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This paper addresses the challenge of ice accumulation on aircraft surface wings and focuses
on the electrothermal de-icing modeling. Ice buildup on aircraft not only adds weight but also
hampers aerodynamic performance, posing a threat to flight safety. Thus, the understanding of
ice shedding under the effect of an electrothermal deicer is necessary. However, its modeling
remains particularly challenging. This study introduces a novel model utilizing a variational
approach, specifically employing phase-field methods. This model incorporates phase change,
liquid-solid interaction, and fracture initiation and propagation, allowing for a more enriched
multiphysical simulation of the complex electrothermal ice shedding process. The paper provides
an overview of existing models, details the chosen modeling of individual phenomena, discusses
their coupling, outlines numerical techniques, presents benchmark tests, and concludes with a
discussion of results and future prospects.

Nomenclature

𝑏∗ = Body forces, 𝑚.𝑠−2
𝑐0 = Scaling parameter to recover the shrap crack surface
𝑐𝑠 , 𝑐𝑙 = Solid and liquid specific heat capacities, 𝐽.𝑘𝑔−1.𝐾−1
𝑑 = Damage field
𝐸 = Young’s modulus, 𝑃𝑎
E𝑐 = Kinetic energy of the mechanical system, 𝐽
E𝑝 = Potential energy of the mechanical system, 𝐽
𝑓 = Mixture law function
𝐺𝑐 = Critical energy release rate or fracture toughness of the material, 𝐽.𝑚−2
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𝑔 = Degradation function
ℎ = Enthalpy field, 𝐽.𝑘𝑔−1
H = History function field
I = Identity tensor
𝐽 = Heat flux,𝑊.𝑚−2
𝐽∗ = Boundaries heat flux,𝑊.𝑚−2
𝑘𝑠 , 𝑘𝑙 = Solid and liquid thermal conductivities,𝑊.𝑚−1.𝐾−1
𝐿 𝑓 𝑢𝑠 = Latent heat of melting, 𝐽.𝑘𝑔−1
𝑙𝑟 = Regularized length scale, 𝑚
L = Lagrangian of the mechanical system, 𝐽
𝑛 = Outward unit normal
P = External work, 𝐽
𝑝∗ = External pressure due to aerodynamic forces, 𝑃𝑎
𝑝𝐿 = Liquid layer pressure, 𝑃𝑎
𝑄∗ = Heat source,𝑊.𝑚−3
𝑇 = Temperature field, 𝐾
𝑇∗ = External temperature imposed, 𝐾
𝑇0 = Initial temperature, 𝐾
𝑇𝑚 = Melting temperature, 𝐾
𝑡 = Time variable, 𝑠
𝑡∗ = Boundaries traction forces, 𝑃𝑎
𝑡𝑚𝑎𝑥 = Final time of the simulation, 𝑠
𝑢 = Displacement field, 𝑚
𝑢∗ = External displacement imposed, 𝑚
¥𝑢 = Acceleration field, 𝑚.𝑠−2
𝛼 = Liquid fraction field
𝛽 = Coefficient of thermal expansion, 𝐾−1
Γ𝑐 = Sharp crack surface, 𝑚2
Γ𝐿 = Liquid-solid interface, 𝑚2
𝛾 = Crack surface density function
Δ = Laplacian operator, i.e. Δ𝑢 = ∇ · ∇𝑢
Δ𝑡 = Time step, 𝑠
Δ𝑥 = Average mesh size, 𝑚
𝜖 = Total strain
𝜖𝑒 = Elastic strain tensor
𝜖𝑡 = Thermal strain tensor
𝜆 = First Lamé coefficient, 𝑃𝑎
𝜇 = Second Lamé coefficient, 𝑃𝑎
𝜈 = Poisson’s ratio
𝜉 = Crack geometric function parameter
𝜌 = Mass density, 𝑘𝑔.𝑚−3
𝜎 = Cauchy stress tensor, 𝑃𝑎
𝜎𝑆 = Solid stress tensor, 𝑃𝑎
𝜎𝐿 = Liquid stress tensor, 𝑃𝑎
Ψ𝑐 = Surface energy, 𝐽
Ψ𝑒 = Stored strain energy, 𝐽
𝜓±0 = Positive / negative (tensile / compressive) parts of the energy density function 𝜓0 , 𝐽.𝑚−3
𝜔 = Crack geometric function
∇ = Gradient operator

I. Introduction
From the earliest days of aviation, the issue of ice accumulation on aircraft has been a recurring problem in the

industry [1, 2]. When supercooled water droplets freeze upon contact with an aircraft’s surface (such as wings, rotor
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blades, etc.), it leads to the buildup of ice layers. This issue not only adds extra weight to aircraft but also significantly
impairs their aerodynamic performance, affecting both lift and drag, and posing a considerable threat to flight safety [3].
Numerous systems were developed to prevent the formation of ice or to periodically remove it, including mechanical
(e.g., pneumatic or vibratory systems) [4, 5], chemical (de-icers) [6] or thermal (hot bleed-air) [7] systems. One solution
that aligns with the ongoing research into more electric aircraft is electrothermal de-icing. This approach involves the
installation of heating elements along the aircraft’s surface. The fundamental idea, presented in Fig.1 for a wing leading
edge, is to allow ice to accumulate and then activate these heating elements. When these elements warm up (for the
upper edge: first D, then E and finally F), they create a liquid layer between the aircraft’s wing and the ice, weakening
the ice’s adhesion on the wing surface. Eventually, the aerodynamic forces cause the ice block to detach from its sup-
port. This cycle repeats as long as necessary (ice builds up→ activationD→ activation E→ activation F→ ice shedding).

Fig. 1 Electrothermal defrost cycle (Reprinted from [8], ©Elsevier).
(a) The ice builds up; (b) the electrothermal system is activated; (c) a film of water is created between the ice and

the wing; (d) the block of ice breaks up and is evacuated.

To comprehensively understand the performance of the de-icing system, it is crucial to explore the process of ice
shedding. An empirical criterion, which considers the melting of approximately 80% of the ice block’s contact surface
[9], is commonly used in industry and academia to assess de-icing success. It is however insufficient to fully grasp the
underlying phenomena. Even if this criterion can be verified experimentally and is enough for preliminary system design,
it does not take into account the mechanical phenomena leading to ice shedding. Moreover, this criterion does not depend
on external parameters, such as external flow for example. Scavuzzo et al. [10] studied the influence of aerodynamic
forces on ice shedding using finite elements, concluding that these forces were not negligible. Later, Zhang et al. [11]
propose investigating the stress in the ice block caused by aerodynamic forces and the impact on the propagation of a
pre-existing crack. However, these works did not consider the thermal aspect of an electrothermal de-icing system.
Besides, softwares are developped to simulate and better understand the de-icing phenomena. LEWICE code fromNASA
[12], Ansys FENSAP-ICE [13] or IGLOO code from ONERA [14] can be cited. None of them realizes a fully coupled
model between a mechanical and a thermal part yet. Thus, many questions remain to be answered. What influence does
the height of the water film have on the propagation of the crack that allows the ice block to break away? When and where
is this crack generated and propagated in the ice? How do the various physical phenomena interact to lead to ice shedding?

Electrothermal ice shedding is a complex process involving various physical phenomena such as aerodynamic
flow, solid-to-liquid phase transitions, thermal dynamics, and ice block cracking. This process remains inadequately
understood, and its modeling poses numerous challenges. To the best of the authors’ knowledge, there is scarce existing
research on modeling and simulating the cracking of frost using an electrothermal system. In 2014, Bennani and
coworkers [8, 15] aimed to understand the mechanisms leading to fracture in ice and proposed a weak coupling between
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a thermal and a mechanical solver. In other fields where similar modeling may be relevant, there are no models that
simultaneously account for thermal phenomena including the modeling of phase change and fracture initiation and
propagation. In the field of metallurgy, particularly in additive manufacturing, certain models are suggested taking
into account some of the mentioned phenomena. One recent article from Ruan et al. [16] includes mechanical aspect
with fracture and thermal influence with a damaged-informed heat conduction but without liquid-solid interaction.
Another one, from Yeo and Ki [17], consider both thermal effect with phase change, liquid-solid interaction and stress
analysis, but without fracture initiation and propagation. In a closer field of study, some researchers are interested in
the propagation of crevasses in glaciers, in particular on the influence of the hydrostatic pressure induced by the water
present in them. Recent works on crevasses modeling take into account the mechanical aspect with fracture propagation
and the solid-liquid interaction, but without any thermal effect (Sun et al. [18], Clayton et al. [19]).

This paper aims to introduce a novel model for simulating frost cracking employing an electrothermal system. To
this end, due to the multiphysical aspect of the problem, it was decided to use a variational approach, based in particular
on phase-field methods. Phase-field method can be extremely powerful to track the evolution of individual interfaces
and allow many physical phenomena to be treated simultaneously. Hence, this novel model uses a phase-field approach
while incorporating phase change, liquid-solid interaction and fracture initiation and propagation. These phenomena are
coupled in order to take into account the various interactions they may have with each other. This paper is structured as
follows. First, an overview of the existing models to simulate the various phenomena is done where the different model
choices are presented. Secondly, the chosen modeling of the different phenomena is introduced. First individually,
where each model is described without interaction with each other. Then, the coupling between the governing equations
is specified. Next, the numerical techniques, such as the numerical implementation, used for the resolution of these
equations are addressed. This is followed by some benchmark tests and compared to the literature. Finally the results
are discussed. A conclusion and some perspectives of this work complete this paper.

II. Short overview of existing models
In this section, a chronological description of the various events taking place in electrothermal ice shedding is

presented. Then, a short overview of existing models for modeling these different phenomena is presented. Lastly, a
justification of the models used for this work is brought.

A. Physical phenomena to be modeled
For this work, it is initially assumed that the ice accretion phase has ended and the electrothermal de-icing system is

switched off. It results in an ice block attached to the wing surface. The proposed mechanism for electrothermal ice
shedding is based on these works [8, 20, 21]. Due to aerodynamic forces, a pressure distribution is applied over the lump.
During the activation of the electrothermal de-icing system, a portion of the ice block attached to the wing is warmed
and melts into a liquid layer. As illustrated in Fig.2, a surface exists between the external air flow and the liquid layer. It
is supposed that the liquid layer is at a hydrostatic pressure equilibrium, and the gravitational effect can be neglected in
the fluid. Thus, the pressure of the external flow on the liquid layer is redistributed into it. Because of the ice shape, the
flow passing over it is accelerated, driving in a decrease of the pressure on the top ice surface. At the end, the pressure
differential between the top ice surface and the liquid layer creates a lifting force, eventually leading to ice shedding.

Fig. 2 Schematic pressure distribution on the ice block.

Thus, four phenomena need to be modeled and coupled: 1) the temperature evolution in the ice block, 2) the phase
change from solid to liquid due to the electrothermal de-icing system, 3) the mechanical response to pressure distribution
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over the ice block and liquid layer and 4) the fracture initiation and propagation.

B. Overview of existing models
When following the chronological sequence of a de-icing cycle, the initial phenomenon to occur is the warming of

the ice block, leading to the formation of a liquid layer due to melting. The evolution of the temperature field can be
determined classically by solving the heat equation. However, it is crucial to consider that ice undergoes a phase change
into liquid water. The thermophysical properties of the medium, such as thermal conductivity and thermal capacity,
depend on the phase. Additionally, since the medium comprises two different phases, an interface exists within the
domain. In numerical simulations, there are two groups of primary methods for representing an interface between
both phases: one group contains front tracking methods and the second group contains front capturing methods [22].
In front tracking methods, the interface is explicitly defined as an internal boundary within the mesh and moves as
various quantities change. Thus, it is necessary to solve the heat equation on both sides of the interface (as implemented
for de-icing application in ONERA’s IGLOO solver [23], which can then also be coupled as a one-way system with
a fracture initiation and propagation solver). However, one limitation of these methods is the requirement for the
mesh to move with the interface, demanding substantial computational resources for remeshing to maintain high
precision when capturing intricate geometries and fine details. On the other hand, front capturing methods define
the interface implicitly, reconstructing it using other variables. Often, this reconstruction relies on a variable that
varies from 0 to 1 (0 for one phase, 1 for the other, and an intermediate value at the interface). This new variable
introduction allows thermophysical properties to vary as a function of the phase. The Enthalpy-based Method [9, 24]
is an example of front capturing method for phase change modeling. By using the relation between enthalpy and
temperature, it is possible to write the energy conservation equation depending only on enthalpy. Solving this equation
gives the enthalpy evolution within the studied domain over time. Subsequently, the temperature and liquid fraction
fields (and thus the position of the interface) are derived from the enthalpy once the energy equation has been solved.
While front capturing methods eliminate the need to remesh the domain to track the interface, they have their own
drawbacks. One major limitation is their high dependency on the mesh size for accurate interface positioning, which
can lead to high computational costs and complexity, particularly in the presence of rapidly changing or complex interfaces.

As the ice block is melting, the external flow exerts a pressure redistributed into the liquid layer. It is then necessary
to model the interaction between the liquid and solid phase, especially how the liquid layer pressure is applied on the
solid and how the mechanical stress state evolves. Depending on the method used for the liquid-solid interface modeling,
this effect is treated differently. If a front tracking method is used, the liquid-solid interface is explicitly defined. The
pressure in the liquid layer is then modeled as a boundary condition of the solid domain, moving as the layer grows,
with no need for a stress computation in the liquid domain. If a front capturing method is used, the liquid-solid interface
is represented as a diffuse interface without an explicitly defined boundary between both phases. A mixture law must
therefore be established to compute the stress in the liquid-solid domain, depending on the parameter describing the
current phase of the domain. Similary to the works on hydrofracture [18, 25], the total stress can be split into two parts,
each representing the contribution of each phase. From this, the equation of motion can be rewritten on the whole
domain, taking into account the liquid and solid phases.

The pressure around the ice block and inside the liquid layer induces a mechanical response of the solid. It leads in
the resolution of the equation of motion in the solid domain or liquid-solid domain, depending on the interface mod-
eling choice. This equation can be obtained from a variational formulation of the energy balance of themechanical system.

Finally, just before ice shedding, a crack is generated and propagates through the ice block. The modeling of
cracking dates back to the 1920s, with the work by Griffith [26] who postulated that crack propagation is caused by
an energetical balance between elastic energy and crack surface energy. However, his model only deals with crack
propagation. Since then, many models were proposed to model crack propagation while including a crack initiation
criterion, such as Continuum Damage Mechanics from Kachanov [27] leading to Gradient Damage Model [28, 29], the
Double Criterion Method from Leguillon [30] or the Cohesive Zone Model from Dugdale and Barenblatt [31, 32]. They
do, though, require a prediction of the cracking path. Lastly, a method that has been proving its worth for several years
now is the Phase-Field Model (PFM) first introduced by Bourdin et al. [33]. The PFM is the numerical application
of the works of Francfort and Marigo [34] who deal with the problem as a minimization problem with a variational
approach to Griffith’s work. The principle is similar to a front capturing method. Instead of representing the crack as a
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discontinuity in the solid, a regularization of the crack is made with the introduction of an internal variable (called
phase-field variable or damage variable), named 𝑑, which represents the damage. This quantity varies from 0 to 1,
corresponding with an undamaged material to a fully one respectively. This method is used in a wide range of modeling
applications, from ductile to brittle materials and in many different contexts [35].

C. Modeling choices
In the case of electrothermal de-icing, because of the multiphysical context and the need to couple quantities, the

choice is made to work with the front capturing method. This choice means that the discontinuities in the problem
(liquid-solid boundary, cracking) can be treated as a continuous problem. This also permits a single mesh to be used to
solve all of the subproblems, without the need to remesh in order to follow an interface (as would be the case with a
front tracking method). Four key variables can describe the defrosting process: the displacement field denoted as 𝑢, the
damage field represented by 𝑑, the temperature field indicated as 𝑇 , and the liquid fraction field referred to as 𝛼.

For thermal modeling, the Enthalpy-based Method has been chosen. This choice is justified by its ability to handle
both the evolution of the temperature field 𝑇 and the phase change (liquid fraction field 𝛼) through the enthalpy variation
in the liquid-solid domain.

Because a front capturing method is used for thermal modeling, the liquid-solid interface is diffuse. Using the liquid
fraction field 𝛼, it is possible to define a mixture law from liquid stress to solid stress, allowing to solve the equation of
motion in the whole liquid-solid domain.

For crack modeling, in the context of electrothermal de-icing application, the method used must be able to calculate
the crack initiation and propagation without having any knowledge of the direction of cracking. The choice then naturally
falls on the PFM. Coupled with the equation of motion, the resolution of the governing equation given by the PFM
provides the evolution of the displacement field 𝑢 and the damage field 𝑑. As the ice is a brittle material, the PFM
formulation for brittle materials is used.

To conclude this section, an interconnection diagram, presented in Fig.3, represents the quantities studied and their
coupling. For this work, the evolution of the displacement (𝑢), damage (𝑑), temperature (𝑇) and liquid fraction (𝛼)
fields of an isotropic thermo-elastic solid and liquid body Ω ⊂ R2, with external boundary 𝜕Ω ⊂ R over a time period
[0, 𝑡𝑚𝑎𝑥] is considered.

Fig. 3 Interconnection diagram between the different quantities
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III. A liquid-solid thermo-mechanical phase-field cracking model

A. Outline
This section introduces the comprehensive liquid-solid thermo-mechanical phase-field cracking model addressed in

this paper, which accounts for brittle fracture, thermal effects, phase change and liquid-solid interaction. Initially, the
different phenomena are described individually. A presentation and justification are provided for the various equations
that constitute the model. Subsequently, these components are merged to form a coupled liquid-solid thermo-mechanical
phase-field cracking model, building upon the groundwork laid by the preceding models.

Consider a domain Ω ⊂ R2, presented in Fig.4, composed of two subdomains: a liquid one Ω𝐿 and a solid one
Ω𝑆 such that Ω𝐿 ∪ Ω𝑆 = Ω. In the solid domain Ω𝑆 lies a crack denoted as Γ𝑐. At the boundary 𝜕Ω𝑆 of the solid
subdomain Ω𝑆 can be applied Neumann boundary conditions, designed as 𝜕𝑁Ω𝑆 , or Dirichlet boundary conditions,
noted 𝜕𝐷Ω𝑆 . In the same way, the liquid subdomain boundary 𝜕Ω𝐿 can be divided into two subsets, 𝜕𝑁Ω𝐿 and 𝜕𝐷Ω𝐿 ,
where Neumann and Dirichlet boundary conditions are imposed, respectively. The liquid and solid domain are separated
by an interface, noted Γ𝐿 . For the thermal part, the boundary 𝜕Ω is split into 𝜕𝑁Ω and 𝜕𝐷Ω on which heat flux or
temperature can be imposed.

Fig. 4 Schematic of the solid domain Ω𝑆 affected by a crack Γ𝑐, part of which has melted into a liquid domain
Ω𝐿 separated by an interface Γ𝐿

B. Brittle fracture modeling
First, only the mechanical part of the problem (displacement and damage) is considered. With the same vision as

the energetic approach from Griffith [26], which is that crack propagation is a result of the competition between the
stored strain energy and the surface energy on the crack, the Lagrangian L of the mechanical system, as defined by
Borden et al. [36], is written as follows:

L = E𝑐 − E𝑝 = E𝑐 − (Ψ𝑒 + Ψ𝑐 − P) (1)

where E𝑐 =
∫
Ω𝑆

1
2 𝜌 ¤𝑢 · ¤𝑢𝑑Ω𝑆 is the kinetic energy, 𝜌 the mass density, and E𝑝 the potential energy, which is decomposed

into the stored strain energy Ψ𝑒, the surface energy Ψ𝑐 and the external work P. The external work functional P can be
written as:

P(𝑢) =
∫
Ω𝑆

𝜌𝑏∗ · 𝑢𝑑Ω𝑆 +
∫
𝜕𝑁Ω𝑆

𝑡∗ · 𝑢𝑑𝜕𝑁Ω𝑆 (2)

with 𝑏∗ the distributed body force and 𝑡∗ the tractions applied on the system (the superscript ∗ indicates the prescribed
quantities). Next, the stored strain energy Ψ𝑒 is defined as:

Ψ𝑒 (𝑢, Γ𝑐) =
∫
Ω𝑆\Γ𝑐

𝜓0 (𝜖𝑒 (𝑢))𝑑Ω𝑆 (3)
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The elastic strain energy density function 𝜓0 (𝜖𝑒 (𝑢)) = 𝜆
2 (𝑡𝑟 (𝜖𝑒))

2 + 𝜇 𝜖𝑒 : 𝜖𝑒 is depending on the elastic strain tensor
𝜖𝑒 (𝑢) = 1

2 (∇𝑢 + ∇𝑢
𝑇 ) and the Lamé coefficients 𝜆 and 𝜇. Finally, the surface energy Ψ𝑐 is defined as:

Ψ𝑐 (Γ𝑐) =
∫
Γ𝑐

𝐺𝑐𝑑Γ𝑐 (4)

where 𝐺𝑐 is the critical energy release rate, also called the fracture toughness, which is a material property.

Following the works of Francfort and Marigo [34], then from Bourdin et al. [33], the surface energy is approximated
as:

Ψ𝑐 (Γ𝑐) ≈ Ψ𝑐 (𝑑) =
∫
Ω𝑆

𝐺𝑐𝛾(𝑑,∇𝑑)𝑑Ω𝑆 (5)

where a crack surface density functional 𝛾(𝑑,∇𝑑) is introduced, depending on the damage variable 𝑑 ∈ [0, 1]. The
region with 𝑑 = 0 and 𝑑 = 1 correspond to undamaged and fully broken states of the material. Due to the regularization
of the sharp crack, the stored strain energy is modified:

Ψ𝑒 (𝑢, 𝑑) =
∫
Ω𝑆

𝜓(𝜖𝑒 (𝑢), 𝑑)𝑑Ω𝑆 (6)

The stored energy functional 𝜓(𝜖𝑒 (𝑢), 𝑑) describes a smooth transition from the undamaged bulk material to the
fully crack state, characterised by the initial free energy density function 𝜓0 (𝜖𝑒 (𝑢)) and a degradation function
𝑔 : 𝑑 → 𝑔(𝑑) : [0, 1] → [1, 0]. In order to prevent cracking in regions under compression, a tension/compression split
of 𝜓0 (𝜖𝑒 (𝑢)) is performed such that:

𝜓(𝜖𝑒 (𝑢), 𝑑) = 𝑔(𝑑)𝜓+0 (𝜖𝑒 (𝑢)) + 𝜓
−
0 (𝜖𝑒 (𝑢)) (7)

where the degradation function 𝑔(𝑑) is only applied to what contributes to cracking (tensile part). The choice is
made to use a spherical / deviatoric decomposition to calculate 𝜓±0 . This decomposition was first used in the context
of phase-field by Lancioni and Royer-Carfagni in the study of failures of some structural parts of the French Panthéon [37].

From the lagrangian L presented previously and with the definition of each energy, it is possible to search 𝑢 and 𝑑,
such that they are verifying the associated Euler-Lagrange equations describing the mechanical evolution of the system:

∇ · 𝜎𝑆 + 𝜌𝑏∗ = 𝜌 ¥𝑢 in Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (8a)
𝜎𝑆 · 𝑛 = 𝑡∗ on 𝜕𝑁Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (8b)

for the displacement subproblem, where 𝜎𝑆 is the solid stress tensor defined by the Hooke law: 𝜎𝑆 (𝜖𝑒) = 𝜆𝑡𝑟 (𝜖𝑒)I+2𝜇𝜖𝑒.
Due to the weak motion of the system, the inertia part of the displacement equation is neglected in the remainder of this
paper.

The damage subproblem governing equations are also derived:

𝐺𝑐

(
𝜕𝛾

𝜕𝑑
− ∇ · 𝜕𝛾

𝜕∇𝑑

)
= −𝜕𝜓

𝜕𝑑
in Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (9a)

𝜕𝛾

𝜕∇𝑑 · 𝑛 = 0 on 𝜕𝑁Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (9b)

Wu et al. [38] proposed a general form for the crack surface density function:

𝛾(𝑑,∇𝑑) = 1
𝑐0

[
1
𝑙𝑟
𝜔(𝑑) + 𝑙𝑟 |∇𝑑 |2

]
(10)

caracterized by a geometric crack function 𝛼(𝑑), a scaling parameter 𝑐0 = 4
∫ 1
0

√︁
𝜔(𝑦)𝑑𝑦 and a regularized length 𝑙𝑟 .

As the length scale 𝑙𝑟 approaches to zero, the regularized crack surface converges to the sharp crack. The geometric
crack function is taken as:

𝜔(𝑑) = 𝜉𝑑 + (1 − 𝜉)𝑑2 ∈ [0, 1] ∀𝑑 ∈ [0, 1] (11)
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for 𝜉 ∈ [0, 2], which is a parameter used to select the cracking model. If 𝜉 = 0, the Bourdin’s et al. model [33],
also known as the AT2 model, is reverted to, employing a quadratic geometric crack function 𝛼(𝑑) = 𝑑2. Its linear
counterpart 𝛼(𝑑) = 𝑑 can be found with 𝜉 = 1 to correspond to Pham’s et al. model [39] (also called AT1 model). If
the expression of 𝛾 is introduced in the damage subproblem governing equations, they become:

𝐺𝑐

𝑐0

(
1
𝑙𝑟
𝜔′ (𝑑) − 2𝑙𝑟Δ𝑑

)
= 2(1 − 𝑑)𝜓+0 (𝜖𝑒) in Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (12a)

∇𝑑 · 𝑛 = 0 on 𝜕𝑁Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (12b)

In the remainder of this paper, the AT2 model is adopted.

However, in this current form the damage variable 𝑑 can decrease, leading to a "healing" of the material. To take
into account the irreversibility process of fracture, Miehe et al. [40] introduce a history functionH defined as:

H = max
0≤𝑡 ′≤𝑡

(
0, 𝜓+0 (𝜖𝑒 (x, 𝑡

′))
)

(13)

The new governing equations for the damage subproblem become:

𝐺𝑐

𝑐0

(
1
𝑙𝑟
𝜔′ (𝑑) − 2𝑙𝑟Δ𝑑

)
= 2(1 − 𝑑)H in Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (14a)

∇𝑑 · 𝑛 = 0 on 𝜕𝑁Ω𝑆 × [0, 𝑡𝑚𝑎𝑥] (14b)

Thus, the damage can not now decrease through time and the irreversibility process is respected.

C. Thermo-mechanical model
The thermal problem is now introduced. First, the thermal strain tensor 𝜖𝑡 , which represents the thermal expansion

of the solid due to temperature change, is defined as:

𝜖𝑡 = 𝛽(𝑇 − 𝑇0)I (15)

where 𝛽 is the thermal expansion coefficient of the material, 𝑇0 the initial temperature, 𝑇 the actual temperature and I
the identity tensor. This leads to a change in the definition of the elastic strain in the solid. The elastic strain 𝜖𝑒 is now
defined as the difference of the total strain 𝜖 and the thermal strain, such that:

𝜖𝑒 = 𝜖 − 𝜖𝑡 =
1
2
(∇𝑢 + ∇𝑢𝑇 ) − 𝛽(𝑇 − 𝑇0)I (16)

The definition of the elastic strain density function 𝜓(𝜖𝑒, 𝑑) and the stress tensor 𝜎(𝜖𝑒, 𝑑) is modified accordingly.

Secondly, to calculate the temperature evolution in the domain, let us consider the thermal energy conservation
equation:

𝜕𝜌ℎ

𝜕𝑡
+ ∇ · 𝐽 = 𝑄∗ (17)

where 𝜌 is the mass density, ℎ is the specific enthalpy, 𝐽 is the heat flux and 𝑄 a potential body heat source. Introducing
the liquid fraction 𝛼 for the definition of ℎ, the specific enthalpy is related to the temperature 𝑇 through the following
relation:

ℎ =


𝑐𝑠 (𝑇 − 𝑇𝑚) In solid phase 𝑇 < 𝑇𝑚
𝛼𝐿 𝑓 𝑢𝑠 At liquid-solid interface 𝑇 = 𝑇𝑚

𝑐𝑙 (𝑇 − 𝑇𝑚) + 𝐿 𝑓 𝑢𝑠 In liquid phase 𝑇 > 𝑇𝑚
(18)

where 𝑐𝑠,𝑙 is the specific heat capacity of the solid/liquid phase. In this work, thermal conduction is the only phenomenon
treated as a heat exchange. Thus, the heat flux 𝐽 obeys the Fourier law: 𝐽 = −𝑘∇𝑇 , where 𝑘 is the thermal conductivity
of the material.

To take into account the phase change phenomenon, this thermal energy equation needs to be solved in both the
liquid and solid domain. Thermal properties should also depend on the current phase. The specific heat capacity 𝑐
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is already covered by the specific enthalpy definition. All that is left is to define the thermal conductivity 𝑘 as being
dependent on the liquid fraction 𝛼. Considering the thermal capacity in the liquid is 𝑘𝑙 , and in the solid it is 𝑘𝑠, one
defintion could be:

1
𝑘 (𝛼) =

(1 − 𝛼)
𝑘𝑠

+ 𝛼
𝑘𝑙

(19)

The governing equations for the thermal subproblem are now:

𝜕𝜌ℎ

𝜕𝑡
+ ∇ · (−𝑘 (𝛼)∇𝑇 (ℎ)) = 𝑄∗ in Ω × [0 − 𝑡𝑚𝑎𝑥] (20a)

𝐽 · 𝑛 = 𝐽∗ in 𝜕𝑁Ω × [0 − 𝑡𝑚𝑎𝑥] (20b)

Solving these equations gives the specific enthalpy field ℎ, which can be used to calculate the temperature field 𝑇 . From
the temperature, the new liquid fraction field 𝛼 is derived:

𝛼 =


0 In solid phase 𝑇 < 𝑇𝑚
ℎ

𝐿 𝑓 𝑢𝑠
At liquid-solid interface 𝑇 = 𝑇𝑚

1 In liquid phase 𝑇 > 𝑇𝑚

(21)

D. Liquid-solid interaction
The liquid-solid interface is characterized as a diffuse interface and is quantified by the liquid fraction 𝛼. The

objective is to determine a mixture law for calculating displacement within the liquid phase. The solid stress tensor
𝜎𝑆 has already been established via Hooke’s law (as discussed earlier). For the liquid phase, we assume quasi-static
conditions and disregard viscous effects. Consequently, the liquid stress tensor 𝜎𝐿 is formulated as:

𝜎𝐿 = −𝑝𝐿I (22)

with 𝑝𝐿 the pressure in the liquid domain. The following mixture law to calculate the stress in the liquid-solid domain is
introduced:

𝜎 = 𝑓 (𝛼)𝜎𝑆 + (1 − 𝑓 (𝛼))𝜎𝐿 (23)

Here, the function 𝑓 denotes the transition from the solid to the liquid phase. Certain conditions must be satisfied by
this function. Firstly, when 𝛼 = 0, 𝑓 should equal 1 since only the solid phase exists, leading to 𝜎 = 𝜎𝑆 . Conversely,
when 𝛼 = 1, 𝑓 should equal 0 as only the liquid phase is present, resulting in 𝜎 = 𝜎𝐿 . The function 𝑓 (𝛼) = (1 − 𝛼)2
is compliant with both conditions and is chosen. As the degradation function 𝑔 represents a transition between a
undammaged and a fully damage state, here taking the mixture function 𝑓 as the same form sounds interesting. The
governing equation for the displacement subproblem is now defined across the entire domain Ω:

∇ · ( 𝑓 (𝛼)𝜎𝑆 + (1 − 𝑓 (𝛼))𝜎𝐿) + 𝜌𝑏∗ = 0 in Ω × [0, 𝑡𝑚𝑎𝑥] (24a)
( 𝑓 (𝛼)𝜎𝑆 + (1 − 𝑓 (𝛼))𝜎𝐿) · 𝑛 = 𝑡∗ on 𝜕𝑁Ω × [0, 𝑡𝑚𝑎𝑥] (24b)

Following this modification of the displacement equations, the damage equation is also affected by the new definition
of the stress tensor. The elastic strain energy density is now defined as:

𝜓(𝑢, 𝑑, 𝑇) = 𝑓 (𝛼)
(
𝑔(𝑑)𝜓+0 (𝑢, 𝑇) + 𝜓

−
0 (𝑢, 𝑇)

)
−
(
1 − 𝑓 (𝛼)

)
𝑝𝐿𝑡𝑟 (𝜖)I (25)

This formulation of the elastic strain energy closely resembles the approaches adopted by Sun et al. and Clayton et al.
[18, 25] about modeling fracture propagation in glaciers. However, a key distinction lies in utilizing the liquid fraction
𝛼 instead of the damage 𝑑 within the mixture law. With this revised formulation of the elastic strain energy density, the
damage equation transforms into:

𝐺𝑐

𝑐0

(
1
𝑙𝑟
𝜔′ (𝑑) − 2𝑙𝑟Δ𝑑

)
= 2 𝑓 (𝛼) (1 − 𝑑)H in Ω × [0, 𝑡𝑚𝑎𝑥] (26a)

∇𝑑 · 𝑛 = 0 on 𝜕𝑁Ω × [0, 𝑡𝑚𝑎𝑥] (26b)

If 𝛼 = 0 (solid phase), the equations fall back on those presented above (eq. 8 and eq. 9).
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IV. Numerical implementation
In this section, the numerical implementation of the model is presented, featuring discretization with finite elements,

resolution of the thermal part using a Newton algorithm, and a staggered approach for the mechanical component. The
thermal component is addressed through the utilization of a Newton algorithm, providing an iterative and efficient
method for solving the nonlinear equations inherent in heat transfer and phase change processes. Simultaneously, the
mechanical aspect is handled through the application of a staggered approach, allowing for a segregated yet synchronized
treatment of mechanical and thermal aspects in a staggered time-stepping manner. This amalgamation of techniques
aims at the establishment of a numerical framework for the simulation of the intricate interplay between thermal and
mechanical phenomena within the model. An in-house code called ROMEA.jl was developped using the Bcube.jl
library from ONERA [41].

A. Weak formulation of the equations
The weak form of the presented equations are obtained by multiplying these equations by a set of test functions

{𝑣𝑢, 𝑣𝑑 , 𝑣𝑇 } and integrating over the domain Ω. The weak form for the displacement equation (eq. 8) is:∫
Ω

𝑓 (𝛼)
(
𝑔(𝑑) 𝜎+ (𝑢) + 𝜎− (𝑢)

)
: 𝜖 (𝑣𝑢) 𝑑Ω =

∫
Ω

𝑓 (𝛼)
(
𝑔(𝑑) 𝜎+𝑡 (𝑇) + 𝜎−𝑡 (𝑇)

)
: 𝜖 (𝑣𝑢) 𝑑Ω

+
∫
Ω

(
1 − 𝑓 (𝛼)

)
𝑝𝐿I : 𝜖 (𝑣𝑢) 𝑑Ω +

∫
Ω

𝜌𝑏∗ 𝑣𝑢 𝑑Ω +
∫
𝜕𝑁Ω

𝑡∗𝑣𝑢 𝑑𝜕𝑁Ω
(27)

The same procedure is applied on the damage equation (eq. 9):∫
Ω

2𝐺𝑐𝑙𝑟

𝑐0
∇𝑑 · ∇𝑣𝑑 𝑑Ω +

∫
Ω

(
2𝐺𝑐

𝑐0𝑙𝑟
+ 2 𝑓 (𝛼)H

)
𝑑 𝑣𝑑 𝑑Ω =

∫
Ω

2 𝑓 (𝛼)H 𝑣𝑑 𝑑Ω (28)

Finally, the weak form of the thermal equation is obtained (eq. 20):∫
Ω

𝜌 ¤ℎ 𝑣𝑇 𝑑Ω +
∫
Ω

𝑘 (ℎ)∇𝑇 (ℎ) ∇𝑣𝑇 𝑑Ω =

∫
Ω

𝑄∗ 𝑣𝑇 𝑑Ω +
∫
𝜕𝑁Ω

𝐽∗ 𝑣𝑇 𝑑𝜕𝑁Ω (29)

B. Treatment of boundaries conditions
At the outset of the process, the ice block adheres to the wing, symbolized numerically as a Dirichlet condition applied

to the wing-fixed edge. As the de-icing progresses, the ice melts into water. Unlike ice, water is not considered bound
to the wing’s surface. Consequently, the Dirichlet condition must be replaced by a Neumann condition, representing
the external pressure on the liquid layer. The initial Dirichlet condition in equation 8 can then be substituted with a
Fourier-Robin boundary condition:

𝜎 · 𝑛 + 𝑎 𝑢 = 𝑏 𝑝𝐿I · 𝑛 (30)

where 𝑎 and 𝑏 define an attached or unattached state. If the boundary is in solid state (ice), 𝑎 is set to a large number
and 𝑏 is set to 0, resulting into a pseudo-Dirichlet condition. If the boundary is in liquid phase (water), 𝑎 is set to 0 and
𝑏 to 1, resulting into a Neumann condition.

C. Choice and use of solvers
At the start of the iteration 𝑛 (at time 𝑡𝑛), the thermal part is first solved in order to obtain the temperature field in the

domain and determine the potential melted regions. A semi-implicit Euler method (or Backward Euler method) is used.
This lead to solving a non-linear thermal equation. Thus, the following equation is solved:

𝑟𝑛+1 =

∫
Ω

𝜌 ¤ℎ𝑛+1𝑣𝑇 𝑑Ω +
∫
Ω

𝑘 (ℎ𝑛)∇𝑇 (ℎ𝑛+1)∇𝑣𝑇 𝑑Ω −
∫
Ω

𝑄∗𝑣𝑇 𝑑Ω −
∫
𝜕𝑁Ω

𝑞∗𝑣𝑇 𝑑𝜕𝑁Ω = 0 (31)

Due to the complexity of the coupled equations and the difficulty of solving them, a Courant-Friedrichs-Lewy (CFL) con-
dition is unwanted. Moreover, melting is a slow process, and with the relatively comparable conductivities of water and
ice (0.6W.m−1.K−1 for water and 2.3W.m−1.K−1 for ice), the error incurred at each iteration will remain relatively minor.
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A classical Newton-Raphson method is used to find the solution vector ℎ𝑛+1 of the thermal equation in matrix form:

𝑀𝑇

ℎ𝑛+1 − ℎ𝑛
Δ𝑡

+ 𝐾𝑛
𝑇 𝑇 (ℎ𝑛+1) − 𝐿𝑛𝑇 = 𝑅𝑛+1 (32)

The equation is deemed solved when | |𝑅𝑛+1 | |∞ < 𝜂𝑇 , where 𝜂𝑇 represents a small value (usually 10−9 in this con-
text). Once the enthalpy field ℎ𝑛+1 is derived for time 𝑡𝑛+1, the temperature field 𝑇𝑛+1 and the liquid fraction field
𝛼𝑛+1 are updated in accordance with their definitions for computing the displacement field 𝑢𝑛+1 and the damage field 𝑑𝑛+1.

The PFM formulation establishes that damage 𝑑 is driven by the tensile component of elastic strain energy, depending
upon the displacement field 𝑢. Furthermore, the Cauchy stress tensor relies on the damage field 𝑑 to determine the
displacement field 𝑢. Consequently, these two fields are intricately interlinked, forming a strong coupling. For solving
such problems, a staggered scheme is preferable, offering flexibility and stability over a monolithic scheme, albeit with a
slower convergence rate [35]. The staggered algorithm employed in this study follows that of Miehe et al. [40] and
comprises three stages, iterated until convergence. Initially, with the temperature field determined, the displacement
field 𝑢𝑛+1

𝑖+1 can be computed using the damage variable 𝑑
𝑛+1
𝑖
from the preceding staggered step, solving the following

equation:∫
Ω

𝑓 (𝛼𝑛+1)
(
𝑔(𝑑𝑛+1𝑖 ) 𝜎+ (𝑢𝑛+1𝑖+1 ) + 𝜎

− (𝑢𝑛+1𝑖+1 )
)
: 𝜖 (𝑣𝑢) 𝑑Ω =

∫
Ω

𝑓 (𝛼𝑛+1)
(
𝑔(𝑑𝑛+1𝑖 ) 𝜎+𝑡 (𝑇𝑛+1) + 𝜎−𝑡 (𝑇𝑛+1)

)
: 𝜖 (𝑣𝑢) 𝑑Ω

+
∫
Ω

(
1 − 𝑓 (𝛼𝑛+1)

)
𝑝𝐿I : 𝜖 (𝑣𝑢) 𝑑Ω +

∫
Ω

𝜌𝑏∗ 𝑣𝑢 𝑑Ω +
∫
𝜕𝑁Ω

𝑡∗𝑣𝑢 𝑑𝜕𝑁Ω

(33)
or solve the problem in matrix form:

𝐾𝑛+1
𝑢,𝑖 (𝑑𝑛+1𝑖 , 𝛼𝑛+1) 𝑢𝑛+1𝑖+1 = 𝐿𝑛+1𝑢,𝑖 (𝑑𝑛+1𝑖 , 𝑇𝑛+1, 𝛼𝑛+1) (34)

Next, upon solving this linear system, the new history field can be computed using its definition (eq. 13):

H𝑛+1
𝑖+1 = max

(
H𝑛+1

𝑖 , 𝜓
+,𝑛+1
0,𝑖+1 (𝑢

𝑛+1
𝑖+1 )

)
(35)

Finally, the damage variable 𝑑𝑛+1
𝑖+1 is computed using the history fieldH

𝑛+1
𝑖+1 , resolving the damage equation:∫

Ω

2𝐺𝑐𝑙𝑟

𝑐0
∇𝑑𝑛+1𝑖+1 ∇𝑣𝑑 𝑑Ω +

∫
Ω

(
2𝐺𝑐

𝑐0𝑙𝑟
+ 2 𝑓 (𝛼𝑛+1)H𝑛+1

𝑖+1

)
𝑑𝑛+1𝑖+1 𝑣𝑑 𝑑Ω =

∫
Ω

2 𝑓 (𝛼𝑛+1)H𝑛+1
𝑖+1 𝑣𝑑 𝑑Ω (36)

which in matrix form translates into:(
𝐾𝑑 + 𝐴𝑛+1

𝑑,𝑖+1 (𝛼
𝑛+1,H𝑛+1

𝑖+1 )
)
𝑑𝑛+1𝑖+1 = 𝐿𝑛+1𝑑,𝑖+1 (𝛼

𝑛+1,H𝑛+1
𝑖+1 ) (37)

These three steps are repeated until convergence. The convergence is reached when | |𝑑𝑛+1
𝑖+1 − 𝑑

𝑛+1
𝑖
| |∞ < 𝜂𝑠𝑡𝑎𝑔 where

𝜂𝑠𝑡𝑎𝑔 is a small number (in the range of 10−3 here).

This formulation will be used for the rest of the paper. However, the question might be whether the formulation of
the liquid-solid interaction is ideal regarding the numerical modeling, or whether another expression of the damage
equation is preferable. In the existing setup, the mixture law 𝑓 (𝛼𝑛+1) is applied to the history functionH𝑛+1

𝑖+1 outside its
definition, resulting in the first term of the equation’s right-hand side (eq. 36) being 2 𝑓 (𝛼𝑛+1)H𝑛+1

𝑖+1 .
One initial alternative idea could involve integrating the mixture law 𝑓 (𝛼𝑛+1) into the definition of the history

functionH𝑛+1
𝑖+1 itself. In this revised definition,H

𝑛+1
𝑖+1 would transform to: H

𝑛+1
𝑖+1 = 𝑓 (𝛼𝑛+1)max

(
H𝑛+1

𝑖
, 𝜓
+,𝑛+1
0,𝑖+1 (𝑢

𝑛+1
𝑖+1 )

)
.

Consequently, solving the discretized former damage equation (eq. 9) in the whole domain would be necessary. From
a physical perspective, this formulation presents advantages. As ice melts, the history function resets to zero. With
refreezing, the water reverts to ice, effectively "healing" the solid phase. Consequently, the solid can incur damage
anew, akin to its initial state. However, the original concept of the history functionH introduced by Miehe et al. [40]
must adhere to the Karush-Kuhn-Tucker (KKT) conditions, notably ¤H ≥ 0. Integrating the mixture law 𝑓 (𝛼𝑛+1) within
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the history function definition contradicts this KKT condition. Additionally, the scenario of refreezing constitutes a
specialized case of de-icing, which falls beyond the scope of this paper.
Another perspective on the damage issue involves viewing melting as damage to the solid phase. Accordingly, the

approach would entail solving the initial discretized damage equation across the entire domain Ω. Wherever the liquid
fraction 𝛼𝑛+1 exceeds the damage value 𝑑𝑛, the damage is set equal to the liquid fraction, essentially considering all
liquid phase as damaged. This formulation offers advantages in damage representation, particularly within the diffuse
zone. However this process requires direct modification of the damage field value. Certain areas of the domain would
therefore only be impacted by this change and no longer by the variational formulation. This choice would raise a
number of mathematical questions not addressed in this paper.
Of the various tests carried out by the authors of this paper, the formulation initially presented seemed to be the most

suitable numerically, the others not allowing convergence of the numerical solver or giving results which did not seem
physically correct. Algorithm 1 summarizes the whole solving procedure.

Algorithm 1 Solving algorithm at time interval [𝑡𝑛, 𝑡𝑛+1]
Require: Solutions of temperature field 𝑇𝑛 (and by extension the enthalpy field ℎ𝑛 and the liquid fraction field 𝛼𝑛), the
displacement field 𝑢𝑛, the damage field 𝑑𝑛 and the history fieldH𝑛

Ensure: Input fields at time 𝑡𝑛+1
1: Set 𝑖 = 0, 𝜂𝑇 = 10−9, 𝜂𝑠𝑡𝑎𝑔 = 10−3
2: Set 𝑢𝑛+10 ← 𝑢𝑛, 𝑑𝑛+10 ← 𝑑𝑛,H𝑛+1

0 ←H𝑛

3: Compute ℎ𝑛+1 through Newton-Raphson algorithm until | |𝑅𝑛+1 | |∞ < 𝜂𝑇 ⊲ (eq.32)
4: Compute 𝑇𝑛+1 and 𝛼𝑛+1 using ℎ𝑛+1 ⊲ (eq.18 and eq.21)
5: while | |𝑑𝑛+1

𝑖+1 − 𝑑
𝑛+1
𝑖
| |∞ ≥ 𝜂𝑠𝑡𝑎𝑔 do

6: Fix 𝑑𝑛+1
𝑖
and compute 𝑢𝑛+1

𝑖+1 ⊲ (eq.34)
7: ComputeH𝑛+1

𝑖+1 using 𝑢
𝑛+1
𝑖+1 ⊲ (eq.35)

8: Compute 𝑑𝑛+1
𝑖+1 usingH

𝑛+1
𝑖+1 ⊲ (eq.37)

9: 𝑖 ← 𝑖 + 1
10: end while

V. Benchmark tests and numerical examples
As the models are implemented, it is important to ensure that the proposed modeling correctly represents the expected

phenomena. This section presents some tests carried out to validate the various models and their implementation in the
simulation code.

A. Shear test
To verify the implementation of the PFM, the shear test is a popular benchmark test in the phase-field community.

Presented in Fig.5, it consists in a square of 1𝑚𝑚 × 1𝑚𝑚 of solid material with an initial crack running from one of its
sides to its center. One of the side is fixed, while a shear displacement is applied to the opposite side. The imposed
displacement is increased by 10−5𝑚𝑚 at each time iteration. The damage field for different displacement values is
shown in Fig.6.
As expected, the crack propagated through the solid until it reaches a stage where the damage in the lower right-hand

corner cannot change. These results are similar to those found in the literature [38, 40, 42], assessing our numerical
implementation.

B. Melting test
At the same time as the PFM is validated, the thermal modeling is also validated. For this, a simple Stefan’s problem

is solved. This involves melting a semi-infinite plate initially made of a solid material where a temperature (higher than
the melting point of the material) is imposed on its finished side. The heat would then diffuse into the solid, causing it to
melt. Stefan’s problem involves determining the position of the melting front 𝑥Γ and the temperature field 𝑇 in the
domain over time, which in reality consists of solving a uni-axial problem. A scheme of the problem is presented in
Fig.7. For this validation test, the case of ice at 𝑇𝑆 = 250𝐾 melting into water at 𝑇𝐿 = 300𝐾 during 15𝑠 is considered.
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Fig. 5 Schematic of the shear test and material properties

Fig. 6 Numerical result of the damage field for the shear test for different displacement values:
12 × 10−3𝑚𝑚, 15 × 10−3𝑚𝑚 and 20 × 10−3𝑚𝑚

The thermal conductivities (𝑘𝑙 = 0.6𝑊.𝑚−1.𝐾−1 and 𝑘𝑠 = 2.3𝑊.𝑚−1.𝐾−1) and capacities (𝑐𝑙 = 4187𝐽.𝑘𝑔−1.𝐾−1 and
𝑐𝑠 = 2108𝐽.𝑘𝑔−1.𝐾−1) of water and ice, and the latent heat of melting (𝐿 𝑓 𝑢𝑠 = 3.33×105𝐽.𝑘𝑔−1) are taken independent
of the temperature.
The position of the melting front and the temperature field at times 1𝑠, 5𝑠, 10𝑠 and 15𝑠 are displayed in Fig.8. It is

seen that the melting front moves over time, transforming the ice into water. A comparison between the numerical and
analytical results for the position of the melting front 𝑥Γ and the temperature field 𝑇 are presented in Fig.9 and Fig.10
respectively. The analytical solution of Stefan’s problem can be found in [24].
The chosen model for the thermal subproblem seems to correctly represent the melting process. The temperature

and liquid fraction fields are well reconstructed from the enthalpy field over time.

C. Quenching test
Once the PFM and thermal models have been validated, the thermo-mechanical model can also be tested. A good

benchmark test for the verification of such a model is that of quenching. It consists of a piece of ceramic heated at
𝑇 = 600𝐾 , then immersed in an oil bath at 𝑇 = 300𝐾 . After being dropped, the material is removed from the oil bath.
During this process, a series of cracks appeared on the edges of the solid due to the thermal shock of quenching. Even if
there is no phase change in this benchmark test, the thermal model can still be used for this simulation. The results of
the simulation are presented in Fig.11.
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Fig. 7 Schematic of the Stefan’s problem and materials properties

Fig. 8 Numerical results of the liquid fraction field for the Stefan’s problem at different times:
1𝑠, 5𝑠, 10𝑠 and 15𝑠

Fig. 9 Comparison of the position of the melting front
𝑥Γ between numerical and analytical results over time

Fig. 10 Comparison of temperature field 𝑇 between
numerical and analytical results for different times

There appears to be a good correlation between this numerical simulation and experimental data [43] or numerical
results found in literature [44, 45]. The crack patterns seems to be quite the same as the experimental case, both
qualitatively and quantitatively. From this result, it is concluded that the thermo-mechanical model is validated.
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Fig. 11 Damage field 𝑑 from numerical simulation of the quenching test, in comparison with an experiment
(experimental figure from Jiang et al. [43])

D. Ice shape on flat plate test case
Finally, to challenge the entire model, a simple test case of an ice shape attached to a flat plate is realized. This test

case serves mainly to illustrate the capabilities of the model, and also to verify the behaviour hypotheses described in
part II.A and on Fig. 2. The ice shape, illustrated in Fig.12, is characterized by a length 𝐿𝑡 = 31.225𝑚𝑚 and a height
𝑒𝑖𝑐𝑒 = 3𝑚𝑚. The ElectroThermal Ice Protection System (ETIPS) is set to activated over a distance 𝐿 𝑓 .

Fig. 12 Flat plate test case configuration

The goal here is to determine the percentage 𝐿 𝑓

𝐿𝑡
required to melt in order to generate and propagate a crack leading

to shedding. The length 𝐿 𝑓 is increased at each case to find the critical shedding percentage value. A numerical
comparaison will be made with the results of Bennani’s model [15] and an experimental comparaison with the works
of Enache et al. [20, 21] will permit to asses the model presented in this paper. For this test case, the ice block is
discretized into about 30000 triangular elements and the algorithm presented previously is used to solve the equations.
In the simulation results presented below, two parameters are varied in order to observe their influence: the external

temperature (and by extension the inital ice temperature) which were taken at 268.15 and 263.15 K, and the ETIPS heat
flux which were taken at 12.5 and 19 kW.m−2. The Young’s modulus of ice is chosen at 𝐸 = 9.3 GPa and the Poisson’s
ratio at 𝜈 = 0.325. The simulation runs for ten seconds which is a typical de-icing cycle time. The ETIPS is set to heat
initially a percentage 𝐿 𝑓

𝐿𝑡
= 65%. This value is increased by 1% at each simulation until the critical percentage length

shedding is reached.

On Fig. 13, two simulation results for 𝐿 𝑓

𝐿𝑡
= 70% and 71% are presented. As expected, the pressure difference

between the liquid layer and the external pressure creates an uplifting force which conducts to the nucleation and the
propagation of a crack in the ice block (a). However, if the length 𝐿 𝑓 is too small, the forces in the ice are not sufficient
to propagate the crack (b). These results are in agreement with the results of Bennani’s works with a slight difference of
2% less on 𝐿 𝑓 . This discrepancy can be explained by the fact that Bennani’s model did not remove the molten zone
from the mesh, where the displacement and damage equations are solved. Moreover, the mesh used and the regularised
length 𝑙𝑟 was not the same. As the liquid layer grows, the thickness of the ice block decreases, thus increasing stresses
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in the material until a crack appears and propagates. Futhermore, thermoelastic effects are now taken into account,
which leads to an acceleration of the shedding phenomenon.

(a) 𝐿 𝑓

𝐿𝑡
= 70% : Shedding percentage length too small

for fracture to appear
(b) 𝐿 𝑓

𝐿𝑡
= 71% : Shedding occurs (𝑡 𝑓 𝑟𝑎𝑐 = 4.25 s)

Fig. 13 Simulation results for two different percentages 𝐿 𝑓

𝐿𝑡
for 𝑇0 = 268 K and 𝑞∗ = 19 kW.m−2,

the green line represents the liquid-solid interface (𝛼 = 0.5)

Now that the critical shedding length has been computed, it is interesting to analyze the influence of increasing
this length beyond the critical value. An increase in the melted length is expected to accelerate the shedding process
and reduce the amount of ice that remains attached. In Fig. 14, four different ice shedding simulations are presented,
ranging from 71% to 74%, as well as the associated shedding times. The initial temperature is set at 𝑇0 = 268 K, and the
heat flux is 𝑞∗ = 12.5 kW.m−2.

(a) 𝐿 𝑓

𝐿𝑡
= 71% (b) 𝐿 𝑓

𝐿𝑡
= 72%

(c) 𝐿 𝑓

𝐿𝑡
= 73% (d) 𝐿 𝑓

𝐿𝑡
= 74%

Fig. 14 Influence of 𝐿 𝑓

𝐿𝑡
percentage on ice shedding simulation at 𝑇0 = 268 K and 𝑞∗ = 12.5 kW.m−2

The simulations in Fig.14 reveal a clear trend: as 𝐿 𝑓 increases from 71% to 74%, the associated shedding times
decrease significantly. This confirms the prediction that increasing 𝐿 𝑓 would lead to faster shedding and a reduction in
the amount of ice remaining attached. This effect can be attributed to the expansion of the heat-exposed zone, which
promotes the formation of a larger liquid layer. This liquid layer reduces the contact between the ice and the wing
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surface, thereby lowering the mechanical resistance to shedding. Additionally, the broader pressure distribution zone
created by the expanded melt layer aids in overcoming the cohesive forces within the ice, making the detachment process
more effective. As a result, the additional melted length facilitates the detachment process, allowing ice to shed more
efficiently. It appears, however, that increasing the melting length 𝐿 𝑓 leads to a limit in fracture time, probably the time
needed for the liquid layer to appear. All these observations are in agreement with the experimental results of Enache et
al. [20, 21]. Indeed, they have noticed that increasing the melting length 𝐿 𝑓 reduces the fracture time until reaching a
time limit and decreases the ammount of ice remaining.

The influence of the initial temperature 𝑇0 on the shedding process is also noteworthy. In this scenario, the percentage
𝐿 𝑓

𝐿𝑡
is fixed at 72% and the heat flux remains constant at 𝑞∗ = 12.5 kW.m−2. The results are presented Fig.15 for two

temperatures: 263 K and 268 K.

(a) 𝑇0 = 263 K (b) 𝑇0 = 268 K

Fig. 15 Influence of the initial temperature 𝑇0 on ice shedding simulation at 𝐿 𝑓

𝐿𝑡
= 72% K and 𝑞∗ = 12.5 kW.m−2

As expected, the liquid layer develops more slowly at 𝑇0 = 263 K compared to 𝑇0 = 268 K due to the lower initial
temperature. This slower development results in a smaller pressure distribution zone in the first case. Onemight anticipate
that the liquid layer would need to reach the same extent as in the second case before the shedding process could be trig-
gered. However, observations indicate that this is not the case. While the scenario at 𝑇0 = 263 K requires a longer time to
initiate shedding and is in line with the experimental work of Enache et al. [21], fracture still begins with a smaller liquid
layer. This phenomenon can be explained by the greater temperature gradient in the first case, which results in stronger
thermoelastic effects. These effects generate a crack further upstream in the ice block, thereby facilitating the shedding
process even with a smaller liquid layer. This also can be justified by a quick calculation. The thermal stress must be of
the order of magnitude of 𝜎𝑡 = 𝐸 𝛽 (𝑇 −𝑇0). When the temperature in the ice reaches the melting point, the temperature
difference should be around 10 K. Thus the thermal stress becomes approximately 𝜎𝑡 ≈ 4.5MPa which is the same
order as the tensile strength of ice concluding that thermoelastic effects cannot be neglected for the ice shedding modeling.

This test case is fairly basic, but it reveals some important external parameters governing the shedding phenomenon
such as the ETIPS activation length or the external temperature (and consequently the initial ice block temperature).
Simulations have shown that the extention of the melting length 𝐿 𝑓 decreases the quantity of ice remaining on the
wing and lowers the shedding time until a limit value is reached. The initial temperature also have a significant impact
on results. As this temperature decreases, thermoelastic effects become more and more significant, allowing crack
generation and propagation even if the liquid layer is smaller. This test case also showed that the algorithm’s behavior
tends to obtain results similar to the numerical works of Bennani [15] and the experimental results of Enache et al.
[20, 21]. However, some work remains to be done and a more in-depth analysis of the model will provide a better
understanding of its application.

VI. Conclusion
This paper introduces a novel liquid-solid thermo-mechanical phase-field fracture model for electrothermal de-icing

applications. Initially, it provides a comprehensive overview of existing models addressing the various phenomena
involved in ice shedding, followed by a detailed justification for the models chosen in this study. Starting with a classical
thermo-mechanical fracture model, a liquid-solid interaction is incorporated to represent the influence of a liquid layer
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on the ice block, utilizing a mixture law method. The implications of this integration on the governing equations are
analyzed, along with an elaboration on the numerical implementation and algorithm.

A test case of an ETIPS (ElectroThermal Ice Protection System) for an ice shape on a flat plate was conducted to
study the algorithm’s behavior in an electrothermal de-icing context. Simulations demonstrated that the melting length
and the external temperature are critical parameters influencing ice shedding. The numerical results suggest an optimal
range for the melting length, beyond which further increases yield diminishing returns. It was also shown that a lower
initial temperature can lead to a more strategic application of heat, exploiting the temperature gradient to maximize the
thermoelastic effects. Therefore, by optimizing the melting length, fine-tuning the heat flux, and targeting specific areas
of the ice, such systems could improve the de-icing process’s effectiveness across various environmental conditions.
Through a parametric analysis, this type of simulation can also help better apprehend the material properties of ice,
which are still not fully understanded nowadays.

Ice shedding is a complex phenomenon involving numerous multiphysical aspects, making it a challenging area of
study. The model presented in this paper makes several critical hypotheses, including assuming a static liquid layer and
resolving the mechanical part as stationary. These simplifications, although necessary for the initial development of the
model, highlight the need for further refinement. An in-depth study focusing on this model will be the subject of a
future paper, aiming to provide a more robust understanding of ice shedding modeling. Very few data is avaible in the
literature, particularly concerning the mechanisms of ice block cracking, which is essential for validating and improving
theoretical models. Future research should prioritize gathering extensive experimental data to enhance model accuracy
and explore the nuanced interplay of physical forces involved in ice shedding. Ultimately, advancing this research could
lead to more effective strategies for managing ice accumulation in various applications, especially in the aeronautical
field.
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