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AUTOMATIC CLUSTERING OF INDUSTRIAL DATA WITH THE
CONNECTED COMPONENTS

KATARÍNA FIRDOVÁ, CÉLINE LABART, AND LAURENT VUILLON

Abstract. This paper proposes the use of techniques from the field of graph
theory to automatically determine and cluster the same types of observations
without prior knowledge on their number. The idea is to create a graph where
observations are vertices and an edge between two observations exists if and only
if one observation is in the nearest neighbourhood of another one. Connected
components of the graphs can be then considered as groups of observations of the
same type. The approach is particularly useful for multiclass anomaly detection
in the context of Industry 4.0.
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1. Introduction and related work

In the setting of global transformation toward data driven world that we are ex-
periencing in the 21st century, manufacturing sector is changing. Modern plants
integrate smart technologies that allow real-time communication between the ma-
chines in order to increase the efficiency, automate and change the tools and roles
of industrial teams. Correctly used, information obtained from data help to control
the process and improve the factory in any way.

Progress in the technology enables the industrials to install devices which collect
and store data from multiple sources automatically but their full potential is often
left unexplored. Complexity of the collected data is beyond the limits of human
perception and special tools are required to facilitate the analysis. Lot of research
is focused on development of the methodologies that can deal with unlabelled or
unstructured data and valorise them automatically.

The clustering is one of the fundamental strategies of data analysis when unla-
belled datasets with different types of observations are examined. It groups simi-
lar observations together providing an important insight to the composition of the
dataset and simplifying its further processing.

Many clustering algorithms exist, using different notions of similarity for the re-
grouping procedure (e.g. distance, density, distributions) and requiring different
parameters (e.g. number of clusters, maximum distance). The latter mentioned
are hindering elements in the analysis. Not only it needs to be adjusted for every
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dataset, but often this information is missing (e.g. when we have no a priori insight
about dataset). Moreover, some parameters are unintuitive to tune.

In the context of Industry 4.0 it is desirable to have a clustering method that do
not require these parameters. This paper aims to generalise clustering procedure
and propose a method which can automatically determine clusters in data related
to the industrial processes without customised settings.

Algorithms like K-means [Ste57] and Agglomerative Clustering [agg] which are
often applied to cluster together the same types of observations require information
about the number of different clusters nclust.

The Silhouette score [Rou87] or Calinski and Harabasz score [CH74] can evaluate
the quality of the structures when nclust varies but the final choice of nclust should
be preceded by a visual analysis of the corresponding graph.

Density based (DBSCAN [EKSX96]) or Hierarchical density-based (HDBSCAN
[CMS13]) clustering algorithms are alternative methods which can determine the
number of clusters nclust but require to set a maximum distance of neighbourhood
(which is not an intuitive parameter) and/or minimal sample size parameters. Be-
sides, observations which are not in a dense region can fell out of a cluster.

In the field of graph theory, communities are parts of the graph with few ties with
the rest of the system [For10]. If the set of nodes is internally densely connected, it
is considered to some extent as a separated entity (i.e. cluster), although a sparse
connection with another community exists. One of the popular techniques for com-
munity detection is the modularity maximisation Louvain method [BGLL08]. This
one and other similar techniques can be also employed as clustering methods which
do not require to precise the nclust parameter, however they need to tune other non-
intuitive parameters like modularity gain threshold or resolution parameter.

2. Methodology

Graph data structures find many applications (see [Bar02] or [Bar16]) such as in
transportation systems (search for the shortest path between two points) or in social
networks (suggestions of people you may know based on mutual friends), but direct
application in the clustering when analysing a dataset is less common.

Motivated by the graph structures and their potential, we propose to examine an
approach of completely separated subgraphs as individual clusters. The approach
consists of determining tuples of nearest neighbours based on their distances and
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creating a graph, where one connected component represents one type of observa-
tions, i.e. one cluster.

Following the notations used in graph theory [Wil96], a simple graph G consists
of a non-empty finite set of elements V (G) named vertices (or nodes) and a finite
set of unordered pairs of elements E(G) named edges.

A graph is connected if there exists a finite sequence of distinct edges between
each distinct pair of vertices. Examples of connected and disconnected graphs can
be seen in Figure 1. Any disconnected graph G can be described as the union of
connected sub-graphs, each of which is a component of G.

Figure 1. Example of connected (in one piece) and disconnected graphs
[Wil96].

Inspired by connected structures, we propose to create a graph where the vertices
are the observations. A pair of two observations creates an edge if at least one
observation in the pair contains the other in its nearest neighbourhood.

Formally, let NNk,i be a set of kneighb nearest neighbours of observation i and S be
a symmetric binary similarity matrix, i.e. Si,j = Sj,i = 1 if i ∈ NNk,j or j ∈ NNk,i;
Si,j = Sj,i = 0 otherwise. An edge {i, j} which joins vertices i and j exists if and
only if Si,j = 1.

The idea is to create a graph where a set of similar observations corresponding
to one class represents one connected component of a graph. The number of these
components represents the number of different classes.

The method is not completely parameter-free and kneighb has to be defined. Yet
it is a comprehensible parameter and does not necessarily need different value for
different dataset.

The approach will be later referred to as connected components clustering.

3. Results

As mentioned above, the main impulse behind this work is to automatise the
clustering procedure. In the following we deal with time series multiclass anomaly
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detection. We consider global and local anomalies.

The first part of this work is driven by motivation to improve the fluidity of anom-
aly detection and explaination procedure developed in [CFLM22]. In the mentioned
paper, the detected anomalies are to be clustered according to their type to allow
the characterisation of each anomaly group. It is an example of a situation when it
is useful to group similar observations together (i.e. detected anomalies of the same
type) but we may not know in advance how many anomaly types are present.

To illustrate the automatised clustering, we use two datasets simulating different
types of anomalous continuous processes. One observation, i.e. one anomalous
process, is a 2-dimensional chronological series. There are 9 types of anomalies in
Dataset 1 and 4 types in Dataset 2. Examples of each type of observation in Dataset
1 and Dataset 2 are displayed in Figures 2 and 3, respectively.

We use features vector representation of the processes, i.e. for each chronological
series we extract features characterising the behaviour of the corresponding anoma-
lous process. Features are extracted using Python package tsfresh [CKLF17].

X1 X2

Figure 2. Dataset 1 contains N = 500 of m = 2 dimensional time series of
length l = 1000.
X1 is represented on the left and X2 is represented on the right side of the
figure. Line 0 (green) is one example of the series with typical behaviour,
whereas lines 1 to 9 correspond to different anomalous observations. There
are 50 anomalous series in the dataset, composed either of one anomaly on
X1 or of anomalies on both X1 and X2.
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X1 X2

Figure 3. Dataset 2 contains N = 520 of m = 2 dimensional time series of
length l = 1000.
Line 0 (green) corresponds to one series with typical behaviour, whereas lines
1 to 4 correspond to different anomalous observations, displaying X1 on the
left and X2 on the right side of the graphs. There are 70 anomalous series in
the dataset.

Automatically extracted features are numerous, creating highly dimensional vec-
tors of features. This may lead to difficulties when Euclidean distance is used to
compute the similarity matrix. We apply Laplacian score [HCN05] to reduce dimen-
sions and to keep only the most relevant features.

Concerning the approach of the connected components clustering, the nearest
neighbourhood is set as kneighb = 2 nearest observations (i.e. vectors of features) in
terms of the Euclidean distance.

We can see that the approach of connected components is competitive with other
methods using Silhouette score to determine the number of clusters nclust on Dataset
1 and 2 (Tables 1 and 2 respectively).

Figure 4 illustrates a graph of anomalies from Dataset 2 as an example. Different
colours of the disks (observations) present different connected components, corre-
sponding to the types of anomalies. It is easy to verify visually that the separation
is correct in this case, given that indexes (values written in the disk) are coherent.1

1Indeed, the anomaly groups in Dataset 2 are generated in ordered way, grouping 1st type of
anomalies on first 20 positions (i.e. indexes 0-19), 2nd type of anomalies on following 20 positions
(indexes 20-39), 3rd type of anomalies on following 10 positions (indexes 40-49) and 4th type of
anomalies on remaining 20 positions (indexes 50-69).
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Figure 4. Graph generated in the visualisation software Gephi displaying
connected components among anomalies from Dataset 2. Laplacian score is
used in this case to select the relevant features.

Table 1. Comparison of the performance of selected clustering methods on
true anomalies for Dataset 1. For K-means and Agglomerative Clustering,
Silhouette score is used to determine the number of clusters (nclust). Aver-
age Normalised Mutual Information [pytb] and Accuracy scores [pyta] on 5
executions are displayed.

Performance on true anomalies from Dataset 1 (true nclust = 9)

Feature selection All features Laplacian

Eval. metric nclust NMI ACC nclust NMI ACC

K-means 7 0.91 0.79 7 0.91 0.8

Agglomerative Clustering 7 0.92 0.8 7 0.91 0.8

Connected components 5 0.77 0.6 8 0.96 0.9
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Table 2. Comparison of the performance of selected clustering methods on
true anomalies from Dataset 2. For K-means and Agglomerative Clustering,
Silhouette score is used to determine the number of clusters (nclust). Aver-
age Normalised Mutual Information [pytb] and Accuracy scores [pyta] on 5
executions are displayed.

Performance on true anomalies from Dataset 2 (true nclust = 4)

Feature selection All features Laplacian

Eval. metric nclust NMI ACC nclust NMI ACC

K-means 2 0.61 0.57 4 1 1

Agglomerative Clustering 2 0.61 0.57 4 1 1

Connected components 2 0.61 0.57 4 1 1
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The following real data example deals with clustering of human motion mea-
surements. Dataset [MCCH19] includes chronological data from accelerometer and
gyroscope sensors, collected from the users’ smartphones. Series are transformed to
vectors of features and connected components clustering is applied to identify and
to group together similar activities performed by users: standing, sitting, upstairs,
downstairs, walking and jogging.

Table 3 presents the results. We can observe that only 2 and 3 clusters are de-
tected using all features and selected features, respectively. However, the similar
nature of observations in the same group is preserved. Indeed, two clusters are
detected when considering all features. They correspond to clusters of static activ-
ities (standing and sitting) and dynamic activites (the others). Three clusters are
detected after feature selection. They correspond to static (standing and sitting),
slow (upstairs, downstairs, walking) and fast activities (jogging). From this point of
view, the clustering leads to the correct results. The best results are obtained with
K-means, but other clustering methods stay competitive.

Table 3. Comparison of the performance of selected clustering methods on
Human motion dataset. For K-means and Agglomerative Clustering, Sil-
houette score is used to determine the number of clusters (nclust). Average
Normalised Mutual Information [pytb] and Accuracy scores [pyta] on 5 exe-
cutions are displayed.

Performance of clustering on Human motion dataset.

Feature selection All features Laplacian

Eval. metric nclust NMI ACC nclust NMI ACC

K-means 2 1 1 3 0.934 0.986

Agglomerative Clustering 2 1 1 3 0.879 0.968

Connected components 2 1 1 3 0.879 0.968

In addition, we illustrate the results on an example motivated by the clustering
of local anomalies on one continuous process.

Figure 5 shows 5 three-dimensional series, considered as individual datasets, i.e.
each series is analysed separately. Before the transformation to the vectors of fea-
tures, each continuous series is divided on rolling windows of size 400 and step 50
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values, creating partially overlapping, not homogeneous subseries. Feature extrac-
tion is done on each window.

In this demonstration, we aim to cluster local anomalies (red elipses in Figure 5),
i.e. rolling windows that partially contain anomaly.

As illustrated in Figure 6, rolling windows on different positions - and therefore
corresponding vectors of features - may differ a lot for the same anomaly type. Since
the original data come from a time series, we can assume that consecutive positions
of rolling windows are supposed to represent the same type of anomaly. If the clus-
tering algorithm detects more clusters on the same anomalous period, we select the
final label as a majority vote. This approach enables us to evaluate the capacity to
recognise different types of observations, minimising the error caused by heteroge-
nous rolling windows.

Results in Table 4 show that after a feature selection, the method is capable to
correctly distinguish different types of observations. However the assumption that
different types of anomalies are not overlapping is important. The initial number of
identified components is stated in Table 4 as nclust. We can see that the algorithm
detects more components i.e. clusters on one continuous period. This situation
happens when the ratio of a window containing the anomaly varies during one
anomalous period (Figure 6). The performance presented in the following tables is
evaluated once different labels on a same anomalous period are merged.
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Figure 5. Overview of simulated datasets. Five multidimensional series
(labelled 1 - 5) with different anomalies (red ellipses) are generated to test the
process of anomaly detection. In this part, we use the datasets to perform the
clustering on anomalous rolling windows of size (400,50). Note that different
anomalies are not overlapping.
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Figure 6. Examples of four different positions of a rolling window on the
same anomalous period. The ratio of anomalous values varies from one line
to another: the ratio of anomalous values is lower in lines 1 and 4 than in
lines 2 and 3, leading to heterogenous subseries.

Table 4. Results of connected components clustering on data from Figure
5. nclust states how many components are identified initially but before the
evaluation we select the final label for each anomalous period as a majority
vote. Performance is measured with weighted F1 metric on merged clusters.
In this case, the number of merged clusters corresponds to the true number of
clusters (i.e. number of different anomalies in Figure 5). 51 stratified features
are selected using Laplacian score.

Feature selection All features Laplacian

Eval. metric nclust FW
1 nclust FW

1

TS 1 3 1 4 1

TS 2 4 0.46 4 1

TS 3 2 0.7 6 1

TS 4 4 0.53 4 1

TS 5 3 1 3 1
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4. Conclusion

This paper has presented an unusual application of the graph theory technique
for clustering purposes in the context of time series multiclass anomaly detection.
It helps to identify and group together similar observations when the number of
clusters is not known in advance.

From the practical point of view, the main drawback is that a new observation
requires to re-compute the connected components which slows down the procedure.
Another drawback is that a single isolated observation is necessarily connected to
its nearest neighbour.

Despite of these disadvantages, the capacity of the approach to determine number
of clusters without apriori information about dataset remains an important benefit
for industrial data analysis.
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