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Regular Article
HEMATOPOIESIS AND STEM CELLS
Integrative single-cell chromatin and transcriptome
analysis of human plasma cell differentiation
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KEY PO INT S

•Our results illustrate a
complex and dynamic
pattern of epigenetic
and transcriptomic
modifications in early
PC genesis.

• Preplasmablasts
already undergo
epigenetic remodeling
related to mature PC
together with unfolded
protein response
priming through
mTORC1 pathway
activation.
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Plasma cells (PCs) are highly specialized cells representing the end stage of B-cell differen-
tiation. We have shown that PC differentiation can be reproduced in vitro using elaborate
culture systems. The molecular changes occurring during PC differentiation are recapitulated
in this in vitro differentiation model. However, a major challenge exists to decipher the
spatiotemporal epigenetic and transcriptional programs that drive the early stages of PC
differentiation. We combined single cell (sc) RNA sequencing (RNA-seq) and assay for
transposase-accessible chromatin with high throughput sequencing (scATAC-seq) to decipher
the trajectories involved in PC differentiation. ScRNA-seq experiments revealed a strong
heterogeneity of the preplasmablastic and plasmablastic stages. Among genes that were
commonly identified using scATAC-seq and scRNA-seq, we identified several transcription
factors with significant stage specific potential importance in PC differentiation. Interestingly,
differentially accessible peaks characterizing the preplasmablastic stage were enriched in
motifs of BATF3, FOS and BATF, belonging to activating protein 1 (AP-1) transcription factor
family that may represent key transcriptional nodes involved in PC differentiation. Integra-
tion of transcriptomic and epigenetic data at the single cell level revealed that a population of
m
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preplasmablasts had already undergone epigenetic remodeling related to PC profile together with unfolded protein
response activation and are committed to differentiate in PC. These results and the supporting data generated with our
in vitro PC differentiation model provide a unique resource for the identification of molecular circuits that are crucial for
early and mature PC maturation and biological functions. These data thus provide critical insights into epigenetic- and
transcription–mediated reprogramming events that sustain PC differentiation.
 Sept
em
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Introduction

Plasma cells (PCs) are highly specialized cells representing the
end stage of B-cell differentiation. They play an important role
in humoral immunity.1 On the transcriptional level, the differ-
entiation of B cells into PCs is associated with substantial and
coordinated changes.2-5

Several in vitro models of human B to PC differentiation (PCD)
were reported.6-11 These systems could be used for functional
interrogation in human cells related to the different stages of
B to PC differentiation and are suited to high-throughput
molecular characterization and experiments.2,3,12-14 We have
LUME 144, NUMBER 5
shown that PC generation can be modeled using multistep
culture systems where various combinations of activation mol-
ecules and cytokines are subsequently applied in order to
reproduce the sequential cell differentiation occurring in the
different organs/tissues in vivo. In this model, memory B cells
(MBCs) differentiate into preplasmablasts (prePBs), plasma-
blasts (PBs), early PCs and, finally, into long-lived PCs, which
may survive and produce continuously high amounts of immu-
noglobulins for months in vitro.8 The phenotype of in vitro-
generated PBs is similar to the phenotype of the few PBs
detected in the peripheral blood.6-8 Moreover, the molecular
events occurring during differentiation of B cells into PCs are
recapitulated in this in vitro differentiation model.2,6,8,15

https://crossmark.crossref.org/dialog/?doi=10.1182/blood.2023023237&domain=pdf&date_stamp=2024-08-01
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Recently, we used next-generation sequencing technology to
generate a comprehensive transcriptome database encompass-
ing human in vitro PCD. Our results reveal 8419 differentially
expressed genes classified into 4 temporal gene expression
patterns2. Additionally, our analysis revealed numerous novel
transcriptional regulators and helicases (BATF2, BHLHA15/
MIST1, EZH2, WHSC1/MMSET, BLM and MYB) with consistent
stage-specific overexpression and potential importance in PCD.
Furthermore, our analysis revealed the upregulation of epige-
netic factors at the prePB stage, a critical step during which cells
actively proliferate and start secreting immunoglobulins. Finally,
we have experimentally validated a role of for the BLM helicase
and the histone methytransferase EZH2 in regulating cell survival,
proliferation and maturation in PCD.16,17 However, a major
challenge exists to decipher the spatiotemporal epigenetic and
transcriptional programs that drive the early stages of PCD.18,19

In this study, we combined single cell (sc) RNA sequencing (RNA-
seq) and assay for transposase-accessible chromatin with high
throughput sequencing (scATAC-seq) to decipher the trajec-
tories involved in PCD. Our analyses reveal considerable
transcriptional and epigenetic heterogeneity during the pre-
plasmablastic stage of human PCD. Epigenetic analysis of the
different stages suggests that BATF3-target genes may represent
a key transcriptional node involved in PCD. Integration of tran-
scriptome and epigenetic data at the single cell level showed
that some prePBs already had an epigenetic profile similar to that
of PCs in association with endoplasmic reticulum priming.
f/144/5/496/2237080/blood_bld-2023-023237-m
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Materials and methods
Cell cultures
Peripheral blood cells from healthy donors were purchased from
the French Blood Center (Toulouse, France) and CD19+CD27+

MBCs were purified as described.6 From purified peripheral
blood MBCs, prePB, PB, and PCs were generated using a three-
step in vitro model as reported.6,7 Standard culture conditions
comprised 21% O2, 5% CO2, and 37◦C and cells were cultured in
Iscove’s modified Dulbecco medium (Invitrogen, Waltham, MA)
supplemented with 10% fetal bovine serum (Eurobio, Les Ulis,
France). MBCs (1.5 × 105 cells per mL) were doubly activated for
4 days by CpG oligodeoxynucleotide and CD40 ligand using a
cocktail comprising 10 μg/mL of phosphorothioate CpG oligo-
deoxynucleotide 2006 (Sigma-Aldrich, St. Louis, MO), 50 ng/mL
of histidine tagged sCD40L (R&D Systems, Minneapolis, MN)
and 5 μg/mL of anti-poly-histidine monoclonal antibody (mAb;
R&D systems) with interleukin 2 (IL-2) (400 U/mL) (R&D systems),
IL-10 (50 ng/mL) (R&D systems) and IL-21 (100 ng/mL) (Pepro-
Tech, Cranbury, NJ) cytokines in six-well culture plates. PBs were
generated from prePBs (2.5 × 105 cells per mL) by removing
activating molecules and changing cytokine cocktail composed
of IL-2 (400 U/mL), IL-6 (50 ng/mL) (PeproTech), IL-10 (50 ng/mL)
and IL-15 (10 ng/mL) (PeproTech). Finally, PBs (5.0 × 105 cells per
mL) were differentiated into PCs adding IL-6 (50 ng/mL), IL-15 (10
ng/mL) and IFN-α (500 U/mL) (R&D Systems).

Flow cytometry and cell sorting
PrePBs, PBs, and PCs were respectively purified at day (D) 4, D7,
and D10 using FACS Aria cell sorter (Becton Dickinson, Franklin
Lakes, NJ) with a purity >95% as well as peripheral blood MBCs.
MBCs were sorted using allophycocyanin (APC)–conjugated
scATAC- AND RNA-SEQ ANALYSIS OF PC DIFFERENTIATION
anti-CD19 mAb and PE-conjugated anti-CD27 (BD Biosciences,
no. 555415 and no. 555441, respectively). Cells produced in the
culture system during differentiation were sorted using fluorescein
(FITC)-conjugated anti-CD20, PE-conjugated anti-CD38 and APC–
conjugated anti-CD138 mAbs (Beckman Coulter, Brea; no.
6602381, no. A07779 and no. B49219, respectively) for D4 prePBs
(CD20−CD38−), D7 PBs (CD20−CD38+CD138−), D10 PCs
(CD20−CD38+CD138+).

Supplemental information concerning methodology are
included in supplemental Experiment procedures, available on
the Blood website.
Results
Transcriptional features of stages during normal B
to PC differentiation
The experimental strategy applied to obtain single-cell RNA-seq
profiles on the 4 populations generated during B to normal PCD is
illustrated in Figure 1A. The uniform manifold approximation and
projection (UMAP) of the 6392 cells showed 3 distinct compart-
ments composed of MBCs, PCs, and prePB/PB cells (Figure 1B).
This projection revealed a highly specific transcriptomic profile for
MBCs and PCs, and a strong heterogeneity of the prePB and PB
without a clear distinction between the 2 populations. There was
no distinction between the replicates of cells generated with
MBCs from the 2 healthy donors (supplemental Figure 1). Each
stage exhibited more than 300 differentially expressed genes that
helped clearly distinguish the stages (Figure 1C). When we
compared each stage with the rest of the data set, the prePB
stage presented the most differentially expressed genes with
almost 2000 differentially expressed genes (DEGs) showing that
the most important changes take place during this stage. As
expected, B-cell transcription factors (TFs) (PAX5, BCL6 and
BACH2) were expressed in MBCs, whereas the PC TFs (IRF4,
PRDM1 and XBP1) were strongly expressed in PCs (Figure 1D).
The heat map of the top 10 DEGs of the 4 stages showed dynamic
changes during B to normal PCD (Figure 1E). We then focused on
genes that are differentially regulated during transitions, from
MBCs to prePB, after B-cell activation; from prePB to PB, when
cells start to secrete antibody; and from PB to PCs. Gene set
enrichment analysis of these deregulated genes validated the
results previously reported using bulk RNA-seq analyses
(Figure 1F; supplemental Table 1).7,20

Single-cell chromatin accessibility reveals an
overrepresentation of AP-1 TFs in the prePB
stage
To determine the variations in chromatin opening accom-
panying B to PCD, we applied scATAC-seq, profiling in total
7721 individual cells. PrePB, PB and PC stages were clearly
separated from the MBC stage on the UMAP representation
using peaks identified using model-based analysis of
chromatin immunoprecipitation sequence 2 (MACS2;
Figure 2A).21 The number of differentially accessible peaks
was higher in prePB (4660) than in other stages (MBC: 641;
PB: 44; PC: 105) (Figure 2B). A fraction of cells at the prePB,
PB, and PC was characterized by very similar ATAC-seq
profiles, highlighting a strong similarity in chromatin struc-
ture even if prePB and PB cells are very different from PC
at the transcriptomic level (Figure 1B). Interestingly, we
1 AUGUST 2024 | VOLUME 144, NUMBER 5 497
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Figure 1. Single-cell transcriptomics analysis of MBCs, prePBs, plasmablasts and PCs during B to PC differentiation. (A) Schematic representation of the in vitro model
of B to PC differentiation. MBCs from human peripheral blood were purified and cultured with activating molecules, sCD40L and oligodeoxynucleotides, and cytokines, IL-2,
IL-10, and IL-21 to obtain prePBs at day 4. Cells were then cultured with IL-2, IL-6, IL-10, IL-15, and IL-21 cytokines to obtain PBs at day 7. Finally, PBs were cultured with IL-6, IL-
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498 1 AUGUST 2024 | VOLUME 144, NUMBER 5 ALATERRE et al

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/144/5/496/2237080/blood_bld-2023-023237-m

ain.pdf by guest on 18 Septem
ber 2024



I J L

K M

KLF4 SPIB KLF9

BATF3 FOS BATF

ZEB1 MYOG KLF6

TCF4

MBC

prePB

PB

PC

ASCL1 IRF4

Peaks

1753
38%2907

62%

BATF3 Other TFs

1794 140 1339

BATF3DEG in
prePB

Genes

targets

LDHA,EZH2,
CXCR4,BIRC3,
MKI67,TRAF1,
IL21R, PAX5,
CCL5, IKZF1,

IRF5, CCR7, ...

chr14:75,956,532-76,013,804

chr1:212,847,055-212,875,680

BATF

BATF3

MBC

prePB

PB

PC

MACS2 peaks

No
rm

al
ize

d 
sig

na
l

(ra
ng

e 
0 

– 2
10

)

MBC

prePB

PB

PC

MACS2 peaks

No
rm

al
ize

d 
sig

na
l

(ra
ng

e 
0 

– 3
00

)

2
BATF

.5
FOSL1

2
BATF3

2
FOSL2

4
FOS

4
JUN

3
FOSB

5
JUND

MBC

Lo
w

Ex
pr

es
sio

n
H

ig
h

prePB PB PC MBC prePB PB PC

C
MBC

DAPI
H3K27me3

prePB

PB PC

B

0

M
BC

pre
PB PB PC

Nu
m

be
r o

f d
iff

er
en

tia
lly

ac
ce

ss
ib

le
 p

ea
ks

1000 641
44 105

4660

2000

3000

4000

5000

D

Genes

PB PC

70
3514

1418172

30

3242469

MBC prePB

Distal elements

A

UMAP 1

ATACseq
UM

AP
 2

MBC
prePB
PB
PC

H

RNA-seq
29

615

170

1764 366

11

498

E
Open in MBC

n = 251
Open in prePB

n = 4854

0.0

Log2 fold change

–L
og

10
P

–0.5

0

40

80

120

0.5

F
Open in prePB

n = 2392
Open in PB

n = 28

0.0

Log2 fold change

–L
og

10
P

–0.5

0

20

40

60

80

0.5

G
Open in PC

n = 9
Open in PB

n = 19

0.0

Log2 fold change
–L

og
10
P

–0.3

0

20

40

60

0.3 0.6–0.6

2929 1111170

377
ATAC-seq

2331

30 56

Figure 2. Single-cell chromatin accessibility of MBCs, prePBs, plasmablasts, and PCs during B to PC differentiation. (A) UMAP representation of the 4 stages analyzed
separately and then merged together. Peaks detected with MACS2 peak calling were used for UMAP representation. (B) Number of differentially accessible peaks identified
for the 4 stages using pairwise comparisons (one stage vs all other cells). (C) Cells were fixed with 4% paraformaldehyde for 10 minutes at different time points: MBCs (day 0),
PrePBs (day 4), PBs (day 7), and PCs (day 10). Immunofluorescence to detect H3K27me3 levels (green) was performed with an anti-H3K27me3 antibody. DNA was stained with
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the prePB stage identified using the RNA-seq data set and the number of genes associated with a more open chromatin enriched in BATF3 motif identified using ATAC-seq
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Figure 1 (continued) cell. Then, cells were lysed and messenger RNA (mRNA) was hybridized on the beads. To finish, beads were recovered to synthetize complementary
DNA and amplify libraries prior to sequence. (B) UMAP representation of the 4 stages identified using tags and demultiplexing. (C) Number of positive differentially expressed
genes identified for the 4 stages using pairwise comparisons (one stage vs all other cells). (D) mRNA expression of B-cell TFs: BACH2, BCL6 and PX5; and PC TFs: IRF4, PRDM1
and XBP1. (E) Heat map of the top 10 genes upregulated of each stage. (F) Gene ontology enrichment analysis showing both pathways enriched in upregulated and
downregulated genes during transitions: from MBC to prePB, from prePB to PB and from PB to PC.
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observed a clear-cut chromatin decompaction at the prePB
stage (Figure 2C), which is associated with a large number of
ATAC-seq peaks (Figure 2B). Moreover, the number of
differentially accessible regions identified in each stage
using scATAC-seq strongly correlated with the number of
differentially expressed genes identified using scRNA-seq (R2 =
0.9949; P < .001) (supplemental Figure 2). The annotation of
these differentially accessible peaks in each stage revealed a
higher proportion of peaks localized on genes than on distal
elements (Figure 2D). Pairwise comparisons between MBC and
prePB, prePB, and PB, and PB vs PC showed that the greatest
chromatin changes were observed between MBC and prePB
(251 open peaks in MBC and 4854 in prePB) after B-cell acti-
vation (Figure 2D-G). We also observed significant changes
between prePB and PB. Among genes that were differentially
expressed at the transcriptome level, 29 genes for MBC, 170
genes for prePB and 11 genes for PC presented also chromatin
remodeling (Figure 2H). These results revealed that B-cell acti-
vation led to major epigenetic and transcriptomic remodeling.
Among genes that were commonly identified using ATAC-seq
and RNA-seq, we identified TFs such as FOXP1 and PAX5
for MBC; ARID3A, BATF, BATF3, E2F4, ETS1, IKZF1, IRF2,
MYB, SOX4, SPIB, SREBF2, STAT3, TFDP1 and ZNF511 for
prePB; and finally, PRDM1 for PC (Table 1). Motif enrichment
analysis using JASPAR and CIS-BP databases revealed a sig-
nificant enrichment of motifs related to all the TF identified in
the study and listed in Table 1 except ZNF511 (supplemental
Resource 1). BATF and BATF3 had differentially accessible
peaks localized on the core gene and on distal elements
(Figure 2I). Interestingly, differentially accessible peaks charac-
terizing the prePB stage were enriched in motifs of BATF3, FOS
and BATF belonging to the AP-1 TF family19 (Figure 2J). In
MBC, we found peaks enriched in KLF4, SPIB and KLF9
TF motifs, whereas, an enrichment in TCF4, ASCL1 and IRF4
motifs was identified in PCs. At the single cell level, the majority
of prePB had a medium to high expression of AP-1 TF family
(BATF, BATF3, FOS, FOSB, FOSL1, FOSL2, JUN and JUND)19

(Figure 2K). Moreover, among the differentially accessible
peaks in the prePB stage, 38% presented BATF3 motif
(Figure 2L) corresponding to 1479 genes potentially regulated
by BATF3 TF (Figure 2M). Among these genes, we identified
140 genes also upregulated in prePB, including LDHA,
EZH2, CXCR4, BIRC3, MKI67, TRAF1, IL21R, PAX5, CCL5,
IKZF1, IRF5 and CCR7. The significant overexpression of BATF3
TF was validated at protein level in prePB (supplemental
Figure 3A-B). Because BATF3 TF was previously identified
operating in short impulse manner at the prePB stage,2 BATF3
target genes may represent a key transcriptional node involved
in PCD.
Table 1. TFs and epigenetic enzymes upregulated and
showing a more open chromatin state

MBC prePB PB PC

TFs FOXP1, PAX5 ARID3A, BATF, BATF3,
E2F4, ETS1, IKZF1, IRF2,
MYB, SOX4, SPIB, SREBF2,
STAT3, TFDP1, ZNF511

— PRDM1

EEs KDM2B GATAD2A — —

EEs, epigenetic enzymes.
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Integrating scRNA-seq and scATAC-seq reveals a
more mature subpopulation of prePB
characterized by an epigenetic profile of PC
To integrate scRNA-seq and scATAC-seqdatasets,weused the top
50 differentially expressed genes from each stage identified with
scRNA-seq data set to find anchors and predict cell stage of
scATAC-seq data set. For the scATAC-seq data set, a gene activity
matrix was calculated using the number of reads localized within
genes. UMAP representation of transferred data showed a good
superposition of scRNA-seq and scATAC-seq datasets, in particular
forMBCandPC stages (Figure 3A-B). Almost half of the prePB from
the ATAC-seq data set were not predicted as prePB and almost a
quarter of thePBwerenotpredictedasPB (Figure3C). Interestingly,
the remaining prePB were predicted as PB and PC and the
remainingPBwerepredictedasPC (Figure3D), revealing that some
prePB and PB were characterized by a more mature epigenetic
profile. Pairwise comparison between prePB predicted as prePB
and prePB predicted as PC revealed key marker genes of PC
including XBP1, FAM46C,20 MZB122 or BTG212 (Figure 3E;
supplemental Table 2). These data underline that a subpopulation
of prePBs hadalreadyundergoneepigenetic remodeling related to
PC profile. Using RNA-seq data, the PC cell genes, such as IFI6,
associated with open chromatin in prePB are still not expressed
compared with mature PC (Figure 3F). To validate these results, we
performed ChIP-seq of the histone marks H3K4me3, H3K27ac and
H3K36me3. H3K36me3 is associated with transcriptional elonga-
tion in the gene body, H3K27ac with active regulatory elements
including enhancers and promoters, and H3K4me3 with active/
promiscuous promoters. The PC genes FAM46C, XBP1,MZB1 and
IFI6 already showed active chromatin marks in prePB cells
(supplemental Figure 4). These results suggested that a population
of prePB is already committed to generating antibody-secreting
cells.

Pseudotemporal analysis of prePB and PB
subpopulations by single-cell transcriptomic
analysis
K-nearest neighbors-based clustering revealed 7 subpopulations
includingMBC incluster 1, prePB inclusters 2 and3, PB in clusters 4
and 5, and PC in clusters 6 and 7 (Figure 4A; supplemental
Figure 5A). Approximately 40% of the analyzed cells displayed a
transcriptional profile associated with S-G2-M stages of the cell
cycle (Figure 4B-C; supplemental Figure 5B) representedmainlyby
prePB and PB6 (Figure 4D-E). We selected only prePB and PB
associated to S-G2-M stages to focus on the processes occurring
during the transition from prePB to PB, while minimizing biases
from cell-cycle states (Figure 5A). To unravel potential differentia-
tion trajectories and understand the progression between stages,
cells were computationally ordered along pseudotime computed
usingMonocle 3 (Figure 5B-C). We focused on genes differentially
regulated along this trajectory, in particular genes coding TFs,
epigenetic regulators and proteins involved in ligand/receptor
interactions (supplemental Table 3). We identified 6 groups of
deregulated genes: genes downregulated in cluster 1 (early
prePB), genes downregulated in cluster 2 (mature prePB), genes
upregulated in cluster 1, genes upregulated in cluster 2, genes first
downregulated and then upregulated (impulsed down) and the
opposite (impulsed up) (Figure 5D). The majority of differentially
expressed genes are downregulated (78.8%), and mostly in C2
(52.5%) (Figure 5E). AmongTFs,BATF3, IRF5,RUNX3, SPIB, PAX5,
STAT5A,AHR, JUNB, STAT6 andKLF6were downregulated in the
ALATERRE et al
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first instance, andPHB2, TFAM, ETS1, TFDP1, YY1, E2F4, ZNF146,
TP53, MAX and CEBPZ were downregulated in C2 (Figure 5F;
supplemental Table 4). Concerning the epigenetic components,
AICDA, EZH2, EED, PRMT2 and NCOA4 were downregulated
during the transition from early to mature prePB stages, whereas
PCNA, PRMT1, SET, MBD2 and HDAC1 were downregulated
during the transition from prePB to PB. The expression of AID in
prePB along with a significant induction of 53BP1 and γH2AX,
which characterize the presence of DNA strand breaks, was vali-
dated at protein level (supplemental Figure 3). Investigating genes
involved in ligand/receptor interactions, we found that IL2RA,
IL21R andCD40 are downregulated in the first instance after B-cell
activation (early prePB). The B-cell markers CD19, CD22, CD83,
CCR7,CCL17 andCCL222,6,7 are downregulated in C1 (Figure 5F;
supplemental Figure 6; supplemental Table 4). TACI expression
was downregulated in C2. PC surface markers CD27, CD38,
SLAMF7, BCMA and ITGA4were upregulated in C1 together with
IL-6R, IL-6ST and INSR (Figure 5F; supplemental Figure 6;
supplemental Table 4).
scATAC- AND RNA-SEQ ANALYSIS OF PC DIFFERENTIATION
Subclustering of prePB and PB stages by single-cell
transcriptomic analysis
The heterogeneity of the prePB stage encouraged us to increase
the number of clusters to identify new transitional subpopulations
of prePB. We obtained 5 clusters composed of 4 clusters of prePB
and a unique cluster of PB (Figure 6A). Genes deregulated along
differentiation process and identified using pseudotime analysis
(Figure 5F; supplemental Table 4) were used to order clusters in
particular clusters 2, 3, and 4, corresponding to more mature
prePB (Figure 6B). Pairwise comparisons revealed a larger varia-
tion of gene expression observed during the first phases (cluster
1: 684 DEG) and at the end (cluster 5: 437 DEG) of the differ-
entiation (Figure 6C; supplemental Table 5). The heat map of the
top 50 differentially expressed genes revealed very specific
transcriptomic profiles for cluster 1, the early prePB, and cluster 5,
the PB (Figure 6D). In cluster 1 (early prePB), we found several
ligands and receptors strongly expressed after B-cell activation
(Figure 6D). This cluster was also characterized by an over-
expression of B-cell TFs (IRF5, ZFP36L1, SPIB, BATF3, RUNX3 and
1 AUGUST 2024 | VOLUME 144, NUMBER 5 501
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PAX5) (Figure 6E) and AICDA. The cluster 5 (PB) was notably
represented by an overexpression of PC receptors, such as
TNFRSF17 (BCMA), SLAMF7 (CS1), CD27, CD79A and CD38, the
PC TF XBP1 and the PSAP ligand. Mature prePB were divided in
3 clusters (cluster 2: early mature prePB, cluster 3: transitional
mature prePB and cluster 4: mature prePB; Figure 6D) and
expressed specific markers like the ETS1 and ATF5 TFs overex-
pressed in early mature prePB (cluster 2). ATF5 is a TF involved in
the survival pathway CREB3L2-ATF5-MCL1.17 ETS1 was shown to
mediate the transcriptional upregulation of MCL1 antiapoptotic
factor and recruit AID to DNA sequence from the immunoglob-
ulin heavy-chain gene (IGH) locus.23 EGR1 and FOS are
expressed later in transitional mature prePB (cluster 3). EGR1 TF
participates in PCD program.24 KLF2 is expressed in mature
prePB (clusters 4) and PB (cluster 5) (Figure 6E). KLF2 is involved in
the control of PC homing in the bone marrow by controlling the
expression of β7-integrin.25 The clusters of mature prePB were
also distinguished by the expression of some genes coding
ligands and receptors, respectively CALR, HLA-DRB6 and
SLC1A5, NCL, CANX for cluster 2, GPI, CD70, HLA-DRB6 and
TFRC, CXCR4, ENO1, F2R for cluster 3, CCL3 and ITGA4 for
502 1 AUGUST 2024 | VOLUME 144, NUMBER 5
cluster 4. Gene set enrichment analysis revealed that cluster 1 is
enriched in genes regulated by NF-κB and STAT5, respectively
in response to TNF and IL-2 stimulation (Figure 6F; supplemental
Table 6). This cluster was also enriched in genes involved in
inflammatory response and p53 pathway. We also found genes
upregulated by the activation of the phosphoinositide 3-kinase
(PI3K)/serine-threonine protein kinase (AKT)/mammalian target
of rapamycin (mTOR) signaling in cluster 1 and genes upregu-
lated through the activation of mTOR complex 1 (mTORC1) in all
other clusters with a greater enrichment in cluster 2. In parallel, in
this cluster, we observed an enrichment in genes involved in
unfolded protein response (UPR) and MYC targets. This gene set
was also found in cluster 3 in addition to genes involved in
oxidative phosphorylation and glycolysis, and targets of E2F TF
involved in cell cycle. Cluster 5 was enriched in genes involved in
UPR in association with protein secretion.

Dual activation of UPR during prePB and PB
transition
We decided to focus on the dual activation of the endoplasmic
reticulum stress observed in the first cluster of more mature prePB
ALATERRE et al
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and later in PB. Pairwise comparison between cluster 2 and clus-
ters 1, 3 and 4 corresponding to nearest clusters showed that 111
genes were overexpressed in cluster 2, including 19 genes (ASNS,
SLC7A5, HSPA5, HSP90B1, CALR, HSPA9, SERP1, PSAT1, SSR1,
EDEM1, XPOT, TARS1, SPCS3, DNAJC3, PDIA6, HYOU1,
EIF4EBP1 and HERPUD1) involved in UPR (Figure 7A-C;
supplemental Table 7). The cluster 5 overexpressed 179 genes
compared with the cluster 4 including 10 genes involved in
endoplasmic reticulum stress. Among them, 5 genes were
commonly found in clusters 2 and 5, whereas 5 genes were spe-
cific to the cluster 5 (Figure 7B-C; supplemental Table 7). We also
compared the genes upregulated in clusters 2 and 5 to identify
other genes potentially involved in the UPR (Figure 7D). As
reported in mice,26 the first activation of UPR, in prePB, is asso-
ciated with an overexpression of genes involved in mTORC1
signaling whereas the second activation was associated with a
downregulation of mTORC1 signaling genes and an over-
expression of genes involved in protein secretion (Figure 7E-F).
The heat map of the genes involved in the UPR showed a clear
distinction between the first activation occurring in early mature
prePB (cluster 2) and the second activation associated with protein
secretion in PB and PCs (Figure 7G). Early UPR activation was
associated to a strong expression of ASNS, SLC7A5, HSPA5,
PSAT1, XPOT, and EIF4EBP1, whereas the second activation was
characterized by a strong expression of TMBIM6, HERPUD1,
VIMP, and XBP1 in PCs. Interestingly, HSPA5 coding a member of
the heat shock protein (HSP) 70 family named binding immuno-
globulin protein (BiP) was only coexpressed with one of the 3
transmembrane endoplasmic reticulum stress sensors in cluster 2
(Figure 7H). Interestingly, in cluster 2 we observed an imbalance in
the ratio of reads corresponding to immunoglobulin light and
heavy chains (Figure 7I), with a higher number of reads corre-
sponding to IGH compared with immunoglobulin light chain gene
(IGL; supplemental Figure 7A-B) that could explain the release of
BiP, firstly described as an immunoglobulin heavy chain-binding
protein,27 from its luminal domain at this specific moment. In
cluster 2, only the Ire1 pathway was activated, known to splice
XBP-1 (sXBP-1) to produce a highly active TF.28 Moreover, the
ligase responsible for the ligation of sXBP1 was also coexpressed
in cluster 2 (supplemental Figure 8A) and pseudotime analysis
showed that HSPA5 was first expressed, followed by a strong
expression of XBP1 (Figure 7J; supplemental Figure 8B). We also
detected some sXBP1 reads confirming that the splicing of XBP-1
occurred after the first UPR activation in early mature prePB
(supplemental Figure 9). The expression of BiP in prePBs together
with the induction of XBP1 splicing was validated at the protein
level (supplemental Figure 3). To investigate the role of mTORC1-
mediated UPR activation in PCD, we used rapamycin, which is an
acute inhibitor of mTORC1. The drug was added from day 2 to
day 4 or from day 2 to day 7, to investigate the effect in prePB.
When used from day 2 to day 4, rapamycin treatment significantly
affected the proliferation after activation of MBCs (supplemental
Figure 10A). At days 4, 7, and 10, global cell counts were signif-
icantly decreased by 51%, 75%, and 56%, respectively
(supplemental Figure 10A). Rapamycin did not significantly affect
cell viability at days 4, 7, and 10 (supplemental Figure 10B). At the
Figure 6. Identification of new subpopulations of prePB and PB stages. (A) Seurat k-n
cluster for PB. (B) Violin plots representing the expression of top marker genes identified
expressed genes identified in the 5 clusters using pairwise comparisons (one cluster vs all
Keys genes coding TFs, EEs, ligands, and receptors were indicated and colored in gray,
High and low expression were represented in dark blue and in yellow, respectively. (F) G

scATAC- AND RNA-SEQ ANALYSIS OF PC DIFFERENTIATION
cellular level, the percentage of prePBs at day 4 was not affected
by rapamycin (supplemental Figure 10C). Conversely, at day 7, the
percentage of prePBs was significantly increased whereas the
percentage of PBs was significantly decreased under mTORC1
inhibition compared with control (supplemental Figure 10C). At
day 10, the percentage of mature PCs was significantly reduced
(supplemental Figure 10C). When used from day 2 to day 7,
rapamycin treatment induced the same effects, resulting in inhi-
bition of PCD (supplemental Figure 10A-B,D). The PI3K inhibitor
idelalisib was used as a control. PI3K inhibition significantly
affected proliferation without significantly affecting PCD
(supplemental Figure 10A-D).

The second UPR activation starting in cluster 5 is clearly asso-
ciated to immunoglobulin gene expression (Figure 7K). Alto-
gether, these data indicate that prePB already prime the UPR
through mTORC1 pathway activation for Knn-based clustering
to prepare for PC function. XBP1-driven UPR activation will then
be coordinated in PB to cope with the increase in antibody
synthesis.

To validate our results, we used the large human tonsil atlas data
set29 (supplemental Figure 11A). Among the 209 786 cells
constituting the human tonsil atlas data set, we selected the
germinal center B cells and PC in S and G2/M phases
(supplemental Figure 11B-D). We identified a subpopulation of
prePB characterized by low levels of MS4A1 and CD38 together
with high expression of BATF, BATF3, EZH2, MYB, BLM, AICDA,
NSD2, and PCNA (supplemental Figure 11E-G). These prePB
presented a significant enrichment in MYC target genes, E2F
target genes, mTORC1 signaling, oxidative phosphorylation,
glycolysis, inflammatory response (supplemental Figure 11I)
already identified in the PrePB of our in vitro PCD model
(Figure 6F). Taken together, these results demonstrate the iden-
tification of transitional prePB cells in the human tonsil as previ-
ously reported.6

Discussion
Herein, using scRNA-seq and scATAC-seq of an in vitro PCD
model, we provide direct evidence for epigenetic and transcrip-
tional transition during preplasmablastic stage associated with PC
genesis. Integration of chromatin accessibility and transcriptomic
data revealed a more mature population of preplasmablastic cells
characterized by open chromatin in PC genes without significant
expression. Among them, we identified MZB1, FAM46C and
XBP1. MZB1 is required for differentiation of PB and PC. MZB1
depletion resulted in deregulation of BLIMP1 target genes.
Furthermore, MZB1 is required for the trafficking and maintenance
of bone marrow PCs in mice.22 FAM46C plays a role in sustaining
ER biogenesis and secretory capacity in PC.20 XBP1 is essential to
support the UPR response and adaptation to immunoglobulin
secretion.16 Pseudotemporal analyses identified maturation tra-
jectories in prePB with early prePB characterized by down-
regulation of B-cell markers and B-cell TFs together with
upregulation of PC markers, adhesion molecules and growth
earest neighbors clustering identified 5 clusters, including 4 clusters for prePB and 1
using the pseudotime analysis for each cluster. (C) Number of positive differentially
other cells). (D) The heat map showed the top 50 genes upregulated in each cluster.
red, green, and blue, respectively. (E) Expression levels of TFs identified in panel D.
ene set enrichment analysis of the whole genes upregulated in each cluster.
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factor receptors. The transition from early prePB to more mature
prePB is associated with downregulation of AICDA and of PRC2
complex subunits. We previously reported that EZH2 is upregu-
lated in prePB to repress B-cell and PC transcriptional programs
and sustain a transient prePB immature proliferative state that
support their amplification.12 Furthermore, the observed cor-
egulation of AICDA and PRC2 complex genes support the
reported role of EZH2 in DNA damage response inhibition to
stimulate the survival of activated B cells during AID–mediated
somatic hypermutation of immunoglobulin genes.30 In mature
prePB, we could identify a significant heterogeneity with
sequential early activation of UPR followed by EGR1 and FOS
activation and PC homing control mediated by KLF2. The first
wave of the UPR activation is associated with the mTORC1
pathway.31,32 This mTORC1 mediated UPR activation was recently
reported in murine activated B cells driving PC priming26,33 before
XBP1 gene expression. Among the UPR genes commonly iden-
tified in murine activated B cells and human PrePB of our model,
XPOT, ASNS asparagine synthetase, SLC7A5 amino acid trans-
porter and PSAT1 metabolic enzyme were identified. SLC7A5 and
ASNS are involved in protein synthesis. HSPA5, HSP90B1 and
HSPA9, genes coding chaperones, and facilitator of disulfide
bond formation PDIA6 were also induced in prePB early UPR
wave. Concomitantly, activation of MCL1–mediated PC-survival
pathway was induced in these prePB with ETS1 and ATF5 over-
expression.17,23 This pathway is known to be activated in light-
zone GC B cells that differentiate into PCs.18 Transitional prePB
overexpress EGR1, FOS, CXCR4, and TFRC. C-FOS/AP-1 posi-
tively regulates BLIMP1 expression and terminal PCD19,34 and in
malignant PCs.35 TFRC coding CD71 is regulated by BLIMP1 in
PCD and is known to modulate mTORC1.22 In mice, EGR1
depletion in B cells inhibits PCD in vitro and in vivo.36 CXCR4
overexpression promotes PC migration and maintenance in the
bone marrow (BM).36 Mature prePB overexpress KLF2 that par-
ticipates in BM PC homing through the control of β7-integrin
expression together with ITGA4, driving PC motility through
VCAM-1 gradient37 and interaction with stromal cells.38 In human,
MBCs are known to induce PCs faster and with reduced input
signals compared with other B cells.39 Our results revealed that a
population of prePBs already undergone epigenetic remodeling
related to PC profile together with UPR activation and are
committed to differentiate in PC. We could confirm the presence
of transitional prePBs in a large human tonsil atlas data set.29 A
major challenge is to determine the functional contribution of
identified epigenetic and transcriptional changes involved in PC
generation. The human PCD models developed by several
groups6,8-11,18 and the data generated during their
characterization2,3,12,40,41 may be of particular importance for
future functional validation studies using CRISPR-Cas9–mediated
deletion.13,42

No significant association could be defined between gene
expression signature in the transitional prePB stages reported
Figure 7 (continued) (C) Venn diagram representing genes involved in UPR and upreg
Common genes were potentially involved in UPR. (E-F) Gene set enrichment analysis show
compared with C1-3-4 and C4, respectively. (G) Heat map displaying the expression of ge
prePB and PB, as well as quiescent MBC, PB, and PC. (H) Visualization of cells simultan
Yellow dots correspond to the coexpression of the 2 genes. (I) Boxplots representing the
XBP1 mRNA expression in function of pseudotime. (K) Violin plots of the main immunoglo
as quiescent MBC, PB, and PC.
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and malignant PC counterpart associated with multiple
myeloma cancer. Among the differentially expressed genes
identified in the 5 clusters of prePB and PB, high expression of
ETS1,43 NCL, SET, TFRC44 and ENO145 belonging to early and
transitional mature PrePB were associated with significantly
poor outcome in multiple myeloma (supplemental Figure 12A-
B). However, high expression of CD40,46 CD82,47 CD22, CALR,
SLAMF7,48 and CD2749 belonging to early prePB, early mature
prePB and PB were associated to good prognosis
(supplemental Figure 13A-B).

In sum, our results illustrate a complex and dynamic pattern of
epigenetic and transcriptomic modifications in early PC gene-
sis. These results and the supporting data generated provide a
resource for the identification of molecular circuits that are
crucial for early and mature PC biological function and survival.
These data thus provide critical insights into epigenetic- and
transcription–mediated reprogramming events that sustain
PCD.
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