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Abstract

We introduce an approach to formulate and solve the multi-class user equilib-

rium tra�c assignment as a mixed-integer linear programming (MILP) problem.

Compared to simulation approaches, the analytical MILP formulation makes

the solution of network assignment problems more tractable. When applied in

a multi-class context, it obviates the need to assume a symmetrical in�uence be-

tween classes and thereby allows richer tra�c behavior to be taken into account.

Also, it integrates naturally in optimization problems such as maintenance plan-

ning and tra�c management. We develop the model and apply it for the Sioux

Falls network, showing that it outperforms the traditional Beckmann-based and

MSA approaches in smaller-scale problems. Further research opportunities lie in

developing extensions of MILP-based assignment, with di�erent variants of user

equilibrium or dynamic assignment, and in improving the model and solution

algorithms to allow large-scale application.

Keywords: Tra�c assignment, user equilibrium, mathematical programming,

mixed-integer linear programming, multi-class

1. Introduction

Tra�c assignment (TA) has been widely studied over decades. The core con-

cept of TA is to predict how tra�c is distributed over a network, given network
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supply and the demand from road users. Through time, many variations of TA

have emerged. [1] summarizes these variations according to three capabilities,5

namely spatial (capacitated or not), temporal (static or dynamic), and behav-

ioral (route choices). Another classi�er is whether time variance is involved,

dividing the assignment into static tra�c assignment (STA) and dynamic traf-

�c assignment (DTA) [2]. In terms of user class considerations, TA can be

characterized as single-class (SC) assignment and multi-class (MC) assignment,10

where the latter involves di�erent user classes such as vehicle types.

TA models mostly build on Wardrop's �rst or second principle, concerning

user equilibrium (UE) and system optimal (SO) network states, respectively.

While SO scenarios, in which vehicles collectively minimize total travel time,

are relevant for speci�c situations such as emergency evacuation [3], the UE15

condition expresses route choices by un-coordinated road users. In this situa-

tion, equilibrium is reached when no driver can reduce personal travel time by

making a di�erent routing decision. [4] reviews some of the extensions of UE

assignment. These include stochastic UE assignment, risk-based UE, reliability-

based UE, mean excess tra�c equilibrium, robust UE, etc. The UE condition20

is also used in assignments other than tra�c networks [5]. This study focuses

on the mathematical formulation of the classic UE captured by the Wardrop's

�rst principle.

Mathematical formulations of UE TA come in many forms, either analytical

or via simulation. Simulation-based methods are descriptive and do not aim to25

optimize. They provide probable results of certain choices and tra�c manage-

ment strategies. As a result simulation methods often lack well-de�ned solution

properties such as optimality and uniqueness [4] which could help to assess the

validity of calculated network states. For a recent review of simulation based

formulations readers are referred to [6].30

The advantages of describing the TA problem using analytical models, ac-

cording to [7], are three-fold. First, analytical representations are speci�c and

precise. Second, the existence, the uniqueness, and the stability of solutions can

be determined with analytical models. Third, solution algorithms to analytical
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models and their convergence properties can be determined.35

In this paper we develop a new analytical formulation for MC UE STA using

mixed-integer linear programming (MILP). MILP is widely used in operations

research (OR) where a wide range of solving algorithms and well developed

software packages are available. Compared with previous approaches based on

mathematical programming (mainly the Beckmann transformation approach,40

BT), this formulation is capable of handling multi-class assignment without the

strict assumption of symmetrical interaction between classes (further discussed

in Section 2). We argue that the MILP formulation opens new doors for the

domain of optimization based TA, as it makes mature tooling from OR avail-

able for solving and analyzing TA problems. It lays a foundation for further45

development of more comprehensive and complex models and studies such as

DTA and UE solution properties.

The remainder of the paper is organized as follows. Section 2 reviews liter-

ature to explain the problems encountered by current formulations. Section 3

develops our new MILP formulation for MC UE STA. Section 4 compares the50

MILP with other methods in a benchmark network and explores approaches

to speed up computation. Section 5 concludes the study and proposes future

research directions.

2. Literature review

This section reviews some of the core issues of formulating UE assignments.55

We start with the multi-class travel cost functions. Then we discuss analytical

TA formulations and the assumption of inter-class symmetry, which has been

an obstacle to formulate UE with mathematical programming.

2.1. Travel cost functions

Many factors contribute to road users' route choice distributions. These

factors range from the length and reliability of travel time to tolls and fuel costs

[8]. This paper focuses only on one factor, travel time, which is often estimated
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by volume-delay functions such as Bureau of Public Roads (BPR) functions [9].

A BPR function associates link travel time to the minimum travel time (free

�ow travel time T0), link capacity K and link �ow xlink:

T = T0

(
1 + α

(
xlink

K

)β
)
, (1)

in which α and β are constants and usually α = 0.15 and β = 4.60

When considering scenarios with multiple user classes, studies suggest a de-

tailed description of the volume-delay relationship when several user classes are

present [10, 11, 12]. [13] on the other hand, adopts a more straightforward ex-

tension of the above BPR function, which includes the passenger car equivalent

(PCE) value and aggregates the �ows of di�erent vehicle classes. The function

can be written as follows:

clinkme = Tme,0

(
1 + α

(∑
m′ πm′xlinkm′e

Ke

)β
)
,∀m ∈ M, e ∈ E , (2)

in which clinkme represents the travel cost on the link e for class m; Tme,0 stands

for the free-�ow travel time on link e by class m; Ke is the capacity of link e;

and πm′ is the PCE value for class m′.

2.2. Analytical TA formulations and asymmetry issues

Given a network and demand, an MC UE STA can be represented by the

following complementary conditions:

xmwp ≥ 0, ∀m,w, p; (3)

cmwp ≥ c∗mw, ∀m,w, p; (4)

xmwp (cmwp − c∗mw) = 0, ∀m,w, p; (5)

in which xmwp stands for the number of users in class m, origin-destination65

(OD) pair w choosing route p; cmwp is the travel cost for a user in class m, OD

pair w choosing route p; c∗mw is the travel cost of class m, OD pair w under UE

condition.

The above UE condition can be expressed using a variational inequality (VI)

formulation [14], a �xed-point formulation[15], or a nonlinear complementary
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programming formulation [16], etc. [17] proves that VI, �xed-point, nonlinear

complementary programming are equivalent. It also points out that under the

special circumstance where the Jacobian matrix of the cost function is sym-

metric, the UE condition can be expressed in a mathematical programming

formulation, i.e., BT. The symmetry conditions can be inter-user, inter-spatial,

or inter-temporal [14]. In a multi-class assignment, inter-class symmetry is a

strong assumption, which usually does not hold in reality. This symmetry con-

dition expressed in mathematical terms is:

∂cm′e

∂xlinkme

=
∂cme

∂xlinkm′e

, (6)

in which xlinkme =
∑

w,p δpexmwp stands for the tra�c �ow of user class m on link

e (δpe = 1 if link e is used by path p). Equation (6) describes the inter-user class70

symmetry, that one user class a�ect the other user class exactly the same with

the other way around [14]. Under such condition, the TA problem can then be

expressed in the following formulation as the BT [18]:

min JBT =
∑
m,e

∫ xlink

e

0

cme(x) dx. (7)

Since the assumption of symmetry usually does not hold in reality, the

method of BT is mostly theoretical for MC assignments. Due to this limitation,75

the researchers have turned to other formulations such as VI or �xed-point in-

stead of the mathematical programming formulation, despite its simplicity and

practicality. [14] says: �Writing the model as an optimization problem is the

most practical formulation in the sense that many literature and algorithms

exist for solving this type of problem, however, due to the presence of asym-80

metries in the cost functions, as an optimization problem and a more general

type of problem formulation such as the VI problem formulation should be used

instead.� [19] states that �multimodal tra�c UE problem can only be reduced

to a minimization problem if the Jacobian matrix of the travel cost functions is

symmetric�, which is �not expected to hold�.85
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To bring the statements above into the context of this paper, we now examine

the inter-class symmetry assumption (Equation 6) using the multi-class cost

function (Equation 2):

∂clinkme

∂xlinkm′e

=

∂

(
Tme,0

(
1 + α

(∑
m πmxlinkme

Ke

)β
))

∂xlinkm′e

=

∂Tme,0α

(∑
m πmxlinkme

Ke

)β

∂xlinkm′e

=
αβπβ−1

m′ Tme,0

Kβ
e

(xlinkm′e)
β−1.

(8)

Similarly,

∂clinkm′e

∂xlinkme

=
αβπβ−1

m Tm′e,0

Kβ
e

(xlinkme )
β−1. (9)

Therefore, as Equaiton (6) indicates, the assumption of inter-class symmetry

requires that

αβπβ−1
m′ Tme,0

Kβ
e

(xlinkm′e)
β−1 =

αβπβ−1
m Tm′e,0

Kβ
e

(xlinkme )
β−1, (10)

i.e., (
xlinkm′e

xlinkme

)β−1

=
πβ−1
m Tm′e,0

πβ−1
m′ Tme,0

. (11)

Equation (11) needs to hold if symmetry is assumed. On the right-hand side,

the PCE values and free-�ow times are user class property and link property,

which are not dependent on link �ows. This indicates that if the symmetric

assumption holds, there should be a �xed ratio of link �ows of di�erent classes,

which is usually unrealistic.90

To summarize this section: although being a powerful tool, the existing

mathematical programming's application in UE TA (mainly BT formulation) is

limited as it relies on a strong and unrealistic assumption of symmetry. In this

paper, we propose a new formulation for MC STA under UE conditions using

mathematical programming. In this formulation we start from the basic UE TA95

conditions (Equation 3�5), and bypass the symmetry assumption to construct

the mathematical programming formulation.
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3. Methodology

As discussed in the literature review, previous studies provide many options

for link cost functions. In this study, we use the MC BPR type of cost function100

shown in Equation (2). Note that one can also use more detailed MC link cost

functions in this formulation without the need to change the framework of the

formulation.

Next we build the MILP formulation for the MC UE STA conditions (3�

5). This section breaks it down into a few steps. First, we rewrite the UE105

STA problem into an optimization problem. Subsequently, we include a linear

approximation of the BPR function into the optimization problem. Lastly, we

linearize this optimization problem so that it is reduced to MILP.

3.1. Formulating MC UE STA into an optimization problem

In the UE conditions, Equation (5) speci�es that if path p is used by user

class m, the path cost cmwp should be equal to c∗mw, the minimal travel cost

between OD pair w; if this path is not used, then the cost can be equal to or

higher than the minimal travel cost. Here, we include a binary variable amwp

to rewrite this condition:

amwp(cmwp − c∗mw) = 0, (12)

in which amwp is a �ag, denoting if path p between OD pair w is used by class

m:

amwp =

0, if xmwp = 0,

1, if xmwp > 0,

∀m ∈ M, w ∈ W, p ∈ Pw. (13)

After rewriting (5) into (12), we relax this condition to form an objective110

function for the optimization problem:

min J |x =
∑

m∈M

∑
w∈W

∑
p∈Pw

amwp(cmwp − c∗mw). (14)
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Due to Condition (4), the objective function J is non-negative. Therefore, when

J reaches the minimal value 0, all traversed paths have cmwp− c∗mw = 0, and all

non-traversed paths have amwp = 0. This is equivalent to the user equilibrium

condition speci�ed in (5). The conditions of the STA problem are listed as

follows.

xmwp ≥ 0, ∀m ∈ M, w ∈ W, p ∈ Pw; (15)

amwp =

0, if xmwp = 0,

1, if xmwp > 0,

∀m ∈ M, w ∈ W, p ∈ Pw; (16)

cmwp

≥ c∗mw, if amwp = 0,

= c∗mw, if amwp = 1,

∀m ∈ M, w ∈ W, p ∈ Pw; (17)

The above objective function (14) and constraints (15), (16), and (4) formulate

the optimization problem for UE STA. The solution to the problem is the �ows

under UE conditions. Condition (17) speci�es in what circumstances cmwp−c∗mw

is considered minimal. This condition is not included in the MILP formulation115

since the objective function (14) is already minimizing cmwp − c∗mw. We now

focus on the link cost function (BPR) for calculating travel costs.

3.2. BPR linear approximation

To start with the linear approximation of BPR, we need to specify the rela-

tionship between path �ow/cost and the link �ow/cost:

xlinkme =
∑
w∈W

∑
p∈Pw

δpexmwp, ∀m ∈ M, e ∈ E ; (18)

xlinke =
∑

m∈M
πmxlinkme , ∀e ∈ E ; (19)

clinkme = Tme,0

(
1 + α

(
xlinke

Ke

)β
)
, ∀m ∈ M, e ∈ E ; (20)

cmwp =
∑
e∈E

δpec
link
me , ∀m ∈ M, w ∈ W, p ∈ Pw, (21)

in which δpe = 1 denotes that path p includes link e, otherwise δpe = 0. With

these equations, the MC BPR function (20) is adopted in our study.120
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Next, we linearize Equation (20) using piecewise approximation. We use

piecewise segments with the universal length for each link. Let L be the number

of linear segments to approximate the BPR function. Index l ∈ L stands for the

l-th linear segment in the approximated BPR function, with the range [xl−1, xl).

Hence if the total link �ow xlink falls into the l-th segment, for all class m ∈ M

and link e ∈ E , the approximated link cost cappr is

capprme |xlink
e ∈[xe,l−1,xe,l)

=
clinkme (xe,l)− clinkme (xe,l−1)

xe,l − xe,l−1

(
xlinke − xe,l−1

)
+ clinkme (xe,l−1),

(22)

in which x0 = 0. To include all possible values of xlinke with linear segments, we

use the following form:

capprme =
∑
l∈L

be(l)c
piece
me (l),∀e ∈ E ,m ∈ M, (23)

in which

cpieceme (l) =
clinkme (xe,l)− clinkme (xl−1)

xe,l − xe,l−1

(
xlinke − xe,l−1

)
+ clinkme (xe,l−1), (24)

bme(l) =

1, x ∈ [xl−1, xl)

0, otherwise,

∀m ∈ M, e ∈ E , l ∈ L. (25)

In the above equations, be(l),∀l ∈ L act as sets of selectors, denoting on which

segment the link load falls. Fig.1 illustrates the piecewise approximation of

BPR using 4 segments (L = Lleft +Lright). The �rst (Lleft = 2) segments cover

the situation where the total volume (number of all vehicles weighted by PCE)

is less than the capacity. The other (Lright = 2) segments cover the situation125

where the total volume is more than the capacity but less than twice of capacity.

In reality, the volume should not exceed the capacity. However, we include the

situation where the volume is larger than the capacity to investigate the impact

of piecewise approximation on the quality of the assignment.

The optimization problem after involving BPR approximation is then with130

the objective function (14) and constraints (15), (16), (24) and (25).
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Figure 1: Piecewise linearized BPR function vs original BPR function with L = 4.

3.3. MILP

We conduct further linearization to convert the above formulation into MILP.

We start from the optimization problem at the end of the previous section and

explain the process step by step.135

3.3.1. Linearizing the objective function

The objective function (14) is in a quadratic term, with a continuous value

(cmwp − c∗mw) multiplied by a binary value (amwp). To linearize this term, we

introduce a new value zmwp. Let

zmwp =

cmwp − c∗mw, if amwp = 1;

0, if amwp = 0;

∀m ∈ M, w ∈ W, p ∈ Pw. (26)

Linearizing the above constraint (26), we have:

zmwp ≤ cmwp − c∗mw, ∀m ∈ M, w ∈ W, p ∈ Pw; (27)

zmwp ≥ cmwp − c∗mw −M(1− amwp), ∀m ∈ M, w ∈ W, p ∈ Pw; (28)

zmwp ≤ Mamwp, ∀m ∈ M, w ∈ W, p ∈ Pw. (29)
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Constant M stands for a su�ciently large number. In practice, this can be the

upper bound of possible value of zmwp. The objective function then becomes:

min J =
∑

m∈M

∑
w∈W

∑
p∈Pw

zmwp, (30)

with the additional linear constraints (27) � (29).

3.3.2. Linearizing conditions related to route choices

To linearize Constraint (16), we use the similar approach with the �big M�

method, as follows:

Mxmwp ≥ amwp ∀m ∈ M, w ∈ W, p ∈ Pw; (31)

xmwp ≤ Mamwp ∀m ∈ M, w ∈ W, p ∈ Pw. (32)

3.3.3. Linearizing conditions related to the BPR approximation

Linearizing the quadratic form of capprme in Constraint (23) we introduce

hme(l):

capprme =
∑
l∈L

hme(l),∀m ∈ M, e ∈ E , (33)

in which

hme(l) =

cpieceme (l), if be(l) = 1;

0, if be(l) = 0;

, ∀m ∈ M, e ∈ E , l ∈ L. (34)

Performing the linearization on Constraint (34) we have the following ∀m ∈

M, e ∈ E , l ∈ L:

hme(l) ≤ Mbe(l), (35)

hme(l) ≥ −Mbe(l) (36)

hme(l) ≤ cpieceme (l) +M(1− be(l)), (37)

hme(l) ≥ cpieceme (l)−M(1− be(l)). (38)

To linearize Constraint (25), we need to use additional auxiliary binary vari-140

ables b̂e(l):
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b̂e(l) =

1, if xlinke > xl,

0, if xlinke ≤ xl.

,∀e ∈ E , l ∈ {1, 2, . . . , L− 1}. (39)

Linearizing the constraints:

xlinke − xl ≤ Mb̂e(l), ∀e ∈ E , l ∈ {1, 2, . . . , L− 1}, (40)

xlinke − xl ≥ M(b̂e(l)− 1), ∀e ∈ E , l ∈ {1, 2, . . . , L− 1}. (41)

The relation between be(l) and b̂e(l) is:

be(l) = b̂e(l − 1)− b̂e(l),∀e ∈ E , l ∈ L, (42)

in which b̂e(0) = 1 and b̂e(L) = 0.

3.4. Final MILP formulation

We use a k-th Dijkstra shortest path method to exogenously enumerate the

paths before building the model. Note that this may generate di�erent shortest

paths for di�erent vehicle classes. Consequently, the model is formulated and

fed to an MILP solver. The �nal form of the MILP formulation for UE STA is

listed as follows:

min J =
∑

m∈M

∑
w∈W

∑
p∈Pw

zmwp,

12



s.t.

zmwp ≤ cmwp − c∗mw, ∀m ∈ M, w ∈ W, p ∈ Pw;

zmwp ≥ cmwp − c∗mw −M(1− amwp), ∀m ∈ M, w ∈ W, p ∈ Pw;

zmwp ≤ Mamwp, ∀m ∈ M, w ∈ W, p ∈ Pw,

xmwp ≥ 0, ∀m ∈ M, w ∈ W, p ∈ Pw;

Mxmwp ≥ amwp ∀m ∈ M, w ∈ W, p ∈ Pw;

xmwp ≤ Mamwp ∀m ∈ M, w ∈ W, p ∈ Pw;

cmwp − c∗mw ≥ 0 ∀m ∈ M, w ∈ W, p ∈ Pw;

cpieceme =
clinkme (xe,l)− clinkme (xe,l−1)

xe,l − xe,l−1

(
xlinke − xe,l−1

)
+ clinkme (xe,l), ∀m ∈ M, e ∈ E , l ∈ L

capprme =
∑
l∈L

hme(l), ∀m ∈ M, e ∈ E

hme(l) ≤ Mbe(l), ∀m ∈ M, e ∈ E , l ∈ L

hme(l) ≥ −Mbe(l), ∀m ∈ M, e ∈ E , l ∈ L

hme(l) ≤ cpieceme (l) +M(1− be(l)), ∀m ∈ M, e ∈ E , l ∈ L

hme(l) ≥ cpieceme (l)−M(1− be(l)), ∀m ∈ M, e ∈ E , l ∈ L

xlinke − xl ≤ Mb̂e(l), ∀e ∈ E , l ∈ {1, 2, . . . , L− 1},

xlinke − xl ≥ M(b̂e(l)− 1), ∀e ∈ E , l ∈ {1, 2, . . . , L− 1}.

be(l) = b̂e(l − 1)− b̂e(l), ∀e ∈ E , l ∈ L,

3.5. Special order sets

Some commercial solvers o�er the option of using the special order set (SOS)145

type of constraints in solving MILP problems with sets of binary variables that

satisfy certain conditions with accelerated computations. SOSs are suitable

for constraints specifying piecewise approximation and can generally accelerate

computations. In our implementations we make use of this feature with the

experiments. We compare the performance of the implementation of MILP and150

the implementation with SOSs (MILP-SOS) in our numerical examples in the

next section.
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For each link e ∈ E , the aggregated �ow xlinke =
∑

m

∑
w

∑
p δpexmwpπm

monotonically determines the travel time of each vehicle class via this link ac-

cording to the BPR function. In MILP-SOS, the piecewise BPR function is

represented by SOS type 2 constraints. A type 2 SOS constraint speci�es that

in a set of variables [b1, b2, . . . , bn], only 2 (consecutively) of them can take val-

ues other than 0 [20]. Denote cost function with linearized BPR as clinkme (x), the

number of segments L = Lleft + Lright, and the capacity of link e as xcape we

have the following:

[
(b1, 0), (b2, c̄

link
me (x

cap
e /Lleft)), . . . , (bL+1, c

link
me (x

cap
e /Lleft ∗ L))

]
, ∀m, e (43)

L+1∑
l=1

bme,l = 1, ∀m, e (44)

L+1∑
l=1

bme,lx
cap
e /Lleft ∗ (l − 1) = xlinke , ∀m, e (45)

L+1∑
l=1

bme,lc̄
link
me (x

cap
e /Lleft ∗ (l − 1)) = clinkme , ∀m, e. (46)

Condition 43 declares the SOSs for the solver. Each of the sets has L+ 1 pairs

of auxiliary decision variables bl and their weights c̄linkme (x
cap
e /Lleft ∗ (l − 1)).

Constraints (44) � (46) complete the SOS constraints in our implementation155

MILP-SOS. Constraints (43) � (46) replace the previous BPR linearization

(Constraints (22) � (25), and (33) � (42)) in MILP.

3.6. Capability in handling asymmetry

Here we brie�y discuss the relations between this mathematical programming

formulation and the inter-class symmetry assumption. In the BT formulation,160

the symmetry assumption (6) makes the BT equivalent to the UE condition

expressed in (5). In our MILP formulation, this UE condition is directly trans-

formed to the optimization problem (14) with (13) specifying the auxiliary bi-

nary variable a. Hence, the condition of (5) is equivalent to J = 0 in (14) and

(13). The MILP formulation does not require this symmetric assumption (6)165

and can handle situations with inter-class asymmetry.
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Figure 2: Sioux Falls network, online version with colors. Digits in black represent node

numbers; digits in other colors represent link numbers.

4. Numerical examples

In this section, we conduct a series of numerical TA experiments on the

network Sioux Falls1 (see Fig. 2). Methods of MILP, BT, and MSA are com-

pared in a single class case. Subsequently, we investigate the performance of170

MILP formulation in multi-class scenarios and compare it to that of MSA. The

experiments are coded in Matlab 2018b on a Windows 10 server with INTEL

Xeon 6148 2.4GHz CPU, and 32 GB RAM. The MILP and the (linearized) BT

are solved by IBM Cplex 12.10, while the MSA gets its results from link-based

iterations.175

1The network properties of Sioux Falls can be found at the following

link: https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls;

The visualization is made by the Matlab package developed by KU Leuven:

https://www.mech.kuleuven.be/en/cib/tra�c/downloads
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We use the average gap (shown in Equation 47) of the results to measure

the quality of the assignments. This indicator denotes the distance from the

solution to the perfect UE [6]. The average gap of a perfect assignment is 0.

Note that the lowest path costs c̃∗mw are calculated over the loaded network after

the assignments, which may include di�erent paths from the ones enumerated180

before the assignment. In order to isolate the in�uence of possible ine�cient

path enumerations, we also use Agap-P to calculate the average gap value on

the pre-assigned paths using c∗mw:

AGap =

∑
m

∑
w

∑
p(cmwp − c̃∗mw)πmxmwp∑

m

∑
w

∑
p πmxmwp

; (47)

AGap-P =

∑
m

∑
w

∑
p(cmwp − c∗mw)πmxmwp∑

m

∑
w

∑
p πmxmwp

. (48)

With the 2 indicators (Agap and Agap-P), the inaccuracies (deviation from the

perfect UE) brought by pre-assigned paths and BPR linearization are isolated.185

In particular, if Agap-P = 0, then the BPR linearization brings no inaccuracy;

while if Agap = Agap-P, the pre-assigned paths remain the shortest after the

assignment.

4.1. Single-class assignment

We �rst compare MILP with (linearized) BT and MSA in a single-class190

assignment using the OD pairs and demand in Table 1. Both MILP and BT

are using 6 pre-assigned paths and 5 segments for BPR linearization. MSA con-

verges after 351.7 seconds. The results of assignments are shown in Fig. 3�Fig. 5.

Table 2 lists computation time and average gap of each assignment method. The

results show that the MILP takes the least time and has the lowest average gap.195

BT and MSA both use more time than MILP and yield larger gaps. The ad-

vantage of the MILP in this SC assignment is obvious.

4.2. Multi-class assignment

Next, we look further into the performance of the MILP formulation in a

scenario with two user classes. The MC demand is given in Table 3. Several200
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Table 1: Single-class OD matrix

fromNode toNode Demand

1 7 6250

1 20 7500

13 2 7500

13 18 5000

19 1 10000

24 2 10000
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6051
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2508 4330

 216 5656
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Figure 3: MSA results single class assignment

Table 2: Comparison of single class assignments: MILP, BT, and MSA, in terms of computa-

tion time and average gap.

Method MILP BT MSA∗

Time (second) 20.7 31.7 351.7

Average Gap 0.7085 4.5012 13.4686

∗:The gap of link �ow summation between the last two iterations is smaller than

10−8.
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Figure 5: MILP results single class assignment
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Table 3: Multi-class OD matrix

fromNode toNode Demand Car Demand Truck

1 7 2500 1500

3 20 3000 800

13 2 3000 500

19 1 2000 300

24 2 2400 500

12 18 2000 700

con�gurations are used in the experiments to better understand the performance

of the MILP formulation, with assignment from the MSA as a reference (see

Table 4). These con�gurations are built by altering 3 inputs: the number of

enumerated paths, the number of segments in the piecewise linearization, and

a multiplier to the demand of cars (×1, ×2, ×3, ×5). The demands given by205

Table 3 are considered as ×1, the �original demand�. Scenarios of ×2, ×3, ×5

are with 2,3, and 5 times the original car demand. The truck demands remain

the same across all con�gurations. The con�guration also includes the di�erent

numbers of pre-assigned paths and the number of piecewise segments considered

in the MILP formulation. Note that in reality, the tra�c �ows on a link should210

not be larger than the capacity, and BPR also becomes less accurate in such a

situation. However, we still include the scenarios with excessively high demand

(×5) and BPR segments outside the capacity. This is to gain a full insight into

the performances of the proposed mathematical formulation.

Table 4 shows the performances (time, Agap, Agap-P) of the multi-class215

assignments using MILP and MSA methods under di�erent conditions (demand,

number of pre-assigned paths, and number of segments for BPR approximation).

With the MSA method, the higher the demand the more iterations are needed

for the algorithm to converge and hence more time is required. MSA assignments

that do not converge within 1500 iterations are stopped. In the MILP approach,220

the solving time generally increases if more paths/segments are considered. It is

19



not uncommon that solving time becomes less feasible to �nd an exact solution

to a larger size optimization problem. This makes an interesting next step

to develop speci�c algorithms tailored to this type of optimization problem to

increase the e�ciency of �nding exact or near exact solutions.225

4.3. Discussions on the performance of MILP

4.3.1. Solution quality re�ected by average gaps

In Table 4, under the Demand ×1 scenario, the MILP provides excellent

solution quality, keeping both the Agap-P and Agap at 0. This outperforms

MSA in terms of both solving time and precision. On average, the time required230

to solve the UE is less than MSA at the current scale. However, the solution

becomes less accurate when the demand increases. This inaccuracy has at least

two sources.

The �rst source is the piecewise linear approximation, re�ected by the value

of Agap-P. In the current MILP formulation, the inaccuracy increases when235

the demand of a link exceeds its capacity, since the BPR function contains a

4th-order link volume argument. With higher demand, it is more likely that

the piecewise approximation becomes less precise in representing the link costs

given by the BPR function. Interestingly, increasing the number of segments

used in the assignments does not guarantee preciser results. See experiments240

3�6, 10�13, and 14�17. In theory, more segments likely will result in a piecewise

approximation that �ts better the BPR function. From the experiments we

see that the accuracy gain may vary in di�erent situations, depending on the

distribution of link �ows.

The second source of inaccuracy is related to the path pre-assignment, re-245

�ected by the value of Agap - Agap-P. In an empty Sioux Falls network, the

number of possible paths from one node to another can be many, and their

travel costs do not di�er largely. When loaded with higher demand, vehicles

can quickly �ll up the �rst several pre-assigned paths in one OD pair. Cheaper

paths can emerge after assignment. In this situation, increasing the number of250

pre-assigned paths can increase the performance, as seen in Table 4 with de-

20



Table 4: Experiment results with di�erent con�gurations of MILP and MSA

MILP Demand No.Paths Lleft/Lright Time (Sec) Agap Agap-P

1 ×1 3 2/1 0.172 0 0

2 ×2 3 2/1 0.953 0.2424 0.0789

3 ×2 4 2/1 1.546 0.0808 0.0808

4 ×2 4 3/1 6.032 0.1254 0.1254

5 ×2 4 2/2 3.688 0.4998 0.4998

6 ×2 4 3/2 4.187 0.1724 0.1724

7 ×2 5 2/1 8.063 0.0605 0.0605

8 ×3 3 2/1 0.922 4.3927 0.4705

9 ×3 3 2/2 8.532 4.3034 0.8919

10 ×3 4 2/1 3.016 2.5195 0.1972

11 ×3 4 2/2 2.782 2.6697 0.8721

12 ×3 4 3/2 22.734 2.4623 0.2608

13 ×3 4 3/3 4.375 2.9379 1.0039

14 ×3 5 2/1 51.750 2.3011 0.9958

15 ×3 5 2/2 4.969 2.9384 1.1770

16 ×3 5 3/2 455.469 2.2962 0.6861

17 ×3 5 3/3 226.500 3.0163 1.6120

18 ×3 M 2/1 0.578 2.1113 0.1599

19 ×3 M 3/2 1.782 2.1700 0.2860

20 ×5 3 2/1 1.391 44.5027 4.3988

21 ×5 4 2/1 16.437 35.0108 4.2701

22 ×5 5 2/1 85.297 31.2293 15.2133

23 ×5 5 2/2 658.203 26.0172 8.5628

24 ×5 M 2/2 282.469 4.0837 2.6640

MSA Demand Iterations Convergence Time Agap

25 ×1 831 Y 106.33 0.2901

26 ×2 1285 Y 257.03 0.3995

27 ×3 >1500 N 365.95 0.5127

28 ×5 >1500 N 330.02 0.6622
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mand ×2, ×3 and ×5. However, increasing the number of paths also increases

the size of the problem and the computation time.

When the demand is low (such as ×1 or ×2) and vehicles do not �ll up the

pre-assigned paths, or when there are only limited paths between each OD in255

the network (such as in a motorway network), increasing the number of pre-

assigned paths does not provide signi�cant improvements to the solution: see

experiment 1 or compare experiment 3 and 7. In this situation, all potential

paths are included in the solving process and Agap = Agap-P, indicating that

the path enumeration does not bring any inaccuracy. On the other hand, as260

our experiments with higher demands (such as × 5) have shown, the inaccuracy

becomes higher when it considers a congested urban environment (such as Sioux

Falls). Nevertheless, these limits are not related to the MILP formulation itself,

but to the procedures built around it, namely the BPR function, the piecewise

linearization and path pre-assignment, thus not diminishing the potential of the265

MILP formulation.

4.3.2. Assignment with initial results

In an exploration for better path enumeration mechanism, we manually pick

paths according to the results from previous assignments (marked by �M� in

Table 4). In these experiments, di�erent number of paths may be manually270

assigned to each OD pair to improve solution quality and reduce solving time.

For example, k-th dijkstra assigned 5 paths to each OD pair in experiment 14

(Table 4). It took 51.75 seconds to solve. Table 5) shows which of the assigned

paths are actually used (indicated by amwp = 1). This information can be used

for a second assignment: if between 1 OD pair only the �rst path is used, we275

reduce the number of pre-assigned paths to 1. If the k-th path is used, we set

the number of pre-assigned paths larger than k. Applying this method to a

second assignment (experiment 18), we have the results of path usage listed in

Table 6. Compared with experiment 14 in Table 4, we see reductions in both

solving time as well as Agap. Similar results are obtained from experiment 19,280

applying the path usage information from experiment 16; and from experiment
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Table 5: Used paths in experiment 14

Route 1 Route 2 Route 3 Route 4 Route 5 Route 6

Pre-

assigned

Path

usage

1 1 1 1 1 1

1 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

Table 6: Used paths in experiment 18

Route 1 Route 2 Route 3 Route 4 Route 5 Route 6

Re-assigned

Paths

2 4 1 8 2 2

Re-

assigned

Path

usage

1 1 1 1 1 1

1 1 - 0 0 0

- 1 - 0 - -

- 1 - 0 - -

- 0 - 1 - -

- - - 1 - -

- - - 0 - -

- - - 1 - -

24, re-assigned with the results from experiment 23. The results indicate that

pre-selecting the number of considered paths can provide much more precise

solutions with shorter computation times (by a factor up to 250). This feature

is particularly useful when conducting STA with an initial solution. It applies to285

assignments that evaluate di�erent tra�c management strategies and/or under

di�erent travel demand.

4.3.3. Scalability

We discuss the scalability of both MILP without and with the SOS feature

(MILP, MILP-SOS). The benchmark experiment uses demand ×1, 4 segments290
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Table 7: Sizes and solving di�culties of MILP and MILP-SOS with di�erent numbers of OD

pairs

Experiment Total DV Binary DV Linear constraints SOSs Nodes

MILP (50-OD) 2900 832 5852 � 2593

MILP (100-OD) 3900 1132 7752 � 43943

MILP-SOS (50-OD) 1912 300 2356 152 1749

MILP-SOS (100-OD) 2912 600 4256 152 19292

for piecewise approximation, and 3 pre-assigned paths. Table 7 shows the size of

the problem formulated in MILP and MILP-SOS with 50/100 ODs in terms of

numbers of all decision variables, binary decision variables, linear constraints,

SOSs, as well as numbers of nodes needed to solve the mixed-integer problems.

The table indicates that MILP-SOS can largely reduce the problem size. Note295

that the number of binary decision variables in MILP-SOS is only related to the

number of all considered paths; the number of SOSs is related to the number of

links and the number of segments used for piecewise BPR. When the number

of OD pairs doubles, the number of nodes required for MILP increases by 16

times; while for MILP-SOS it is by 10 times.300

We gradually increase the size of the problem by adding more OD pairs into

the problem. Figure 6 and Table 8 show the evolution of computation time of

solving MILP, MILP-SOS, and MSA. From them we can see that for smaller

problems, MILP and MILP-SOS is faster than MSA. In terms of the speed-up

factor brought by the SOS feature, in general we can say the speed-up factor is305

larger when solving larger problems. Both MILP and MILP-SOS will need more

time solving larger scale problems. To scale up this method, speci�cally designed

heuristics algorithms (such as column generation [21]) should be studied.

5. Conclusion

Solving multi-class UE with mathematical programming formulations brings310

many bene�ts. However, the existing method, namely Beckmann Transforma-
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Figure 6: Computation time of MILP with / without SOSs.

Table 8: Computation time of MILP, MILP-SOS and MSA.

No. ODs 20 40 60 80 100 120

Solving time MILP (sec) 0.19 6.08 20.67 73.84 374.34 3566

Solving time MILP-SOS (sec) 0.11 1.83 9.33 3.92 66.67 48.48

Speed up factor 1.70 3.32 2.22 18.84 5.61 117.11

Solving time MSA (sec) 59.2 119.97 144.87 156.10 209.23 233.84

Iterations MSA 700 955 1022 1035 1171 1213
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tion, depends on a strong assumption of symmetry. This paper presents a novel

MILP formulation based on mathematical programming but does not depend

on such assumptions. The method makes use of a piecewise linearized BPR

function and a k-th shortest path enumeration along with the assignment pro-315

cess. We compare this formulation with other existing methods in the Sioux

Falls network in terms of solving time and solution quality. The results suggest

that the developed MILP is capable of �nding good UE solution for smaller to

medium networks. With a realistic demand, the Average Gap of MILP approach

remains below 1.320

We also explore approaches to improve the solving performance: a path-

assignment approach is developed and can substantially improve the perfor-

mance when an initial solution is available; a special order set method is used to

reduce the number of the binary variables in the MILP problem and can accel-

erate computation. Nevertheless, our experiments show that the current solving325

methods do not scale. To apply the MILP formulation to larger problems more

supplementary investigations are needed to speed up the computation, such as

designing better path enumeration and solving algorithms. It is also interesting

to apply this formulation in settings with more complexity such as dynamic

tra�c assignment.330

Acknowledgments

The work described in this paper is supported by an NWO project Freight

Tra�c Management as a Service (FTMAAS, 439.18.456). No con�ict of in-

terests is declared. The authors deeply appreciate the comments given by the

anonymous reviewers, which have been inspiring and have greatly improved the335

formulation and the quality of the manuscript.

References

[1] M. C. Bliemer, M. P. Raadsen, L. J. Brederode, M. G. Bell, L. J. Wismans,

M. J. Smith, Genetics of tra�c assignment models for strategic transport

26



planning, Transport reviews 37 (1) (2017) 56�78.340

[2] S. Peeta, A. K. Ziliaskopoulos, Foundations of dynamic tra�c assignment:

The past, the present and the future, Networks and spatial economics 1 (3-

4) (2001) 233�265.

[3] H. Sbayti, H. S. Mahmassani, Optimal scheduling of evacuation operations,

Transportation Research Record 1964 (1) (2006) 238�246.345

[4] W. Szeto, S. Wong, Dynamic tra�c assignment: model classi�cations and

recent advances in travel choice principles, Central European Journal of

Engineering 2 (1) (2012) 1�18.

[5] F. Soumis, A. Nagurney, A stochastic, multiclass airline network equilib-

rium model, Operations research 41 (4) (1993) 721�730.350

[6] M. Ameli, J.-P. Lebacque, L. Leclercq, Computational methods for calcu-

lating multimodal multiclass tra�c network equilibrium: Simulation bench-

mark on a large-scale test case, Journal of Advanced Transportation 2021.

[7] D. Boyce, D.-H. Lee, B. Ran, Analytical models of the dynamic tra�c

assignment problem, Networks and Spatial Economics 1 (3-4) (2001) 377�355

390.

[8] M. C. J. Bliemer, Analytical dynamic tra�c assignment with interacting

user-classes-theoretical advances and applications using a variational in-

equality approach, Ph.D. thesis, Delft University of Technology (2001).

[9] US Bureau of Public Roads, Tra�c assignment manual for application with360

a large, high speed computer, US Department of Commerce, 1964.

[10] S. Yun, W. W. White, D. R. Lamb, Y. Wu, Accounting for the impact of

heavy truck tra�c in volume�delay functions in transportation planning

models, Transportation research record 1931 (1) (2005) 8�17.

27



[11] S. Müller, C. Schiller, Improvement of the volume-delay function by incor-365

porating the impact of trucks on tra�c �ow, Transportation Planning and

Technology 38 (8) (2015) 878�888.

[12] Z. Lu, Q. Meng, G. Gomes, Estimating link travel time functions for het-

erogeneous tra�c �ows on freeways, Journal of Advanced Transportation

50 (8) (2016) 1683�1698.370

[13] Y. Noriega, M. Florian, Algorithmic approaches for asymmetric multi-class

network equilibrium problems with di�erent class delay relationships, Tech.

rep., CIRRELT (2007).

[14] M. C. Bliemer, P. H. Bovy, Quasi-variational inequality formulation of the

multiclass dynamic tra�c assignment problem, Transportation Research375

Part B: Methodological 37 (6) (2003) 501�519.

[15] W. Y. Szeto, Y. Jiang, A. Sumalee, A cell-based model for multi-class

doubly stochastic dynamic tra�c assignment, Computer-Aided Civil and

Infrastructure Engineering 26 (8) (2011) 595�611.

[16] W. Y. Szeto, H. K. Lo, A cell-based simultaneous route and departure380

time choice model with elastic demand, Transportation Research Part B:

Methodological 38 (7) (2004) 593�612.

[17] A. Nagurney, Network economics: A variational inequality approach,

Vol. 10, Kluwer Academic Publishers, 1998.

[18] M. J. Beckmann, C. B. McGuire, C. B. Winsten, Studies in the economics385

of transportation, Tech. rep. (1956).

[19] A. B. Nagurney, Comparative tests of multimodal tra�c equilibrium meth-

ods, Transportation Research Part B: Methodological 18 (6) (1984) 469�

485.

[20] A. B. Keha, I. R. de Farias Jr, G. L. Nemhauser, Models for representing390

piecewise linear cost functions, Operations Research Letters 32 (1) (2004)

44�48.

28



[21] M. Gamache, F. Soumis, G. Marquis, J. Desrosiers, A column generation

approach for large-scale aircrew rostering problems, Operations research

47 (2) (1999) 247�263.395

29


	Introduction
	Literature review
	Travel cost functions
	Analytical TA formulations and asymmetry issues

	Methodology
	Formulating MC UE STA into an optimization problem
	BPR linear approximation
	MILP
	Linearizing the objective function
	Linearizing conditions related to route choices
	Linearizing conditions related to the BPR approximation

	Final MILP formulation
	Special order sets
	Capability in handling asymmetry

	Numerical examples
	Single-class assignment
	Multi-class assignment
	Discussions on the performance of MILP
	Solution quality reflected by average gaps
	Assignment with initial results
	Scalability


	Conclusion

