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Abstract: This paper revisits the conventional convex lifting method for space partition in
static topologies by adding a series of guarantees for obstacle avoidance in the framework of
multi-agent navigation strategies. Further, the present work proposes a new methodology that
adapts the convex lifting method in such a dynamic environment. To complete the developments
towards navigation, the paper introduces a Model Predictive Control method for trajectory
planning and navigation for an agent and presents examples of integrator-like multi-agent
systems in a cluttered environment prioritizing the safety and control objectives of each agent.
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1. INTRODUCTION

A multi-agent system (MAS) comprises multiple au-
tonomous entities, like processes, robots, or autonomous
vehicles, operating within a specific environment and en-
gaging in actions governed by preset rules. Each agent pos-
sesses autonomy, enabling independent decision-making
and action-taking. MAS focuses on two primary con-
cerns: enabling agents to achieve control objectives au-
tonomously and facilitating cooperation and negotiation
among agents for task completion (Wooldridge, 2009).
Ongoing MAS research explores diverse domains, includ-
ing military systems, traffic management, supply chain
optimization, and robotics (Murray, 2007).

In tackling MAS challenges, researchers have proposed
various solutions. Notably, Ames et al. (2019) integrates
control barrier techniques to ensure agent safety in a MAS
coverage scenario. Rezaee and Abdollahi (2011) employs
potential field methods for formation conservation with
obstacle avoidance. Voronoi partitions are also employed,
for instance Chevet et al. (2019) which defines safety sets
for agents using guaranteed partitions, controlled in a
decentralized manner via robust model predictive control.
Another study (Hatleskog et al., 2018) suggests Voronoi
partitioning, where agents are internally controlled by
tracking their respective cell’s Chebyshev center.

On the other hand, several research groups are employing
model predictive control (MPC) as a tool for the MAS
field. Earl and D’Andrea (2007) demonstrates the utility
of mixed-integer linear programming (MILP) in modeling
complex decision-making processes, obstacle avoidance,
and trajectory planning. De Oliveira and Camponogara
(2010) applies MPC to manage traffic networks using a

multi-agent MPC model. Wang and Ding (2014) presents
a distributed MPC study where control actions are syn-
chronized. Afonso et al. (2020) contributes a study on task
allocations and trajectory planning, addressing challenges
such as obstacle avoidance and connectivity constraints.

The present paper aims to tackle the MAS deployment is-
sue in a decentralized way with collaborative assumptions
but a minimal collection of information with respect to the
environment. Convex lifting techniques Ioan et al. (2019)
are used to form polyhedral space partitions for agents
and obstacles, establishing paths and safety sets. While
the previous framework suits static topologies, we further
extend their constructions to fit dynamic environments.
This approach is applied to a MAS environment where
agents deploy to target points in a decentralized manner
with a limited information on the environment and the
decision-making on the neighbor agents. Also, we propose
a reachability analysis able to certify a set of target objec-
tive and an MPC strategy for navigation.

The paper is organized as follows: Section 2 briefly defines
the multi-agent problem addressed. Section 3 discusses
the convex lifting method and provides a methodology
for dynamic environment cases. Section 4 proposes a
decentralized control algorithm to be used within the
proposed framework. Section 5 discusses the numerical
results before the conclusions.

Notation: Rn, R> denote the set of real numbers in n-
dimensional space, the set of positive real numbers and
the set of non-negative integers up to any given variable,
respectively. IN is a set of indices which represents ordered
subsets of N where N denotes the cardinality of the set,
I. In refers to n× n identity matrix. In particular, I2N :=



{(i, j) : i ∈ IN , j ∈ IN , i ̸= j}. Besides, V(S), int(S)
denote the set of vertices, the interior of a polytope S, re-
spectively. Proj(S,S) represents the orthogonal projection
of S onto the space S. Given two sets S1, S2 ∈ Rd, the
Minkowski sum, distance and complement are S1 ⊕ S2 =
{x1 + x2 : x1 ∈ S1, x2 ∈ S2}, d(S1, S2) = min

s1∈S1,s2∈S2

||s1 −

s2||, and S1/S2 = {x ∈ S1 : x /∈ S2} respectively.

2. PROBLEM FORMULATION

A cluttered environment denotes a space defined by a
compact set X ⊂ Rn but densely populated with objects,
whether obstacles or agents, resulting in a chaotic and ob-
structed navigation setting. In order to establish a generic
representation of the obstacles and agents, a polytopic
representation will be adopted. In other words, we will
consider these regions to be represented by polyhedra.
Two reasons for this choice: i) polyhedra are universal
approximators for the convex set; ii) any nonconvex set can
be represented as a union of convex sets. Based on those
principles, any cluttered environment can be described in
terms of a collection of polyhedral sets.

Definition 1. A polyhedron is defined as the intersection
of a finite number of halfspaces.

P = {x ∈ Rn|Hx ≤ w} 2

We will be interested in dealing with arbitrary polyhedral
sets in a given domain, and the next definition is useful
for notational purposes:

Definition 2. Given a bounded polyhedral set X ⊂ Rn,
the family of polyhedral subsets of X is defined as:

P(X) = {P ⊆ X|∃(H,w) s.t. x ∈ P ⇔ Hx ≤ w} 2

Starting from this family of sets, one can describe a
collection of N polyhedra in X as {Pi}i∈IN

⊂ PN (X).
Obviously, overlaps of these objects should be avoided
when describing a navigation scene. Thus, all the valid
spatial distributions of obstacles and agents within a scene
X can be described as follows.

Definition 3. Given a bounded polyhedral set X ⊂ Rn,
the family of valid spatial distribution (disjoint) of N ∈ R
objects in X is denoted as:

PN
D(X) = {{Pi}i∈IN

⊂ PN (X) such that

int(Pi) ∩ int(Pj) = ∅, (i, j) ∈ I2N} 2

Addressing navigation challenges in such environments
involves establishing safety regions that adapt to changes
in the environment and provide clear pathways from the
origin to the destination.

A key component is the design of the safe regions, which
can be done effectively by exploiting the space partitions.

Definition 4. Given a set of disjoint polyhedral objects,
{Pi}IN

⊂ PN
D(X) in a cluttered environment X, a family

of space partitions induced by these objects is defined as:

WN ({Pi}IN
, X) = {{Xi}IN

⊂ PN
D(X) |X =

⋃
i∈IN

Xi,

Pi ⊆ Xi,∀i ∈ IN} 2 (1)

As a shorthand notation, a collection of polyhedral objects
will be denoted as P ≜ {Pi}IN

⊂ PN
D(X), and the

space partitions X ≜ {Xi}IN
⊂WN (P, X), whenever the

cardinality of the respective collection of sets is clear from
the context.

The collection of all conceivable positions or waypoints
accessible to a robot or agent within its environment
is known as its configuration space. This element holds
significant importance in motion planning, especially when
analyzing feasible paths and obstacle avoidance schemes.
In terms of navigation, the feasible region of the spatial
configuration space can be expressed compactly as in (2),

CX (P) ≜ X/P or equivalently CX (P) ≜ X/P (2)

Assumption 1. The agents are deployed in a common
space to perform given separate tasks, which will avert
conflict and convergence to their respective target posi-
tions. Furthermore, it is assumed that during the realiza-
tion of their ego objectives, all agents obey safety rules
cooperatively. 2

Definition 5. A collection of safety sets, S = {Si}IN
⊂

PN
D , corresponds to bounded regions (subsets of S). It is

defined such that each agent has the capability to navigate
while ensuring that its trajectory remains confined within
the respective set Si. 2

A multi-agent system denoted by Σ where an agent,
α ∈ IΣ will be considered to be described by means of
a discrete linear time-invariant dynamics,

xα(k + 1) = Aαxα(k) +Bαuα(k) (3)

with uα ∈ Rm the control input (generally the speed) and
xα ∈ Rn (generally the position).

Assumption 2. The set of polyhedral objects, which in-
duce the space partitions, consist of agents and obstacles
P = {Wi}IΣ

∪{Oi}Io
= {Pi}IN

⊂ PN
D where |IN | = |IΣ|+

|Io| with |Io| is the cardinal of the set of obstacles and
|IΣ| is cardinality of the set of agents and IN = IΣ ∪ Io.
Each agent has their own polyhedral geometry, W 0

α ⊂ P
as a compact set, and they occupy a space parameterized
as W k

α = W 0
α ⊕ xα(k) where xα(k) is the position of the

center of the agent at time instant k. 2

Assumption 3. For each agent, the information-sharing
and decision-making criteria are made according to the
following principles:

• Each agent sends its state information, xα(x) and
observed obstacles position to central unit.

• The central unit is responsible for collecting the
state measurements to compute and broadcast the
space partition information, X , to each agent. This
partition can be updated at each time instant, thus
will be denoted X (k)

• Safety : each agent obeys collision avoidance con-
straints and chooses the control actions to fulfill this
restriction as a first priority.

• Privacy : Each agent manages its own control objec-
tive associated with their target point x̄α. Neither the
target point nor the control actions uα(k) need to be
shared.

• The local feedback control actions are exclusively
based on agents’ control actions and the space parti-
tion that they belong to uα(xα(k), x̄α,X (k)) 2

Definition 6. During the mission, safety guarantees are
provided for all agents in such an environment if



(1) Si(k) ∩ Sj(k) = ∅, (i, j) ∈ IN
(2) W k

α ⊂ Sα(k), α ∈ Σ

(3) W
k+l|k
α ⊂ Sα(k), for l = 1, ..., Np

are established with Np number of predicted steps. 2

The control objective is to provide a decentralized control
law ensuring safety for all agents and prioritizing conver-
gence to their final location as a part of their mission.

lim
k→∞

∥xα(k)− x̄α∥ = 0, α ∈ IΣ (4)

If this goal comes against the safety requirements, then
the decentralized control policy will guarantee:

lim
k→∞

∥xα(k)− x̂α∥ = 0, α ∈ IΣ (5)

with x̂α (local target) such that a path exists between this
point and x̄α.

3. SAFETY BY TIME-VARYING PARTITIONING OF
A DYNAMIC ENVIRONMENT

3.1 Space Partitioning via Convex Lifting

Previous studies built on convex lifting Ioan et al. (2019),
a versatile design framework able to decompose the space
in order to generate a connectivity graph enabling path
planning and obstacle avoidance. The idea is to generate
space partitions based on lift and projection operations.

Definition 7. Given a collection of polyhedral sets P =
{Pi}IN

⊂ PN
D(X), a piecewise affine lifting function z :

X → R defined as

z(x) = max
i∈IN

aTi x+ bi

is admissible for P if it satisfies the following property:

z(x) > aTj x+ bj , ∀x ∈ int(Pi), (i, j) ∈ I2N 2

The lifting functions can be obtained by solving the
following optimization problem:

min
ai,bi

J =

|IN |∑
i=1

∥
[
aTi bi

]
∥22 (6a)

s.t. aTi v + bi ≤M,∀v ∈ V(Pi),∀i ∈ IN , (6b)

aTi v + bi ≥ aTj v + bj + ϵ,∀v ∈ V(Pi), (i, j) ∈ I2N (6c)

with M, ϵ > 0 respectively for boundedness condition
in (6b) and convexity condition in (6c). The traditional
method involves lifting and projection procedures depicted
in Fig. 1a. Lifting functions are computed for each polyhe-
dral object shown in red, solving (6). The lifted polyhedron
in blue in Fig. 1a is constructed by computing the epigraph
of the lifting functions. The facets of the lifted polyhedron
represent the epigraph of each lifting function and their
projections satisfy the constraints in (6b) and (6c). This is
demonstrated in green by lifting the polyhedral objects
(in red) onto the lifted polyhedron. Space partition in
purple can be obtained by projecting the facets of the lifted
polyhedron into the original space. Besides, the properties
of the lifting functions in the definition lead to the same
polyhedral space partition which can be computed in (7)
that surrounds obstacles such that X ⊂WN

D(P, X).

Xi = {x|aTi x+ bi ≥ aTj x+ bj , (i, j) ∈ I2N}. (7)

Proposition 1. The polyhedral partition, X = {Xi}i∈IN
⊂

WN , resulted from (7) has the following properties:
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Fig. 1. Convex lifting procedures.

(1) Pi ⊆ Xi,∀i
(2) Xi ∩ Pj = ∅, (i, j) ∈ I2N 2

It can be highlighted that whenever the current position
of an agent and the target location x̄ are located in the
same region of the partition, i.e. (xα(k), x̄α) ∈ Xi, then as
a local navigation problem one can define safety regions,
Si ← Xi and use a constrained control to reach to the
objective by guaranteeing the safety policies.

3.2 Path Planning in Static Environment

To solve the navigation problem in a cluttered environment
globally, an interconnected graph is created using the
facets of the partitions generated via convex lifting.

Definition 8. The interconnected graph of paths is de-
noted as Γ(N , E , f) and is defined by the tuple (N , E , f),
where N represents the set of nodes corresponding to the
vertices of the graph, E represents the set of edges, and
f : E → R is a function that denotes the weights associated
with each edge of the graph. 2

The shortest path, determined by given weights, can be
found using graph search techniques such as the Dijkstra
algorithm (Dijkstra, 1959) which subsequently yields the
path denoted by Path(x0, x̄) = (x̄0, x̄1, ..., x̄p = x̄). Def-
inition 9 characterizes a continuous path, path size, and
corridor functions based on the piecewise linear connection
of these waypoints.

Definition 9. Given a collection of polyhedral set P and
the related partition generated via convex-lifting, X , a cor-
ridor between two nodes (x0, x̄) ∈ int(CX (P)) is character-
ized by the existence of two functions: γ : [0, 1] → CX (P)
and ρ : [0, 1] → R> 0 satisfying γ(0) = x0 and γ(1) = x̄,
γ(θ)⊕ B2

0,ρ(θ) ⊂ CX (P), ∀θ ∈ [0, 1].

Next, a series of corridor segments, safe from any obstacles
in the configuration space, can be specified as follows:

Π = { x ∈ Rd : ∃θ ∈ [0, 1] s.t. x ∈ γ(θ)⊕ B2
0,ρ(θ)} (8)

Computing corridors by considering the union of convex
sets can enhance navigation tasks, simplifying the repre-
sentation. Specifically, we define the corridor as the com-
bination of convex sets calculated for each segment of the

piecewise linear path, Π =
⋃Nc

i=1 Πi where,

Πi = { x ∈ Rd : ∃θ̃ ∈ [0, 1] s.t. x ∈ γi(θ̃)⊕ B0,ρi(θ̃)
} (9)

and,
γi(0) = xi, γi(1) = xi+1 (10)

Also, the radius defining the ball in (9) can be found by
the minimum distance along a path segment.
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Fig. 2. Trajectory generation for static environment.

ρi(θ) = min
Pj∈P

d(Pj , γi),∀θ̃ ∈ [0, 1] (11)

Every corridor segment is formed by combining the
Minkowski sum of a path segment with a ball determined
by the minimum distance obtained in equation (11). The
navigation along the generated trajectory from x0 to x̄ can
be achieved using MPC simply for each corridor segment,
Πi as detailed in Section 4. A complete trajectory resulting
from the navigation from the initial corridor to the final
corridor is illustrated in Fig. 2. 1

3.3 Time-varying Convex Lifting Framework

We describe next one of the contributions of the present
work which targets a time-varying update of convex lifting
based on the real-time position of the obstacles P(k).
Remark 1. Considering moving obstacles, the space parti-
tion generated by convex lifting in the static framework
becomes invalid when one of the following statements
related to dynamic environments holds.

(1) Each polyhedral object is located in the corre-
sponding partition, Pi(k) ⊂ Xi(k), but the new
agent/obstacle position intersects with any corridor

Πi(k) ∩ Pi(k + 1) ̸= ∅
(2) One or more polyhedral objects does intersect with

the corresponding partition, Pi(k+1)∩Xj(k) ̸= ∅ for
some j ̸= i ∈ IN 2

As described in Proposition 1, the partition of the envi-
ronment provides inclusion property for each pair of poly-
hedral objects, Pi ⊆ Xi. This enables the usage of space
partitions as a safety set for each agent. The partition
update is implicitly dependent on time, but it explicitly
relies on the position of the agents. Therefore, it can be
triggered by state updates, and agents can realize their
mission by obeying the safety policy in Definition 6.

Scaling approach To guarantee safety, each region of the
partition can be scaled by solving the linear program,

min
λ

λ s.t. λXi ⊃ Pi, λ0 < λ < 1 (12)

with λ0 is a user-defined minimal scaling factor. Based
on the optimal scaling, a safety set construction can be
obtained.

Si = λiXi (13)

Proposition 2. Iterative lifting along the trajectories of the
moving agents provides a recursive safe set for each agent
by means of the time-varying state partition. 2

1 YALMIP (Löfberg, 2004) and MPT toolboxes (Herceg et al.,
2013) are utilized in the construction of algorithms and solving
optimization problems.
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Fig. 3. Reachability analysis.

Proof: If the optimization problem (6) is feasible, it pro-
vides Wα(k) ⊂ Xi(k) at time instance k and considering
the safety control policy, Wα(k + l) ⊂ Si(k) ⊂ Xi for
l = 1, . . . , Np, thus the solution, zk(x) = aTi x+ bi for x ∈
P k
i , ∀i, is feasible at time instance, k + 1. 2

Reachability analysis Guaranteeing the ability to achieve
the mission has considerable importance for each agent.
The condition x̄α ∈ Sα doesn’t guarantee mission comple-
tion due to the evolution of X (k) as a function of the posi-
tion of the neighboring agents. These can occupy space and
render a previous target point infeasible. The reachability
analysis can be used to find a safe set for each agent as a
collection of target points that can be recursively tracked
regardless of the other agents’ trajectory as long as they
obey the safety requirements.

Given a collection of initial polyhedral sets P, we aim
to construct iteratively collections of polyhedral sets Rj

where j is the iteration index. and each particular set
within the collection is given by:

Rj+1
i = (AiR

j
i ⊕BiU)

j⋂
l=1

L(Rj)l (14)

As part of the construction, the convex lifting function
X = L({Ri}i∈IN

) is employed with the notational con-
vention L(Rj)i to denote the i-th region of the partition
at iteration j. Using an initialization R0

i = Pi(k), it can
be asserted that a navigation mission can be completed for
each corresponding agent if the target positions are such
that x̄i ⊕ Pi ⊂ R∞

i , for i ∈ IΣ.
Proposition 3. For an integrator-like dynamics (Ai = I),
given the current positions of the polyhedral objects P(k),
it exists a corresponding polyhedral collection R(k) =
{R∞

i }IΣ . Moreover, for any x̄i ∈ R∞
i there exists a control

policy such that limk→∞ ∥xi(k)− x̄i∥ = 0 for all i ∈ IΣ.

Proof: The polyhedra resulting from the lifting function
will belong to the class WN which is a collection of
bounded polyhedra in space, Rn. The first term with
Minkowski sum will iteratively enlarge the reachable set
on the principle Ri ⊂ (Ri ⊕BiUi) as long as this is viable
with respect to the limits of each region’s boundaries. The
iterative procedure is expansive and upper-bounded and,
as such, will converge to a collection of sets that represent
the reachable regions.

In Fig. 3, reachability analysis is illustrated for three
agents. Their reachability sets, polyhedral shapes, and
desired positions are given in corresponding colors, and
black lines show the evolution of facets of the partitions
during the computation. To conclude, a mapping based on



reachability analysis,

M : PN
D(X)→ PN

D(X) (15)

M(P) = {R∞
i }IΣ

can be constructed to characterize the collection of sets
that gather for each agent the reachable set within the
clutter environment. The underlying convex-lifting parti-
tion guarantees the the joint evolution of the neighbours’
position by guaranteeing the safety requirements.

4. MPC-BASED NAVIGATION

As is described in subsection 3.2, the facets of the space
partitioning can be used as edges in the interconnected
graphs, Γ(N , E , f), providing connectivity with the initial
and target positions for each agent. Then, by computing
the shortest path in the graph, a set of waypoints can
be defined as Path(xk, x̄) = (x̄0

k, x̄
1
k, ..., x̄

p
k = x̄) at any

time instant and agents can accomplish their mission
by following the paths’ first waypoint, x̄1

k. Furthermore,
to ensure reachability, the point can be projected into
reachable sets obtained from R =M(P), as in (15), and
used as a waypoint.

x̂α =min
x̃
∥x̄1

k − x̃∥22 (16a)

s.t. x̃ ∈ Rα (16b)

As a drawback, even small changes in the path at each
iteration can affect the tracking control drastically. Thus,
agents update their paths after they reach the waypoint
retrieved from the previous path solution.

The navigation mechanism completes the real-time de-
ployment by obeying safety policies, which include explicit
constraints imposing the trajectory to stay in the safe set.
The ideas of safety and control policies make the MPC
a suitable candidate for trajectory tracking during the
deployment. Considering each LTI dynamics of the agents
as in (3) to be integrator type A = I, one can formalize
the quadratic cost for the MPC problem:

J (x̄, xk, U) = ∥xk+Np|k − x̂α∥2P+
Np−1∑
l=1

∥xk+l|k − x̂α∥2Q+
Np−1∑
l=1

∥∆uk+l|k∥2R
(17)

where Np is prediction horizon, x̂α is reference point
in where the agent should deploy, Q is state penalty
matrix, R is control increment penalty matrix, and P
is the terminal cost penalty matrix. The vector U =[
uk|k ... uk+Np−1|k

]T
is the optimization argument:

T (Np,Ωα, x̂α) : min
U
J (Np, x̂α, xk, U) (18a)

s.t. xk+l+1|k = xk+l|k +Buk+l|k, (18b)

uk+l|k ∈ U , ∀l = 1 : Np − 1, (18c)

W
k+Np

i ⊂ Ωα (18d)

with state-space dynamics (18b), input constraints (18c)
and state constraints (18d) and the problem is solved at
each time step k to produce trajectories. To guarantee the
system will remain inside the safety set, state constraints
are defined by a controlled invariant set Ωα, such that
(A +K)Ωα ⊆ Ωα, assuming K is a feedback control gain
that stabilizes the system (i.e. A+K is Schur). Then, the
set, Ωα, can be computed for each agent as follows:

Oj = Oj−1 ∩ {HAj
c ≤ w} (19)

Fig. 4. Safe navigation in a MAS environment.

where Ac = A+K and the iterative procedure is initialized
by the set

O0 = {Si⊕−xα}∩{z ∈ Rn|Kz ∈ U} ∆
= {z ∈ Rn|Hz ≤ w}

such that for each region of the partition, a particular
change of variable z = x−xα takes place. The set iteration
will be stopping when Ω̃α = Oj = Oj−1 and the terminal
set for problem (18) is found as, Ωα = Ω̃α ⊕ xα.

Blocking Case: During the mission, it can be unavoid-
able that agents may block each other, in particular when
their paths intersect. In this case, for the sake of decen-
tralized control, agents are expected to solve the blocking
situation by themselves. In the 2D case, the problem can
be approached by proposing an optimization problem to
be solved for each agent when the situation occurs. The
optimization problem defined in (20) is solved for each
agent with n consecutive point minimizing (20a).

x̃i =min
x̃i

∥x̃i − x̄α∥22 (20a)

s.t. x̃i ∈ Rα (20b)

−β
[
1
1

]
≤ x̃i−1 − x̃i ≤ β

[
1
1

]
(20c)

for i = 1, 2, ..., n with x̄α is the set point, β is the user-
defined variable as defined in (20c), it allows the maximum
amount of step by remaining in the region (20b). If the
condition, ∥x̃i − x̃i−2∥≤ ∥x̃i−1 − x̃i−2∥ holds true, in
other words, cost function doesn’t improve, the last results
rotated by an angle defined by θ as follows:

x̃i = x̄α + T−1(θ)(x̃i − x̄α) (21)

where T (θ) is the planar rotation matrix,

T (θ) =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
(22)

Then, x̃i found in (21) is projected onto the set, Rα by
solving optimization problem in (23).

x̃i =min
x
∥x− x̃i∥22 (23a)

s.t. x ∈ Rα (23b)

As a result, the solution can be used as a reference, x̂α,
for the MPC problem defined in (18), which forces each
blocked agent to perform a heuristic maneuver (commonly
accepted – e.g., avoid by the right-hand side).

5. SIMULATION RESULTS

The proposed framework is employed within a 2D en-
vironment featuring a single static obstacle positioned
at coordinates (5,5), with four agents initialized at lo-
cations (1,1), (9,9), (1,9), and (9,1), in the meantime,
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Fig. 5. Agents’ trajectories.
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Fig. 6. Evolution of space partition during deployment.

target positions for the agents are designated as (9,9),
(1,1), (9,1), and (1,9), respectively to the numbering. The
environment is depicted in the Fig. 4. The agents have
linear dynamics as their states include position. The space
partitions are shown in corresponding colors, whereas the
brighter regions are the associated safety sets, which can
be obtained via the scaling approach. The space partition
evolution during the simulation is shown in Fig. 6 for each
agent with an associated color whereas the partition of
the obstacle is omitted. The z-axis represents some time
instants. Parameters for convex lifting optimization are set
as ϵ = 0.1 and M = 0.01. The MPC parameter Q = 10I2,
R = 0.1I2, umax = −umin = 0.4, and Np is set to 10.
The resultant trajectories are shown in Fig. 5, and it can
be inferred that the control policy in (5) does not always
exhibit negative decay. This is not only because of the
information constraints for one agent on another but also
because there is no explicit decision-making mechanism on
which path is to be selected concerning other agents’ po-
sitions and trajectories. However, the proposed approach
demonstrates its capability to handle obstacle avoidance
and global control objectives in this environment.

6. CONCLUSION

This paper presents an approach to addressing the deploy-
ment problem towards target points within MAS by utiliz-

ing convex lifting, which facilitates space partitioning and
path planning. A reachability analysis integrated with the
convex lifting method is proposed to ensure partial mission
completion. Also, a set-based MPC-based decentralized
control method is introduced to ensure safety and enable
efficient navigation with limited environmental informa-
tion. Our findings show the capability of our approach
to handle complex MAS deployment scenarios in dynamic
environments. Future work will focus on developing safe
navigation algorithms, particularly addressing uncertainty
and enhancing agents’ decision-making.
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