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Abstract

In this work, we discuss the possibility of reaching the Ziman conditions for collective heat transport
in cubic bulk semiconductors, such as Si, Ge, AlAs and AlIP. In natural and enriched silicon and
germanium, the collective heat transport limit is impossible to reach due to strong isotopic scattering.
However, we show that in hyper-enriched silicon and germanium, as well as in materials with one
single stable isotope like AlAs and AlP, at low temperatures, normal scattering plays an important role,
making the observation of the collective heat transport possible. We further discuss the effects of
sample sizes, and analyse our results for cubic materials by comparing them to bulk bismuth, in which
second sound has been detected at cryogenic temperatures. We find that collective heat transport in
cubic semiconductors studied in this work is expected to occur at temperatures between 10 and 20 K.

1. Introduction

The study of the heat transport regimes in bulk and low dimensional materials in general, and of the phonon
hydrodynamics in particular, currently attracts a renewed interest [ 1-13], both from theoretical and
experimental viewpoints. The discussion of recent advances can be found in the review article of [4].

In most of the literature until very recently, a regime in which phonons behave not as independent carriers
but as a collective excitation [14, 15] which manifests itself in the form of the second sound temperature wave or
of the Poiseuille flow, is referred to as the hydrodynamic regime. Indeed, the hydrodynamic behaviour is
expected to occur in the limit where momentum-conserving ‘normal’ phonon-phonon scattering processes
dominate over resistive scattering processes. However, it was pointed out recently [2, 3] that this collective
Ziman limit is not the only regime in which non-Fourier effects can be observed [3, 6]. As wave-like heat
transport at the nanoscale [3, 6] is also referred to as hydrodynamic heat transport in literature [6], and to avoid
confusion, in this work we follow the clarification of [2] and discuss the collective (or Ziman) limit of heat
transport, rather than the hydrodynamic regime.

The heat flow regimes in suspended graphene and graphene nanoribbons were studied very actively [8,
16-22] since the prediction, by ab initio methods, of the occurrence of a collective transport regime in graphene
nanoribbons [18-21]. Recently the Poiseuille flow of phonons was experimentally observed in black phosphorus
[9], graphite[1, 7, 23, 24] and SrTiO; [25]. All of these materials have particular distinct features in their phonon
dispersion facilitating ‘normal” momentum-conserving scattering processes necessary to reach the collective
limit. The first two materials, as well as graphene, belong to the group of 2D- or layered systems in which the
non-linear out-of-plane flexural phonon mode plays the role of the efficient scattering channel which
accumulates decaying phonons from linear acoustic branches. SrTiOj is an ‘incipient ferroelectric’ with a
‘falling’ optical polar phonon mode at the Brillouin zone center which strongly decreases in frequency when the

© 2024 The Author(s). Published by IOP Publishing Ltd
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temperature is decreased but, in contrast to real ferroelectrics, is eventually stabilized by quantum fluctuations
[26, 27]. Moreover, recently coherent second sound waves were observed in a dense magnon gas [28]. At the same
time, the collective limit of heat transport was observed only in relatively few ‘common’ 3D materials, such as Bi
[29, 30], solid helium [31], and NaF [32, 33] at cryogenic temperatures. In materials such as natural Siand Ge, the
dominance of resistive processes, and in particular scattering by isotopes, prevents the occurrence of the collective
limit. Indeed, the damping of the peak of thermal conductivity at low temperatures was demonstrated in many
works, as one of the main effects of the isotopic disorder [34, 35] on the material properties, with respect to
isotopically enriched materials [1, 36—41]. At the same time, we note that in contrast to the collective limit, the
‘high-frequency’, or ‘driftless’ second sound was recently observed in bulk Si and Ge [3, 6] in a rapidly varying
temperature field. As it was pointed out in [3], in the latter case the dominance of the normal scattering events is not
necessary to observe wave-like heat transport, the slow decay of the energy flux being the key requirement instead.

Turning back to the collective limit of heat transport, methods based on the density functional perturbation
theory and on the Boltzmann transport equation (BTE) were shown to accurately predict the conditions of the
occurrence of the collective limit in many materials [4, 5, 21, 23, 42]. It is expected to occur in samples with sizes
defined by the interplay between normal phonon scattering (7y), phonon-boundary (7;) and resistive scattering
(7r) times [42], under the condition: Ty < T}, < Tr. Note that while the above-described approach can be used to
provide the indication that the conditions for the occurrence of the collective transport are present (or absent),
as we aim to do in this work, it is not suitable to describe the collective heat transport phenomena. Instead, the
collective heat transport can be described with approaches based on the macroscopic hydrodynamic equation
[6, 43, 44] or the mesoscopic kinetic equation [2, 45].

In the present work, we apply the approach similar to the one of [42] or [5] to discuss the conditions of the
occurrence of the collective limit of heat transport in cubic semiconductors, such as silicon, germanium, AlAs
and AP, as a function of isotope composition and at temperatures below 50 K. Experimentally, thermal
conductivity of enriched and hyper-enriched Si were studied e.g. in [40, 41], whereas enriched and hyper-
enriched Ge was studied experimentally in [37], between 4 K and 300 K. We show that in materials with one
single stable isotope, such as AlAs and AP, or in isotopically hyper-enriched silicon, the collective limit of heat
transport can be reached at temperatures between 10 and 20 K, where the normal scattering dominates. We
show that the reason for the absence of the collective limit in natural silicon and germanium is the isotopic
scattering, and that collective heat transport phenomena such as ‘drifting’ second sound could in principle be
observed in hyper-enriched silicon and germanium samples, which become available nowadays [46].

2. Methodology and computational details

2.1. Methodology
To identify the conditions for the occurrence of the collective limit of phonon transport, we use the solution of
the BTE beyond the single-mode approximation (SMA), which allows to explicitly take into account the
repopulation of phonon states. The lattice thermal conductivity obtained in the SMA approximation is denoted
Ksma» Whereas the lattice thermal conductivity obtained with the variational approach to BTE is denoted k.
We use the ratio Kyar/ Kspa as the criterion of the occurrence of the collective regime. Momentum-conserving
phonon-phonon scattering processes repopulate the heat-carrying phonon states, leading to the difference between
the SMA and full solution of BTE. Note that other scattering processes, such as specular border scattering, which was
not considered in this work, may also lead to important repopulations of phonon states. We also compare the
thermodynamic average scattering rate of ‘normal’ (momentum conserving) phonon-phonon scattering processes,
I, to resistive Umklapp phonon-phonon scattering rate, I'Y,, as well as to other resistive scattering rates due to
isotopic scattering, and to boundary scattering [42]. The thermodynamic averages of different phonon-scattering rates

are calculated as [42]: T}, = %’ where C,, is the specific heat of the phonon mode . We note that in this work, we

consider isotropic cubic crystals, in which all transport directions are equivalent, and thus there is no need to consider
direction-dependent averages of scattering rates, as it has to be done in highly anisotropic materials [7].

2.2. Computational details

Si, AlAs, and AIP are described within the density functional theory in the local density approximation with
norm-conserving pseudopotentials [47]. Harmonic force constants were computed ona 8 x 8 x 8 g-point
sampling of the Brillouin zone (BZ) using the Density Functional Perturbation theory (DFPT) [48] as
implemented in the QUANTUM ESPRESSO package [49]. Third-order anharmonic constants of the normal and
Umklapp phonon interactions have been computed ona 4 x 4 x 4 q-point grid in the BZ using the DFPT
formalism as implemented in the D3Q package [50] and then Fourier-interpolated on the denser 30 x 30 x 30
grid necessary for converged integrations of the phonon-phonon scattering rates [50, 51]. The lattice thermal
conductivity has been computed with the linearized Boltzmann transport equation and the variational method
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Figure 1. Panels aand c: the lattice thermal conductivity £y and the ratio £yar/ Ksya for Siwithout boundaries. Black solid line—
pure silicon with phonon-phonon scattering mechanism only; Red, blue and green dashed-dotted lines—natural, enriched and
hyper-enriched silicon with phonon-phonon + isotopic scattering. Panels b and d: the lattice thermal conductivity and the ratio
Kvar/ Ksma for Siwith boundaries, for different millimetric sample sizes.

ona30 x 30 x 30 g-point grid with the smearing parameter o = 2 cm ™' [51, 52]. Phonon-boundary scattering
is modeled by the Casimir model with the cylindrical geometry for millimeter-sized wires [51, 53, 54], in the
completely diffusive limit with no specularity [42, 55]. Isotope scattering in Siis described with the widely used
Tamuramodel [51, 53, 56, 57] with the scattering probability:

Njq + njq’ ]
2

lSD ™
Pjqjiq = 2N0quwj’q’ njghjq +

X (S(fiéqu — ﬁw /)ng

ZZSO*Z 15t (1)

where s run over all atoms, «v is the Cartesian coordinate index, j is the phonon bran<ch>i£1dex, q is the phonon
(M; — (My))
(M)
parameter. As Al As and P are monoisotopic elements, with only one single stable isotope, AlAs and AIP are
naturally isotopically pure materials, which were not studied as a function of isotope composition.
All computational parameters were subjected to usual convergence tests. The figure illustrating the
convergence of the low-temperature lattice thermal conductivity with respect to the Brillouin zone sampling,

calculated within the SMA and the variational BTE approach is provided in the appendix.

wavevector, zg:" is the phonon eigenmode, wy;is the phonon frequency, g = is the mass variance

3. Results: calculated thermal conductivity

3.1. Phonon state repopulation in Si and isotope scattering effect
In panel a of figure 1, we show the thermal conductivity (without boundary) calculated within the variational
approach to BTE for natural silicon, isotopically enriched silicon, and extra-pure silicon which became available
recently [46], and which we will refer to as ‘hyper-enriched Si’ in the present work. The isotopic compositions of
Sistudied in our work are summarized in table 1. In panel b, we show our results for the thermal conductivity of
silicon in presence of boundary scattering. In presence of boundary scattering, our calculated thermal
conductivity of Si with various isotopic compositions is found in good agreement with available experimental
data [40, 41]. We note that our calculations of the lattice thermal conductivity of Si, as well as those of AlAs and
AIP which will be discussed later, are also in agreement with previous ab initio calculations [58, 59] (previous
theoretical data of [59] has been obtained for the 100-400 K temperature range).

In panel c of figure 1, we show the ratio Kyar/ Ksaa, for Si with various isotopic compositions. At room
temperatures and down to 70 K, the ratio kyar/ kspa is equal to one for all samples, which is a clear signature of
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Table 1. Silicon. Composition, average mass M,, (in atomic mass units) and the isotopic
disorder parameter g, for hyper-enriched ([46]), enriched, and natural silicon.

Composition M,, g
hyper-enriched $i*8-99.9995%, Si*°-0.0005% 27.98 6.38-107°
enriched $i%%-99.983%, Si*°-0.014%, Si>°-0.003% 27.98 331-1077
natural $i%%-92.23%, Si*°-4.67%, $i°°-3.10% 28.09 2.01-107*

the kinetic regime, where heat is transported by single phonon modes. However, as one can see in panel ¢, the
ratio Kyar/ ksma for isotopically pure silicon attains two orders of magnitude below 20 K (black curve), and
similar results are obtained for hyper-enriched silicon (blue dashed curve), demonstrating the importance of the
normal processes and of the repopulation for pure and hyper-enriched samples below 20 K. Therefore, the
possibility of the collective heat transport limit is not excluded for these samples. In contrast, one can see that the
collective heat transport limit is not possible in natural silicon according to our analysis (red dashed curve with
crosses), and in agreement with common knowledge. Indeed, the xy4r/ kspr4 ratio is close to one, and thus one
can conclude that the resistive processes dominate and that the repopulation does not play any important role in
the latter case. In the isotopically enriched silicon case (green dashed curve with stars), the kyr/Kspa ratio is
much larger than that of the natural silicon, however, there is no temperature regime in which it attains one
order of magnitude.

According to our results, the same conclusions are valid for germanium (results not shown): in natural and
isotopically enriched samples, the possibility of the collective heat transport limit which could potentially exist in
hyper-enriched or pure samples, is destroyed by isotopic scattering.

In order to further investigate the possibility of the collective heat transport limit in the isotopically hyper-enriched
silicon and to compare with experiments, we include boundary scattering. In panels b and d of figure 1, we show the
thermal conductivity of Si and the ratio kyar/Kspia for various isotopic compositions and in presence of boundary
scattering for different sample sizes. In panel b, our computational results for 2.82 mm sample size, for natural and
enriched silicon, are compared with the experimental results of [40, 41]. As one can see, the agreement between
calculated and experimental thermal conductivity is very good. To illustrate the effect of sample size on the lattice
thermal conductivity, we also show the calculated results in hyper-enriched silicon for the 20 mm and 500 mm sizes.

As one can see in panel d of figure 1, as expected, the ratio £yar/ kspa is reduced in presence of the boundary
scattering, for all sizes and all isotopic compositions. Nevertheless, normal processes play an important role for
hyper-enriched samples, especially for sample sizes of 20 mm and above.

The possibility of the collective heat transport limit in isotopically enriched samples of 2.82 mm size was
discussed in [40]. As one can see in panel d of figure 1, we find indeed that the ratio Kyr/#snsa for those samples
(blue dot-dashed curve) exceeds 1 for temperatures between 10 K and 60 K, with the maximum value of 1.8 at
25 K, confirming the conclusions of [40] that the collective heat transport can exist to some extent. However, the
effect of the repopulation of phonon states by the normal processes is strongly reduced by the isotopic and
boundary scattering for 2.82 mm samples.

3.2. Repopulation in AlAs and AIP

In the previous section, we have demonstrated that the isotopic scattering is the main reason why the collective
limit can not be observed in Si and Ge, while it could exist in pure or hyper-enriched samples. This is the reason
why we have decided to further explore cubic materials that naturally have no isotopes, such as AIP and AlAs.

In upper panel of figure 2, we show our calculated lattice thermal conductivity for AIP and AlAs, as a function
of temperature. In lower panel of figure 2, in analogy with the analysis of figure 1, we show the ratio Kyar/Ksna
for AIP and AlAs. One can see that, similarly to pure Si, the £/ Kspa ratio for AIP attains two orders of
magnitude around 17 K. The same is true for AlAs, at slightly lower temperatures around 8 K. Thus, we conclude
that according to our results, repopulation due to normal processes is very strong in AIP and AlAs atlow
temperatures. Therefore, the collective transport limit can also exist in AIP and AlAs. Also, we can conclude that
contrary to common belief, normal processes play an important role in cubic materials such as Si, AIP and AlAs,
but at temperatures below 20 K, and when isotopic scattering is absent or strongly reduced. In the next section,
we further analyse the effect of sample sizes.

4. Discussion: size effects and scattering rates

The effect of boundary scattering, analysed in panel d of figure 1 for silicon, appears to be very strong. Indeed, the
Kvar/ Ksma between 10 and 20 K for hyper-enriched samples is reduced by almost two orders of magnitude,
from about one hundred (panel ¢, blue dashed curve) to 3.7 in 20 mm samples (panel d, green curve).
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Figure 3. kyr/ Ksaa ratio for AIP and hyper-enriched Si samples of 20 mm, compared to kyar/ksya ratio for Bi sample of 9.72 mm.

In figure 3, we compare Kyag/ Kspa ratios in hyper-enriched silicon, cubic AIP and bismuth, which was
studied in our earlier works [42, 54]. The interest in comparing materials studied in the present work with Bi
resides in the fact that the collective heat transport (drifting second sound) was experimentally observed in the
latter [29]. As one can see in figure 3, scattering by boundaries reduces the repopulation effects in all three
materials. We can also note that the effect of repopulation reduction by boundary scattering appears to be
somewhat weaker in Bi, resulting is larger peak value of y4r/ Kspa ratio. At the same time, the peak value of
Kvar/Ksmain AIP at 16 K for 20 mm sample is still comparable to that of Bi at 3.2 K for 9.72 mm sample,
indicating that observation of the collective heat transport limit in AIP must be possible at temperatures around
16 K for 20 mm samples.

To further understand why the effect of repopulation reduction by boundary scattering is stronger in Siand
AIP compared to Bi, we study the average scattering rates in figure 4. By comparing the Umklapp and normal
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Figure 4. The thermodynamic average of phonon linewidth. Black dot-dashed lines — normal processes, red dashed lines —
Umklapp processes; blue and green lines with symbols — isotopic scattering for natural and hyper-enriched silicon. Horizontal lines:
boundary scattering for 2.82 mm (red dotted line) and 20 mm (black solid line) samples.

scattering rates in panels a (S1), b (AIP) and ¢ (Bi) of figure 4, we notice that overall, in all three materials the
normal scattering dominates over the Umklapp scattering at low temperatures. In that respect, cubic materials
studied in this work are similar to Bi. The major role of isotopic scattering, which is the dominant scattering
process below 70 K in natural silicon, is also illustrated in panel a of figure 4.

Coming now to boundary scattering rates, we notice that for equal sample sizes, boundary scattering rates
are 4 to 5 times larger in Si and AIP, compared to Bi. This fact, which is due to larger phonon group velocities in
Siand AIP as compared to those in Bi, explains why the repopulation reduction by boundary scattering is
stronger in Siand AlP.

5. Conclusions

In this work we have performed the theoretical analysis of the conditions necessary to reach the collective heat
transport limit in silicon with various isotopic compositions, as well as in AlAs and AlP which contain naturally
one single stable isotope. While the collective heat transport is impossible in natural silicon due to isotopic
scattering, it can in principle be reached in hyper-enriched Si, as well as in natural AlAs and AIP. We have shown
that, contrarily to common belief, the normal phonon-phonon scattering processes can play an important role
in the examined cubic semiconductors below 20 K, similarly to Bi where collective heat transport phenomena
have been experimentally observed. In addition, in the cubic materials studied in this work, the possibility to
reach the collective heat transport limit is reduced by the large phonon group velocities that enhance the effect of
boundary scattering with respect to, e.g. bismuth. Nevertheless, as we have shown in the present work, the
observation of the collective heat transport limit in AIP must be possible at temperatures around 16 K for 20 mm
samples.
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Appendix

In figure A1, we show an example of convergence test with respect to the q-point grid for the thermal
conductivity calculated with the SMA and variational approach to BTE, for the case of pure silicon (no border,
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noisotopes). As one can see in figure A1, the calculations with 30 x 30 x 30 q-point grid are well converged for
the temperatures discussed in this work, for both the SMA and variational approaches to BTE.
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