranging be-
tween 6% and 8%. This performance gap can be attributed to the RL
agent's initial state of learning from scratch, as it lacks any prior knowledge
of ramp metering. Between episodes 50 and 350, the RL controller's per-
formance varies significantly due to the exploration and learning processes

N B~ O @

Total travel time reduction (%)
o

---- ALINEA

0 50 100 150 200 250 300 350 400
Training episode

Fig. 5. Comparison between ALINEA and RL during the entire training process.

it undergoes. However, beyond the 350-episode mark, the RL controller
consistently outperforms ALINEA. As a result, the RL-based control strat-
egy incurs substantial learning costs within the initial 50episodes.
Although the RL controller achieves an improved average TTT across the
subsequent 300 episodes, there are still instances where its performance
falls behind. Consequently, for the proposed RL strategy to confidently
surpass ALINEA, approximately 350 rush hours of ramp control are
necessary to train and enhance the control policy effectively.

Please be noted that in this simulation experiment, we only consider a
simple local ramp metering scenario. For more complex traffic control
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systems such as a coordinated ramp metering system or integrated traffic
control for large-scale traffic networks, the learning cost is likely to in-
crease significantly due to the much larger state-action space in the
corresponding RL models. In addition, in the context of the local ramp
metering scenario considered here, we do not account for any potential
safety issues arising from randomly explored control actions. In the case
of other control systems, such as a VSL control system, the learning cost
pertaining to safety performance may also be considerably high.
Furthermore, in practical applications, if the RL-based strategy exhibits
inadequate performance, leading to a notable escalation in congestion, it
is conceivable that traffic management authorities may opt to deactivate
the system. This could potentially result in extended periods for both the
learning process and the overall system enhancement. Consequently,
finding effective approaches to reduce the learning cost of RL is crucial
for facilitating the practical implementation of the online RL method.

3.3. Transferability of offline RL

For the offline RL method, the transferability of the control policy is
one of the most critical challenges for field implementation. Trans-
ferability in the context of RL refers to the ability of an agent to apply the
knowledge and skills learned in one task or environment to another
related task or environment. While some studies have discussed the
transferability of RL-based traffic control strategies, they have primarily
focused on transferring knowledge within the same environment to
different tasks. For instance, addressing the nonstationarity of traffic
dynamics in RL-based traffic signal control strategies has been investi-
gated in several studies Van der Pol and Oliehoek (2016), Yoon et al.
(2021), Zang et al. (2020) and Zheng et al. (2019a), introduced meta RL
approaches to enhance the agent's generalization capabilities for
different phase structures of traffic signals. Ke et al. (2020) proposed a
transfer learning approach to enhance the transferability of an RL-based
VSL control strategy, specifically from normal merge traffic situations to
rare scenarios such as adverse weather conditions. Regarding the control
of CAVs, Kreidieh et al. (2018) presented an RL-based merging control
strategy that considers the transferability from a synthetic merge
bottleneck to a realistic counterpart.

This paper primarily discusses the transferability of RL in the context
of environment mismatch. Although the aforementioned approaches aim
to improve generalization across different tasks, they do not specifically
address the issue of environment mismatch. In order to replicate the
mismatch between the training environment and real-world traffic con-
ditions, we employ various underlying models in the SUMO simulator for
testing purposes. Specifically, we construct 15 different sets of testing
environments, represented by different simulation models, parameters,
and traffic demands. Please be noted that congestion and the associated
capacity drop occurred in all sets of testing environments. The specific
details of each environment can be found in Table 2. The degree of

Table 2
Degree of mismatch (left of |) and the performance (right of |) in different testing
environments.

Simulation model Low demand Medium High
demand demand
Krauss (More timid drivers) 21.13 | 3.82 17.81 | 11.01 16.95 |
13.70
Krauss (Ordinary drivers) 24.86 | 0.00 | 13.71 16.03 |
—1.95 12.89
Krauss (More aggressive 21.98 | 17.12 | 6.84 15.61 |
drivers) —0.24 10.65
IDM 17.49 299  15.24 | 8.81 13.19 |
11.80
EIDM 28.25 | 26.28 | 1.42 22.08 | 0.89
—4.45
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environment mismatch is quantified by measuring the difference in
traffic state variables (the weighted average of speed and flow) using root
mean square error, replicated in different environments. In essence, a
larger extent of mismatch leads to more significant differences in simu-
lated density and speed compared to those observed in the original
training environment. The degrees of mismatch range from 10% to 30%.
The testing environments constructed by the Krauss model with ordinary
drivers and medium traffic demand is the same as the training environ-
ment, i.e., mismatch degree is 0.

This paper primarily explores the transferability of RL concerning the
aspect of environment mismatch. While the aforementioned methodol-
ogies aim to enhance generalization across different tasks, they do not
explicitly tackle the challenge of environment mismatch. To simulate the
discrepancies between the training environment and real-world traffic
conditions, we utilize diverse underlying models within the SUMO
simulator for testing purposes. In particular, we configure 15 distinct sets
of testing environments, each characterized by different simulation
models, parameters, and traffic demands. The specific intricacies of each
environment are outlined in Table 2. Notably, it is important to highlight
that congestion and the associated capacity drop were observed across all
testing environment sets.

The extent of environment mismatch is quantified by evaluating
variations in traffic state variables (a weighted combination of speed and
flow) through root mean square error calculation across different envi-
ronments. Essentially, a higher level of mismatch corresponds to more
pronounced disparities in simulated density and speed when compared to
observations from the original training environment. The degrees of
mismatch range from 10% to 30%. The testing environments generated
using the Krauss model with ordinary drivers and medium traffic demand
align precisely with the training environment, signifying a mismatch
degree of 0.

The performance of the RL-based ramp control strategy across
different testing environments is visually presented in Fig. 6. In scenarios
where the training and testing environments are identical, the RL strat-
egy achieves a 13.7% reduction in TTT. However, as the extent of envi-
ronment mismatch increases, a noticeable decline in performance
becomes evident. Notably, when the mismatch surpasses 20%, the TTT
reduction attained by the ramp control strategy can be negative.
Consequently, ensuring the precision of the training simulator holds
paramount importance in realizing the efficacy of the RL-based control
strategy. By way of comparison, the ALINEA strategy displays greater
robustness compared to the RL approach. For mismatch levels below
20%, the average reduction in TTT by the RL strategy measures at
10.27%, whereas ALINEA achieves a TTT reduction of 6.22%. In contrast,
when the degree of mismatch exceeds 20%, the RL strategy exhibits a
negative average TTT reduction of 0.09%, while ALINEA still manages to
achieve a positive gain, resulting in a TTS reduction of 1.43%.
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Fig. 6. Performance of the RL-based ramp control strategy and ALINEA in
different testing environments.
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4. Research directions to enhance RL methods for
implementation

In recent years, researchers have increasingly recognized the chal-
lenges of implementing RL strategies in real-life traffic systems. They
have put forward several methods with potential to address the afore-
mentioned challenges, surpassing the mere suggestion of developing
more accurate traffic simulators for training. This section provides a
summary of these methods.

4.1. Integrating physical traffic flow models into the RL

Several studies have proposed new RL methods that integrate phys-
ical traffic flow models into conventional RL-based traffic control
methods. Please be noted that those methods, referred to as physics-
informed RL, are different from the aforementioned model-based RL
methods. When referring to model-based RL, we specifically denote RL
systems where state transitions are characterized by a probability model.
In contrast, physics-informed RL emphasizes the utilization of physical
traffic flow models to influence action selection during the training
process.

Physics-informed RL methods have been demonstrated to improve
the RL training performance in terms of both efficiency and safety
(Lubars et al., 2021; Su et al., 2021). In Lu et al. (2014), an indirect
RL-based ramp metering strategy for traffic flow management under in-
cidents was proposed. The RL agent made action decisions by alternating
between a Q-learning-based strategy and a model-based strategy. Simu-
lation results indicated that the proposed method exhibited slightly
better performance in reducing TTT than direct Q-learning. While the
proposed method incorporates a traffic flow model into the training
process, its objective was not specifically focused on reducing learning
costs and enhancing transferability. Therefore, although the study
demonstrated that the method outperformed the Q-learning method in
reducing TTT after training, it did not provide a discussion on the asso-
ciated learning cost during the training process.

Regarding improving the safety of action exploration during the
training process, Bai et al. (2022) proposed a hybrid reinforcement
learning (RL)-based eco-driving strategy for CAVs at signalized in-
tersections. The strategy incorporated safety considerations by imple-
menting model-based actions when RL-generated control actions
violated pre-defined rules. A similar concept was also presented in a
study by Lubars et al. (2021), where they introduced an RL-based ramp
metering strategy. In their approach, the RL exploration of control ac-
tions was supervised by a model predictive controller to ensure safety.
The integration of safety constraints in these methods opens up the
possibility of training and testing them in real traffic environments.

The recent studies by Han et al. (2022b) proposed physics-informed
RL strategies for local and coordinated ramp metering. In that method,
the RL training process involves offline generation of control actions
using a traffic prediction model, followed by online evaluation using
online traffic data. That method offers several advantages compared to
conventional RL-based ramp metering control strategies. Firstly, it
eliminates the need for random exploration of control actions, resulting
in substantially reduced learning costs during training. This enables its
practical implementation in real traffic scenarios. Moreover, good
transferability is demonstrated as knowledge is acquired by the RL agent
not only from simulated traffic environments but also through practical
evaluations and feedback.

The current studies on physics-informed RL methods primarily
concentrate on small-scale traffic control problems. However, as the size
of the network expands, the learning efficiency may not be guaranteed
due to the exponential growth of the state-action space. Therefore,
enhancing the scalability of physics-informed RL warrants further
attention in future research.
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4.2. Learning from demonstration

Learning from demonstration, also known as imitation learning, uti-
lizes machine learning models to imitate behaviors of the experts or other
models. In traffic control systems, model-based and rule-based strategies
developed by researchers and engineers are considered the experts to
imitate. For example, Li et al. (2020a) proposed a deep imitation learning
method for traffic signal control. They treated signal control as a super-
vised learning problem, mapping the traffic state to control actions based
on expert trajectories collected from the adaptive traffic signal control
system known as SCATS. Although the method outperformed the
fixed-time control scheme, it solely focused on imitating the expert sys-
tem without incorporating reinforcement learning to further enhance the
control performance.

Huo et al. (2020) integrated imitation learning and RL for cooperative
traffic signal control. The learning model initially undergoes pre-training
by imitating a rule-based signal control method, followed by interacting
with the environment for continual learning. The method demonstrated
faster convergence compared to other DRL methods that did not integrate
imitation learning. In the studies conducted by Wang et al. (2022a) and
Xiong et al. (2019), the adaptive traffic signal control system known as
Self-Organizing Traffic Light (SOTL) was utilized as the expert system for
imitation. Both studies demonstrated faster convergence using their
respective methods. However, the discussion regarding the amount of
data used for imitation learning was absent. In practical settings, the
constrained speed of data collection, resulting from physical time limi-
tations and the inherent slowness of the traffic process, presents a sig-
nificant challenge in obtaining sufficient data for pre-training. This
limitation may potentially affect the quality of the pre-training. The
recent study by (Han et al., 2022a) proposed an RL-based controller for
VSLs that incorporates imitation learning. The model initially learns from
the expert VSL control system, SPECIALIST, which has been successfully
implemented in practice. To demonstrate the effectiveness of the
method, a reasonable amount of data, comparable in size to what can be
collected from the field test experiment of SPECIALIST, was used in the
pre-training stage. Simulation results indicate that the method signifi-
cantly reduces learning costs compared to conventional RL methods
without imitation learning.

In summary, learning from demonstration provides RL with a valu-
able advantage, granting it a head start by commencing from a reason-
ably competent performance instead of starting from scratch. This
approach capitalizes on the utilization of existing knowledge and
expertise, facilitating more efficient learning. However, a significant
challenge arises concerning the availability of demonstration data, which
may prove to be insufficient for achieving effective pre-training. More-
over, even with the integration of demonstration-based pre-training, the
continual learning process still entails random explorations. These
exploratory actions introduce uncertainty and potential inefficiencies,
leading to higher learning costs. Hence, future research efforts should be
directed towards minimizing these costs while simultaneously ensuring
effective learning.

4.3. Meta-reinforcement learning

Meta-RL aims at acquiring general knowledge from a range of envi-
ronments, enabling models to easily adapt to new tasks with minimal
training data. This approach has also garnered interest in the field of
traffic signal control. Zheng et al. (2019a) proposed an RL-based traffic
signal control system that formulated action variables based on phase
competition, resulting in a significant reduction of the state-action space.
Building upon this work, the method proposed by Zang et al. (2020)
further considered heterogeneous intersection scenarios with varying
traffic intersection types and phase combinations. Zou and Qin (2020)
extended those methods, introducing a Bayesian meta-RL method that
learns a prior distribution as meta-knowledge from previously acquired
tasks, rather than learning an initial point as meta-knowledge. The study
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conducted by Huang et al. (2021) integrated model RL into the meta
learning framework, further enhancing the data efficiency.

In the aforementioned methods, the aim of meta-learners is to
determine an appropriate global initialization of parameters that can
effectively adapt to the range of environments within the distribution.
However, relying solely on a single global initialization may not always
be enough for handling complex environments, particularly those char-
acterized by varying traffic flow situations. To address this challenge,
Kim et al. (2023) and Zhang et al. (2020) proposed meta-RL methods that
learn multiple tasks for each intersection, encompassing different traffic
regimes, including both under-saturated and over-saturated traffic situ-
ations. The meta-RL method proposed by Zhu et al. (2023) incorporates
the observations and actions of neighboring agents, thereby further
enhancing the stability of policy learning.

Previous studies have demonstrated the enhanced transferability of
meta-RL signal control methods, attributed to their ability to learn gen-
eral knowledge rather than being constrained by specific knowledge.
Furthermore, training a meta-RL agent using data from various in-
tersections enables the acquisition of generalized policies that are
effective across diverse traffic scenarios, reducing the need for real-time
data acquisition at each specific intersection. However, it is essential to
consider certain factors when implementing the learned policies in real-
life traffic signal configurations. Real-world traffic signals often operate
based on fixed cyclic phases, which necessitate the adaptation of learned
policies for successful deployment of a meta-RL agent within these con-
straints. Furthermore, it is worth noting that meta-RL methods for
freeway traffic control remain an area yet to be thoroughly investigated.

4.4. Incorporating RL with other traffic control methods

Several studies have developed RL-based signal control methods that
integrate with conventional traffic control methods (Zhang et al., 2022).
In the PressLight method proposed by Wei et al. (2019), the state and
reward of the RL model were designed based on the theoretically
grounded max pressure algorithm. The PressLight method demonstrated
superior performance compared to several baseline RL methods, as it
directly optimized the total travel time through its reward design.
Nevertheless, the authors also acknowledged the proposed method still
relies on trial-and- error learning, which may result in potential risks and
costs associated with deploying an online updated RL model in the real
world.

The study conducted by Wang et al. (2022¢) introduced an RL-based
method aimed at optimizing a policy network with a pre-determined max
pressure structure. The method focused on optimizing the
position-weighted curves, which play a crucial role in calculating the
pressure of movements, by treating them as the parameters to be opti-
mized. The study demonstrated that the proposed method outperformed
conventional max pressure methods. However, it is important to note
that the method was not compared with other baseline RL methods to
provide a comprehensive assessment of its advantages in reducing the
learning cost.

Methods that combine RL with conventional traffic control ap-
proaches can avoid random exploration of control actions by following
the logical structure embedded in these methods. Therefore, those
methods offer the opportunity to leverage the knowledge and logical
structure of conventional traffic control strategies, potentially reducing
the learning cost. More experimental studies to demonstrate those ad-
vantages are needed in future research. Furthermore, it would be
worthwhile to explore the integration of RL with conventional freeway
traffic control approaches, such as feedback control, in future research.

4.5. Adversarial reinforcement learning
Adversarial reinforcement learning (ARL) has been proposed to

enhance the robustness and transferability of RL-based approaches
against the mismatch between training and testing environments
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(Pattanaik et al., 2017; Pinto et al., 2017). In an RL-based traffic signal
control study conducted by Tan et al. (2020), the authors demonstrated
that enhancing the robustness of the RL strategy's performance can be
achieved by incorporating synthetic perturbations into the state space
during training. Some studies have framed the policy learning in ARL as a
zero-sum game, wherein the RL agent seeks the optimal policy while an
adversary aims to find an optimal destabilization policy. For instance,
Chalaki et al. (2020) conducted a study that introduced an adversarial
learning method to optimize the driving behavior of CAVs at merging
sections. This approach trained two agents against each other in a
zero-sum game. The learning agent was trained to optimize merging
behavior, while the adversarial agent was incentivized by the first agent's
failure and aimed to minimize its reward by perturbing elements of the
action and state space. Consequently, combining adversarial learning
with RL offers a means to mitigate model mismatch between the training
environment and the real environment. The effectiveness of the adver-
sarial learning method was demonstrated through zero-shot policy
transfer. In a recent study conducted by Han et al. (2023), a similar
approach was employed for signal control within an urban network. The
simulation results clearly illustrate that the incorporation of adversarial
learning led to a substantial enhancement in the transferability of the
RL-based control policy.

5. Conclusions

This paper presents a survey on the applications of RL in dynamic
traffic control. Firstly, a comprehensive literature review on RL-based
traffic control strategies is provided, including the agent design,
training algorithms, and evaluation methods. Next, the challenges asso-
ciated with implementing existing RL methods in real-world scenarios
are discussed. Finally, potential approaches to address these challenges
and enhance the practical implementation of RL methods are summa-
rized. Our aim is to offer a thorough literature review and extensive
discussion that inspires and encourages further advancements in RL-
based applications for dynamic traffic control.

This review highlights the expanding body of literature focused on
the examination of practical challenges inherent in RL-based traffic
control strategies, with particular emphasis on the intricacies of
simulation-to-reality transfer. Furthermore, an increasing number of
studies are devoted to mitigating the limitations of RL strategies,
demonstrating a strong focus on improving their practical feasibility in
real-world contexts. Incorporating traffic flow models or other models
derived from traffic domain knowledge into RL has been demonstrated to
effectively reduce learning costs and enhance transferability, offering a
promising solution to address the aforementioned challenges. Future
research should continue to explore and propose versatile methods
within this avenue. Nevertheless, it is important to note that the current
methodology used to evaluate the transferability of RL strategies might
be considered relatively simple. Consequently, there is a clear necessity
to develop benchmarking methodologies that are more comprehensive,
enabling effective assessment of the performance of RL-based traffic
control strategies. In addition, the current research on RL strategy
transferability primarily focuses on smaller-scale traffic control sce-
narios. To enhance the applicability of RL strategies in larger-scale traffic
control, future studies should prioritize exploring methods capable of
addressing the complexities of more intricate traffic situations.
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