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Abstract

Recently, network-based approaches have provided an important contribution for

the understanding of mental disorders. A growing number of statistical models, devel-

oped in the context of continuous variables in high-dimensional settings, are currently

being used to infer dependencies between network elements (e.g., symptoms or behav-

ioral elements) in psychometrics. However, psychometric datasets typically correspond

to low-dimensional statistical settings, namely with a low number of variables collected

from a large enough sample size and the variables collected are ordinal rather than Gaus-

sian. In this large-scale simulation study, we tested and compared the performance of

14 methodological approaches including several that, to our knowledge, have never been

tested in the context of psychometrics network inference. We assessed the impact of

various factors such as the sample size, the number of variables (i.e., network elements),

the density of the true underlying graph and the number of ordinal levels. We conclude

that the simple and classic statistical methods are undervalued in the current practice,

while polychoric correlations appear to have limited additional benefits. We recommend

researchers to systematically rely on more than one method in their analyses.

Key words: Gaussian graphical model, Mental health, Network inference, Ordinal data,

Psychopathology, Symptom networks
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Introduction

Psychological research examines how complex interactions between biological, psychological,

environmental aspects influence health and well-being. To effectively capture and analyze this com-

plexity, network-based approaches have emerged as particularly suitable tools. These models allow

researchers to visualize and quantify the relationships between various elements within a system,

offering a comprehensive framework to understand how these different elements interact and con-

tribute to overall health outcomes (Borsboom, 2017; Robinaugh et al., 2019; Delli Colli et al., 2024).

In the context of psychometrics, network nodes may represent symptoms, affects states or broader

behavioral elements, while network edges may represent a relationship such as co-occurrence or

correlation (whether direct, partial, positive or negative) between two nodes (Borsboom, 2017;

Borsboom et al., 2021; Isvoranu et al., 2022). These relationships are not directly observed but are

statistically estimated from data collected through patients’ or individuals’ responses to question-

naire items or interview questions (Borsboom, 2017).

Among a wide range of statistical models used to represent dependencies between the elements,

graphical models are the most commonly used as they provide a visual and intuitive way of under-

standing complex interactions among multiple variables (Koller and Friedman, 2009). These models

show which variables statistically depend on and potentially predict one-another, thereby highlight-

ing potential causal relationships between observed variables (Borsboom, 2017). In psychometric

networks, the relationships typically considered are measured through partial correlations, which

provide estimates of the relationship between two variables or nodes, controlling for all other nodes

in the network.

Over the past twenty years, numerous advancements have been made in network inference

through graphical models. However, these developments have predominantly been driven by new

demands in bioinformatics (Sinoquet and Mourad, 2014), a field in which the datasets characteris-

tics significantly differ from the ones inherent to psychometric data. Indeed, recent developments

in the statistical literature have focused on very high-dimensional (i.e. much more variables than

observations) and normally distributed (possibly after transformation) data. Nevertheless, psycho-

metrics data typically lie in small dimensions, with the number of variables ranging from a few
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to about a dozen, collected from samples of a few hundred to a few thousand individuals (Haku-

linen et al., 2020; McNally et al., 2015; Rhemtulla et al., 2016; Spiller et al., 2017). Moreover,

the variables are not continuous (and thus not Gaussian), but rather discrete and finite, and most

importantly, are measured on an ordinal scale. This is the case when considering the clinical ques-

tionnaires based on the Likert scales (Likert, 1932) used to measure symptoms. For instance, the

review by Robinaugh et al. (2019) that focuses on psychopathology mentions “170 empirical arti-

cles [that] used network psychometrics to estimate network structure, including 141 articles that

examined cross-sectional data in 176 samples (mean [number of individuals] n = 2169; median n =

508) and 32 articles that examined time-series data in 44 samples (mean n = 185; median n = 76)”.

Its supplementary material further contains a table describing a subset of “18 studies estimating

the depression symptom network in isolation, [in which] researchers used 12 different pre-existing

scales, with the number of symptoms ranging from 9 to 28”. Most surprisingly, the low dimensional

setting (i.e., low number of variables collected from large sample size) and the ordinal nature of

the measurements have been limitedly considered when importing statistical methods of network

inference into the psychometrics field.

Among the graphical models, the Gaussian graphical model (GGM), based on an undirected

network driving partial correlation coefficients is one of the most popular ways to model statistical

relationships between observed variables in the psychometrics field (Epskamp and Fried, 2018; Ep-

skamp et al., 2018; Epskamp, 2020) and as the name indicates, it assumes Gaussian observations.

Moreover, recent statistical developments were focused on sparse GGMs (i.e. most of the partial

correlations between the variables are equal to zero), giving rise to regularized inference methods

such as the famous Graphical Least Absolute Shrinkage and Selection Operator (Glasso) estima-

tor (Meinshausen and Bühlmann, 2006). As an advantage, these methods provide easy-to-interpret

results as well as feasible solutions, in particular for high-dimensional settings. However, they

come at the cost of a high instability (Meinshausen and Bühlmann, 2010). In the psychometrics

context, Epskamp et al. (2018) proposed to input polychoric correlations (Olsson, 1979) inside the

EBICglasso algorithm (Foygel and Drton, 2010); this is currently the default estimation method

for psychometric networks. It is based on l1 regularization of the maximum likelihood (ML) cri-

terion and provides a parsimonious (i.e., sparse) estimation of the partial correlation structure of
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the variables at stake. Let us recall that more generally, regularized methods refer to statistical

inference methods that assume that the signal is sparse (i.e., has many zero values), thus producing

a sparse estimator; while unregularized methods do not make such an assumption and produce

estimated value that will never be exactly zero. As already stressed, psychometric data neither

are continuous or Gaussian, nor lie in high-dimensional settings. Nevertheless, the psychometrics

literature has mainly focused on sparse GGMs and other regularized methods to infer psychometric

networks (Epskamp and Fried, 2018).

Some authors have already pointed out the inadequacy of the above methods due to two fun-

damental characteristics of psychometric data: the lack of continuity/normality in the observations

and the lack of a high-dimensional statistical setting. For example, it has been shown that analyzing

ordinal data with metric models can systematically lead to errors (Liddell and Kruschke, 2018). In

a similar vein, Williams and Rast (2020) argue that the high-dimensional setting is uncommon in

psychological applications and they urge psychometricians to go “back to the basics” when inferring

partial correlation networks. In particular, they highlighted that regularization is not required in

this context and it may even lead to poor estimation when the setting is not high-dimensional.

Another rarely discussed point concerns the advantages offered by polychoric correlations. Indeed,

to take into account the discrete nature of the observations, some authors have proposed to replace

the classical Pearson correlations by polychoric ones as input in GGMs (Epskamp and Fried, 2018).

However, in the statistical literature, it has been advocated that relying on polychoric correlations

is inadequate in the case of ordinal variables, as it requires multivariate normality of underlying

latent variables and only reflects a linear association (Liu et al., 2021). To finish this list of works

questioning the current state-of-the-art, we mention that Lee et al. (2022) not only proposed an

ordinal (as opposed to Gaussian) graphical model to better fit psychometrics data but also intro-

duced heterogeneity in the individuals, thus accounting for sub-populations estimated from the

data. However, these newer methods at the forefront of research are not yet available as simple

packages that could be routinely used by researchers.

Recently, noting the lack of consensus and the numerous variants in psychometric network

inference methods, Isvoranu and Epskamp (2023) proposed a first large-scale simulation study

aimed to compare the performance of several algorithms. These authors also questioned the use
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of polychoric correlations in maximum-likelihood based methods, suggesting that it may be not

optimal, particularly when applied to structural equation models. In those models, weighted least

squares (WLS) methods better account for sampling variation (Muthén, 1984), whereas polychoric

correlations can introduce significant variation, especially with small sample sizes. Additionally,

they claim that psychometrics data tend to be skewed, a specificity rarely accounted for in the

context of network inference. It is worth noting that transformation of skewed data has been

previously discussed in the context of psychometric analysis (Norris and Aroian, 2004).

Our goal is to extend and supplement the study of Isvoranu and Epskamp (2023). First and

most importantly, our list of compared methods includes straightforward estimation procedures

(namely, in the present article as poly.mle, poly.wls, pears) which, though not previously

tested within the context of psychometric networks, surprisingly perform well in various situations.

Second, we choose to focus on ordinal variables and explore the possible impact of a) the number

of levels used to measure the observations, a quantity which, to the best of our knowledge, has

never been varied in previous studies; b) the sparsity parameter that rules the number of rela-

tionships/interactions in the underlying psychometric graph. Third, while Isvoranu and Epskamp

(2023) did not focus on ordinal data and also considered continuous and Gaussian observations,

we explore more sophisticate discrete distributions considering heterogeneity in the individuals (see

simulation Scenario 4).

In the present contribution the first section describes the methodology including the different

simulation scenarios, their driving parameters and the methods we compared. We restrict attention

to methods that are implemented in statistical software packages (in fact R libraries) and can be

routinely used by psychometrics researchers. Additionally, we describe the performance measures

selected to assess the quality of each method. The second section describes the main results,

followed by the discussion section. We also provide in Appendix A mathematical definitions that

should help the reader interested in understanding the statistical details behind the simulations

and the methods. The scripts to replicate our experiments are available at https://github.com/

clacollins/PSYCHOMETRIC-NETWORK-INFERENCE

https://github.com/clacollins/PSYCHOMETRIC-NETWORK-INFERENCE
https://github.com/clacollins/PSYCHOMETRIC-NETWORK-INFERENCE
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Methodology

The three main ingredients of the methodology of this contribution are described in the next

subsections: the data simulation scenarios, the methods that we compared and last, the performance

measures underlying these comparisons.

Simulations

We considered a sample of n individuals, on which we measure p ordinal variables with L

different levels (e.g., answers measured on a Likert scale). Our analysis is conducted in a low-

dimensional context, from a classical statistical perspective, where p is much smaller than n (p <<

n). This context is characteristic of psychometric data (Hakulinen et al., 2020). We used sample

sizes n ∈ {100; 250; 500; 1, 000; 2, 500}; number of variables p ∈ {6; 7; 8; 9; 10} (and in a specific case,

up to p = 20) and number of levels L ∈ {4; 5; 6}.
To compare different graph inference procedures, we rely on simulations where the ground-

truth is controlled. The advantages of using simulated data are that: i) we control exactly the true

partial correlations between variables; ii) our analyses are reproducible. Furthermore we can use

sophisticate models to mimic psychometric data.

We present 4 different simulation scenarios, whose characteristics are summarized in Table 1.

For each scenario, we made 100 experiments and averaged the results over these repetitions. The

first and second scenarios both rely on the choice of a polychoric correlation structure between the

ordinal variables that we generate. The key difference is that the structure in the first scenario is

synthetic, while in the second, it is based on a polychoric correlation structure previously estimated

from a real dataset. In the case of a synthetic correlation structure, we varied the density (i.e.,

the proportion of actual edges number over the maximum possible) of the underlying graph, with

values in {0.1; 0.2; 0.3; 0.4; 0.5; 1}. On the contrary when working with a correlation estimated on

a dataset, we chose the simplest method to estimate these polychoric correlations which is not

a regularized approach. As a result, we obtained a complete graph structure (i.e., all possible

edges are present) with a fixed density of 1. The first scenario corresponds to an ideal model,

where data has a sparse polychoric partial correlation structure, which aligns with the assumptions



8

underlying most of the methods. The second scenario, however, was designed to be closer to real-

world conditions. The third scenario plays the role of the control scenario: it relies on independent

variables, corresponding to an empty graph to infer. This is the case where there is no signal in the

data and we expect the methods not to detect spurious relations. The fourth and last scenario is

more elaborate and considers a heterogeneous dataset where the individuals come from 2 different

unknown populations. In this case, the true underlying structure is unfortunately unknown and

we used a proxy for its true value. This scenario is certainly the most realistic among the fourth.

The simulation details may be found in Appendix B. In all the scenarios, we computed the average

resulting skewness of the distribution of the ordinal variables. As we expect real psychometric

dataset to be skewed, our goal is to ensure that we simulated skewed, thus realistic data. The

skewness is not part of the initial settings, we rather monitor its values during the experiments.

Table 1.

Characteristics of the 4 simulation scenarios.

Scenario Data distribution Expected network density

1 ordinal, with synthetic polychoric correlation structure prob ∈ {0.1; 0.2; 0.3; 0.4; 0.5; 1}
2 ordinal, with polychoric correlation structure derived

from real data

1

3 ordinal, no correlation 0

4 ordinal, no polychoric correlation 1

Methods compared

We selected a total of 14 different graph inference methods from the literature, grouped into

4 different categories of approaches for inferring partial correlation graphs. A summary of their

characteristics is given in Table 2.

The first group of methods encompasses the simplest and most straightforward approaches,

which have been overlooked in the psychometrics network literature. Given the low-dimensional

context, these methods involve direct estimation of partial correlations, whether based on poly-

choric or Pearson’s correlations. The second group of methods – relying on ML estimation in

GGMs – contains the current default methods used by psychometricians, which consist in functions
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Table 2.

The 14 methods considered in the present study, divided into 4 groups. We indicate the name of the method used

in the study; the name of the R package and principal function used. Note that when needed, transformations from

correlations matrices to partial correlations are not explicitly indicated. The fourth column specifies the input of the

method, while the fifth gives (whenever applicable) the parameters that have been used. The last column indicates

whether the method has been included in Isvoranu and Epskamp (2023).

Method R Package Function Input Parameters New?

poly.mle qgraph cor auto raw data - Yes

poly.wls psychonetrics ggm %>%

prune %>%

modelsearch

raw data - No

pears stats cor raw data - Yes

Glasso.poly qgraph EBICglasso poly.mle

output

default No

Glasso.pears qgraph EBICglasso pearson

output

default Yes

ggmMS.poly qgraph ggmModSelect poly.mle

output

default No

ggmMS.pears qgraph ggmModSelect pearson

output

default Yes

GGMnr.neighsel GGMnonreg ggm inference raw data boot=FALSE No

GGMnr.boot.poly GGMnonreg ggm inference raw data default No

GGMnr.boot.pears GGMnonreg ggm inference raw data method=”polychoric” Yes

BGGM.explore BGGM explore raw data type=”ordinal”, im-

pute = FALSE

No

BGGM.estimate BGGM estimate raw data type=”ordinal”, im-

pute = FALSE

No

ggmSS GeneNet ggm.estimate

.pcor

raw data default Yes

PAsso PAsso PAsso raw data default Yes
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implemented in the qgraph R package (Epskamp et al., 2012). The input of these functions can

either be polychoric or Pearson’s correlation matrix estimators. In the third group of methods, we

consider unregularized approaches for GGMs, as proposed by Williams et al. (2019, 2020) and im-

plemented in the R package GGMnonreg (Williams, 2021b), together with Bayesian GGMs (BGGM)

methods introduced by Williams and Mulder (2020); Williams (2021a) and implemented in the

BGGM R package (Williams and Mulder, 2019). Finally, in the fourth group we explore a method

that has produced interesting results in the field of bioinformatics (Schäfer and Strimmer, 2004)

and which inspired a new method in the psychometrics context (Liu et al., 2021). The former is

implemented in the R package GeneNet (Schäfer et al., 2021); while the latter is in the R package

PAsso (Zhu et al., 2021), specifically designed for ordinal data. None of these two methods were

ever tested before in the context of psychometric data. Details about all the methods, their differ-

ences and possibly parameter choices are given in Appendix C.

Performance measures

To assess the qualities of each method, we considered a set of performance measures capturing

different aspect of the methods’ quality.

First, we assessed the recovery of the actual edge weights, namely the correlation coefficients,

by measuring the mean-squared error (MSE) between true and estimated values as follows:

MSE(Θ̂; Θ) = 2

p(p − 1)

p

∑
i=1

∑
j>i

(θ̂ij − θij)2,

where Θ̂ = (θ̂ij)1≤i<j≤p is the matrix of estimated partial correlations and Θ is the true ones, as

specified in each simulation setting. This quantity measures the ability to recover the exact value

of each partial correlation coefficient.

Second, we focused on recovering the structure (i.e., the topology) of the partial correlation

graph, aiming to accurately identify the presence or absence of edges between variables, without

considering the weight of those connections. This means that rather than focusing on the value

of each partial correlation coefficient θij we are interested in the binary variable 1{θij ≠ 0} that

is 1 whenever the coefficient θij is non zero, and zero otherwise. We thus introduced measures of
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binary classification performance. Edges were categorized as true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN) as follows:

TP = ∑
i<j

1{θ̂ij ≠ 0; θij ≠ 0}, TN = ∑
i<j

1{θ̂ij = 0; θij = 0},

FP = ∑
i<j

1{θ̂ij ≠ 0; θij = 0}, FN = ∑
i<j

1{θ̂ij = 0; θij ≠ 0}.

From these quantities, we obtain sensitivity, specificity and precision as follows

sensitivity =
TP

TP + FN
; specificity =

TN

TN + FP
; precision =

TP

TP + FP
.

Sensitivity captures the ability of a method to correctly detect a (partial) correlation between

symptoms out of pairs of (partially) correlated symptoms, while specificity focuses on the ability

to correctly reject (partially) uncorrelated pairs of symptoms. Finally, precision is the fraction of

relevant instances (partially correlated pairs of symptoms) among the retrieved instances. Denoting

by ∣E∣ the cardinality of the number of edges in the true partial correlation graph and ∣Ê∣ the same

quantity in the estimated graph, we have that

sensitivity =
TP

∣E∣ ; specificity =
TN

p(p − 1)/2 − ∣E∣ ; precision =
TP

∣Ê∣
,

where we recall that p is the number of variables/symptoms. Observe that in simulation settings

where the true partial correlation graph is complete and thus no edge weight is zero (i.e., Scenario

2, Scenario 4 and Scenario 1 when prob=1), we have θij ≠ 0 for all i < j and thus TN=FP=0

and thus the precision equals 1, the sensitivity equals the density of the estimated graph and the

specificity is not defined. In the same way, when considering the independent setting (Scenario 3)

where there are no edges in the true partial correlation graph and thus TP=FN=0, sensitivity is

undefined, specificity is equal to 1 minus the density of the estimated graph and precision is either

zero or undefined.

All these performance measures are computed for each simulation in each scenario and further

averaged over the 100 repetitions. We also tracked the number of execution errors encountered by

each method, when the function tested did not produce any result. Indeed, some of them failed to

process certain datasets and so for each simulation setting, we recorded the count of unsuccessful

runs out of the 100 repetitions.
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Results

Main findings

There are three main findings from our simulation study: 1) The most sophisticate methods

are not the ones giving the best results, even in ideal scenarios. In particular poly.wls performs as

well as (and sometimes better than) Glasso.poly; 2) polychoric correlations input does not always

give better results than relying on simple Pearson’s correlations; 3) for real-world datasets, which

are usually more complex than ideal cases, no single method consistently performs the best for

estimating partial correlation structure. Therefore, we recommend that practitioners use multiple

methods and include simple ones such as poly.wls and pears.

Detailed results

Scenario 1 - Ideal case. Our Scenario 1 is the default scenario, that corresponds to the ideal

GGM, which is the basis of most of the methods. In this Scenario 1, we first observe that the

simulated datasets exhibit a wide range of different skews, either positive or negative, across the

different settings. We recall that skewness absolute values within the range of 0.5 and 1 (whether

negative or positive) indicate slightly skewed data distributions, while absolute values greater than 1

(negative or positive) correspond to data considered highly skewed. Across the different settings, we

observe variables with distributions that range from no skew to slight or high skew, either positively

or negatively (see Figure A in Appendix D for an illustration). Based on these observations, the

results presented for this scenario are not expected to be biased toward an unrealistic situation.

Out of the 14 methods tested, 7 show execution errors in different settings. More precisely, a

first group comprising GGMnr.boot.poly and the BGGM family often shows a high execution error

rate, while a second group with poly.wls, Glasso.poly, ggmMS.poly and PAsso exhibit a low

execution error rate in a small number of settings. However, no specific pattern (with respect to

sample size n, number of levels L, number of variables/symptoms p or density of the true graph

prob) seems to drive these execution error occurrences, see Figure 1 for an illustration. We also

observe that in some settings, the execution error rate may reach 1, meaning that the limits of the

method are clearly exceeded. This is the case in particular for BGGM.explore and BGGM.estimate
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(data not shown).

Considering the accuracy of the methods with respect to their MSE, it is important to note that

the MSE values (i.e., y-scales of the plots) vary significantly across different settings. In general, the

mean and the variance of the MSE of the methods decrease with the sample size n, and increases

with the number of variables/symptoms p, and with the density of the true underlying graph.

However these values do not appear to be correlated with the number of levels L, see Figure 2 for

an illustration. Also, this behaviour with respect to n, p and L is observed consistently across all

scenarios.

Comparing the MSE of the methods, Glasso.poly and poly.wls are overall the best meth-

ods in this Scenario 1; and in many situations poly.wls can be as good and even better than

Glasso.poly, while being a much simpler approach, see Figure 3. As expected under this scenario,

Glasso.poly performs better than Glasso.pears, with smallest MSE (data not shown). The re-

sults also confirm the claim in Muthén (1984) that a WLS approach (i.e., poly.wls) is better than

a ML based one (i.e., poly.mle) for estimating polychoric correlations, see Figure 4. For large sam-

ple size (n = 2500), we observe that poly.wls is better than (poly.mle that is better than pears).

However, for small sample size (n = 100), the pears method seems competitive to poly.mle. Sur-

prisingly, in this simulation setting where the true underlying correlations are generated through

a polychoric-based approach, inputing polychoric correlations estimates is not always a better ap-

proach than relying on Pearson’s estimates, see for e.g. Figure 2. In particular, while Glasso.pears

has high variability and Glasso.poly is always better, the methods ggmMS.poly and ggmMS.pears

have similar performances, whereas GGMnr.boot.poly performs worse than GGMnr.boot.pears

(Figure 2). To finish, we observe that the remaining methods, namely the three methods GGMnr

from the GGMnonreg package plus the BGGMfamily and ggmSS, PAsso, can be quite competitive

in some situations (see for e.g. Figure 2). However no specific pattern may predict when these

methods will be appropriate. Moreover, these methods are time consuming (data not shown) and

we recall that some of them exhibit execution error rates that prevent their use in a wide range of

situations (see Figure 1).

Concerning specificity – the capacity to detect true negatives among unselected edges in the

graph – and sensitivity – the ability to detect true positives among all edges in the graph – the
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Figure 1.

Scenario 1: Examples of the execution error rates (boxplot over 100 replicates) of all the methods (displayed as

14 graphics in each of the 4 pictures) with respect to evolving parameters (displayed on the x-axis): sample sizes

n ∈ {100; 250; 500; 1, 000; 2500} on top left; number of variables p ∈ {6; 7; 8; 9; 10} on top right; density of the true

underlying graph prob∈ {0.1; 0.2; 0.3; 0.4; 0.5; 1} on bottom left and number of ordinal levels L ∈ {4, 5, 6} on bottom

right.
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Figure 2.

Scenario 1: Examples of the behaviour of the MSE (boxplots over 100 replicates) of all the methods (displayed as

14 graphics in each of the 4 pictures) with respect to evolving parameters (displayed on the x-axis): sample sizes

n ∈ {100; 250; 500; 1, 000; 2500} on top left; number of variables p ∈ {6; 7; 8; 9; 10} on top right; density of the true

underlying graph prob∈ {0.1; 0.2; 0.3; 0.4; 0.5; 1} on bottom left and number of ordinal levels L ∈ {4, 5, 6} on bottom

right.
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Figure 3.

Scenario 1: A selection of settings where poly.wls often outperforms Glasso.poly in terms of MSE (boxplots over

100 replicates); x-axis shows sample sizes n ∈ {100; 250; 500; 1, 000; 2500}.
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Scenario 1: A selection of settings to compare the performances in terms of MSE (boxplots over 100 replicates) of the

direct estimation correlation methods, poly.wls,poly.mle and pears; sample sizes n = 100 (top left), n = 500 (top

right), n = 1000 (bottom left) and n = 2500 (bottom right). In each graphic, the x-axis shows number of symptoms

p ∈ {6; 7; 8; 9; 10}.
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methods considered split into two groups: those that may estimate by zero a partial correlation

(poly.wls, the Glasso, BGGM and ggmMS families) and those whose estimator will always be non-

zero (i.e., poly.mle, pears, ggmSS, PAsso and the GGMnr family). For the second group we

observe, as expected, a bad zero specificity and a perfect sensitivity of one, see Figures 5 and 6.

This is in fact valid independently of the scenario considered (as soon as these quantities are defined

for the scenario). Indeed, these methods are not designed to get a compromise between sensitivity

and specificity. In the first group of methods, expected to produce such a compromise between

sensitivity and specificity, we observe that poly.wls and BGGM.explore are obtaining the best

specificities (close to 1) while Glasso.poly obtains the best sensitivities. We also note that the

performances of the Glasso family methods do not improve with the number of symptoms (top right

part of Figures 5 and 6) contrarily to what could be expected, as these methods are dedicated to

high-dimensional settings; while they tend to degrade with the density of the true underlying graph

(bottom left part of Figures 5 and 6). While the BGGM family of methods shows good specificities,

we recall that these methods exhibit very large execution error rates (Figure 1).

Finishing with precision – the fraction of true positives among selected edges – the results

do not cluster into two groups of methods anymore and BGGM.explore and poly.wls obtain the

best performances, see Figure 7. Considering that poly.wls is a much simpler approach with less

execution errors, it represents the best method from the precision point of view.

Scenario 2 - Ideal case with complete graph. This scenario overlaps with Scenario 1, and relies

on a correlation structure preliminary estimated on a real dataset (see Appendix B for details

concerning the dataset used). Therefore, it resembles Scenario 1 with the density parameter prob

equal to 1, except that the underlying correlation structure is expected to be more realistic here. It is

important to note that there are no true negatives in this setup. Overall, the datasets simulated from

this second scenario exhibit a wide range of skewness values across the different settings, mimicking

in this way real datasets (data not shown). We note that only three methods, GGMnr.boot.poly,

BGGM.estimate and BGGM.explore exhibit some non null execution error rates in a few different

settings. Those error rates are globally lower than in Scenario 1 and always staying below 40% (see

Figure B in Appendix D for an illustration).
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Figure 5.

Scenario 1: Examples of the behaviour of the specificity (boxplots over 100 replicates) of all the methods (displayed

as 14 graphics in each of the 4 pictures) with respect to evolving parameters (displayed on the x-axis): sample sizes

n ∈ {100; 250; 500; 1, 000; 2500} on top left; number of variables p ∈ {6; 7; 8; 9; 10} on top right; density of the true

underlying graph prob∈ {0.1; 0.2; 0.3; 0.4; 0.5; 1} on bottom left and number of ordinal levels L ∈ {4, 5, 6} on bottom

right.
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Figure 6.

Scenario 1: Examples of the behaviour of the sensitivity (boxplots over 100 replicates) of all the methods (displayed

as 14 graphics in each of the 4 pictures) with respect to evolving parameters (displayed on the x-axis): sample sizes

n ∈ {100; 250; 500; 1, 000; 2500} on top left; number of variables p ∈ {6; 7; 8; 9; 10} on top right; density of the true

underlying graph prob∈ {0.1; 0.2; 0.3; 0.4; 0.5; 1} on bottom left and number of ordinal levels L ∈ {4, 5, 6} on bottom

right.
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Figure 7.

Scenario 1: Examples of the behaviour of the precision (boxplots over 100 replicates) of all the methods (displayed

as 14 graphics in each of the 4 pictures) with respect to evolving parameters (displayed on the x-axis): sample sizes

n ∈ {100; 250; 500; 1, 000; 2500} on top left; number of variables p ∈ {6; 7; 8; 9; 10} on top right; density of the true

underlying graph prob∈ {0.1; 0.2; 0.3; 0.4; 0.5; 1} on bottom left and number of ordinal levels L ∈ {4, 5, 6} on bottom

right.
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Comparing accuracy in terms of MSE, the results are quite different from the Scenario 1, see

Figure 8. In line with what is observed in Scenario 1, the mean value and the variance of the

MSE decrease with the sample size and increase with the number of symptoms. However, here

poly.mle exhibits a lower MSE than poly.wls and pears is competitive with poly.mle. The

methods Glasso.poly and Glasso.pearson are not competitive with poly.mle or with pears and

the BGGM family of methods. In this scenario 2, the Glasso family is overall the worse group of

methods. The GGMnr family of methods exhibits pretty good results, the 3 variants showing similar

performances. While their performances are competitive with respect to poly.mle and pears,

we recall that these methods are less direct and simple than the latter. The remaining methods,

namely the ggmMS family, ggmSS and PAsso, while performing better than the Glasso approaches,

are not competitive to the best ones (poly.mle and pears).

Sensitivity confirms the results observed for Scenario 1, see Figure 9. We recall that neither

specificity nor precision are defined in this scenario.

Scenario 3 - Control case. This scenario relies on independent variables, corresponding to an

empty graph to infer. The datasets exhibit a wide range of skewness values, this way mimicking real

datasets (data not shown). In this Scenario 3, GGMnr.boot.poly and the BGGM family show some

execution errors, that can be above 50% when n = 100 and p = 20 and decrease with increasing

sample size. The method poly.wls exhibits execution errors in only 2 settings: when the number

of symptoms p = 20 is very large and the sample size is small, i.e. either n = 100 (up to 40%

execution error rate) or n = 250 (less than 5% execution error rate, see Figure C in Appendix D).

From the MSE perspective, the Glasso methods are the best in this no signal case, with a

quite small advantage for Glasso.pears, see Figure 10 for an illustration.

Specificity in this scenario gives pretty much the same conclusions as for Scenario 1 (except

for the method ggmSS, whose specificity takes exactly two values 0 and 1 over the 100 replicates).

More precisely, the Glasso methods and poly.wls obtain the best results, with the former ones

exhibiting a specificity very close to 1 when the number of symptoms p = 20, while the latter is

better when p = 6, 7, see Figure 11.
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Figure 8.

Scenario 2: Examples of the behaviour of the MSE (boxplots over 100 replicates) of all the methods (displayed as

14 graphics in each of the 3 pictures) with respect to evolving parameters (displayed on the x-axis): sample sizes

n ∈ {100; 250; 500; 1, 000; 2500} on the left; number of variables p ∈ {6; 7; 8; 9; 10} in the center and number of ordinal

levels L ∈ {4, 5, 6} on the right.
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Figure 9.

Scenario 2: Examples of the behaviour of the sensitivity (boxplots over 100 replicates) of all the methods (displayed

as 14 graphics in each of the 3 pictures) with respect to evolving parameters (displayed on the x-axis): sample sizes

n ∈ {100; 250; 500; 1, 000; 2500} on the left; number of variables p ∈ {6; 7; 8; 9; 10} in the center and number of ordinal

levels L ∈ {4, 5, 6} on the right.
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Figure 10.

Scenario 3: Examples of the behaviour of the MSE (boxplots over 100 replicates). On the left, all the methods

are displayed as 14 graphics and the x-axis shows sample sizes n ∈ {100; 250; 500; 1, 000; 2500}, in the case of p = 6

symptoms and L = 4 levels. On the right, a zoom on the 3 methods Glasso.pears,Glasso.poly,poly.wls; wrt

sample size and in the same setting as on the left (top), wrt the number of symptoms on the x-axis (center) and wrt

the number of ordinal levels (bottom).
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Figure 11.

Scenario 3: Examples of the behaviour of the specificity (boxplots over 100 replicates) wrt the number of symptoms

on the x-axis. On the left, all the methods are displayed as 14 graphics in the case of sample size n = 1000 and L = 4

levels. On the right, a zoom on the 3 methods Glasso.pears,Glasso.poly,poly.wls; in the same setting as on the

left (top), for n = 2500 and L = 6 (center) and for n = 500 and L = 4 (bottom).
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Scenario 4 - Most realistic case. This scenario is the most realistic one, as it integrates some

heterogeneity in the sample, by simulating two sub-populations of individuals with different behav-

ior. Again the datasets exhibit very diverse skewness values, with absolute values that can be much

higher than in the previous scenario (data not shown). This is expected as the datasets include

heterogeneity. In this scenario, the BGGM methods never worked, with an execution error rate equal

to 1 in all settings. In particular, we obtained no MSE or sensitivity for these methods. Also,

GGMnr.boot.poly has a high execution error rate in most settings. For small sample sizes n and

increasing values of p, the methods poly.wls, Glasso.poly, ggmMS.poly and PAsso may exhibit

large execution error rates. The problem fades with increasing sample size and curiously, it also

seems to diminish with increasing number of levels, see Figure 12.

Concerning MSE, the comparison of the methods excludes BGGM methods that produced no

results and GGMnr.boot.poly that has too few results for being relevant. Also, we decided to

remove 1% of all the largest MSE values to remove some outliers and obtain clearer results. We

observe that the results are highly variable, with the direct methods poly.wls, poly.mle, pears,

the Glasso family and ggmMS.poly alternatively being the best approaches, see Figure 13.

Considering sensitivity, among the methods that aim at a compromise with specificity (which

is not defined here, neither precision is), Glasso.poly shows the best results, see Figure 14.

This most realistic scenario shows that for real datasets that are expected to be more complex

than ideal case situations, no method is uniformly best for estimating partial correlation structure,

though Glasso.poly gives the best sensitivities (among the methods trying to find a compromise

with specificity).

Discussion

Overall these results highlight the importance of direct and simple methods for estimating

partial polychoric and Pearson correlations, like poly.wls and pears. Our findings show these

methods are well-suited to most psychometric datasets and should be systematically explored.

Our study advocates for using different methods, as the complexity of real datasets is obviously

not captured by the models underlying the different approaches, leading to none of the methods

dominating the others for complex scenarios (e.g., Scenario 4). In particular, we suggest that
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Figure 12.

Scenario 4: Examples of the execution error rates (averaged over 100 replicates) of all the methods (displayed as 14

graphics in each picture). The x-axis displays sample sizes (left picture), number of symptoms (center picture) and

number of levels (right picture).
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Figure 13.

Scenario 4: Examples of the behaviour of the MSE (boxplots over 100 replicates) of the working methods (displayed

as 11 graphics in each picture). The x-axis displays sample sizes. The 4 pictures display different settings wrt number

of levels L and number of symptoms p. None of the methods appears to be uniformly best.
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Figure 14.

Scenario 4: Examples of the behaviour of the sensitivity (boxplots over 100 replicates) of the working methods

(displayed as 11 graphics in each picture). The x-axis displays sample sizes (left picture), number of symptoms

(center picture) and number of levels (right picture).
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researchers systematically explore the data using at least one direct method (poly.wls, pears)

and one sparse approach (Glasso.poly, Glasso.pears, ggmMS.poly). When possible, we also

recommend to try an unregularized approach (GGMnr family).

Most of the comparative studies published focus on introducing new methods that address the

limitations of older ones (see for e.g. Williams et al., 2020; Williams and Rast, 2020). To the best

of our knowledge, only one large-scale comparative study was recently published in Isvoranu and

Epskamp (2023) but did not include some of the simplest and direct approaches (i.e.,poly.mle,

pears). We expanded this latter work, focusing on ordinal variables, concentrating on low-

dimensional settings and exploring a sophisticate heterogeneous scenario that mimics real datasets

(Scenario 4).

Our study is an additional step in the quest for a better understanding of the behaviour of

psychometric networks inference methods although it could be extended in several directions. We

explored a quite restricted set of values for the number of levels (L = {4, 5, 6}) which may be too

limited to observe the full impact of this parameter. Also, a natural extension is considering a

heterogeneous number of levels per ordinal variable (i.e., not the same for all variables), though

this drastically increases the size of the experimental design and complicates the analysis. Most

of the methods tested are too slow to enable simulations that could go up to p = 20 variables, a

realistic situation though, see for e.g. Fried et al. (2019); Zhou et al. (2022).



32

References

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry 16 (1), 5–13.

Borsboom, D., M. Deserno, M. Rhemtulla, S. Epskamp, and et al. (2021). Network analysis of

multivariate data in psychological science. Nat Rev Methods Primers 1, 58.

Delli Colli, C., F. Chiarotti, P. Campolongo, A. Giuliani, and I. Branchi (2024). Towards a network-

based operationalization of plasticity for predicting the transition from depression to mental

health. Nat. Mental Health 2, 200–208.

Epskamp, S. (2020). Psychometric network models from time-series and panel data. Psycho-

metrika 85, 206–231.

Epskamp, S. (2024). psychonetrics: Structural Equation Modeling and Confirmatory Network Anal-

ysis. R package version 2.4.

Epskamp, S., A. O. J. Cramer, L. J. Waldorp, V. D. Schmittmann, and D. Borsboom (2012).

qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical

Software 48 (4), 1–18.

Epskamp, S. and E. I. Fried (2018). A tutorial on regularized partial correlation networks. Psy-

chological Methods 23 (4), 617–634.
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Appendix A: Statistical correlations

We provide here statistical definitions around the notion of correlation.

First, covariance between two real-valued variables X,Y is defined as Cov(X,Y ) = E[(X −

E(X))(Y − E(Y )] = E(XY ) − E(X)E(Y ). Pearson’s correlation is a normalized version of the co-

variance, defined as ρX,Y = Cov(X,Y )/σXσY , where σX is the standard deviation of X. It is a

measure of linear correlation between the 2 variables. Partial correlation between 2 variables X,Y

adjusting for the vector of covariates W (denoted ρX,Y.W) is defined as the correlation between

the residuals obtained from the linear regression of X (resp. Y ) over W. Now for a whole vector

of variables (X1, . . . , Xp), in order to compute at once all the partial correlations between any pair

Xi, Xj adjusting for all other variables {Xk}k≠i,j , we proceed as follows. Partial correlation (resp.

empirical partial correlations) coefficients between a set of variables (X1, . . . , Xp) may be obtained

from the (resp. empirical) precision matrix Ω = (ωij), i.e. the inverse of the (empirical) covariance

matrix Σ = Ω
−1

in the following way

ρXi,Xj .(Xk)k≠i,j =
−ωij√
ωii

√
ωjj

.

In the Gaussian setting only, the partial correlation coefficient translates into conditional indepen-

dence. More precisely, if (X,Y,W) is jointly Gaussian, then ρX,Y.W = 0 ⟺ X ⫫ Y ∣W (i.e. X,Y

are independent conditional on W).

In the case of discrete variables, regression models rely on a link function G
−1
, which is the

inverse of a continuous cumulative distribution function (cdf) G, chosen by the statistician. For

e.g., the regression of X over the vector of covariates W is done through the model

G
−1(P(X ≤ j)) = αj + f (W,β), (A1)

where β is a vector of parameters and f (W,β) = W
⊺
β in the linear regression setting. Here,

Eq. (A1) means that there exists some random variable ϵ distributed according to the cdf G and

independent of W such that setting Z = f (W,β) + ϵ, we have that X is obtained from Z through

a binning operation, relying on the cut points −∞ = α0 < α1 < ⋅ ⋅ ⋅ < αL = +∞. In other words, we

set X = j whenever Z falls in the bin (αj−1, αj].
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Polychoric correlations are defined with the above model using linear regression, when G is the

cdf of the standardized Gaussian distribution. More precisely, if (X1, . . . , Xp) are ordinal variables

and we want to define partial polychoric correlations, here is how we proceed. We first start

with only 2 variables. Say we want the partial polychoric correlation between X1, X2 adjusting for

Xk≥3 ∶= {Xk}k≥3 then we assume that there exist some latent (i.e. not observed) continuous variables

(Z1, Z2) whose joint distribution is a two-dimensional Gaussian with mean (X⊺
k≥3

β1,X
⊺
k≥3

β2)⊺ and

covariance matrix Σ1,2.k≥3. Let Ω1,2.k≥3 = (Σ1,2.k≥3)−1 = (ωij) denote the corresponding precision

matrix. The link between (X1, X2) and (Z1, Z2) is that we assume that there exist Li − 1 cut

points on the real line (Li is the number of levels of the ordinal variable Xi, for i = 1, 2) such

that Xi is obtained from Zi by binning the variable into Li bins, through the Li − 1 cut points.

Then the polychoric partial correlation between X1, X2 adjusting for Xk≥3 ∶= {Xk}k≥3 is given as

−ω12/
√
ω11ω22. Now for a set of ordinal random variables (X1, . . . , Xp), polychoric correlations

assume that there exist some latent (i.e. not observed) continuous variables (Z1, . . . , Zp) whose
joint distribution is multivariate Gaussian with some mean vector (whose k-th coordinate is just

the linear regression of Zk over all other Zi, i ≠ k) and covariance matrix Σ = (σij)i,j . Denote

Ω = Σ
−1

= (ωij) the corresponding precision matrix. Then Xk is a binned version of Zk obtained

thanks to some cut points −∞ = αk,0 < αk,1 < ⋅ ⋅ ⋅ < αk,Lk
= +∞. Finally, the (non partial)

polychoric correlations between Xi and Xj is defined as ρi,j = σij/σiiσjj . It is the correlation

between the corresponding latent variables Zi, Zj . Note that this quantity is not adjusting for all

other Xk, k ≠ i, j. Finally, we define partial polychoric correlation between Xi, Xj as the quantity

−ωij/√ωiiωjj where Ω = Σ
−1
.

Appendix B: Simulation scenarios

It is not possible to simulate directly categorical variables with a prescribed correlation struc-

ture. So we rely on the simulation of continuous variables which are then randomly binned into

categorical (ordinal) values. We have a total of 4 scenarios.
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First simulation setting: purely synthetic, polychoric correlation structure

In this setting, we draw a random partial correlation matrix Θ from a G-Wishart distribution,

using the R package BDgraph (Mohammadi et al., 2024). Indeed, correlation and partial correlation

matrices have the constraint that they are definite positive matrices and the G-Wishart distribution

is the only known distribution that outputs definite positive matrices. More precisely, we first draw

a skeleton (i.e. positions of non-zero values), with some probability parameter ’prob’. It is

the density of the true graph and we explore different values for this parameter, with low values

corresponding to sparse graphs while larger values correspond to denser graphs. Then, for each

non-zero interaction, we draw a weight so that the joint distribution of the resulting matrix is

G-Wishart. Finally, from this partial correlation matrix Θ, we draw Gaussian random variables

having this correlation structure and then get (with random bins) categorical (ordinal) variables.

This setting is exactly the one corresponding to the idea behind using polychoric correlations

as input in graph inference methods. All those steps are done automatically at once when relying

on the function bdgraph.sim. We vary the sparsity parameter ’prob’ of the graph in the set

{0.1; 0.2; 0.3; 0.4; 0.5; 1}.

Second simulation setting: relying on an initial real dataset, polychoric correlation structure

Here, we start from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D)

dataset (Trivedi et al., 2006). It is a randomized clinical trial of outpatients with major depressive

disorder (MDD), designed to prospectively evaluate the effectiveness of pharmacological and psy-

chotherapeutic treatment. In the dataset, MDD symptom severity is assessed using the 16-items

Quick Inventory of Depressive Symptomatology – Clinician-Rating scale (QIDS-16). The 16 items

have been collapsed into the 9 criterion symptom domains that define MDD according to the Di-

agnostic and Statistical Manual of Mental Disorders. Those 9 symptoms (i.e., value of p) score

from 0 (i.e., no problem) to 3 points (i.e., severe problem) resulting in L = 4 ordinal levels. In this

setting, we choose to infer the partial polychoric correlations among p variables starting from the 9

symptoms collected in the STAR*D dataset. More precisely, for different values of the number of

symptoms p, we sample p variables from the original dataset and estimate their partial polychoric



39

correlations with the function cor auto() from the R package qgraph (Epskamp et al., 2012). Note

that the result is not sparse and no value will be zero (i.e. the density of the underlying graph is

1). Then, starting from this matrix, say Θreal, we input it in the BDgraph package (Mohammadi

et al., 2024) in order to generate datasets with this fixed partial correlation structure, exactly as in

the first simulation setting (but skipping the random generation of Θ).

Third simulation setting: independent variables (no correlation)

We consider the case of independent variables, i.e. the correlation matrix is the identity matrix

and the partial correlation graph is empty. This is an unrealistic setup, that we keep as a control

experiment, in order to understand how the methods behave in this extreme case where there is no

signal in the data. As this scenario is easier to run for the inference methods, we could investigate

the extra case of p = 20 variables.

Fourth simulation setting: non polychoric correlation structure

Following the example of Liu et al. (2021), we explore a heterogeneous dataset that deviates

from the polychoric correlations based setting in that the underlying continuous variables are not

jointly Gaussian. More precisely, we rely on the mixture of two p-dimensional Gaussian distribu-

tions, further binned into levels. We thus consider the mixture with equal proportions of samples

drawn as in the first simulation setting: prob1,prob2 are the sparsity levels of each component

partial correlation graph. For each component of the mixture, we draw the non-zero entries of

the covariance matrices Σ1,Σ2 according to a G-Wishart distribution with respective sparsity lev-

els prob1,prob2. Then we draw two p-dimensional Gaussian distributions with corresponding

covariances Σ1,Σ2. Binding the two samples gives us the desired mixture of two-components p-

dimensional Gaussian distributions. Binning the Gaussian variables into discrete levels then further

creates ordinal variables.

In this setting, there is no “true” partial correlation for the mixture. Instead, we take the

empirical partial correlation of the Gaussian random variables as the true value for Θ. As a

consequence, our proxy for the true correlation graph has density 1 (no estimated correlation is 0,
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all edges are present).

Appendix C: Methods compared

We grouped the 14 methods into 4 different groups.

Group 1: Direct estimation of partial correlations

In this group of methods, we first rely on polychoric correlations, for which there are 2 different

estimators and we contrasted those 2 methods with a computation of Pearson’s partial correlations,

that treat the data as continuous variables.

Our first method poly.mle is a maximum likelihood estimator (MLE) of the polychoric cor-

relation, as proposed in Olsson (1979). It is implemented in function cor auto from the package

qgraph (Epskamp et al., 2012). The second method poly.wls is based on a weighted least squares

estimator of the polychoric correlation. It’s implemented in the package psychonetrics (Epskamp,

2024), using function ggm. The third and last method in this group, pears, simply estimates Pear-

son’s partial correlations, through its empirical estimator.

Group 2: methods from qgraph

This group contains 2 categories of methods, that both correspond to finding the ML estimator

in a GGM and using EBIC criterion for model selection: the EBICGlasso proposed in Epskamp

and Fried (2018) and the ggmModSelect method discussed in (Isvoranu and Epskamp, 2023). Each

method is available in 2 versions, either relying on polychoric or on Pearson correlations estimates

as input. We call the methods Glasso.poly, Glasso.pears for the first 2 based on EBICGlasso

and ggmMS.poly, ggmMS.pears for the 2 others based on ggmModSelect. In the case of polychoric

correlations, we use as input for the methods the output from the poly.mle method above, as it is

the most widely used method.

Group 3: methods from GGMnonreg and BGGM

This category first includes methods from the R package GGMnonreg (Williams, 2021b) imple-

menting estimators proposed in Williams et al. (2019, 2020). Three variants are considered. The
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first variant assumes a GGM and first performs p independent (non regularized) regressions of each

of the variables on the others. Then, it relies on the neighborhood selection procedure (Mein-

shausen and Bühlmann, 2006) to obtain a sparse estimate. We call this method GGMnr.neighsel.

Note that this method implicitly relies on Pearson’s partial correlations (because each of the p

regression procedures estimates a Pearson’s correlation coefficient). The second variant relies on a

bootstrap procedure. It starts performing a singular valued decomposition (SVD) of the empirical

covariance matrix Σ̂ and use this SVD to define a generalized inverse Θ̂ of Σ̂ and thus corresponding

partial correlations. Note that up to this point, it corresponds exactly to the proposal of Schäfer

and Strimmer (2004) discussed below. Also at this stage, the graph is complete (all edges are

present because none of the estimated partial correlations is 0). Finally, relying on bootstrap, one

obtains a confidence interval on each partial correlation coefficient and use this for thresholding

the coefficients and sparsifying the estimator. We call this method GGMnr.boot.pears. Note that

Schäfer and Strimmer (2004) also used a bootstrap step, however in a different way, to robustify

their estimator instead of thresholding it. The last and third variant is same as previous, relying

on polychoric correlations. We thus call it GGMnr.boot.poly.

We additionally consider in this group 2 methods from the BGGM (Bayesian Gaussian Graphical

Models) package (Williams and Mulder, 2019) that were also included in the comparison by Isvoranu

and Epskamp (2023), namely the functions BGGM explore and BGGM estimate.

Group 4: methods from geneNet and PAsso

We consider in this group the method of Schäfer and Strimmer (2004). Originally developed in

the context of gene associations networks, it is a regularization method for GGMs. It corresponds

to the function ggm.estimate.pcor from the R package GeneNet (Schäfer et al., 2021). We call

the method ggmSS.

Liu et al. (2021) claim that relying on polychoric associations for ordinal variables is a bad idea.

They propose a new method, based on surrogate residuals. It consists in simulating a continuous

latent variable (with some specific distribution) and construct the corresponding residual (at the

end, the results are averaged over many simulations, around 30 simulations). Then, many different

types of correlations can be looked at for these residuals (they propose 3 different measures, that
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capture not only linear correlations). The method corresponds to the R package PAsso (Zhu et al.,

2021). We call it PAsso.

Appendix D: Additional figures
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Figure A.

Scenario 1: An example of the skewness values (boxplots over 100 replicates) of the distributions of p = 10 symptoms

(displayed as 10 graphics) for the different values of sample size n ∈ {100; 250; 500; 1, 000; 2500} (displayed on the

x-axis). The setting corresponds to L = 6 ordinal levels and density of the true partial correlation graph prob=0.3.
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Figure B.

Scenario 2: Examples of execution error rates (averaged over 100 replicates) of all the methods (displayed as 14

graphics in each picture). The x-axis displays sample sizes (left picture), number of symptoms (center picture) and

number of levels (right picture).
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Figure C.

Scenario 3: Examples of the execution error rates (averaged over 100 replicates) of all the methods (displayed as 14

graphics in each picture). The x-axis displays sample sizes (left picture), number of symptoms (center picture) and

number of levels (right picture).
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