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Highlights
Data-driven methods for computational mechanics: a fair compari-
son between neural networks based and model-free approaches

Martin Zlatić, Felipe Rocha, Laurent Stainier, Marko Čanađija

• an in-depth comparison of data-driven and neural network approaches

• new implementations of the most recent developments in both fields

• assessment for two relevant examples in finite strain setting

• synthetic databases and reference cases obtained from the two different
isotropic hyperelastic models
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Abstract

We present a comparison between two approaches to modelling hyperelastic
material behaviour using data. The first approach is a novel approach based on
Data-driven Computational Mechanics (DDCM) that completely bypasses the
definition of a material model by using only data from simulations or real-life
experiments to perform computations. The second is a neural network (NN)
based approach, where a neural network is used as a constitutive model. It is
trained on data to learn the underlying material behaviour and is implemented
in the same way as conventional models. The DDCM approach has been
extended to include strategies for recovering isotropic behaviour and local
smoothing of data. These have proven to be critical in certain cases and
increase accuracy in most cases. The NN approach contains certain elements
to enforce principles such as material symmetry, thermodynamic consistency,
and convexity. In order to provide a fair comparison between the approaches,
they use the same data and solve the same numerical problems with a selection
of problems highlighting the advantages and disadvantages of each approach.
Both the DDCM and the NNs have shown acceptable performance. The
DDCM performed better when applied to cases similar to those from which
the data is gathered from, albeit at the expense of generality, whereas NN
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models were more advantageous when applied to wider range of applications.

Keywords: (Model-free) Data-driven Computational Mechanics,
Neural-Networks, Hyperelasticity

1. Introduction

In recent years, data-driven techniques have become a popular tool in
computational mechanics. In terms of material behaviour, we can distinguish
two classes of approaches: i) replacing a constitutive model with a machine
learning surrogate model, such as a neural network model, and ii) completely
bypassing constitutive models. These strategies differ significantly from
each other, even though the goal is the same, namely to use the increasing
abundance of available data to overcome the known drawbacks of classical
constitutive modelling. In the context of finite elasticity, constitutive models
link some measure of strain to a measure of stress.

Concerning Machine learning surrogate constitutive models, these models
aim to replace classical models in which material behaviour is described by
several material constants obtained from experiments such as uniaxial or
biaxial tests. Instead, the experimental data is used to generate a substitute
model that is then used in place of the classical models. One possibility is
the use of neural networks, which is also explored in this paper.

Feedforward neural networks have been successfully used in various areas
of material modelling. Some examples are the development of surrogate
models for modelling biological tissue such as the liver [1] or the thoracic
aorta [2] in real time, replacing finite element analysis, enhancing multiscale
analysis [3], in multiphysics problems [4], in carbon nanotrusses [5] and many
more.

The application of classical NNs to ordinary hyperelastic behaviour [6]
or adiabatic behaviour [7] by predicting stress from strain shows the ability
of NNs to capture more complex behaviour using known basic architectures.
However, it has proven beneficial to incorporate certain constraints or mod-
elling strategies, resulting in more accurate models that require smaller data
sets. The simplest approach to increase accuracy is to use invariants of
deformation tensors as inputs, which significantly reduces the data needed to
train the NNs [7, 8]. More recently, input convex neural networks have been
presented in [9] and demonstrated on multi-label prediction, image completion
and reinforcement learning problems. This approach was adopted and used on
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hyperelastic problems by [10–12]. Furthermore, in [12], general guidelines are
presented for imposing physical constraints such as convexity and objectivity.
Another family of NNs, the so-called Constitutive Artificial Neural Networks
(CANNs), was proposed by [13] to integrate well-known methods for modelling
hyperelastic behaviour into neural networks and further developed in [14],
where new activation functions are proposed to replace classical functions
such as the hyperbolic tangent or the sigmoid function. Another model
based approach for automated discovery of interpretable constitutive models
called EUCLID (Efficient Unsupervised Constitutive Law Identification and
Discovery) has been developed originally for hyperelastic materials [15]. It
has been expanded to the framework of generalised standard materials [16]
where the underlying material behaviour is not a priori known. The difference
between EUCLID and the NN approach investigated in this work is that
EUCLID focuses on model discovery and identification from a large candidate
pool of existing models whereas NNs are used as material models. It is also
important to note that EUCLID does not learn from stress labels, but rather
minimizes the force residuals of a FE problem or experiment. In some of the
works NNs are trained on stress data [4, 5, 11, 12] which is also done in this
work. However, apart from training only on energy or on stress, NNs can be
trained on both at the same time as presented in [17].

On the other hand, a way to completely bypass constitutive models is the so-
called (model-free) data-driven computational mechanics (DDCM) paradigm
[18], that proposes a generalization at the level of the governing fields equation
formulation. The new problem is constrained to satisfy relevant conservation
principles (e.g. balance of linear momentum), which is independent of material
behaviour, while the interplay with "experimental" material data is ensured
in the minimization sense. Recent advances in DDCM has extended its
range of application to inelastic materials [19], noisy data [20], finite strains
[21], frequency domain data [22], etc. As for applications of DDCM on
material identification, the so-called Data-Driven Identification approach
(DDI) [23, 24] can learn stress data without postulating underlying constitutive
laws, following analogous premises as the aforementioned EUCLID approach.
Another related method is based on manifold learning [25] to approximate the
local behaviour of experimental data. Naturally, both classes of techniques
present different advantages and hindrances, therefore a skeptical and fair
comparison between these two different viewpoints is needed to clarify the
domain of applicability for each method.

This paper focuses on the comparison of the accuracy of the two approaches
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when applied to compressible hyperelastic materials, which is performed using
a neural network based approach (representing the class of surrogate models)
and the so-called Data-driven Computational Mechanics (representing the
model-free approaches). As far as the authors are aware, this is the first work
to pursue this goal. In particular, we analyse the performance of these two
methods in terms of accuracy on several benchmark problems, which are
compared with reference solutions obtained with different hyperelastic models
that have also been used to generate synthetic (noisy or not) material data.A
comparison of execution times was made between the DDCM approaches
and the NNs, but this should be treated with caution. A significant part of
generating the NNs is the training itself, which can take a long time, whereas
all DDCM approaches are ready to use as soon as the data is available.
However, the different execution times of the simulations can be significant if
the method is used to run multiple or large simulations. It is important to
note that the simulations were performed using the same finite element solver
(FEniCs-based implementations in Python) in order to make the comparison
as fair as possible, although we are aware of the inherent difficulty of this
task (different code optimisation, sophistication of auxiliary libraries, etc.).

2. Preliminaries

First, let us introduce the physical problem to be addressed. Consider a
domain Ω0 ⊂ Rd and the partition of its boundary ∂Ω0 = ∂Ω0

N ∪ ∂Ω0
D, such

that a traction vector t0 and a prescribed displacement u are known, defined
in the ∂ΩN

0 and ∂ΩD
0 , respectively. Also consider the body forces b0 acting

on Ω0. Under the quasi-static assumption, the balance of linear momentum
leads to

−DivF(u)S = b0 in Ω0, (1a)
F(u)Sn0 = t0 on ∂ΩN

0 , (1b)
u = u on ∂ΩD

0 . (1c)

where u, F = I + ∇u, S, and n0 stand for the displacement field, gradient of
deformation, the second Piola-Kirchhoff stress tensor, and the normal vectors
on the boundary ∂ΩN

0 , respectively. In addition, S is symmetric as result of
the angular momentum balance. Note that we have not carried explicitly
the dependence of S with respect to displacements u on purpose, whose
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reasons are made clearer in Section 4. It is also useful remarking that S is
the thermodynamic conjugate to Green-Lagrange tensor, given by

E = 1
2(FTF − I) = 1

2(∇u + ∇Tu + ∇uT∇u). (2)

As already commented, the point of intersection between the two different
methodologies is the use of experimental data. Let us assume we have at
disposal a finite dataset of Nd points as below

D =
{
(Êi, Ŝi) ∈ Rm×m

sym × Rm×m
sym for i = 1, . . . , Nd

}
, (3)

with m being the dimension of the space (m = 2,3). In the sequel, we revisit
the two alternative methodologies to clarify how each of them process D.

3. Neural Networks for modelling hyperelastic materials

In this section the neural network model is presented. The neural network
model is based on the recent works of [7, 14], where the basic premise is
to replace the strain-energy of a classical model with a neural network. In
this paper a new type of feed-forward shallow neural network is proposed
which utilises the advantages of mechanically inspired activation functions,
but retains the versatility of a neural network.

Here we employ automatic differentiation of the strain-energy represented
by the NN to define the stress and material tangent, such that thermodynamic
consistency is ensured. Furthermore, by employing the invariants of the
right Cauchy-Green deformation tensor (C = FTF) the NN model is frame
indifferent, as well as ensuring symmetry of the stress tensor and material
tangent. For the sake of simplicity, only isotropic behaviour is considered,
hence only the first three invariants of the right Cauchy-Green deformation
tensor are used, defined as usual:

I1 = tr(C), I2 = 1
2
[
tr(C)2 − tr(C2)

]
, I3 = det (C), (4)

and the strain-energy function becomes a neural network with the invariants
from Eq. (4) as inputs:

ψNN(C) = fNN(C) = f̃NN(I1, I2, I3). (5)
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The second Piola-Kirchhoff stress tensor can be obtained by deriving the
strain-energy w.r.t. the right Cauchy-Green deformation tensor, and by using
the chain rule w.r.t. the invariants:

S = 2∂ψ(I1, I2, I3)
∂C

= 2
[
∂ψ

∂I1

∂I1

∂C
+ ∂ψ

∂I2

∂I2

∂C
+ ∂ψ

∂I3

∂I3

∂C

]
=

= 2
[(

∂ψ

∂I1
+ I1

∂ψ

∂I2

)
I − ∂ψ

∂I2
C + I3

∂ψ

∂I3
C−1

]
.

(6)

Another restriction that should be fulfilled is that for an undeformed state,
i.e. C = I, the strain-energy is zero. To fulfil this condition, the specific
choice of activation function is introduced and the inputs to the network
should be slightly modified. This is discussed in the following section.

3.1. Architecture of the NN
As mentioned, a shallow feed-forward NN is employed. The NN is de-

veloped using the TensorFlow library. The architecture is shown in Fig. 1,
whose choice is motivated in the following. The feed-forward neural network
consists of an input, hidden and output layer where information is passed in
the forward direction to the neurons in the next layer and passes through
an activation function after each neuron in the hidden layer. In Fig. 1 the
weights between the neurons are w[l]

i,j where i references the neuron from the
previous layer and j the neuron in the next layer, and l the number of the
next layer. The number of neurons in the hidden layer can vary arbitrarily
but in this paper it was constrained to 10 neurons (nh = 10). This size of
the hidden layer has proven to give models whose accuracy does not oscillate
much from training to training. The changes in quality occur because the
weights between the neurons are randomly initialized each time a NN is
trained. The size of this NN is comparable to that of [12] where 1 hidden
layer containing 4 or 8 neurons was shown to be viable. The network does
not contain biases. When it comes to the choice of activation functions, in
[14] it is proposed to use functions commonly used in hyperelastic modelling.
The linear exponential unit was considered in this work:

h(x) = exp (αx) − 1, (7)

where α is a trainable parameter.
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Figure 1: Architecture of the neural network used for modelling compressible hyperelasticity.

Having chosen the activation function, we can construct ψNN such that the
condition normalization condition of the energy ψNN(I) = 0 can be fulfilled.
The NN output can be expressed as

ψNN =
nh∑
i=1

w
[2]
i,1hi. (8)

The activation function becomes equal to zero when its input is zero, i.e.
h(0) = 0. In an undeformed state the invariants have the following values
I1 = I2 = 3, I3 = 1 . Thus the inputs from Eq. (5) need to be redefined by
subtracting these values in the undeformed state obtaining the new form:

f̃NN(I1, I2, I3) = f̄NN(I1 − 3, I2 − 3, I3 − 1), (9)

and now for an undeformed state the condition ψNN(I1−3, I2−3, I3−1)|C=I = 0
is satisfied. Biases are omitted from the NN to guarantee by construction
that this condition is satisfied. Otherwise, the biases would always be present
in the activation function violating the normalization condition of the energy.
In the case that biases were present an additional normalization term would
need to be added in the energy function Eq. (9). The expression for the
activation now takes the form of

hj(I1 −3, I2 −3, I3 −1) = exp
[
αj[w[1]

1,j(I1 −3)+w[1]
2,j(I2 −3)+w[1]

3,j(I3 −1)]
]
−1.
(10)
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Also, by choosing the activation function in the form of Eq. (7) the
predicted strain-energy will always remain convex w.r.t. the input invariants,
see Appendix A. The possibility of having negative weights w[1]

i,j and αi does
not impact the convexity of the NN. By looking at the output ψNN in Eq. (8)
only the weights w[2]

i,j need to be non-negative to enforce convexity, since the
activation functions are a priori convex. In addition, enforcing convexity is
desirable because it implies more stable behaviour, which can be advantageous
when training the network on noisy data [26].

For the non-negativity of the strain energy, consider the output of the
j-th neuron in the hidden layer in Eq. (10) and the expression for the output
of the NN in Eq. (8). The output of the function hj will be positive when
the value of the exponent of the exponential function is positive. The values
of the weights w[1]

i,j and αi can be enforced to be non-negative, however the
values I1 − 3, I2 − 3 and I3 − 3 can not, as I1 and I2 can be take values lower
than 3 and I3 can take values lower than 1. This means that the activation
functions can not be ensured to be non-decreasing in general, meaning that
they could have negative values (with a limit up to -1). Non-negativity of
the strain-energy cannot be guaranteed when using the NN architecture with
the invariants I1, I2 and I3 described earlier since they can reach values
smaller than 3 (in the case of I1 and I2) or 1 (in the case of I3) and thus the
activation functions in the form of Eq. (7) can become decreasing functions,
regardless of the constraints imposed on the weights in the NN. In the case of
incompressibility, non-negativity could be restricted since the invariants I1 and
I2 have a minimum value of 3 and the restriction that the weights w[1]

i,j must
be non-negative guarantees that the activation functions are non-decreasing.
However, if the NN is trained on its derivatives, i.e. on stress, this would in
turn incorporate the non-negativity of energy into training, although not in
an exact way.

It should be noted that the condition of the vanishing of the stresses in the
state of zero strain, S(I) = 0, is not enforced by the architecture, nor is there a
normalisation term for the stress as in [12]. It is approximated during training,
similar to [11], i.e. if the NN is correctly learning the material behaviour it
should reduce the stress in the undeformed configuration. However, there will
always be a very small non-zero stress.

3.2. Loss functions and training details
The neural network that predicts strain-energy can be trained either

directly on strain-energy [7, 10] or on stress [11, 14]. To implement the two
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approaches, the following loss functions were used:

1. Lψ(Θ; I1, I2, I3) = 1
N

N∑
i=0

(ψNN,i(Θ; I1 − 3, I2 − 3, I3 − 1) − ψ̂i)2,

2. LS(Θ; I1, I2, I3,C) = 1
N

N∑
i=0

||SNN,i(Θ; I1 − 3, I2 − 3, I3 − 1) − Ŝi||2,

(11)

where Θ represents the set containing trainable network weights w[l]
i,j and the

parameters αi, and N is the number of samples. The values ˆ(•) represent
target data, while the values (•)NN represent data predicted by the neural
network. Lψ is used as the loss function when training NNs on energy, and
LS is used as the loss function when training the NNs on 2nd Piola-Kirchhoff
stress. In the second loss function SNN is obtained by using TensorFlow’s
autodifferentiation tool to obtain the derivatives of the strain-energy function
and passing these values to Eq. (6). During training the accompanying values
of C are also passed. In both cases Adam was used as the optimizer with the
default settings (learning rate equal to 0.001). The training was restricted to
a maximum of 200 000 epochs and an early-stopping was set to terminate the
training if after 5000 epochs the validation loss does not decrease. The data
was split in a 75/25 train /test ratio, so 75% of the data was used to train
the NNs, while 25% was reserved for validation. The results are presented in
Section 5.

Since during training the weights and parameters of the neural networks
are initialised randomly, this affects the training. A neural network was
trained 10 times on the same dataset and the one with the lowest validation
loss was taken as the best trained model for that dataset. This significantly
increases the training time required but helps in obtaining the best model.
The scaling of the data, which is indeed usually performed in machine learning
applications, was found to be unnecessary in this work. No convergence issues
were encountered during training.

4. (Model-free) Data-driven Computational Mechanics in Finite
Strains

As already commented, in the classical setting of solid mechanics, a
constitutive law is provided to close set of equations in Eq. (1). On the other
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hand, in the (model-free) data-driven computational mechanics setting, as
originally proposed by [18], only a finite sampling of strain-stress pairs is at
the disposal. Hence, an appropriate redefinition of the mechanical problem is
needed to allow the search for a solution. These ideas are briefly revisited
in the rest of this section, particularly following further extensions of the
method for the finite strain setting [27], and also its variational reformulation
[28], more suited for continuum problems.

First, let us define Z = Rm×m
sym × Rm×m

sym , the so-called phase-space com-
posed by strain-stress pairs, here composed by Green-Lagrange/Second Piola-
Kirchhoff stress tensor couples. Let Z be the set of all functions with
domain in Ω0 and image Z. In order to distinguish functions to point-wise
values, we adopt the following convention z = (E,S) ∈ Z, ẑ = (Ê, Ŝ) =
z(x) ∈ Z for some x ∈ Ω0. Distances in Z are measured by d(z, z∗) =√∫

Ω ∥z(x) − z∗(x)∥2
loc dΩ, such that ∥(Ê, Ŝ)∥loc =

√
CÊ · Ê + C−1Ŝ · Ŝ, where

the fourth-order tensor C is an algorithmic parameter that defines an energy-
like norm, balancing contributions of the strain and stress parts.

In practice, an appropriate finite-dimensional subspace of Z should be
considered, for example adopting a finite element discretization. Hence, a
given function z ∈ Z is unequivocally defined by a finite number of control
points [28], usually associated to integration points. Accordingly, the DDCM
distance can also be interpretable discretely as a weighted sum of local
metrics, where weights are associated to the Gauss quadrature weights and
finite element volumes. Finally, the Data-driven problem reads as

min
z′∈ZE

min
z∗∈ZD

d(z′, z∗), (12)

where ZE =
{
z ∈ Z; (1) and (2) hold

}
is the so-called equilibrium mani-

fold, and ZD = {z ∈ Z; z(x) ∈ D; ∀x control point in Ω0} is the so-called
Data-function space [28]. Note that mechanical equilibrium and kinematical
compatibility are respected for every function in ZE, while ZD translates the
dataset D into discretized functions in Z.

The standard algorithm used to deal with the double minimisation problem
encompasses the fixed-point iteration with the alternated resolution of two
subproblems until reaching a certain convergence tolerance. First, given
a z∗ ∈ ZD, we seek for the projection onto ZE. Second, given z ∈ ZE,
we seek for closest point ZD. The latter sub-problem boils to a nearest
neighbour search for each integration point. The former sub-problem is a

10



continuous constrained minimisation problem, which is then rephrased in
an unconstrained format by the incorporation of displacement-like field of
Lagrange Multipliers. For convenience, the interested reader can find further
details of this procedure in Appendix B or in more detailed specialized
literature [28, 29].

It is worth mentioning our implementation has been built upon ddfenics
[30], an opensource library based on FEniCS for DDCM. Therefore, the varia-
tional formulations notation adopted in Appendix B, as opposed to the more
wide-spread matrix notation in the same spirit of the seminal DDCM work
[18], allows for a straightforward translation towards FEniCS implementation.
Currently, ddfenics interfaces tree-based nearest neighbours algorithms (e.g.
KDtree, BallTree) of scikit-learn [31]. There are also more advanced data
structures to further improve nearest neighbours searches specially coined
for DDCM [32], and also more general-purposes high-performance libraries
notably FLANN [33] for fast approximative nearest neighbours searches, and
kNN-CUDA [34] for GPU-accelerated searches. Although, these implementa-
tions can further improve DDCM performance in some situations, they are
not currently supported in ddfenics.

Here below, we comment on some slight changes to the original algorithm
we consider in manuscript for the sake of comparison, namely: i) accounting
for isotropic data and ii) local smoothing of data through a locally convex
embedding [35]. Results obtained with the standard strategy will be denoted
DD, while DDiso, DDLC, and DDLCiso stand for modification i), ii), and their
combination, respectively. Finally, it is worth mentioning that in the nonlinear
setting, there are two nested convergence loops, an outer one associated with
the alternate minimisation procedure and an inner one associate with the
Newton-Raphson method (see Appendix B).

In this work, the convergence of the outer loop is assessed by the ratio
between the data-driven distance (computed between the mechanical and
material state) and the same distance definition evaluated for the mechanical
states with respect to the null state. Note that such criteria renders compara-
ble errors among different problems and mesh sizes such that a tolerance of
10−8 was used, with maximum number of iterations of 50 for all simulations.
The metric C itself is not a hyper-parameter, but it is estimated from the
database by taking a low-rank approximation from the SVD decomposition
[36]. In contrast to the NN models, the DDCM approaches do not need
to be trained (apart from creating the tree structure for the nearest neigh-
bour search), so there is no variance from run to run and they can be used
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immediately.

4.1. Taking into account isotropy
As the NN model is invariant-based, it natively takes into account informa-

tion about the isotropy. For a fairer comparison, the standard DDCM (which
is agnostic to special underlying hyperelastic model structure) have to be ex-
tended to take into account isotropy. The exact way of imposing such structure
is considering dataset extended by orbits D̃ = {(QT ÊQ,QT ŜQ); ∀(Ê, Ŝ) ∈
D; ∀Q ∈ Orth}. In this work, we perform that approximately by incorporat-
ing discretization of such orbits, the entire Orth being replaced by a certain
finite number of rotations as adopted in [21] for the ease of implementa-
tion. Here we consider two-dimensional problems with rotations parametrized
with No equally spaced angles. In 2D, it is easy to see that the rotations
are parametrized by just one angle in a half-plane. Therefore, we consider
No = 100 equally spaced samples in [−π/2, π/2] for all simulations in this
paper.

It is worth noticing that the strategy described above does not strongly
enforce isotropy in DDCM. Therefore, small deviations to the isotropy are
expected for the mechanical states, while the material states are always
isotropic since the database only contains isotropic data. As a natural
consequence of the spectral representation of isotropic strain energy (in terms
of eigenvalues of C), the second Piola-Kirchhoff stress tensor S should be
expressed as a linear combination of dyadic products of eigenvectors of C
(see e.g [37]). In other words, C and S should respect collinearity. Therefore,
one could not simply straightforwardly use a metric in based exclusively
on invariants (or eigenvalues) as it completely disregards deviations on the
collinearity. Moreover, the use of Euclidean metric for the phase-space
(weighted by constant positive-definite metric tensor) has the advantage of
allowing the use of efficient algorithms for nearest neighbours search and
gives rise to linear systems with constant left-hand side, which the same
factorization can be reused for all iterations.

4.2. Taking into account noisy and lacking data
As any surrogate model, NN tends to smooth out the noise present on the

data (if not overfitted) and interpolate/extrapolate in zones of lacking. In the
standard DDCM the nearest neighbour search prevents interpolation/extrapo-
lation. While this can be desirable property, it turns out to be a hindrance for
zones of small density or large noise in the data. The so-called locally convex

12



embedding [35] proposes instead the following modification for Data-functions
set:

ẑ∗ =
∑

w∗
i ẑi, (13)

w∗
i (z) = arg minw∥z −

∑
i∈Nk(z)

wiẑi∥2
M , (14)

subject to :
∑

i∈Nk(z)
wi = 1, wi ≥ 0,∀i ∈ Nk(z), (15)

with Nk(z) being the set of k nearest neighbours indexes. Here we consider
k = 20 for all simulations where this method is used. The equality constraint
is relaxed and regularised with the recommended penalty terms as in [35], and
the non-negativity of weights is ensured by the use of the Scipy’s non-negative
leasts-squares function scipy.optimize.nnls.

5. Numerical examples

5.1. Construction of reference solution and datasets
To test the solution of this problem with a data-driven solver utilizing

FEniCs, we use the Ciarlet and Hartman-Neff compressible hyperelastic
models on the Cook membrane as presented in [38]. The problem is restricted
to plane strain. Constitutive models used to generate the datasets are:

ΨCiarlet = µ

2 (I1(C) − 3) + λ

4 (J2 − 1) − (λ2 + µ) log J, (16)

ΨHN = a(Ī1(C)3 − 27) + c10(Ī1(C) − 3) + c01(Ī3/2
2 − 3

√
3)︸ ︷︷ ︸

:=W (Ī1,Ī2)

+ k

50(J5 + J−5 − 2)︸ ︷︷ ︸
:=U(J)

(17)
with µ = 185.185 MPa, λ = 432.099 MPa, a = 3.67 · 10−3MPa, c10 =
0.1788 MPa, c01 = 0.1958 MPa, k = 80 MPa, Ī1 = tr(C̄), Ī2 = tr(cof C̄), J =
det (C)1/2 and C̄ = J−1/3C.

For the sake of completeness, the expressions for the second Piola-Kirchhoff
tensor are provided below

SCiarlet = 2∂ΨCiarlet

∂C
= λ

2 (J2 − 1)C−1 + µ(I − C−1), (18)

SHN = JU
′(J)C−1 + 2J−2/3

(
(W,1 +W,2Ī1)I −W,2C̄ − 1

3(W,1Ī1 + 2W,2Ī2)C̄
)
,

(19)
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44
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Figure 2: Geometry, boundary and loading conditions of the Cook membrane. The mesh
with an overlay of the source and changed mesh is shown as well. Source mesh is solid blue,
changed mesh is solid white.

with W,1 and W,2 as the partial derivatives of W (Ī1, Ī2) with respect to Ī1 and
Ī2. To gather the data necessary for the data-driven calculation a simulation
with 4 iterations is done from which the strain and stress data are taken from
the centre points of the elements as a source dataset. This dataset was used
both for the data-driven simulations and for training the neural networks. In
the case of neural networks trained on strain-energy, the strain-energy was
calculated using (16) and (17). Afterwards the mesh is changed so that it no
longer corresponds to the source mesh. The source mesh is shown in Fig. 2
with solid blue lines whilst the changed mesh is represented by solid white
lines.

The source dataset consisting of 3944 samples is further randomly split into
smaller datasets of 100, 500, 1000 and 2000 samples to compare the accuracy
of the various DD techniques and the NN on varying availability of data.
Afterwards, multiplicative noise is added to each dataset to further explore
the sensitivity of the DD and NN approaches. The datasets were generated
once before training the NN models or performing the DD calculation and
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were not resampled from run to run. In all the simulations, pure displacement
linear Lagrange triangle elements were used.

5.2. Cook Membrane with Ciarlet law
In this section the DD and NN results are presented. The geometry,

boundary conditions and position of the load are shown in Fig. 2. The mesh
used for comparing the DDCM and NN approaches in this section and in
Section 5.3 consists of 888 elements. The traction t on the right edge is
prescribed to be 20 N/mm. The results are shown for the 5 different datasets
with increasing noise levels. The errors presented in Figs. 3-7 are the relative
L2 norm of the displacements, strain or stress with respect to the reference
FE solution:

error(•) = ∥(•) − (•)ref∥2

∥(•)ref∥2
, (20)

and are averaged across the entire domain. The data-driven errors are
presented first, followed by the errors for the energy and stress trained
neural network models. When presenting the errors for the NN models,
figures showing the average error of all the models trained for a case are
shown together with the standard deviation in parentheses. In Fig. 7, the
comparison of the relative L2 errors of the two approaches is given. Due
to the large number of results available for comparison, many are placed in
Appendix C for a clearer preview of the results.
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source

(a) Standard search, original database.

source

(b) Locally convex search, original database.

source

(c) Standard search, enriched database with discre-
tised orbits.

source

(d) Locally convex, enriched database with discretised
orbits.

Figure 3: Relative L2 norm of displacements for Cook membrane with Ciarlet law for
DDCM procedures. The labels on top represent the size of the dataset used in a simulation.
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source

(a) Standard search, original database.

source

(b) Locally convex search, original database.

source

(c) Standard search, enriched database with discre-
tised orbits.

source

(d) Locally convex, enriched database with discretised
orbits.

Figure 4: Relative L2 norm of stress for Cook membrane with Ciarlet law for DDCM
procedures.
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source

(a) Displacement errors of the best energy trained
model .

source

(               ) (               )

(               ) (               )

(               ) (               ) (               )

(               )(               )

(               ) (               )(               )(               )

(               )(               ) (               ) (               ) (               )

(              )

(               )

(b) Average displacement errors of energy trained
models.

Figure 5: Relative L2 norm of displacements for neural networks trained on energy, results
for Cook membrane with Ciarlet law. The results shown for the average displacement
errors are averaged for all training runs of the neural networks. Standard deviations of the
averaged errors are shown in parentheses.
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source

(a) Displacement errors of the best stress trained
model.

source

(               ) (               ) (               ) (               )(               )

(               ) (               )(               )

(               )

(               )

(               ) (               ) (               ) (               )

(               )(               )

(               ) (               ) (               ) (               )

(b) Average displacement errors of stress trained mod-
els.

Figure 6: Relative L2 norm of displacement for neural networks trained on stress, results
for Cook membrane with Ciarlet law. The results shown for the average stress errors are
averaged for all training runs of neural networks. Standard deviations of the averaged
errors are shown in parentheses.
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Of the four data-driven approaches compared, the approaches with locally
convex search produce the best results, see Fig. 3. When comparing the
DDLC and DDLCiso approaches, DDLCiso performance is worse on noisy
data. It is also clear to see that although both the neural networks trained
with energy and the neural networks trained with stress perform well on
the given example, the errors of the NNs trained with stress are lower, for
comparison see Figs. 5a and 6a. This can be attributed to the fact that when
training on stress, the NN is trained on its derivatives resulting in an overall
smoother model. In addition, if the performance of the best trained model
is compared to the average error of all trained models for a certain case, see
Figs. 5 and 6, the difference between the best model and average of all models
is much lower when NNs are trained on stress. Therefore, the results of the
NNs trained with stress and the DDLC approach is used to compare the NN
and model-free approaches. The errors of the DDLC approach and the best
stress trained NN results are subtracted, (•)DD − (•)NN , so that negative
values represent the DD approach is better in the given case whereas positive
values represent that the NN approach is better. Additionally, in order to
compare the relative performance of the DD and NN approaches, the relative
error of the NN model w.r.t. the DDLC model was also calculated by dividing
the former error difference with the DD error ((•)DD − (•)NN) /(•)DD. With
this metric the methods can be compared more directly. In this way both
the actual error of the approaches can be seen in addition to their relative
performance. In Fig. 7a the DDLC approach was better in most of the non
noisy examples, however the NN models outperformed it in all other cases.
It should be noted that when the smallest dataset of 100 samples is used
the NN approach outperformed the DDCM approach with no noise included,
demonstrating better performance on a small dataset.
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source

(a) Absolute error difference, displacements.

Relative error

(b) Relative error difference, displacements.

Figure 7: Absolute error difference of the DDLC and NN approach on Cook’s membrane
with Ciarlet law is shown in the left figure, while the relative difference is shown in the
right figure.
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0.00 0.000796 0.00159 0.00239 0.00318
Relative displacement error

(a) DDLCiso relative displacement error, largest error
is 0.00078%.

(b) Stress trained NN relative displacement error,
largest error is 0.32%.

2.18e-07 0.00937 0.0187 0.0281 0.0375
Relative strain error

(c) DDLCiso relative strain errors contour plot, largest
error is 0.053%.

(d) Stress trained NN relative strain errors contour
plot, largest error is 3.75%.22



4.17e-08 0.00827 0.0165 0.0248 0.0331
Relative stress error

(e) DDLCiso relative stress errors contour plot, largest
error is 0.056%.

(f) Stress trained NN relative stress errors contour
plot, largest error is 3.31%.

Figure 8: Contour plots of the displacement, strain and stress errors of the DDLCiso and
stress trained NN solutions on the source mesh from which the data was sampled. The
results were obtained useing the full source dataset without noise.
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In Fig. 8 the relative displacement, strain and stress error plots over the
undeformed mesh of the original Cook membrane from which the source
dataset was sampled are shown. In Figs. 8a & 8b, the relative errors are
obtained by dividing with the maximum displacement of the top-right corner.
The DDCM errors are lower than the NN errors which is to be expected since
the problem solved is exactly the same one from which the data is gathered.
The results on the source mesh are shown in order to compare the methods
when solving the same problem, but using a modified FE mesh from which
the source dataset was not gathered.

In Fig. 9 the relative displacement, strain and stress error plots over the
undeformed mesh of the Cook membrane are shown using a modified mesh.
The results for the NN model are smoother than for the DDLCiso solution.
The error values are similar in both solutions, with the DDCM approach
giving slightly better results. In Figs. 9a & 9b, the relative errors are obtained
in the same manner as in Figs. 8a & 8b.

When comparing the results of the unmodified, Fig. 8, and the modified,
Fig. 9, the main differences between the purely data-driven and the NN
model approach become clear. The problem is basically the same, only the
FE discretisation is different, and when observing the NN solutions in both
figures, it can be seen that the maximum errors are almost identical. However,
the DDLCiso solution has almost perfect solutions when it solves the mesh
on which the dataset was gathered, which is to be expected since it contains
the exact solutions of the problem present in the dataset.

When obtaining the solutions for Figs. 8 and 9the source dataset without
noise was used. The presented results are in line with those shown in Fig. 7
where in that case the DDCM solution outperformed the NN one.

The displacement of the top-right corner is shown in Fig. 10, where both
the DDCM and NN solutions are nearly identical to the reference solution with
errors of 0.01% and 0.27% for the DDLCiso and NN solutions respectively.
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0.00 0.000796 0.00159 0.00239 0.00318
Relative displacement error

(a) DDLCiso relative displacement error, largest error
is 0.019%.

(b) Stress trained NN relative displacement error,
largest error is 0.32%.

2.18e-05 0.00931 0.0186 0.0279 0.0372

Relative strain error

(c) DDLCiso relative strain errors contour plot, largest
error is 0.17%.

(d) Stress trained NN relative strain errors contour
plot, largest error is 3.72%.25



2.83e-05 0.00834 0.0167 0.0250 0.0333
Relative stress error

(e) DDLCiso relative stress errors contour plot, largest
error is 2.81%.

(f) Stress trained NN relative stress errors contour
plot, largest error is 3.33%.

Figure 9: Contour plots of the displacement, strain and stress errors of the DDLCiso and
stress trained NN solutions. The results are obtained by using the source dataset without
noise on a modified mesh.
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Figure 10: Total displacement of the top-right corner of Cook’s membrane. The results are
obtained by using the source dataset without noise and a modified mesh.
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Finally, the online performance of the different approaches can be compared
in Table 1. Results are shown for the NNs trained on energy and on stress as
well as the results for the DDLC and DDLCiso approaches. Reported values
are relative to the original FE simulation, i.e. execution time ratios greater
than 1 mean that the calculation is slower than the original one. When
comparing the results, it must be taken into account that the training of a
single NN took about 2 hours. Thus, if 10 NNs were trained per case, it took
20 hours to obtain the best NN for a single case. Therefore, as offline time are
several orders of magnitude higher, total time comparison are pointless. On
the other hand, the DDCM approaches are ready to use without the need for
training (the only preparation is the creation of the nearest neighbour search
trees, which is considered an online cost here for the sake of simplicity and is
negligible). In this respect, the DDCM approaches are much faster to deploy.
However, if many calculations are required, e.g. in an optimisation, then
NNs may be the better choice. Also, NNs are a model, and as can be seen in
the table, the execution times between the different cases are quite similar
and can be said to be almost identical. Indeed, most the additional running
time can be attributed the non-optimised management of stress and tangent
tensor data at integration points. Our implementation for incorporation
NN-based constitutive laws alongside FEniCS is analogous to the performed
for FE2 simulations as in micmacsfenics [39]. A potentially more optimised
implementation can be built upon the native abstraction ExternalOperator
[40, 41], recently introduced in FEniCSx. For the DDCM approaches and
especially for DDLCiso, in addition to aforementioned data management
issues, the execution times increase when the data is noisy and larger as
more iterations are needed for DDCM convergence and nearest neighbours
searches becomes costlier. As already commented, the latter cost can be
further decreased using more efficient nearest neighbours algorithms.
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Energy trained NNs Stress trained NNs
noise N100 source N100 source
0% 4.198 4.054 4.085 4.085
1% 5.045 4.058 4.166 4.094
5% 4.702 4.032 4.012 4.157
10% 3.916 4.06 4.155 4.162

DDLC DDLCiso
0% 9.868 10.52 40.94 164.2
1% 10.57 15.7 30.92 189.1
5% 11.16 13.59 33.41 168.7
10% 10.44 11.22 29.61 171.5

Table 1: Online computational performance comparison for smallest dataset with 100
samples and full source dataset used in terms of execution time ratios (DDCM or NN
relative the original FE solution with prescribed material model). These values show how
many times slower the NN or DDCM solution is in comparison to the original FE solution.

5.3. Cook Membrane with Hartmann-Neff law
To further test the applicability of the DD and NN approaches, the Cook

membrane problem is again solved using the hyperelastic Hartmann-Neff
law. It should be noted that the dataset from Section 5.2 is also used here,
retaining the same strain values but recalculating the stresses to match
the Hartmann-Neff law. Therefore, the database in this example does not
necessarily contain stress values that are close to the original FE solution,
as is the case in Sec. 5.2. In this way, the sensitivity of the DD and the NN
approach to non-ideal data-sets is tested, in addition to addressing a material
with I2-dependency. The results are presented in the same manner as in the
previous section.
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source

(a) Standard search, original database.

source

(b) Locally convex search, original database.

source

(c) Standard search, enriched database with discre-
tised orbits.

source

(d) Locally convex, enriched database with discretised
orbits.

Figure 11: Relative L2 norm of displacements for Cook membrane with Hartmann-Neff
law.
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source

(a) Standard search, original database.

source

(b) Locally convex search, original database.

source

(c) Standard search, enriched database with discre-
tised orbits.

source

(d) Locally convex, enriched database with discretised
orbits.

Figure 12: Relative L2 norm of stress for Cook membrane with Hartmann-Neff law.
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(a) Displacement errors of best stress trained models.

source

2.755e-03

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(b) Average displacement errors of stress models.

Figure 13: Relative L2 norm of displacement for neural networks trained on stress, results
for Cook membrane with Hartmann-Neff law. The averaged results shown are for all
training runs of neural networks. Standard deviations of the averaged errors are shown in
parentheses.

32



Overall, the DD approaches have larger errors. The displacement errors
are comparable to those in Sec. 5.2. However, the stress error is 4 orders of
magnitude higher as seen in Fig. 12d than in Fig. 4d, where the Ciarlet model
with a database that is taken from the original FE solution is used.

The comparison between the DD and NN approach when applied to Cook’s
membrane with Hartmann-Neffs law is given in the error plots on Fig. 14. The
error differences are calculated as before by subtracting (•)DD−(•)NN , and the
relative performance of the NN models to DDLC as ((•)DD − (•)NN) /(•)DD.

source

(a) Absolute error difference, displacements.

- Relative error

(b) Relative error difference, displacements.

source

(c) Absolute error difference, strain.

- Relative error

(d) Relative error difference, strain.
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source

(e) Absolute error difference, stress.

- Relative error

(f) Relative error difference, stress.

Figure 14: Relative L2 norm error difference between DDLC and NN approaches for
Cook’s membrane with Hartmann-Neff law. Figures in the left column show the absolute
differences between the errors, whereas those in the right column show the respective
relative errors.

Again, using the Hartmann-Neff law, the same behaviour can be observed
where the NNs outperform the DD variants when noise is included, for
comparison see Fig. 14a. In addition, the errors for strain and stress are much
lower when using a NN model, see Figs. 14c & 14e. These results suggest that
NNs can be used in a more general setting than DDCM, as they can model
the behaviour of one example and apply it to others without loss of generality.
Looking at the error differences in Fig. 14a, the NN outperformed the DDCM
approach for the smaller, non noisy datasets of 100 and 500 samples, similar
to Fig. 7a, where it performed better on the smallest dataset of 100 samples.
From these comparisons, it can be concluded that the NN approach is more
promising for smaller data sets.

5.4. Punch problem
The punch problem was used as a benchmark in [7, 38]. In this paper, the

2D problem with the Ciarlet law is considered. The motivation of using this
example is to compare the viability of both the DDCM and NN approaches
on different geometries and loading conditions. The geometry and boundary
conditions are given in Fig. 15 and the mesh is refined towards the top-left
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corner as shown. The mesh consists of 3108 linear Lagrange triangle elements.
The material parameters are given in Section 5.2, while the load q is assumed
to be 100 N/mm. The NNs trained in Section 5.2 are used to solve the
problem.

Given that the stress trained NNs have outperformed the energy trained
ones, only the results of the former will be presented.

1000

10
00

2000

q

Figure 15: Geometry, mesh, boundary conditions and load of the punch problem.

The top-left corner displacement can be seen in Fig. 16. The advantage
of the isotropy-enhanced DDLCiso over the standard DDLC approach is also
evident in Fig. 16. The DDLCiso and NN approaches converge quite well,
while the DDLC approach diverges from the beginning. The errors for the
DDLCiso and NN solutions are 3.14% and 1.61% respectively.

Fig. 17 shows the relative errors for the displacement, strain and stress on
the deformed mesh of the punch problem for DDLCiso and the stress trained
NN. Note that for the relative displacement errors in Figs 17a & 17b the
absolute errors are divided with the maximum value of displacement, while
the strain and stress relative errors are obtained by dividing with the base
solution, as in Section 5.2. The errors are comparable, but the extremes
appear at different locations. When comparing the stresses, for the DDLCiso
solution the highest strain error occurs near the lower edge, whereas the
highest stress error occurs at the endpoint of the load q. This is different
from the NN, where the highest strain and stress errors appear close together
(neighbouring elements) near the endpoint of the load.
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Looking at the highest relative errors of the NN, in Fig. 17d the highest
strain error of 20.1% occurs in the element where the lowest strain component
is 2.5 · 10−3, and in Fig. 17f the highest error of 10.9% occurs in the element
where the lowest stress component is 0.09 MPa. Looking at Fig. 17c the
highest strain error of 23.5% occurs in the element where the lowest strain
component is 2.5 · 10−3 which is very similar to the NN, however the highest
stress error in Fig. 17e occurs in the element where the lowest stress component
is 14.19 MPa which is different to previous errors.

The NN solution is smoother, whereas the DDCM solution has disconti-
nuities within the domain similar to what was noticed in Fig. 9.
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Figure 16: Top-left displacement versus applied load comparison. A close up view of the
curves is shown for a clearer comparison.
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0.00 0.00794 0.0159 0.0238 0.0318
Relative displacement error

(a) Relative displacement error for DDLCiso, largest
error is 3.18%.

(b) Relative displacement error for stress trained NN,
largest error is 1.91%.

0.000742 0.0592 0.118 0.176 0.235
Relative strain error

(c) Relative strain error for DDLCiso, largest error is
23.5%.

(d) Relative strain error for stress trained NN, largest
error is 20.1%.

0.00118 0.0704 0.140 0.209 0.278
Relative stress error

(e) Relative error stress for DDLCiso, largest error is
27.8%.

(f) Relative stress error for stress trained NN, largest
error is 10.9%.

Figure 17: Relative stress errors for the DDLCiso and stress trained NN for the punch
problem using the Ciarlet material model.
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6. Conclusion

In this paper, two different approaches to modelling mechanical behaviour
based on data were studied. The neural network based model approach has
been developed to incorporate several physics based restrictions and two
approaches to training have been presented, either directly on the strain-
energy or on the stresses using the same data as the DDCM approach. The
incorporated physics based restrictions include thermodynamic consistency,
convexity, objectivity, as well as normalization of the strain-energy, and is in
accordance to the proposition given by [12]. In addition, it is advantageous
to train the NNs on stresses, i.e. their derivatives, instead of directly on
the energy. The model-free data-driven computational mechanics approach
has been adapted to hyperelastic behaviour and several variations have been
presented.

We have implemented the DD approach for finite strains using the conju-
gate Lagrangian pairs (E,S), i.e. the Green-Lagrange strain and the second
Piola-Kirchhoff stress, as proposed by [27]. To avoid a lack of information in
coarse database scenarios, we used a local regularisation technique based on
a linear local approximation hyperplane using the k-nearest neighbours.

We can highlight different advantages for each of the approaches in terms
of accuracy. The DDCM method has shown superior performance when
the underlying dataset is free of noise and sufficiently covers the needed
ranges required for a given problem. On the other hand, the neural network
models have shown better performance on noisy data and when the training
data does not necessarily cover the exact range required for the application.
Furthermore, the NN models have shown to outperform the DDCM solutions
when smaller amounts of data are available. Even though one family of
methods may outperform the other according to the trends mentioned above,
the errors obtained are still comparable in most situations. An important
difference in the methods becomes clear when comparing Figs. 9 and 17.
In Fig. 9 the problem is almost exactly the same as the one from which
the dataset was taken, whereas in Fig. 17 the problem is different. Not all
the states of deformation occurring in the punch problem have been seen
in the source dataset and the base DD and DDLC approaches cannot be
applied. Only the computationally much more demanding DDLCiso approach
provided a solution that contains discontinuities in the strain and stress fields.
The NN approach, on the other hand, does not need to be adapted in any
way. The choice of approach depends on whether the underlying database is
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sufficiently large and dense enough to cover the various states of deformation
that can occur for a given problem. If it is large and dense enough with
precise data then DDCM can be applied as it had higher accuracy in such a
case in Section 5.2. Otherwise, in the case of few data or possible noise in the
data, the NN approach would be preferable since it naturally extrapolates
the solution on regions with fewer data and filters out noise. It is worth
mentioning that there are further, although more intrusive, alternatives to
extend DDCM to tackle similar difficulties in addition to the Locally Convex
Embedding [35] already considered in this work, e.g., the so-called max-ent
DDCM based on the principle of maximum-entropy regularisation [20], and
also distance-preserving nonlinear manifold denoising approach [42] through
the incorporation of a low-dimensional geometric autoenconder to fill scarce
data regions, just to name a few alternatives.

In terms of computational cost, DDCM is better than NN for one-shot
simulations as no training phase is required. Once the NN model is trained, its
deployment adds up negligible computational cost compared to the evaluation
of a simple constitutive model. Therefore, the NN approach can become
favourable compared to DDCM for problems with multiple queries. It is also
worth mentioning that while very dense databases can have an impact on
the computational cost, this impact can be largely reduced by adopting data
structures such as tree-based search with reasonable computational complexity.
DDCM computational costs increase as the database becomes denser due
to nearest neighbour search. That being said, the isotropic enrichment for
DDCM by enriching the data set with rotated strain-stress couples increases
the accuracy, but also reduces computational efficiency. The NN approach
does not require such enrichment as it is based on invariants.

In summary, both the DDCM and NN approaches have proven to be
viable choices. The addition of isotropy to the DDCM methods has proved
invaluable for extending to examples when using data that does not come
from an example itself, see Fig. 16. The errors for the DDLCiso approach and
stress trained NNs are comparable and the choice between DDCM and NNs
would largely depend on the quality of data in the dataset and the quantity
of data. With less data of lower quality, NNs seem to be the better choice,
but as seen in the Cook membrane problem, where the data set was sampled
from a very similar case, DDCM gives more accurate results.
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Appendix A. Convexity of the activation function

To ensure the convexity of the activation function the Hessian must be
positive semi-definite. In this proof the activation of the topmost neuron in
the hidden layer is considered. The Hessian of the activation function h with
respect to the invariants I1, I2, and I3 is as follows:

H =


∂2h
∂I12

∂2h
∂I1∂I2

∂2h
∂I1∂I3

∂2h
∂I2∂I1

∂2h
∂I22

∂2h
∂I2∂I3

∂2h
∂I3∂I1

∂2h
∂I3∂I2

∂2h
∂I32

 , (A.1)

where the partial derivatives of the activation function from Eq. (10) w.r.t.
the invariants are defined as follows:

∂2hi
∂Ik∂Il

= w
[1]
k,iw

[1]
l,i α

2
i exp

[
α[w[1]

1,i(I1 − 3) + w
[1]
2,i(I2 − 3) + w

[1]
3,i(I3 − 1)]

]
︸ ︷︷ ︸

:=A

,

(A.2)
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where k, l = 1, 2, 3, and i = 1, ..., nh. Note that the Hessian is symmetric.
The positive semi-definitiveness requires:

xTHx = A (x1w
[1]
1,i + x2w

[1]
2,i + x3w

[1]
3,i)2︸ ︷︷ ︸

:=B

≥ 0, ∀x ∈ R3. (A.3)

The inequality holds since A in A.2 and B in A.3 are always non-negative.
Since each activation function is convex, it holds that the neural network as
a whole is convex.

Appendix B. DDCM equilibrium projection subproblem

Given z∗ ∈ ZD, let us find z = arg minz′∈ZE
d(z′, z∗). First, we should

recall that the kinematical admissibility is obtained by deriving E from a
regular displacement field u through Eq. (2), eventually satisfying some
Dirichlet boundary condition. Such space of admissible displacements is
denoted U . As commented, in order to relax the linear momentum balance
constraint, we introduce a displacement-like Lagrange Multiplier η living in
V , which is analogous to U but with homogeneous Dirichlet conditions. The
space of symmetric second-order tensor fields is denoted S. The constrained
problem is then reformulated in a unconstrained fashion as follows

(u,S,η) = arg min
u′∈U

min
S′∈S

max
η′∈V

L(u′,S′,η′), (B.1)

with the Lagrangian functional

L(u,S,η) = d2 ((E(u),S), (E∗,S∗)−
∫

Ω0
F(u)S : ∇η +

∫
Ω0

b0 ·η +
∫
∂ΩN

0

t̄0 ·η,

(B.2)
where for the sake of simplicity, we consider the case where b0 and t̄0 do not
depend on the displacements. By the stationary condition along the direction
δS we obtain S = S∗ + CδE(u,η). Replacing the former expression into the
Lagrangian, we obtain L̃(u,η) = L(u,S(u,η),η). In terms of minimization,
the extremality condition leads to the following nonlinear residuals expressions

Ru(u,η; δu) = (C(E(u) − Ê),FT∇δu) − (CFT∇η,∇T δu∇η)
−(Ŝ,∇T δu∇η),

(B.3)
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Rη(u,η; δη) = −(CFT (u)∇η,FT∇δη) − (Ŝ,FT∇δη) +
∫

Ω0
b0 · δη

+
∫
∂ΩN

0

t̄0 · δη,
(B.4)

obtained by the directional derivative of the Lagrangian for each direction
{δu, δη}. We proceed iteratively by the Newton-Raphson method, with the
tangent operator given by:

Duu(u,η; du, δu) = (CFT∇du,FT∇δu) + (C(E(u) − Ê),∇Tdu∇δu)
−(C∇Tdu∇η,∇T δdu∇δη),

(B.5)

Duη(u,η; du, δη) = −(CFT∇dη,∇T δu∇η) − (CFT∇η,∇T δu∇dη)
−(Ŝ,∇T δu∇dη),

(B.6)

Dηη(u,η; dη, δη) = −(CFT∇dη,FT∇δη), (B.7)

where the directional derivatives are computed along {du, dη}. Note that
Duη is symmetric such thatDηu is not written explicitly. A discretized version
of the notation shown here can be found in other works such as [18, 21, 27].

Appendix C. Additional figures

This appendix contains additional error plots that were obtained when
comparing the DDCM and NN approaches. For clarity, they were put in this
appendix so as to not clutter the main body of the paper.
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source

(a) Standard search, original database.

source

(b) Locally convex search, original database.

source

(c) Standard search, enriched database with discre-
tised orbits.

source

(d) Locally convex, enriched database with discretised
orbits.

Figure C.18: Relative L2 norm of strains for Cook membrane with Ciarlet law.
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(a) Strain errors of best energy trained models.

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )

(              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(              )

(               )

(b) Average strain errors of energy trained models.

Figure C.19: Relative L2 norm of strain for neural networks trained on energy, results for
Cook membrane with Ciarlet law. The results shown are averaged for all training runs of
neural networks. Standard deviations of the averaged errors are shown in parentheses.

(a) Stress errors of best energy trained models.

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )

(              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(              )

(              )

(b) Average stress errors of energy trained models.

Figure C.20: Relative L2 norm of stress for neural networks trained on energy, results for
Cook membrane with Ciarlet law. The results shown are averaged for all training runs of
neural networks. Standard deviations of the averaged errors are shown in parentheses.
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(a) Strain errors of best stress trained models.

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(b) Average strain errors of stress trained models.

Figure C.21: Relative L2 norm of strain for neural networks trained on stress, results for
Cook membrane with Ciarlet law. The results shown are averaged for all training runs of
neural networks. Standard deviations of the averaged errors are shown in parentheses.

(a) Stress errors of best stress trained models.

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(b) Average stress errors of stress trained models.

Figure C.22: Relative L2 norm of stress for neural networks trained on stress, results for
Cook membrane with Ciarlet law. The results shown are averaged for all training runs of
neural networks. Standard deviations of the averaged errors are shown in parentheses.
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(a) Absolute error difference, strain.

Relative error

(b) Relative error difference, strain.

(c) Absolute error difference, strain.

Relative error

(d) Relative error difference, strain.

Figure C.23: Relative L2 norm error differences between DD and NN approaches for Cook’s
membrane with Ciarlet law, strain. The upper row shows the absolute error difference and
relative error when comparing DDLC to stress trained NNs, while the bottom row shows
the errors when comparing DDLCiso to stress trained NNs.
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(a) Absolute error difference, stress.

Relative error

(b) Relative error difference, stress.

(c) Absolute error difference, stress.

Relative error

(d) Relative error difference, stress.

Figure C.24: Relative L2 norm error difference between DD and NN approaches for Cook’s
membrane with Ciarlet law, stress. The upper row shows the absolute error difference and
relative error when comparing DDLC to stress trained NNs, while the bottom row shows
the errors when comparing DDLCiso to stress trained NNs.
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(a) Standard search, original database. (b) Locally convex search, original database.

(c) Standard search, enriched database with discre-
tised orbits.

(d) Locally convex, enriched database with discretised
orbits.

Figure C.25: Relative L2 norm of strains for Cook membrane with Hartmann-Neff law.
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(a) Strain errors of best stress trained models.

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(b) Average strain errors of stress trained models.

Figure C.26: Relative L2 norm of strain for neural networks trained on stress, results
for Cook membrane with Hartmann-Neff law. The results shown are averaged for all
training runs of neural networks. Standard deviations of the averaged errors are shown in
parentheses.

(a) Stress errors of best stress trained models.

source

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(              )

(              ) (              ) (              ) (              ) (              )

(              )(              )(              )(              )(             )

(b) Average stress errors of stress trained models.

Figure C.27: Relative L2 norm of stress for neural networks trained on stress, results
for Cook membrane with Hartmann-Neff law. The results shown are averaged for all
training runs of neural networks. Standard deviations of the averaged errors are shown in
parentheses.
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