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LATTICES IN RIGID ANALYTIC REPRESENTATIONS

ANDREA CONTI AND EMILIANO TORTI

Abstract. For a profinite group G and a rigid analytic space X, we study when an OX(X)-

linear representation V of G admits a lattice, i.e. an OX (X )-linear model for a suitable formal

model X of X in the sense of Berthelot. We give a positive answer, under mild assumptions,

when X is a “wide open” space. As a consequence, we are able to describe explicit open

rational subdomains ofX over which V is constant after reduction modulo a power of p. We give

applications in two different directions. First, we prove explicit results on the reduction modulo

powers of p of sheaves of crystalline and semistable representations of fixed weight. Second, we

focus on the sheaves of Galois representations on eigenvarieties, which are important examples

of wide open spaces thanks to a result of Belläıche and Chenevier. We give an application of

our main results to the pseudorepresentation carried by the Coleman–Mazur eigencurve, which

can be made explicit whenever equations for a rational subdomain of the eigencurve are given.

1. Introduction

Fix a prime p, and let f be a modular eigenform for GL2/Q of weight k ≥ 2 and level N ,

with p ∤ N . The associated p-adic representation of Gal(Q/Q) is unramified away from Np,

and crystalline at p. When f varies in a p-adic family along the Coleman–Mazur eigencurve E ,

the corresponding global Galois representation also varies in a p-adic analytic way: this means

that, locally on a sufficiently small irreducible subdomain X of E , we can find a continuous

representation

ρX : Gal(Q/Q)→ GL2(OX(X))

that specializes to the representations attached to the classical eigenforms in X. If X is a

whole irreducible component of the eigencurve, we cannot in general find a ρX as above. How-

ever, there are other objects that we can attach to X: we can either write a 2-dimensional

pseudorepresentation

TX : Gal(Q/Q)→ OX(X)

that interpolates the traces of the representations corresponding to the classical points, or

patch all representations defined on small subdomains of X to obtain a sheaf of Gal(Q/Q)-

representations, i.e. a coherent OX -module equipped with an OX -linear action of Gal(Q/Q).

While investigating how eigenforms vary p-adically, it is interesting to understand how the

above picture looks after we “reduce it” modulo a power of p. When X is a point, say SpmQp,

it is well-known that for a continuous representation ρ : Gal(Q/Q) → GL(V ), V a Qp-vector

space, one can always find a Gal(Q/Q)-stable Zp-lattice V in V , hence attach to V the reduction

V ⊗Zp Z/p
n for every n ≥ 1. Such a reduction depends on the choice of a lattice: even if n = 1,

it is uniquely determined only up to semisimplification. In the special case when ρ = ρf,p is

attached to an eigenform f , one can try to describe such a reduction in terms of the automorphic

data attached to f , i.e. its weight and Hecke eigensystem. A somewhat easier task is that of

looking at the local Galois representation ρf,p|GQp
, after choosing a decomposition group GQp .

If f is not p-new, then the isomorphism class of ρf,p|GQp
can be described in terms of the weight

k and the Up-eigenvalue ap of f . The most interesting case is that when f is not ordinary

at p, i.e. when its Up-eigenvalue ap has positive valuation, so that ρf,p|GQp
is an irreducible

representation Vk,ap .
1
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More generally, to any k ≥ 2 and ap ∈ Qp of positive valuation, we can attach a 2-dimensional,

irreducible crystalline representation Vk,ap , and all 2-dimensional, irreducible crystalline repre-

sentations of Gal(Qp/Qp) are of this form, up to a twist with a crystalline character. We refer

to the introduction of [Ber12] for a summary of the work of various people towards determining

the semisimplified mod p reduction of Vk,ap in terms of k and ap.

We concern ourselves here with a different point of view: we would like to understand how the

Vk,ap and their reductions vary when k and ap are allowed to vary p-adically. In this direction,

we recall the following result. We let L be a p-adic field with valuation ring OL. We write

mL for the maximal ideal of OL, πL for a uniformizer of L, and e for the ramification index of

L/Qp. Set α(k − 1) =
∑

n≥1⌊
k−1

pn−1(p−1)⌋.

Theorem 1.1 ([Tor22, Theorem 1.1]). Let k be an integer at least 2, ap,0, ap,1 ∈ mL, and

n ∈ Z≥1. If vp(ap,1 − ap,0) > 2vp(ap,0) + α(k − 1) + en, then there exist Gal(Qp/Qp)-stable

lattices V0 and V1 in Vk,ap,0 and Vk,ap,1 , respectively, and an isomorphism

V0 ⊗OL
OL/π

n
L
∼= V0 ⊗OL

OL/π
n
L

of OL/π
n
L[Gal(Qp/Qp)]-modules.

Apart from the explicit radius, the idea behind Theorem 1.1 is that the modulo πnL reduction

of Vk,ap does not change if we let k and ap vary in sufficiently small p-adic neighborhoods of

their respective ambient spaces. As it is apparent from the above discussion, such a notion of

“local constancy” of the modulo pn reduction depends on a suitable choice of lattices for the

representations involved. In his recent preprint [Tor24], the second-named author shows that

this is a general phenomenon that has little to do with the specific context we are looking at,

as follows. If X is a rigid analytic space and V a sheaf of G-representations over X, then for

every n ≥ 1 one can find a (not admissible, in general) affinoid covering U of X such that, for

every U ∈ U, the restriction V|U is constant modulo pn, roughly in the following sense: given

any two specializations x and y of U , the fibers Vx and Vy admit lattices Vx and Vy that

give isomorphic representations of G after reduction modulo pn. One has to take some care

in making this notion precise when allowing x and y to be defined over arbitrary p-adic fields.

The key to finding the two lattices is that one can actually find a lattice over the whole of U ,

in the sense of the following definition. Let X be a rigid analytic space over L, and let V be a

G-representation over X.

Definition 1.2. A sheaf of lattices for V is the datum of a formal model X of X and a sheaf

V of G-representations over X whose generic fiber, equipped with the action of G induced from

V, is isomorphic to V. We say that such a V is a lattice for V if OX is generated by global

sections and V is attached to a finite free OX (X )-module equipped with a OX (X )-linear action

of G.

If V is a lattice in V, defined over some formal model X of X, then given any rig-point of x,

in the sense of [deJ95, Section 7.1.10], one can attach to it the fiber of V at x, a representation

of G over a finite free O-module, O the valuation ring of a p-adic field.

In the current paper, we deal with two main questions. The first one is under what conditions,

given a profinite group G, a rigid analytic space X over a p-adic field L and a continuous

representation

ρX : G→ GL2(OX(X)),

we can find a lattice for ρX . This is known to be a difficult problem, and without conditions on

the family of G-representations considered it is in general impossible to find a lattice even when

the space X is affinoid (see for example a counterexample of Hellmann in [Hel16, Section 3]).
2



The main problem is that in general the first cohomology group of an integral coherent sheaf

does not vanish.

Our first main result is the following.

Theorem 1.3 (cf. Theorem 4.16). Assume that X is wide open, i.e. a strictly increasing union

of affinoids such that the restriction maps are compact. Every absolutely irreducible, residually

multiplicity-free G-representation V on X admits a lattice over the formal model SpfO+
X(X).

Wide open domains appear in [BC09] under the terminology “nested”, and variations of this

notion are referred to as “overconvergent domains” in the literature.

Note that in Theorem 1.3, we start with a G-representation rather than just a sheaf. However,

if one assumes the slightly stronger condition that X is strictly quasi-Stein (i.e. a strictly

increasing union of affinoids such that the restriction maps are compact and of dense image,

which is the case for instance for wide open discs), then a classical result of Kiehl shows that

every sheaf of G-representations on X is actually a G-representation (see Section 4.1.1).

By a result of Chenevier, we can always find a sheaf of lattices for ρX , i.e. a coherent, locally

free sheaf V over a formal model X of X, equipped with a G-action inducing ρX . The locally

free sheaf V is not a priori free, i.e. the local lattices might not glue. To obtain an actual lattice,

we go through the theory of pseudorepresentations and GMAs, drawing on results of Belläıche

and Chenevier.

We remark that the situation is much simpler if we start with a continuous pseudorepresen-

tation T : G → OX(X): by topological reasons, the image of T lies in the subring O+
X(X) of

power-bounded elements in OX(X), and one can write such a ring as OX (X ) for a formal model

X of X, under reasonable assumptions on X (see Proposition 3.6).

The problem we treat is related to some questions about families of (ϕ,Γ)-modules over rigid

spaces. Berger and Colmez [BC08] attach a family of étale (ϕ,Γ)-modules to a sheaf of GQp-

representations over a rigid (or adic) space X, in a functorial way, and Kedlaya–Liu [KL10] and

Hellmann [Hel12] study the essential image of such a functor, i.e. which families of étale (ϕ,Γ)-

modules over X can be traced back to a sheaf of GQp-representations. Kedlaya and Liu observe

that the obstruction to doing so is given by a residual condition: the mod p representation

attached to ρX is necessarily constant along X whenever ρX is attached to a sheaf of GQp-

representation. One way they circumvent this obstruction is by restricting themselves to the

case where S is a local coefficient algebra, i.e. a ring of the form S = R⊗ZpQp, where R is a local

Noetherian Zp-algebra. If X is a wide open, then the above construction produces a sheaf of

GQp-representations over it, but care must be taken since OX(X) is not itself a local coefficient

algebra, despite O+
X(X) being local: if X is written as an increasing union of affinoids Spm(Ai)

for i ≥ 0, with compact restriction maps Ai+1 → Ai, then the ring S = OX(X) is the projective

limit of the Banach algebras Ai, hence a Fréchet Qp-algebra that is not a Banach Qp-algebra.

We refer to Example 5.33 for a standard example of this situation, and to the discussion around

it for a more detailed description of how our work is related with the results of [KL10].

Our second question, and motivation for the first one, is to study the reduction of a G-

representation ρX as above modulo a power of p. More precisely, for every point x of X and

integer n ≥ 1, we would like to identify, as explicitly as possible, a neighborhood of x over

which the modulo pn reduction is constant. We give two notions of constancy. Unsurprisingly,

both notions depend on the choice of a lattice for ρX . For every finite extension E of L of

ramification index eE/L, we define the natural number γE/L = (n−1)eE/L+1: it is the smallest

exponent m for which the injection OL →֒ OE induces an injection OL/π
n
L →֒ OE/π

m
E , and it

is always at least n.
3



Definition 1.4 (cf. Definition 5.2). We say that a sheaf of G-representations V over a formal

scheme X is

(i) pointwise constant mod pn if, for every finite extension E of L, with uniformizer πE, the

isomorphism class of VE,x/π
γE/L(n)

E as an OE/π
γE/L(n)

E [G]-module is independent of the

choice of an E-rig-point x of XE.

(ii) constant mod πnL if there exists a finite, free OL/π
n
L-module V (n), equipped with an OL/π

n
L-

linear action of G, such that V/πnL
∼= V (n) ⊗OL/π

n
L
OX /π

n
LOX .

We say that a G-representation V over a rigid analytic space X has one of the above properties

if it admits a lattice V which does.

The first condition corresponds to that studied by Torti [Tor24] in the context of rigid analytic

families, and earlier by Taixés i Ventosa–Wiese [TW10] and Chen–Kiming–Wiese [CKW13] for

classical eigenforms. In these papers, the congruence is formulated in terms of congruence over

a certain “integral closure” Z/pnZ of Z/pnZ. The choice of γE/L(n) is such that constancy mod

πnL lies (strictly) between pointwise constancy mod pn and pn+1, as we explain in Section 5.2.

Our result concerning constancy modulo pn is based on a very simple remark, that is better

illustrated via an example. Let f be a power-bounded function on the affinoid rigid unit disc

D(0, 1), i.e. an element of Zp〈T 〉. We can restrict f to a function over an affinoid disc D(0, p−1)

of radius p−1, which amounts to seeing f as an element of Zp[[T/p]]: clearly, we can write

f = f(0) + pg for some g ∈ Zp[[T/p]], so that reducing f − f(0) modulo p over D(0, p−1) gives

back the constant f(0). However, this already holds over the wide open unit disc D◦(0, 1), i.e.

the affinoid unit disc minus the boundary annulus: indeed, if E is any p-adic field, evaluating f at

an E-point of D◦(0, 1) assigns to T an element of positive valuation in E. In particular, reducing

modulo the maximal ideal of the valuation ring of E gives back once more f(0). Contrary to

what happens over D(0, p−1), f itself is not a “constant” modulo p; reducing f ∈ Zp〈T 〉 modulo

pZp〈T 〉 can produce an arbitrary element of Fp[T ].

We generalize this construction by replacing D(0, 1) with a rigid analytic space over L of the

form X rig for an affine formal OL-scheme X , the origin x = 0 with an arbitrary x ∈ X(L), and

defining for every such x and every n ≥ 1 an explicit rational domain neighborhood V
(n)
x , and

an explicit wide open neighborhood U
(n)
x containing V

(n)
x , that play the role of D(0, p−1) and

D◦(0, 1) in the above picture for n = 1. Such neighborhoods depend on the choice of a formal

model X of X; we refer to Definition 5.10. For n = 1, one recovers the “tube” U
(1)
x of x in the

sense of Berthelot. We prove the following.

Theorem 1.5 (cf. Theorem 5.19). Let X be a rigid analytic space over L, and V a G-

representation on X admitting a free lattice defined over an affine formal model X of X. Then,

for every x ∈ X(L) and n ∈ Z≥1, V is pointwise constant modulo pn over U
(n)
x,X , and constant

modulo πnL over V
(n)
x,X .

Remark 1.6. Under certain conditions on V, the domains in Theorem 1.5 are optimal, i.e.

one cannot have (pointwise) constancy mod pn on any larger neighborhood of x. We discuss

this in Section 5.8.

Remark 1.7. For the applications we will consider later on, we point out the following im-

portant consequences of the results we just stated. If one assumes X to be wide open, the

condition about the existence of a free lattice is always verified under the assumptions of The-

orem 1.3. Moreover, if one only cares about pointwise constancy for reductions modulo prime

powers, the theorem 1.5 also holds for a sheaf V of G-representations that is not necessarily a

G-representation (Corollary 5.23). Indeed, since integral model always exists locally, one can
4



then proceed to apply locally Theorem 1.5.

If one assumes that X is not only wide open, but strictly quasi-Stein, then every sheaf of

G-representations is automatically a G-representation, hence one can work in this greater gen-

erality (see Corollary 5.25.

Note that Hellmann [Hel12, Theorem 1.2] proves that a family of étale (ϕ,Γ)-modules over

the tube of a point in a rigid space can always be converted into a GQp-representation. Since

the obstruction to doing so is generally attached to the mod p representation not being constant

along the family, his result is compatible with ours for n = 1. We actually rely on loc. cit. in

proving Corollary 5.23.

In Section 5.4, we apply the above work to some examples of arithmetic interest, notably fam-

ilies of 2-dimensional crystalline and semistable representations of fixed weight of Gal(Qp/Qp).

We hope that our explicit results might help investigate “deep” congruences between classical

eigenforms, i.e. congruences that are not explained by p-adic deformation along the eigencurve

(for instance, congruences between eigenforms of the same weight).

As mentioned above, 2-dimensional, irreducible crystalline representations of fixed weight k ≥

2 are parameterized by elements of the wide open unit disc D◦(0, 1) over Qp. If a ∈ D
◦(0, 1)(Qp)

and Ua is a disc centered at a, of a sufficiently small explicit radius, then results of Berger,

Berger–Li–Zhu and Torti [Ber12; BLZ04; Tor22], i.e. the case m = 1 of Theorem 1.1 above, give

that the residual representation ρk,a is constant along Ua. We equip Ua with a G-representation

and apply Theorem 1.3 and Theorem 1.5 to it. In order to do so, we borrow an idea from

[Ber12] and [Tor24] and map them to the deformation space of trianguline representations, as

constructed by Colmez and Chenevier. Such a deformation space parameterizes trianguline

(ϕ,Γ)-modules, and in dimension 2 it contains a dense open subspace corresponding to étale

ones. Via arguments of Breuil–Hellmann–Schraen, one can identify a subspace S�
2,ρ of the étale

locus along which the residual representation is a fixed ρ. Since S�
2,ρ is equipped with a map

to the framed deformation space of ρ, one can pull back the universal framed deformation to

obtain a G-representation on S�
2,ρ, and on Ua via the map Ua → S�

2,ρ provided by the universal

property.

Even though we stick to working over discs Ua as above for simplicity, we could study local

constancy of crystalline representations more precisely by relying on the work of Rozenzstajn.

In [Roz20], the author studies the locus X(k, ρ) of a ∈ D◦(0, 1)(Qp) where the semisimplification

of ρk,a is constant equal to a fixed ρ. She proves that X(k, ρ) is a standard subset of D◦(0, 1),

i.e. a wide open disc with a finite number of closed discs removed from it (it is, in particular,

a wide open), and studies its complexity, a quantity that encodes information on how many

discs are involved in the definition of X(k, ρ), how large their fields of definition are, and the

Hilbert–Samuel multiplicity of their rings of power-bounded functions, which in turn can be

bounded in terms of the Serre weights of ρ via the Breuil–Mézard conjecture. We could apply

our Theorem 1.3 to the wide open X(k, ρ), and define as in Theorem 1.5 subdomains on which

the mod pn representations is (pointwise) constant. Since the data determining the complexity

of X(k, ρ) plays a role in the definition of such subdomains, it would be interesting to see if the

combination of the results of loc. cit. with ours has any interesting consequences. We plan to

come back to this point in future work.

We work in a similar way in the semistable case, replacing Ua with a constant-ρ disc UL

around an L-invariant L ∈ P1(Qp). In this case, we only know of an explicit radius for UL in

the case L =∞, thanks to the work of Bergdall–Levin–Liu [BLL23].

We refer to the body of the paper for the complete statement of our results in the crystalline

(Proposition 6.5, that refines a theorem of Torti [Tor22], see Remarks 6.7 and 6.8) and semistable
5



cases (Proposition 6.10, Theorem 6.11). As an example of the results that we obtain, we give

the following consequence of our work and [BLL23], that makes [Tor24, Proposition 1.4] explicit.

Theorem 1.8 (cf. Theorem 6.11). Assume that k ≥ 4 and p 6= 2. Then, if L ∈ P1,rig(L)

satisfies

vp(L) < 2−
k

2
− vp((k − 2)!) + 1− n,

there exist lattices VL and V∞ in Vk,L and Vk,∞, respectively, such that VL⊗OL
OL/π

γL/Qp (n)

L
∼=

V∞ ⊗OL
OL/π

γL/Qp (n)

L as OL/π
γL/Qp (n)

L [Gal(Qp/Qp)]-modules.

When p is small, we apply a result of Chenevier to deduce from our work on representations

of Gal(Qp/Qp) some explicit local constancy results for representations of Gal(Q/Q) that are

crystalline or semistable at p (see Corollaries 6.9, 6.12).

Finally, we give some simple consequences of our results for pseudorepresentations along rigid

analytic spaces, that are not necessarily obtained as traces of sheaves of G-representations.

We give an application to the mod pn variation of the pseudorepresentation carried by the

Coleman–Mazur eigencurve (Proposition 6.14). Our result is not very explicit unless one has

strong information about the geometry of an irreducible component of the eigencurve; if such a

component is ordinary (i.e. the generic fiber of a Hida family), one can make the result a little

bit more concrete, as in the following corollary. Note that this is again a result about global

Galois representations.

Corollary 1.9 (cf. Corollary 6.15). Let X be an ordinary component of a Coleman–Mazur

eigencurve, and let κ ∈ W(Qp) be a weight with the property that X has a single point x of

weight κ. Then, for n sufficiently large, and for every n ≥ 1 if X is étale overW, the pseudorep-

resentation T of Gal(Q/Q) carried by X is pointwise constant mod pn over ω−1
X (D◦(κ, p1−n)),

and constant mod pn over ω−1
X (D(κ, p−n)).

In particular, if L is a p-adic field, the Hecke eigensystems away from p of any two overconver-

gent eigenforms attached to L-points of X of weight in D◦(κ, p1−n) are congruent mod πnL.

As Theorems 1.3 and 1.5 are independent of the choice of profinite group G and of the rank of

the G-representation V, one could hope to apply them to situations of arithmetic significance

that go beyond the 2-dimensional, G = Gal(Qp/Qp) case. Obstacles to doing so would be

that the parameter spaces of fixed weight crystalline and semistable representations of higher

dimension do not have as simple a description as in the 2-dimensional case, and that there is

as yet no explicit description of constant ρ families of such representations.

We also remark that one might be able to make some constructions and statements more

uniform and general by working with the category of adic spaces, that encompasses both formal

schemes and their Berthelot generic fibers. This is the approach that Hellmann follows in [Hel12].

We did not do so here, as the classical setup seemed to make the results more immediate to

grasp, and we did not see a clear advantage in working with adic spaces in the applications.
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Notation and terminology. Given a category C, we will write Cop for its opposite category.

For any field K, we denote by K an algebraic closure of K, and by GK = Gal(K/K) the
6



absolute Galois group of K. We write Mn(A) for the ring of n× n matrices over a ring A.

We work with rigid analytic space in the sense of Tate. For a rigid analytic space X over

a p-adic field L, we denote by OX the structure sheaf of X, and by O+
X the sheaf of power-

bounded regular functions on X. We will typically denote formal schemes and sheaves on them

by calligraphic letters (a sheaf V on a formal scheme X ), and rigid analytic spaces and sheaves

of them by straight or bold letters (a sheaf V on a rigid analytic space X).

We generally write D(x, r) for an affinoid disc of some center x and radius r ∈ pQ, and D◦(x, r)

for the corresponding “wide open” disc (i.e. D(x, r) minus its boundary annulus). If r = p−m

for some m ∈ Q, we refer to m as the valuation radius of either D(x, r) or D◦(x, r).
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2. Preliminaries on formal schemes and rigid analytic spaces

For any field k, we denote by Artk the category of complete local Artinian rings with residue

field F , and by Ârtk its completion.

Let L be a p-adic field with ring of integers OL and residue field kL. We denote by πL a

uniformizer of L.

We will need at various points the categories whose objects are as follows and morphisms are

the obvious ones:

– AdOL
: Noetherian, adic OL-algebras with ideal of definition I, such that A/I is a finitely

generated kL-algebra.

– AffOL
: affine formal schemes, i.e. of the form SpfA for A ∈ AdOL

. To any such scheme we

attach the special fiber SpecA/I, I an ideal of definition of A.

– FSchOL
: locally Noetherian, adic formal schemes (i.e. formal schemes constructed by gluing

objects in Aff form
OL

) whose special fiber (constructed by gluing special fibers on an affine

covering) is a scheme locally of finite type over Spec kL.

– AffL: affinoid L-algebras.

– RigaffL : affinoid rigid analytic spaces over L, i.e. of the form SpmA for A ∈ AffL.

– RigL the category of rigid analytic spaces over L.

We recall that a OL-algebra A is an object of AdOL
if and only if it is a quotient of

OL〈ζ1, . . . , ζr〉[[ξ1, . . . , ξs]]

for some r, s ∈ Z≥0.

Taking the formal (respectively, maximal) spectrum gives an equivalences of categories Aff form
OL
∼=

AdopOL
(respectively, Affrig

L
∼= Affop

L ), while FSchOL
and RigL are obtained respectively from

Aff form
OL

and Affrig
L by gluing.

Berthelot’s construction, as presented in [deJ95, Sections 7.1.1 and 7.2.3], provides us with a

generic fiber functor

FSchOL
→ RigL

X 7→ X rig

7



that factors through the localization FSchbwOL
of FSchOL

at admissible formal blow-ups, and

induces an equivalence of categories FSchbwOL
∼= RigL.

Given a rigid analytic space X over L, a formal model ofX is an object X of FSchOL
equipped

with an isomorphism X rig ∼= X. For any such X , one defines a canonical homomorphism

(1) OX (X )⊗OL
L→ OX(X),

as in [deJ95, Section 7.1.8]. The image of OX (X ) under (1) lies in O+
X(X), and the resulting

map OX (X )→ O
+
X(X) is an isomorphism if X is flat and normal [deJ95, Theorem 7.4.1].

We prefer Berthelot’s generic fiber functor over Raynaud’s since it allows us to work with

“wide open” rigid analytic spaces, as Definition 2.1 just below. However, there is no simple

description of the image of Berthelot’s functor, i.e. no simple condition under which a rigid

analytic space admits a formal model.

Definition 2.1. We say that a rigid analytic space X over L is wide open if it is reduced and

can be admissibly covered by an increasing union of affinoids
⋃
i∈NXi with the property that the

restriction map OXi+1(Xi+1) → OXi(Xi) is compact for every i ≥ 0. We denote by RigwoL the

full subcategory of RigL whose objects are the wide open rigid analytic spaces.

If X is a wide open rigid analytic space and (Xi)i is a sequence as in Definition 2.1, then

OX(X) is the projective limit of the affinoid Tate algebras OXi(Xi) with respect to the restric-

tion maps, and O+
X(X) is the projective limit of the O+

Xi
(Xi) also with respect to restrictions.

It is in particular Hausdorff, since each of the affinoid Tate algebras O+
Xi
(Xi) is Hausdorff.

Moreover, by following Berthelot’s construction we obtain an isomorphism

X ∼= (Spf O+
X(X))rig,

so that SpfO+
X(X) is a formal model of X. Such a model is initial in the sense of Remark 2.5.

Remark 2.2. If X is wide open, then by [BC09, Lemma 7.2.11] (where the term “nested” is

used instead of wide open), O+
X(X) is a compact ring. Being compact and Hausdorff, O+

X(X)

is a profinite ring.

As we explain below, the association X 7→ O+
X(X) allows us to give an algebraic characteri-

zation of wide open rigid analytic spaces.

Definition 2.3. We denote by AdprofOL
the full subcategory of profinite objects in AdOL

, and by

Affprof
OL

the category of affine formal schemes of the form SpfA, with A ∈ AdprofOL
.

An object of AdOL
is profinite if and only if it belongs to ÂrtkL , if and only if it is equipped

with the topology induced by its maximal ideal, if and only if it is a quotient of OL[[ξ1, . . . , ξs]]

for some s ∈ Z≥1.

Remark 2.4.

(i) An object of AdOL
is profinite if and only if it belongs to ÂrtkL , if and only if it is

equipped with the topology induced by its maximal ideal, if and only if it is a quotient of

OL[[ξ1, . . . , ξs]] for some s ∈ Z≥1. Let X = SpfA for some A ∈ AdOL
. The generic fiber

of X is:

– affinoid if and only if (πL) is an ideal of definition of A (i.e., A is a quotient of

OL〈ζ1, . . . , ζr〉 for some r ∈ Z≥1), in which case X rig = SpmA →֒ A⊗OL
L.

– a wide open if and only if A ∈ AdprofOL
. We already explained the “only if”. For the

converse, we take A = A in the construction of [deJ95, Section 7.1.1], so that the

generic fiber (SpfA)rig is given in [deJ95, Definition 7.1.3] as an increasing admissible
8



union
⋃
i∈N SpmCi. A direct check shows that if A is a quotient of OL[[ξ1, . . . , ξs]],

then the maps Ci+1 → Ci are compact.

Via the above observation, we can write a sequence of equivalences of categories

(AdprofOL
)op → Affprof

OL
→ RigwoL → (AdprofOL

)op,

where the first functor is Spf, the second one is Berthelot’s rigid analytic generic fiber,

the last one maps X to O+
X(X), and is a quasi-inverse to the composition of the first

two.

Let e be the ramification index of L/Qp, and let R be a positive real number of the form

pm/e for some m ∈ Z and e ∈ Z≥1. The basic examples for the two cases appearing in Remark

2.4 are, of course:

– The rigid analytic affinoid disc D(0, R) of center 0 and radius R, defined as

D(0, R) = SpmL〈T,U〉/(T − πmL U),

where πL is any uniformizer of L. An obvious formal model for D(0, R) is

D(0, R) = SpfOL〈T,U〉/(T − π
mU).

If R = 1, such a model is initial in a sense that we make precise in Remark 2.5.

The affinoid D(0, R) can also be defined over Qp as

D(0, R)Qp = SpmQp〈T,U〉/(T
e − pmU),

and has a formal model

D(0, R)Qp = Spf Zp〈T,U〉/(T
e − pmU).

– The rigid analytic wide open disc D(0, R)◦ of center 0 and radius R, defined as

(SpfOL[[π
m
L T ]])

rig.

It is a wide open, since it can be written as an increasing union of affinoid discs of radii pr,

with r ∈ Q and r → m/e. We can define all such discs over L via the trick explained in the

previous point.

Remark 2.5. Let A ∈ AdOL
, and X = (SpfA)rig. Then O+

X(X) ∈ AdOL
and SpfO+

X(X) is

an affine formal model of X. If X is any other affine formal model of X, then (1) provides us

with a map OX (X )→ O
+
X(X) in AdOL

, hence a map SpfO+
X(X)→ X in Aff form

OL
that induces

an isomorphism on the generic fibers. Therefore, SpfO+
X(X) is an initial object in the category

of affine formal models of X.

2.1. Functors on Artin rings, formal schemes and rigid analytic spaces. Let F : ArtkL →

Sets be a functor. We can extend F to a continuous functor F̂ : ÂrtkL → Sets in a unique way:

if mA is the maximal ideal of A ∈ ÂrtkL , we set F̂ (A) = lim
←−n

F (A/mn
A), where the transition

maps come from functoriality. Note that the Noetherian objects in ArtkL belong to AdOL
.

Assume that F is pro-represented by a universal pair (R, ξ), where R is a Noetherian object in

ÂrtkL and ξ ∈ F (R). Since R ∈ AdOL
, it gives rise to an affine formal scheme Spf R ∈ FSchOL

and a rigid analytic space (Spf R)rig ∈ RigL, so that we can consider the functors

FAd := Hom(R,−) : AdOL
→ Sets,

F form := Hom(−,Spf R) : FSchOL
→ Sets,

F rig := Hom(−, (Spf R)rig) : RigL → Sets.

9



We attach to ξ ∈ F (R) elements ξform ∈ F form(Spf R) = Hom(Spf R,Spf R) and ξrig ∈

F rig((Spf R)rig) = Hom((Spf R)rig, (Spf R)rig) in the obvious way. By definition, (Spf R, ξform)

is a universal pair for F form, and ((Spf R)rig, ξrig) is a universal pair for F rig.

The above definition are quite trivial, but allow us to define representable functors on some

formal schemes and rigid spaces starting from a representable functor on Artin rings. It would

be more satisfying to start with a (not necessarily) representable functors on Artin rings, and

produce functors on formal schemes (by covering them with formal schemes of the type SpfA,

A ∈ AdOL
) and rigid spaces (by covering them with rigid spaces of the form (SpfA)rig, A ∈

AdOL
, i.e. with wide open subspaces; this is what is sometimes called an “overconvergent”

covering in the literature). However, we do not know of a result granting the existence of the

required coverings in general. For the same reason, we are unable to check that the above

(tautologically representable) functors actually parameterize (pseudo-)deformations of a given

residual representation to all formal schemes or rigid spaces. It is however, sufficient to our

purposes to know that they do so over certain subcategories of FSchOL
and RigOL

, namely the

category of formal spectra of Noetherian pro-p rings, and that of wide open rigid analytic spaces

(see Propositions 3.9 and 3.13).

3. Deformations and pseudodeformations

We specialize the discussion from the previous section to functors parameterizing (pseudo-

)deformations of a profinite group.

3.1. Preliminaries on pseudorepresentations. In order to simplify the exposition, we work

with pseudorepresentations in the classical sense (i.e., traces of representations) rather than

the more modern notion of Chenevier’s determinants. In particular, we will assume that the

characteristic of our coefficient field is large enough compared to the dimension of the pseu-

dorepresentation, in order to avoid the issues described in [Che14, Introduction, footnote 5].

Let d be a positive integer. Let A be a topological ring in which d! is invertible, R a topological

A-algebra. We denote by Sd+1 the group of permutations of the set {0, . . . , d}, and by ε(σ) the

sign of an element σ ∈ Sd+1.

Definition 3.1. A (continuous) A-valued, d-dimensional pseudorepresentation of R is a (con-

tinuous) A-linear map T : R→ A satisfying:

(i) T (1) = d,

(ii) for every r1, r2 ∈ R, T (r1r2) = T (r2r1),

(iii) for every r0, . . . , rd ∈ R,
∑

σ∈Sd+1
ε(σ)Tσ(r0, . . . , rd) = 0,

where Tσ is defined as follows: if σ = (i11, . . . , i
m1
1 ) · · · (i1k, . . . , i

mk
k ) is a decomposition of σ in

disjoint cycles, then Tσ = T (i11 · · · i
m1
1 ) + . . . + T (i1k · · · i

mk
k ).

If G is a topological group, an A-valued pseudorepresentation of G (with any additional

properties) is a pseudorepresentation of the group algebra A[G]. We also refer to its restriction

T : G→ A as a pseudorepresentation.

We say that a d-dimensional pseudorepresentation T is irreducible if it cannot be written as

a sum T = T1 + T2 of two pseudorepresentations (necessarily, of dimensions d1, d2 ∈ Z≥1 with

d1+d2 = d). When A is a field, we say that T is absolutely irreducible if T ⊗AA is irreducible.

In order for a map T : G → A to be a pseudorepresentation, it is enough that conditions

(ii,iii) are satisfied on elements of G. Continuity can also be checked on G.

Given a pseudorepresentation T : R → A, the kernel of T is the A-submodule of R defined

by

ker T = {y ∈ R |T (xy) = T (x)∀x ∈ R}.
10



When G is a group and T : G → A a pseudorepresentation, we denote by ker T the normal

subgroup

ker T = {y ∈ G |T (xy) = T (x)∀x ∈ G}.

If T is continuous, kerT is closed.

Given a pseudorepresentation T : R → A and an A-algebra B, we denote by T ⊗A B the

pseudorepresentation T ⊗A B → B induced from T . For later use, we prove a lemma.

Lemma 3.2. Let A be a complete, local, Noetherian ring and let T : R→ A be a pseudorepre-

sentation. Let B be a flat A-algebra. Then ker(T ⊗A B) = (ker T )⊗A B.

This is essentially [BC09, Remark 1.2.2], which relies on [Rou96, Proposition 2.11] and also

gives alternative assumptions on A and B for which the result holds.

Proof. Obviously, kerT ⊗A B ⊂ ker(T ⊗A B), so that T ⊗A B induces a pseudorepresentation

(T ⊗A B)′ : R⊗A B/((ker T )⊗A B)→ B.

Since B is A-flat,

(2) R⊗A B/((ker T )⊗A B) ∼= (R/ker T )⊗A B.

Let T ′ : R/ker T → A be the faithful pseudorepresentation induced from T . By [BC09,

Remark 1.2.2], T ′⊗A B : (R/ker T )⊗AB → B is faithful. Obviously, T ′⊗A B is identified with

(T ⊗A B)′ via (2). We conclude that (T ⊗A B)′ is faithful, which means that ker(T ⊗A B) ⊂

(ker T )⊗A B, giving the missing inclusion. �

We recall another definition. Let A be a local ring with maximal ideal mA and residue field

F, equipped with the mA-adic topology. Let T : G→ A a continuous pseudorepresentation.

Definition 3.3 ([BC09, Definition 1.4.1]). We say that T is residually multiplicity-free, or that

T is multiplicity-free, if there exist pairwise non-isomorphic, absolutely irreducible representa-

tions ρi : G→ Mdi(F), i = 1, . . . , k, such that T =
∑k

i=1 tr ρi.

Finally, we refer to [BC09, Definition 1.3.1] for the definition of a generalized matrix algebra,

GMA in short. Let R be a GMA over a ring A. As per loc. cit., R comes equipped with

a trace function R → A. Following [BC09, Section 1.3.3], given a positive integer n and an

A-algebra B, we call trace representation of a GMA an A-algebra homomorphism R→ Mn(B)

that commutes with the trace maps on the two sides.

3.2. Deformation functors on Artin rings. We recall a few standard definitions of defor-

mation and pseudodeformation functors on Artin rings. We will apply the definitions from

Section 2.1 to representable functors of this kind, and describe the corresponding functors on

formal schemes and rigid analytic spaces.

Following Mazur, we call a profinite group G p-finite if every open subgroup H of G only

admits a finite number of open subgroups of index p. This condition guarantees that the Artinian

deformation problems for representations of G are pro-represented by Noetherian objects.

Until the end of the section, let G be a profinite p-finite group and ρ be a continuous repre-

sentation of G on a kL-vector space V of some finite dimension n. Given an arbitrary ring A

and a representation ρ of G on a free A-module, we denote by tr ρ : G→ A the trace of ρ.

Consider the functor PDefρ : ArtkL → Sets, attaching to A ∈ ArtkL the set of pseudorepre-

sentations T : G→ A such that the reduction of T modulo the maximal ideal of A is the trace

of ρ. By [Böc13, Proposition 2.3.1], PDefρ is pro-represented by a universal pair (Rps
ρ , T

univ)

with Rps
ρ Noetherian, that we call the universal pseudodeformation of ρ.
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Now let b be a basis of Def�ρ : ArtkL → Sets associating with A ∈ ArtkL the set of the set

of triples (r, ι, b) where r is a representation of GK over an A-module V , ι is a GK -equivariant

isomorphism V ⊗A kL ∼= V and b is a lift of b to a basis of V . By Schlessinger’s criterion, Def�ρ
is pro-represented by a universal quadruple (R�

ρ , ι
�,univ, buniv, ρ�,univ) with R�

ρ Noetherian, that

we call the universal framed deformation of ρ.

Since tr ρ�,univ is a pseudorepresentation lifting tr ρ, the universal property of (Rps
ρ , T

univ)

gives a morphism Rps
ρ → R�

ρ in ÂrtkL .

Consider the functor Defρ : ArtkL → Sets associating with A ∈ ArtkL the set of pairs (r, ι)

where r is a representation of GK over an A-module V and ι is a GK -equivariant isomorphism

V ⊗A kL ∼= V . If EndkL[G](ρ) = kL, then by [Maz89, Proposition 1], Defρ is pro-represented by

a universal triple (Rρ, ι
univ, ρuniv) with Rρ Noetherian, that we call the universal deformation of

ρ. In this case, the relevant universal properties give morphisms Rps
ρ → Rρ → R�

ρ in ÂrtkL that

commute with the already given Rps
ρ → R�

ρ . When ρ is irreducible, the morphism Rps
ρ → Rρ is

an isomorphism [Böc13, Theorem 2.4.1].

3.3. Pseudorepresentations lifting residual representations. As before, let L be a p-

adic field with ring of integers OL and residue field kL, and let G be a profinite, p-finite

group. Let T : G → kL be a continuous pseudorepresentation. Let X be a quasi-separated,

quasi-paracompact rigid analytic space over L and T : G→ OX(X) a continuous pseudorepre-

sentation.

Definition 3.4. We say that T lifts T if there exists a formal model X of X such that T factors

through a pseudorepresentation TX : G → O(X ), and an affine covering {Spf Ai}i∈I of X such

that, for every i ∈ I, the restriction of TX to G→ Ai lifts T .

If X is a rigid analytic space over L and T : G→ OX(X) is a pseudorepresentation, we say

that T lifts ρ if there exist a G-representation F on X with trace T and a lattice V inside of F

with reduction isomorphic to ρ.

We show that one can actually check the above properties on points.

Lemma 3.5. A pseudorepresentation T : G → OX(X) lifts T if and only if, for every x ∈

X(Qp), the specialization Tx : G→ Qp of T at x lifts T .

Proof. If T lifts T , then there exists an affine covering {Spf Ai}i∈I of X such that, for every

i ∈ I, the restriction of TX to Ti : G → Ai lifts T . Since {Spm(Ai ⊗Zp Qp)}i∈I covers X,

every point x ∈ X(Qp) belongs to Spm(Ai⊗Zp Qp) for some i (after possibly base changing this

affinoid to some finite extension of L over which x is defined; we will do this implicitly). Let T rig
i

be the composition of T with the restriction OX(X)→ Ai⊗Zp Qp. If evx denotes specialization

at x, the diagram

G Ai OL

Ai ⊗Zp Qp L

Ti

T rig
i

evx

evx

commutes. In particular that the reductions of Tx and Ti coincide, so that if T lifts T then Tx
also lifts T , and if Tx lifts T for every x ∈ X(Qp), then Ti lifts T for every i ∈ I. �

Proposition 3.6.

(i) The pseudorepresentation T factors through a continuous pseudorepresentation T+ : G→

O+
X(X).
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(ii) Assume that X is flat and normal, and that it admits a flat formal model. Then ev-

ery pseudorepresentation T : G → OX(X) factors through OX (X ) → OX(X) for a flat,

normal formal model X of X.

Proof. For part (i), observe that for every L-point x of X, the specialization of T at x is a

continuous pseudorepresentation Tx : G→ L. Since G is compact, the image of Tx lands in OL.

Then for every g ∈ G and x ∈ X(L), the evaluation of T (g) at x is power-bounded, so that

T (g) itself is power-bounded.

We prove (ii). Let X0 be a flat formal model of X. Let X be the normalization of X0,

constructed as in [Conr99, Section 2.1]. Then by [Conr99, Theorem 2.1.3] X rig → X is a

normalization of X, hence an isomorphism since X is already normal.

Since X is flat and normal, the morphism (1) induces an isomorphism OX (X )→ O
+
X(X) by

[deJ95, Theorem 7.4.1]. Therefore, T factors through a pseudorepresentation T+ : G→ OX (X )

by part (i). �

Remark 3.7.

– If X is flat, quasi-separated and quasi-paracompact, then it admits a flat formal model

X0 → SpfOL by the results of Raynaud and Gruson (see [BL93, Corollary 5.10]).

– If X is of the form (SpfA)rig for some A ∈ AdOL
, then SpfO+

X(X) is a flat formal model of

it.

3.3.1. The rigid pseudodeformation functor. Let F = PDefρ : ArtkL → Sets, and let (Rps
ρ , T

univ)

be the universal pair for F . Consider the functors

PDefprofρ : FSchprofOL
→ Sets

X → {pseudodeformations T : G→ OX (X ) of tr ρ}

and

PDefwoρ : RigwoL → Sets

X → {pseudodeformations T : G→ OX(X) of tr ρ}.

Notation 3.8. We set Xps
ρ = (Spf Rps

ρ )rig, and we still denote with T univ the composition of

the universal pseudodeformation T univ of ρ with Rps
ρ → OXps

ρ
(Xps

ρ ).

Note that if the category of wide open rigid analytic L-spaces is replaced with that of L-

affinoids, the following result is [Che21, Theorem 2.2(iii)].

Proposition 3.9. There are natural isomorphisms

F form|
FSchprof

OL

∼= PDefprofρ

F rig|Rigwo
L
∼= PDefwoρ ,

i.e. the functor on formal schemes (respectively, rigid spaces) obtained from F is a pseudode-

formation functor after restriction to the subcategory of formal spectra of Noetherian profinite

OL-algebras (respectively, wide open rigid analytic L-spaces).

Proof. By definition, an object X ∈ FSchprof is a formal scheme of the form SpfA, with A

a Noetherian object of ÂrtkL ; in particular, the category FSchprof is a full subcategory of

(ÂrtkL)
op. Therefore, the first isomorphism follows from the fact that Hom(Rps

ρ ,−)
∼= F =

PDefρ.

By definition F rig = Hom(−, (Spf Rps
ρ )rig), so that to every element of F rig(X) we can attach

a homomorphism f : X → (Spf Rps
ρ )rig, and the continuous pseudorepresentation f∗T univ : G→
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OX(X) lifting ρ. This provides us with a natural transformation F rig → PDefwoρ . We construct a

natural transformation in the opposite direction, omitting the routine check that it is an inverse

to the one above. By Proposition 3.6 and Remark 3.7, every continuous representation T : G→

OX(X) lifting ρ factors through a continuous pseudorepresentation T+ : G→ O+
X(X) lifting ρ.

Since O+
X(X) is an element of ÂrtkL by Remark 2.2, T defines an element of Hom(Rps

ρ ,O
+
X(X)),

hence an element of Hom(X, (Spf Rps
ρ )rig) = F rig(X), as desired. �

3.4. Sheaves lifting residual representations. As before, let ρ : G → GL(V ) be an n-

dimensional, continuous kL-linear representation.

Definition 3.10. We say that V lifts ρ if there exists a G-stable OL-lattice V ⊂ V such that

V ⊗OL
kL is isomorphic to ρ as a kL-linear representation of G.

Contrary to a common convention, we are not taking any semisimplification after tensoring

with kL: we want a lattice that actually lifts the chosen, and possibly non-semisimple, ρ. Since

a kL-representations of G lifted by V is only determined up to semisimplification, a same V can

lift various non-isomorphic representations.

Now let X be a OL-formal scheme and let V be a sheaf of G-representations on X .

Definition 3.11. We say that V lifts ρ if, for every point x of X , corresponding to a mor-

phism Spf k → X for a finite extension k of kL, the fiber Vx is isomorphic to ρ ⊗kL k as a

G-representation.

Now let X be a rigid analytic space over L and V a sheaf of G-representations on X.

Definition 3.12. We say that V lifts ρ if there exist a formal model X of X and a sheaf of

lattices V for V over X such that V lifts ρ.

3.4.1. The rigid deformation functor. Assume that ρ is absolutely irreducible. Let F = Defρ : ArtkL →

Sets, and let (Rρ, ρ
univ) be the universal pair for F . Consider the functors

Defprofρ : FSchprofOL
→ Sets

X → {G-representations V over X lifting ρ}

and

Defwoρ : RigwoL → Sets

X → {G-representations V over X lifting ρ}.

Again, if the category of wide open rigid analytic L-spaces is replaced with that of L-affinoids,

the following result is the absolutely irreducible case of [Che21, Theorem 2.2(iii, iv)].

Proposition 3.13. There are natural isomorphisms

F form|
FSchprof

OL

∼= Defprofρ

F rig|Rigwo
L
∼= PDefwoρ ,

i.e. the functor on formal schemes (respectively, rigid spaces) obtained from F is a deformation

functor after restriction to the subcategory of formal spectra of Noetherian profinite OL-algebras

(respectively, wide open rigid analytic L-spaces).

Proof. Since deformations of ρ to a Noetherian object A of ÂrtkL are in an obvious natural

bijection with deformations of ρ over SpfA, the first statement follows from the universal

property of Rρ.

By definition F rig = Hom(−, (Spf Rρ)
rig), so that to every element of F rig(X) we can attach

a homomorphism f : X → (Spf Rρ)
rig, and the G-representation f∗ρuniv lifting ρ. This provides
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us with a natural transformation F rig → Defwoρ . We construct a natural transformation in the

opposite direction, omitting the routine check that it is an inverse to the one above.

Let V be a G-representation over X, lifting ρ. Since ρ is absolutely irreducible, it is in

particular multiplicity-free, and V is absolutely irreducible. In particular, by Theorem 4.16, V

admits a lattice V defined over a formal model X of X. Now V is a deformation of ρ, hence by

the universal property of Spf Rρ, it is induced by a map g : X → Spf Rρ. The generic fiber of g

defines an element of F rig(X), as desired. �

Notation 3.14. We set Xρ = (Spf Rρ)
rig and Xρ = (Spf Rρ)

rig. We still denote by ρuniv (re-

spectively, ρ�,univ) the composition of the universal deformation ρuniv (respectively, the universal

framed deformation ρ�,univ) of ρ with Rρ → OXρ
(Xρ) (respectively, R

�
ρ → OX�

ρ
(X�

ρ ))

Note that the sheaf Vuniv
ρ is actually a G-representation on Xρ, not just a sheaf, since it

is attached to the representation ρuniv. If X is a rigid analytic space X over L carrying a

sheaf V of G-representations lifting ρ (and also carrying some associated ι), then the morphism

f : X → Xρ provided to us by the universal property identifies V with the pullback f∗Vuniv
ρ ,

which is a G-representation on X. We deduce the following.

Lemma 3.15. Assume that EndkL(ρ) = kL. Let X be a rigid analytic space and V a sheaf of

G-representations on X lifting ρ. Then V is a G-representation on X.

Recall that, as functors on ArtkL , we have natural transformations Def�ρ → Defρ → PDefρ,

inducing a morphism Rps
ρ → R�

ρ , and, if EndkL(ρ) = kL, R
ps
ρ → Rρ → R�

ρ . The corresponding

natural transformations of functors in the rigid setting are given as follows:

– Def�ρ → Defρ maps a triple (V, ι, b) to the pair (V, ι),

– Defρ → PDefρ maps a pair (V, ι) to the trace of V.

By passing to the representing objects we obtain a morphismX�
ρ → Xps

ρ , and, if EndkL(ρ) = kL,

morphisms X�
ρ → Xρ → Xps

ρ . These morphisms are also induced by the ring homomorphisms

recalled above.

Remark 3.16. The G-representation V
�,univ
ρ on X�

ρ admits a lattice: it is the G-representation

on Spf R�
ρ associated with ρ�,univ : G→ GLn(R

�
ρ ).

When EndkL[G](ρ) = kL, the G-representation Vuniv
ρ on Xρ admits a lattice: it is the G-

representation on Spf Rρ associated with ρuniv.

4. Lattices in families of representations

Let G be a compact topological group. In this section, we introduce the (standard) notion of

sheaf of G-representations over a rigid analytic space X, and show how to find a “lattice” in it

(i.e. an integral model) under some reasonable assumptions on the sheaf and on its underlying

space (see Theorem 4.16.

4.1. Sheaves of G-representations. In the following definitions, X can be either a rigid

analytic space over L, or an admissible OL-formal scheme. By “open” in X we will mean either

an admissible open if X is a rigid space, or an open admissible formal subscheme if X is a

formal scheme.

Definition 4.1. An OX -linear action of G on an OX -module V is the datum, for every open

U ⊂ X, of a continuous homomorphism

ρU : G→ AutOX(U)−mod V(U),
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such that, for every inclusion V ⊂ U of opens in X, the composition of ρU with the restriction

V(U)→ V(V ) is conjugate to ρV in AutOX(V )V(V ).

A sheaf of G-representations on X is a locally free OX-module V of finite rank carrying an

OX -linear action of G.

Obviously, a free sheaf V on X is generated by global sections if and only if OX itself

is generated by global sections. The following fact assures us that this is the case in some

situations of interest.

Lemma 4.2. If X is either an admissible affine OL-formal scheme, an affinoid or a wide open

rigid analytic space over L, then OX is generated by global sections.

Proof. In the affine or affinoid case, this is obvious. If X is a wide open rigid analytic space over

L, then A+ := OX(X)+ is a complete local ring by Remark 2.2, and following the construction

of [deJ95, Section 7.1] we see that X is the generic fiber of Spf A+ in the sense of Berthelot. In

particular, A+ generates OX as a OX-module. �

A sheaf of G-representations is free and generated by global sections if and only if there exists

a free OX(X)-module M of finite rank and a continuous homomorphism

ρV : G→ AutOX(X)M

such that, for every open subspace Y ⊂ X, the (OX(Y ), G)-module V(Y ) is isomorphic to

M ⊗OX(X) OX(Y ) equipped with the G-action induced from that on M . In this case, one can

simply take M = V(X).

Definition 4.3. A G-representation onX is a free sheaf of G-representations V on X generated

by global sections.

Assume that X is reduced and irreducible, so that Frac(OX(X)) is a field that we denote by

KX . We say that a G-representation V on X is irreducible if ρV ⊗OX(X) KX is irreducible.

We say that V is absolutely irreducible if ρV ⊗OX(X) K
sep
X is absolutely irreducible.

Remark 4.4. Let V be a sheaf of G-representations on X. Then there exists a covering U

of X such that, for every U ∈ U, V|U is a G-representation. Indeed, by definition, a sheaf of

G-representations on X is a locally free OX -module V equipped with a G-action, i.e. there

exists a covering U of X, which is admissible in the case when X is a rigid space, such that

V|U is free as an OU -module for every U ∈ U. By refining the covering U, one can assume that

every U ∈ U is affine/affinoid, so that V|U is a G-representation.

Remark 4.5.

(i) We stress once more that global generation only depends on the space X; we attach the

phrase “generated by global sections” to the sheaf just so we can speak ofG-representations

without making assumptions on X (if OX is not generated by global sections, no G-

representation on X will exist) .

(ii) By the above discussion, the datum of a G-representation on X generated by global

section is the same as that of a free OX(X)-module M of finite rank and a continuous

representation ρV : G→ AutOX(X)M . We call ρV as above the representation associated

with V. We sometimes abuse of terminology and refer to ρV as a G-representation on X.

(iii) It is immediate from the definition and from the first part of the remark that a G-

representation V on X is irreducible if and only if its only sub-G-representations are 0

and V. It is not obvious that an irreducible V does not admit any non-trivial subsheaves

of G-representations.
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Note that if X = SpmA is an affinoid, a G-representation on X is what is called an A-

representation of G in [KL10].

For every sheaf of G-representations V on X, there exists an affine (if X is a formal scheme)

or affinoid (if X is a rigid analytic space) covering U of X with the property that, for every

U ∈ U , the restriction of V to U is a G-representation on U .

Definition 4.6. When X is either an affine OL-formal scheme or an affinoid rigid analytic

space over L, we define the trace of a G-representation V on X as the trace trV : G→ OX(X)

of the homomorphism ρV : G→ AutOX(X)(V(X)) associated with V.

For an arbitrary OL-formal scheme or rigid analytic L-space X and a sheaf V of G-representations

on X, we define the trace of V as the function trV : G → OX(X) defined, on every open U

over which V|U is a G-representation, as the trace of V|U .

Remark 4.7.

– The second part of Definition 4.6 produces, as desired, a map G → OX(X). Indeed, by

Remark 4.4, there exists a covering U of X, admissible in case X is a rigid space, such that

V|U is a G-representation on U ; therefore, for every g ∈ G, the collection of traces tr(V|U )(g),

U ∈ U, glues to a global function on X. Here we are using in a crucial way the admissibility

of U in the rigid case: see Section 5.7 for a further discussion on this.

– Given a rigid analytic space X and a sheaf V of G-representations on X, one can compute

the trace of V on any sheaf of lattices, in the following sense: if V is a sheaf of lattices in

V, defined over a formal model X of X, then the trace of V coincides with that of V after

composition with the natural map OX (X )→ OX(X).

Lemma 4.8. Let V be a G-representation on X and T the trace of V. The following are

equivalent:

(i) The G-representation V is absolutely irreducible.

(ii) The pseudorepresentation T ⊗OX(X) K
sep
X is irreducible.

Proof. We first prove that (i) ⇐⇒ (ii). By definition, V is absolutely irreducible if and only if

ρV ⊗OX(X) K
sep
X is irreducible. If ρV ⊗OX(X) K

sep
X is an extension of two non-zero Ksep

X -linear

representations ρ1 and ρ2 of G, then T ⊗OX(X) K
sep
X is the sum of the traces T1, T2 : G→ Ksep

X

of ρ1 and ρ2. This gives the implication (ii) =⇒ (i).

For the other direction, assume that T ⊗OX(X) K
sep
X is a sum of two non-trivial pseudorep-

resentations T1, T2 : G → Ksep
X . By [Tay91, Theorem 1(2)], there exist Ksep

X -linear represen-

tations ρ1 and ρ2 with traces T1 and T2, respectively. Since the Ksep
X -linear representations

ρV ⊗OX(X) K
sep
X and ρ1 ⊕ ρ2 share the same trace, their semisimplifications are isomorphic,

again by [Tay91, Theorem 1(2)]. In particular, ρV ⊗OX(X) K
sep
X is not absolutely irreducible.

This proves by contradiction that (i) =⇒ (ii). �

Every G-representation F on an admissible formal OL-scheme X induces a G-representation

on the generic fiber of X: replace the corresponding OX (X )-module M with its generic fiber

M⊗OX (X ) OX(X), where the tensor product is taken via the natural map OX (X )→ OX(X).

We refer to the resulting representation as the generic fiber of F , and denote it by F rig. By

performing this operation over a covering of X , one can attach to a sheaf of G-representations

F on X a sheaf of G-representations on X, independent of the chosen covering, that we refer

to as the generic fiber of the original sheaf and denote again by F rig.

Definition 4.9. We say that a sheaf of G-representations V on X is irreducible if the only

subsheaves of G-representations of V are the zero sheaf and V itself.
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4.1.1. Strictly quasi-Stein spaces. We introduce a slightly stronger property for a rigid analytic

space than being wide open.

Definition 4.10. cf. [Och23, Definition 7] A rigid analytic space X over L is said to be

quasi-Stein if it is reduced and can be admissibly covered by an increasing union of affinoids⋃
i∈NXi with the property that the restriction map OXi+1(Xi+1) → OXi(Xi) is of dense image

for every i. We say that X is strictly quasi-Stein if one can choose the Xi in such a way that

OXi+1(Xi+1)→ OXi(Xi) is moreover compact for every i.

In other words, X is strictly quasi-Stein if it is wide open and, moreover, one can take the

restriction maps in Definition 2.1 to be of dense image. A wide open disc of any dimension and

radius, with its obvious affinoid covering, is a strictly quasi-Stein space.

Our interest in the above definition lies in the following classical result.

Theorem 4.11. [Kie67, Satz 2.4] If V is a coherent sheaf on a quasi-Stein rigid space X, then

the cohomology groups H i(X,V) vanish for i ≥ 1.

In particular, every sheaf of G-representations on a quasi-Stein space X is a G-representation.

This will allow us to apply our results to certain simple rigid analytic spaces, carrying sheaves

of crystalline or semistable representations, without worrying whether such sheaves are free and

generated by global sections (see Corollary 5.25.

4.2. Sheaves of lattices. Let V be a sheaf of G-representations on X.

Definition 4.12. We say that V admits a lattice if there exists an affine formal model X of X

and a G-representation V on X such that Vrig is isomorphic to V as a G-representation on X.

We say that V admits a sheaf of lattices if there exists a formal model X of X and a sheaf

V of G-representations on X such that Vrig is isomorphic to V as a sheaf of G-representations

on X.

In both cases, we say that the lattice, or sheaf of lattices, V is defined over X .

Our definition of sheaf of lattices is essentially taken from [Che20, Lemme 3.18]. We also refer

the reader to [Hel12, Definition 3.5] for a formulation in terms of adic spaces, and to [Tor24]

where the same notion is referred to as an integral subfamily of V.

Note that if V admits a lattice, then V is necessarily a G-representation on X (not just a

sheaf of G-representations).

Remark 4.13. Let f : X → Y be a morphism of rigid analytic spaces over L. Let V be a sheaf

of G-representations on Y , and V a sheaf of lattices in V defined over a formal model Y of Y .

The coherent sheaf f∗V, with the action of G induced from V, is a sheaf of G-representations

on X. If Y is the generic fiber of Y in the sense of Raynaud, and X also admits a formal

model in the sense of Raynaud, then one can pull back V to a lattice for f∗V defined over some

Raynaud formal model for X. However, it is unclear whether one can always pull back V in the

wider context of Berthelot’s theory.

In the context of Raynaud’s theory of formal models, Chenevier proves that every sheaf of

G-representations on a reduced, quasi-compact, quasi-separated rigid analytic space X admits

a sheaf of lattices [Che20, Lemme 3.18]. We state a version of his result in the context of

Berthelot’s theory. The proof simply requires checking that Chenevier’s argument goes through

for a rigid analytic space that admits a formal model in the sense of Berthelot. Let X be a rigid

analytic space over L, and V a sheaf of G-representations over X.

Proposition 4.14. Assume that there exists a torsion-free formal model X0 of X, and a torsion-

free, coherent OX0-module V0 such that V0⊗OL
L is isomorphic to V as an OX -module (without
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taking into account the action of G). Then there exists a formal model X of X and a sheaf of

lattices for V defined over X .

Proof. Let X0,V0 be as in the statement. Let {SpfAi}i∈I be a covering of X0 by open affine

formal subschemes such that V0|Spf Ai
is free, i.e. it is attached to a finite free Ai-module V0,i.

Clearly V|Spm(Ai[1/p]) is attached to the finite free Ai[1/p]-module Vi := V0,i⊗OL
L. The action

of G on V induces a continuous action of G on
∏
i∈I Vi, and the stabilizer H of the open subring∏

i∈I V0,i ⊂
∏
i∈I Vi is open in G. Since G is profinite, H is of finite index in G. Let {gi}i be

a finite set of representatives for the left H-cosets in G. The finite sum V1 =
∑

i gi(V0) of

subsheaves of V is a G-stable subsheaf of V. It has a natural structure of coherent, torsion-free

OX0-module, and V1 ⊗OL
L ∼= V.

In general, it is not true that V1 is locally free as a OX0 -module; we rely on Raynaud’s theory

of admissible blow-ups in order to replace it with a locally free sheaf over a suitable formal

model of X. Let I be the Fitting ideal of the OX0 -module V1; it is an admissible ideal sheaf

in OX0 . We consider the blow-up X of X0 relative to I, as in [FK18, Chapter II, Sections

1.1(a-b)]: it is another admissible formal model of X . By [FK18, Chapter II, Section 1.2] the

strict transform V of V1 along X → X0 is a coherent, locally free OX -module of finite type over

X , and its generic fiber is still isomorphic to V. The OX0-linear action of G on V1 induces a

OX -linear action of G on V, giving back the original action of G on the generic fiber V. �

Remark 4.15. The assumptions of Proposition 4.14 are satisfied if X is either of the following:

– A quasi-separated, quasi-compact rigid analytic space: X0 and V0 are provided to us by

Raynaud’s theory [Bos14, Section 8.4, Lemma 4(e)].

– A wide open rigid analytic space: we can choose X0 = SpfO+
X(X) by the discussion after

Definition 2.1. To construct V0, consider the increasing affine covering {Xi}i≥1 of X0 described

in [deJ95, Section 7.1.1]: the generic fibers of the Xi give an open affinoid covering {Xi}i≥1 of

X. By Raynaud’s theory, one can choose recursively for every i ≥ 1 a torsion-free, coherent

OXi-module Vi such that Vi ⊗OL
L ∼= V|Xi and Vi ⊗OXi

OXi−1
∼= Vi−1. The inverse limit

V0 := limi Vi is a torsion-free, coherent OX0-module with generic fiber V.

4.3. Existence of lattices over wide open rigid analytic spaces. Let X be an irreducible

wide open rigid analytic space over L. The following is our main result.

Theorem 4.16. Every absolutely irreducible, residually multiplicity-free G-representation V on

X admits a lattice defined over SpfO+
X(X).

Proof. Set A = OX(X), A+ = O+
X(X), and KX to be the total fraction ring of A. As we

remarked in Section 2, A+ is a local profinite OL-algebra and X is the generic fiber of Spf A+.

Since X is reduced and irreducible, KX is a field.

Since X is wide open, the assumptions of Proposition 4.14 are satisfied by Remark 4.15.

Therefore, there exists a sheaf of lattices V for V, defined over some formal model X of X. By

Remark 2.5, we can assume that X = Spf A+ since X is wide open. Let T : G → A+ be the

pseudorepresentation attached to V, in the sense of Definition 4.6.

Let {SpfAi}i∈I be a covering of X by irreducible, reduced affine formal schemes such that

V|Spf Ai
is free for every i ∈ I. Therefore, the restriction V|Spf Ai

is a G-representation on SpfAi,

associated with a homomorphism ρi : G→ GLn(Ai), where n is the rank of V. For every i, let

Ki be the total fraction ring of Ai, which is a field since we assumed SpfAi to be irreducible

and reduced.

We still denote by T the ring homomorphism A+[G]→ A+ obtained by extending A+-linearly

the original T . By [BC09, Theorem 1.4.4(i)], the ringR := A+[G]/ker T has a structure of GMA

over A+ such that the pseudorepresentation T is obtained by composing the natural projection
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A+[G] → R with the trace R → A+. Such a structure of GMA is unique up to conjugation

by an element of R×. To prove the proposition, it is enough to show that there is a trace

representation R →֒ Mn(A
+). By restricting the composition A+[G]→R→ Mn(A

+) to G, we

would then obtain a lattice in V.

By extending scalars to any of the rings Ai appearing in the covering we introduced above,

we obtain a pseudorepresentation Ti : Ai[G]→ Ai and a GMA Ri := R⊗A+ Ai. Recall that Ti
is the Ai-linear extension of the trace of the representation ρi : G → GLn(Ai). In particular,

after extending Ai-linearly ρi, we obtain a representation ρ̃i : Ai[G] → Mn(Ai). Obviously

ker ρ̃i ⊂ ker Ti.

We claim that the reverse inclusion ker Ti ⊂ ker ρ̃i also holds. An element x ∈ Ai[G] belongs

to ker Ti if and only if Ti(xg) = 0 for every g ∈ G; therefore the element x⊗1 of Ai[G]⊗AiKi =

Ki[G] belongs to the kernel of Ti ⊗Ai Ki. Since Ti is Ki-linear, ρ̃i(x ⊗ 1) is orthogonal to the

image of ρ̃i ⊗Ai Ki under the inner product

tr : Mn(Ki)×Mn(Ki)→ Ki

mapping (x, y) to the trace of xyt, yt denoting the transpose of y. Since V is absolutely

irreducible, V⊗A+ Ai is irreducible, and so is V⊗A+ Ki. In particular, the image of ρ̃i ⊗Ai Ki

is the whole Mn(Ki), hence ρ̃i(x ⊗ 1) needs to be in the kernel of the trace pairing tr. Since

this pairing is perfect, ρ̃i(x⊗ 1) must vanish, which means that x ∈ ker ρ̃i.

We thus obtain trace representations

Ri = Ai[G]/ker Ti = A[G]/ker ρ̃i →֒ Mn(Ai) →֒ Mn(Ki),

where the next-to-last map is induced by ρ̃i and the last one is the natural embedding. We

denote by ιi,1 the trace representation Ri → Mn(Ki) produced by the above composition.

By [BC09, Theorem 1.4.4(ii)], there exists an injective trace representation

ι1 : R →֒ Mn(KX).

By composing this embedding with the restriction maps of meromorphic functions KX → Ki,

we obtain a trace representation R → Mn(Ki), hence, after extending Ai-linearly, a trace

representation

ιi,2 : Ri → Mn(Ki).

For every i, the two trace representations ιi,1, ιi,2 : Ri →֒ Mn(Ki) must be conjugate by an

element of GLn(Ki).

We denote by Mn(O) (respectively Mn(K)) the sheaf over X = Spf A+ that associates with

an admissible open formal subscheme U ⊂ Spf A+ the ring Mn(OX(U)), where OX denotes

the structure sheaf of X (respectively, the ring Mn(Frac(OX (U))) where Frac denotes the total

fraction ring). We denote by PGLn(K) the sheaf on X whose sections over an open U are the

Frac(OX(U))-linear automorphisms of Mn(Frac(OX(U))).

Let gi ∈ PGLn(Ki) be such that, for every i ∈ I, gi.ιi,2 = ιi,1 (where by gi.− we mean

conjugation by a representative of gi in GLn(Ki). If i, j ∈ I, write Aij = Ai ⊗A+ Aj,Kij =

Frac(Aij), Rij = R ⊗A+ Aij, ιij,1 and ιij,2 for the maps Rij → Mn(Kij) induced by ιi,1 and

ιi,2 respectively, and gij and gji for the images of gi and gj in PGLn(Ki ⊗KX
Kj), respectively.

Clearly

gij .ιij,2 = ιij,1 = gji.ιij,2,

hence gijg
−1
ji belongs to the centralizer of the image of ιij,2 in PGLn(Kij). SinceV is irreducible,

this centralizer is trivial. In particular, the collection {gi}i∈I is an element of the equalizer of

the sequence ∏

i∈I

PGLn(Ki) ⇒
∏

i,j

PGLn(Kij),
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which is simply PGLn(KX) since {Spf Ai}i∈I is a covering of Spf A+ and PGLn(K) is a sheaf

on Spf A+.

Let g be the element of PGLn(KX) determined locally by the gi. Then the map

g.ι1 : R→ Mn(KX)

coincides for every i with ιi,2 after composition with KX → Ki. In particular, since the image

of ιi,2 is contained in Mn(Ai) for every i, the image of g.ι1 is contained in the equalizer of the

sequence ∏

i∈I

Mn(Ai) ⇒
∏

i,j

Mn(Aij),

which is Mn(A
+) since {SpfAi}i∈I is a covering of Spf A+ and Mn(OX) is a sheaf on Spf A+. �

We give a corollary.

Corollary 4.17. Let V be an absolutely irreducible, residually multiplicity free G-representation

on a wide open rigid analytic space X. Then there exists a morphism f : X → Xρ such that

V ∼= f∗V�,univ as G-representations.

Proof. By Proposition 4.16, V admits a lattice. The result then follows from the universal

property of the quadruple (X�
ρ ,V

�,univ, ι�,univ, b�,univ). �

5. Constancy modulo pn of sheaves of G-representations

We denote by L a p-adic field, with valuation ring OL having maximal ideal mL ⊂ OL and

residue field kL. We fix a uniformizer πL of L. Recall that we have chosen a p-adic norm on Qp

satisfying |p| = p−1, so that |πL| = p1/e, where e is the ramification index of L/Qp.

Given a sheaf of G-representations V over a rigid analytic L-space X, we are interested in

finding subdomains of X over which V is constant modulo a certain power of πL. Since such a

notion will depend on the choice of a sheaf of lattices for V, we start by giving two definitions

of constancy mod powers of πL for a sheaf of G-representations over a formal scheme. We rely

on the definitions and discussion in [Tor24, Section 2].

Let X be a formal scheme over OL, and V a sheaf of G-representations over X . For every

n ∈ Z≥1, p
nOX is a closed ideal sheaf on X . We recall the following definition due to Torti, for

which we refer to [Tor24, Section 2.1].

Definition 5.1. For every n ∈ Z≥1, we define V(n) as the coherent OX -module obtained by

sheafifying the presheaf V ⊗OX
OX /π

n
LOX , equipped with the OX -linear action of G induced by

that on V.

Obviously, the above definition is independent of the choice of a uniformizer πL of L.

For every extension E of L, we denote by XE the formal scheme X ⊗OL
OE and by VE

the coherent OXE
-module sheaf V ⊗OL

OE , equipped with the G-action obtained by extending

OE-linearly the G-action on V.

Borrowing the terminology of [Bos14, Section 8.3, Definition 1], we call rig-point of X an

equivalence class of morphisms SpfO → X , where O is a valuation ring equipped with a finite

local homomorphism OL → O, and equivalence is defined as in [deJ95, Section 7.1.10].

If E is a finite extension of L, we say that a rig-point of X is an E-rig-point if it corresponds

to the equivalence class of a morphism SpfOE → X . If eE/L is the ramification index of E/L,

we define the natural number

γE/L(n) = (n− 1)eE/L + 1,
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following [TW10, Definition 2.2]; we refer to loc. cit. and Remark 5.3 below for some comments

on this choice.

IfA is any sheaf ofOX -modules and x an E-rig-point of X defined by a morphism ιx : SpfOE →

X , we write Ax for the fiber of A at x, i.e. the OE-module attached to the pullback of A along

ιx.

Definition 5.2. We say that V is

(i) pointwise constant mod pn if, for every finite extension E of L, with uniformizer πE, the

isomorphism class of V
(n)
E,x as an OE/π

γE/L(n)

E [G]-module is independent of the choice of

an E-rig-point x of XE.

(ii) constant mod πnL if there exists a finite, free OL/π
n
L-module V (n), equipped with an OL/π

n
L-

linear action of G, such that V(n) ∼= V (n) ⊗OL/π
n
L
OX /π

n
LOX .

When n = 1, we use the terminology locally constant mod p up to semisimplification, with the

obvious meaning.

Part (i) of Definition 5.2 is simply a rephrasing of [Tor24, Definition 2.3].

Semisimplification does not make sense in general for a representation that is not defined

over a field, hence why this notion only appears when n = 1.

Remark 5.3. For m,n ≥ 1, the injection OL →֒ OE induces an injection

(3) OL/π
n
L →֒ OE/π

m
E

if and only if the equality of ideals

(4) (πmEOE) ∩ OL = πnLOL

holds, if and only if m ∈ {(n − 1)eE/L + 1, neE/L}. Therefore, for fixed n, γE/L(n) = (n −

1)eE/L + 1 is the smallest value of m with the above property, as remarked in point (iv) after

[TW17, Definition 2.2]. Clearly, γE/L(n) ≥ n.

Clearly (3) is not an isomorphism in general for m = γL/E(n), nor for any other m for which

it is defined (simply pick any unramified extension E/L). It seems that injectivity is only

sufficient to deduce congruences in OE from congruences in OL, but in fact one can also go the

other way around, as shown in point (v) after [TW17, Definition 2.2]: for every α, β ∈ E,

(5) α− β ∈ πmEOE ⇐⇒ α− β ∈ πnLOL.

In Section 5.2 below, we explain how to use the above property to relate constancy and pointwise

constancy, thus justifying Definition 5.2.

Let X be a rigid analytic space over L.

Definition 5.4. Let V be a sheaf of G-representations over X, and let n ∈ Z≥1. We say that

V is:

(i) pointwise constant mod pn if it admits a sheaf of lattices, defined over a formal model X

of X, that is pointwise constant mod pn;

(ii) constant mod πnL if it admits a sheaf of lattices, defined over a formal model X of X, that

is constant mod πnL.

When n = 1, we use the terminology locally constant mod p up to semisimplification, with the

obvious meaning.

Remark 5.5. Let π : Y → X be a surjective morphism of rigid analytic spaces, and V a sheaf

of G-representations on X. Let n ≥ 1. Then V is pointwise constant mod pn on a subspace

U ⊂ X if and only if π∗V is pointwise constant mod pn on π−1(V ). The analogous statement
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with pointwise constancy mod pn replaced with constancy mod πnL is false; the pullback π∗V(n)

might be constant even if V(n) is not.

5.1. Constancy modulo pn of rigid analytic functions. Let X be an OL-formal scheme.

Let f ∈ OX (X ). For every n ∈ Z≥1, we write f (n) for the image of f under the natural

projection OX (X )→ OX (X )/π
n
LOX (X ).

Let E be a finite extension of L. We write fE for the element of OXE
XE defined by f ⊗ 1

via the natural map OX (X ) ⊗OL
OE → OXE

(XE). If x is an E-rig-point of X attached to a

morphism ιx : SpfOE → X , we denote by fx the evaluation of f at x, i.e. the element of OE
defined by the pullback ι∗xf . When we write f

(n)
x , we are first evaluating at x, and then reducing

modulo π
(n)
E the resulting element of OE .

We give two notions of mod πnL constancy for elements of OX (X ), along the lines of what we

did for sheaves of G-representations in Definition 5.2.

Definition 5.6. Let n ∈ Z≥1. We say that f ∈ OX (X ) is:

(i) pointwise constant mod pn if, for every finite extension E of L with uniformizer πE, the

element f
(γE/L(n)

E,x ∈ OE/π
γE/L(n)

E is independent of the choice of an E-rig-point x of XE;

(ii) constant mod πnL if f (n) belongs to the image of the structure map OL/π
n
L → OX (X )/π

n
LOX (X ).

As was the case with Definition 5.2, condition (ii) in Definition 5.6 is stronger than (i). For an

example of a formal scheme and a function on it satisfying (i) but not (ii), we refer to Example

5.17 below.

Now let X be a rigid analytic space over L. For a formal model X of X, we consider functions

in OX (X ) as elements of OX(X) via (1).

Definition 5.7. Let n ∈ Z≥1. We say that f ∈ OX(X) is pointwise constant mod pn (respec-

tively, constant mod πnL) if there exists a formal model X of X such that f ∈ OX (X ) and f is

pointwise constant mod pn (respectively, constant modulo πnL) as a function on X .

5.2. Constancy versus pointwise constancy. We use Remark 5.3 to compare the notions

of constancy and pointwise constancy for functions on formal schemes, and, as a consequence,

for sheaves of G-representations. The following lemma shows that pointwise constancy mod πnL
fits between constancy mod pn and pn+1. Via the calculations of Section 5.3, we will see that

it actually sits strictly between these two conditions.

Let X = Spf A be an affine OL-formal scheme.

Lemma 5.8. Let f ∈ A, and n ∈ Z≥1.

(i) If f is constant mod πnL, then it is pointwise constant mod pn.

(ii) If f is pointwise constant mod pn+1, then it is constant mod πnL.

Proof. If f is constant mod πnL, then by definition its image under A ։ A/πnL belongs to the

image of OL/π
n
L → A/πnL. By tensoring along the injection OL/π

n
L →֒ OE/π

γE/L(n)

E , one obtains

that the image of f ⊗ 1 ∈ AE := A ⊗OL
OE under AE ։ AE/π

γE/L(n)

E also belongs to the

image of OL/π
n
L → A/πnL → AE/π

γE/L(n)

E . Then, specializing at two different E-rig-points of

XE obviously yields the same element of OE/π
γE/L(n)

E (belonging to the subring OL/π
n
L). This

proves (i).

Now assume that f is pointwise constant mod pn+1, and by contradiction that f is not

constant mod πnL. For every finite extension E/L and E-rig-point x : A → OE of X , let Ix
be the ideal (ker x, π

neE/L

E ). As x varies among the rig-points of X , one has
⋂
x Ix = πnLA.

Fix an L-rig-point x0 of X , and let g = f − f(x0) ∈ A: since g does not belong to πnLA, it
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does not belong to at least one of the Ix. For the corresponding x, one has g(x) /∈ π
neE/L

E OE , a

contradiction since f is pointwise constant mod pn+1, hence g(x) = f(x)−f(x0) ∈ π
γE/L(n+1)

E OE
and γE/L(n+ 1) > neE/L. �

With the next lemma, we reinterpret (pointwise) constancy of the reduction of a free lattice

in terms of that of functions on the underlying formal scheme.

Let V be a free, rank d sheaf of G-representations over an affine formal OL-scheme OX . By

choosing a basis for V, we attach to it a continuous representation ρV : G → GLd(OX ). Let

n ∈ Z≥1.

Lemma 5.9. The lattice V is pointwise constant mod pn (respectively, constant mod πnL) if and

only if the matrix coefficients of ρV are pointwise constant mod pn (respectively, constant mod

πnL). In particular:

(i) if V is constant mod πnL, then it is pointwise constant mod pn;

(ii) if V is pointwise constant mod pn+1, then it is constant mod πnL.

Proof. The proof of the first statement is straightforward. The second statement follows by

combining the first one with Lemma 5.8. �

5.3. Residue subdomains of rigid analytic spaces. Let X be formal scheme over OL, and

X = X rig. We consider functions in OX (X ) as elements of OX(X) via (1). In particular, for a

point x ∈ X(L), it makes sense to consider the ideal

Ix = {f ∈ OX (X ) | f(x) = 0}

of OX (X ).

Definition 5.10. Let n ∈ Z≥1. The mod pn wide open X -residue neighborhood of x in X is

the open subdomain

U
(n)
x,X = {y ∈ X | |f(y)| < p(1−n)/e ∀f ∈ Ix}.

The mod πnL affinoid X -residue neighborhood of x in X is the rational subdomain (in par-

ticular, affinoid)

V
(n)
x,X = {y ∈ X | |f(y)| ≤ p−n/e ∀f ∈ Ix}.

We emphasize in the notation that U
(n)
x,X and V

(n)
x,X depend on the formal model X of X, not

only on the rigid analytic space X.

Remark 5.11. If n = 1, then U
(1)
x,X is the X -residue subdomain sp−1(sp(x)) ⊂ X defined in

[deJ95, p. 7.1.10], also called the “tube” of x in the work of Berthelot. In particular, if X is an

irreducible wide open and X = SpfO+
X(X), then OX (X ) = O

+
X(X) is a local ring, so that the

special fiber consists of a single point and U
(1)
x,X = X.

For every x ∈ X(L), each of the collections {U
(n)
x,X }n≥1 and {V

(n)
x,X }n≥1 is a fundamental system

of open neighborhoods of x.

Assume from now on that X = SpfA is affine. By [deJ95, Lemma 7.1.9], the L-points of

X rig are in bijection with the rig-points of X , i.e. the maximal ideals of A not containing πL;

in particular, the ideal Ix of A is non-zero for every x ∈ X(L).

For every x and n, U
(n)
x,X and V

(n)
x,X are non-empty admissible open neighborhoods of x in X:

indeed, since A is Noetherian Ix is finitely generated, say by (f1, . . . , fm), and

U
(n)
x,X = {y ∈ X | |fi| < p(1−n)/e ∀i = 1, . . . ,m},

V
(n)
x,X = {y ∈ X | |fi| ≤ p

−n/e ∀i = 1, . . . ,m}
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which are admissible by [BGR84, pp. 9.1.4/5], and non-empty since they both contain x.

We give a better description of U
(n)
x,X . Let A

(n)
x , respectively B

(n)
x , be the images of A under

the maps A →֒ OX(X) → OX(U
(n)
x,X ), respectively A →֒ OX(X) → OX(V

(n)
x,X ), the second map

being in both cases the natural restriction.

Lemma 5.12. For every x and n, U
(n)
x,X is the wide open subdomain (SpfA

(n)
x )rig ⊂ (SpfA)rig,

and V
(n)
x,X is the affinoid subdomain SpmB

(n)
x [1/πL] ⊂ (SpfA)rig. If (f1, . . . , fm) is any finite set

of generators of Ix, then

A(n)
x = A[[π1−nL f1, . . . , π

1−n
L fm]],

B(n)x = A〈π−nL f1, . . . , π
−n
L fm〉.

Moreover, V
(n)
x,X ( U

(n)
x,X ( V

(m)
x,X if m < n, and

⋂
n∈Z≥1

U
(n)
x,X =

⋂
n∈Z≥1

V
(n)
x,X = {x}.

Proof. The descriptions of U
(n)
x,X and V

(n)
x,X and the regular functions on them follow from standard

calculations in rigid analytic geometry.

If m < n, the inclusions V
(n)
x,X ⊂ U

(n)
x,X ⊂ V

(m)
x,X are trivial; they are strict since the outer terms

are affinoid while the central one is wide open. The last statement follows from
⋂
n∈Z≥1

U
(n)
x,X =

⋂
n∈Z≥1

V
(n)
x,X = {y ∈ X | f(y) = 0 ∀f ∈ Ix} = x. �

We will write U
(n)
x,X = SpfA

(n)
x and V

(n)
x,X = Spf B

(n)
x for the formal models of U

(n)
x,X and V

(n)
x,X

provided to us by Lemma 5.12.

Remark 5.13. Let π : Y ։ X be a finite cover of affine formal schemes, inducing a map

Y → X of generic fibers that we still denote by π. Then a direct calculation shows that, for

every y ∈ Y (Qp) and n ≥ 1, π(U
(n)
y,Y) ⊂ U

(n)
π(y),X and π(V

(n)
y,Y ) ⊂ V

(n)
π(y),X .

Our interest in the neighborhoods U
(n)
x,X and V

(n)
x,X lies in Theorem 5.19 below, that in turn is

an immediate consequence of the following simple lemma. Let n ∈ Z≥1, and

πA,n : A →֒ A
(n)
x → A(n)

x /πnLA
(n)
x

πB,n : A →֒ B
(n)
x → B(n)x /πnLB

(n)
x

be the compositions of the natural map A →֒ A
(n)
x and A →֒ B

(n)
x with reduction modulo πnL.

Lemma 5.14. Every f ∈ A is:

(i) pointwise constant mod pn on U
(n)
x,X , hence on U

(n)
x,X ;

(ii) constant mod πnL on V
(n)
x,X , hence on V

(n)
x,X .

Remark 5.15. By Lemma 5.9, constancy mod πnL is an intermediate condition between point-

wise constancy mod pn and mod pn+1: this is reflected in the fact that

U
(n)
x,X ⊂ V

(n)
x,X ⊂ U

(n)
x,X .

In Section 5.8, we show that, under certain conditions on bV , the constancy neighborhoods

U
(n)
x,X and V

(n)
x,X are optimal, so that the above inclusions actually follow from Lemma 5.9.

Proof. Let f(x) ∈ OL be the value of f at x. Then g = f−f(x) ∈ Ix. Now by definition of U
(n)
x,X ,

for every finite extension E/L and E-point y of U
(n)
x,X , |g(y)| < p

1−n
e , i.e. vp(g(y)) > (n − 1)/e,

where g(y) ∈ E. Let e′ be the ramification index of E/L. Since the valuation vp on E is discrete

and vp(πE) = 1/(ee′), we deduce that vp(g(y)) ≥ (n− 1)/e+ 1/(ee′) ≥ vp(π
n
E), as desired.
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For part (ii), keep the above notation. Via the description of B
(n)
x in Lemma 5.12, we can

find g1 ∈ B
(n)
x such that g = πnLg1. In particular, the image of f under B

(n)
x → B

(n)
x /πnLB

(n)
x

coincides with the image of f(0) under OL → OL/π
n
LOL. �

Remark 5.16. Let X be an affine formal model of X, x ∈ X(L) and n ∈ Z≥1. As one sees

directly from their definitions, the subspaces U
(n)
x,X and V

(n)
x,X are characterized by the following

properties:

– Let x̃ : OL → X be the rig-point attached to x ∈ X(L). The subdomain U
(n)
x,X is characterized

by the following property: for every finite extension E/L, a point y ∈ X(E) belongs to U
(n)
x,X

if and only if the composition of the associated rig-point ỹ : X → OE with OE → OE/π
n
E

coincides with the composition of x̃ with OE → OE/π
n
E .

– Let OX (X ) → OX (X ) ⊗OL
OL/π

n
L be the reduction map mod πnL. Then U

(n)
x,X is the largest

among the subspaces U ⊂ X such that x ∈ U(L) and every element of OX (X ) is constant

mod πnL over U .

Example 5.17. LetA = OL〈ζ1, . . . , ζs〉[[ξ1, . . . , ξt]], so thatX is the product of an s-dimensional

affinoid unit disc and a t-dimensional wide open unit disc. Let x = 0. Then Ix = (ζ1, . . . , ζs, ξ1, . . . , ξt),

so that

A(n)
x = SpfOL[[π

1−n
L ζ1, . . . , π

1−n
L ζs, π

1−n
L ξ1, . . . , π

1−n
L ξt]],

and U
(n)
x,X = (SpfA

(n)
x )rig, the wide open (s + t)-dimensional disc of center 0 and radius p

1−n
e .

If one replaces x with any other point of X, one simply obtains a wide open disc of the same

radius, centered at x. Similarly, V
(n)
x,X is the affinoid disc of center x and radius p−n/e.

If for instance n = 1 and x = 0, then A
(1)
0 = SpfOL[[ζ1, . . . , ζs, ξ1, . . . , ξt]]. If E is a finite

extension of L with uniformizer πE, an E-point of U
(1)
0,X corresponds to a choice of values of

ζ1, . . . , ζs, ξ1, . . . , ξt in the maximal ideal mE = (πE) of the valuation ringOE ⊂ E. In particular,

the value of an arbitrary f ∈ A
(1)
0 at any E-point of U

(1)
0,X is congruent to f(0) modulo πL.

The image of A under A
(1)
0 → A

(1)
0 /πLA

(1)
0 is isomorphic to kL[ζ1, . . . , ζs, ξ1, . . . , ξt]: in partic-

ular, the structure map kL → A/πLA
(1)
0 is not surjective, so that not every element of A is con-

stant mod πL over U
(1)
0,X . On the other hand, B

(1)
x is the ring of power-bounded functions over the

affinoid disc V
(1)
0,X of center 0 and radius p−1, isomorphic toOL[[π

−1
L ζ1, . . . , π

−1
L ζs, π

−1
L ξ1, . . . , π

−1
L ξt]]:

the image of A under B
(1)
0 → B

(1)
0 /πLB

(1)
0 is obviously kL, so that every element of A is constant

mod πL over V
(1)
0,X .

Example 5.18. Let A = OL〈ζ1, ζ2〉/(ζ1ζ2−π
m
L ), so that X is the 1-dimensional affinoid annulus

of radii p−m/e and 1 (in either variable). Let (x1, x2) ∈ X(L). Then I(x1,x2) = (ζ1−x1, ζ2−x2).

Therefore:

– U
(n)
x,X is the locus where |ζ1− x1| < p

1−n
e and |ζ2− x1| < p

1−n
e . Using the fact that ζ1ζ2 = πmL

and x1x2 = πmL , we can rewrite the second inequality as

(6) |ζ1 − x1| < p
1−n+m

e |ζ1x1|.

Since |x1| ≥ p−m/e, if n − 1 > m then the first inequality implies that |ζ1| = |x1|. There-

fore, (6) becomes |ζ1 − x1| < p
1−n+m

e |x1|
2, where the right-hand side lies in the interval

[p
1−n−m

e , p
1−n+m

e ]. In conclusion, if n − 1 > m, then U
(n)
x,X is the wide open disc of center x1

and radius min{p
1−n
e , p

1−n+m
e |x1|

2}.

– A calculation completely analogous to the previous one shows that, if n > m, V
(n)
x,X is the

affinoid disc of center x1 and radius min{p
−n
e , p

−n+m
e |x1|

2}.
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Note that in both Examples 5.17 and 5.18, reparameterizing a disc or an annulus to give it

a different radius does not give different local constancy domains, as one would expect and can

check directly from Definition 5.10.

5.4. Explicit local constancy of G-representations. We derive from Lemma 5.14 a conse-

quence about the mod πnL variation of sheaves of G-representations.

Theorem 5.19. Let X be a rigid analytic space over L, and V a G-representation on X

admitting a free lattice defined over an affine formal model X of X. Then, for every x ∈ X(L)

and n ∈ Z≥1, V is pointwise constant modulo pn over U
(n)
x,X , and constant modulo πnL over V

(n)
x,X .

Remark 5.20. Since every sheaf of G-representations V on X locally admits a free lattice

over an affine formal model by Proposition 4.14, we can deduce the following statement for

an arbitrary sheaf of G-representations V on X. For every x ∈ X(L), there exists a positive

integer N0 (which will depend on x) such that V is constant (resp. pointwise constant) modulo

πnL (resp. modulo pn) over V
(n+N0)
x,X (resp. U

(n+N0)
x,X ). Indeed, this can simply be deduced from

Theorem 5.19 and from the fact that the collections of U
(n)
x,X and V

(n)
x,X form two fundamental

systems of open neighborhoods of the point x. The integer N0 is a priori necessary in order to

restrict ourselves a neighborhood of x over which V admits a free lattice. As we do not need

the theorem in this generality, we content ourselves with Theorem 5.19.

Proof. The assumptions of Theorem 5.19 can only be satisfied if X admits an affine formal

model. Let V be a free lattice for V, defined over the affine formal model X . After choosing an

A-basis of V(X ), we can attach to the G-action on V(X ) a continuous group homomorphism

ρV : G→ GLd(A).

Every matrix coefficient of ρV is:

– pointwise constant mod pn over U
(n)
x,X by Lemma 5.14, so that ρV is pointwise constant mod

pn over U
(n)
x,X ;

– constant mod πnL over V
(n)
x,X , so that the matrix coefficients of the representation

ρ
(n)
V : G→ GLd(A)→ GLd(A/π

n
LA),

obtained by composing ρV with the natural projection, lie in the image of

GLd(OL/π
n
LOL)→ GLd(A/π

n
LA),

where we are applying the structure map to each coefficient. In particular, ρ
(n)
V is obtained

by extension of scalars from a representation

G→ GLd(OL/π
n
LOL).

Any free OL/π
n
LOL-module V (n) of rank d, equipped with the above action of G in any choice

of basis, will satisfy the condition required in Definition 5.4.

�

Remark 5.21. The statement of Theorem 5.19 is independent of the choice of A-basis of V(X )

made in the proof. This is expected, since different choices of basis amount to conjugating ρV
by matrices with coefficients in A, and for every subspace U of X , an A-linear combination of

elements of OX (X ) that are constant mod πnL (respectively, pointwise constant mod pn) over U

is still constant mod πnL (respectively, pointwise constant mod pn).
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Remark 5.22. The neighborhoods U
(n)
x,X and V

(n)
x,X depend on the choice of a formal model X of

X supporting a lattice forV, so different choices of X will give different constancy neighborhoods

for V. In some cases, there is an optimal choice of formal model, giving the exact mod pn

constancy loci for V: we discuss this in Section 5.8.

In the special case of wide open spaces, we have proven the existence of integral models under

certain assumptions on V. In precise terms, we have the following:

Corollary 5.23. Let X be a wide open rigid analytic space over L, and V an absolutely irre-

ducible, residually multiplicity-free G-representation on X. For every x ∈ X(L) and n ∈ Z≥1,

V is pointwise constant modulo pn over the explicit wide open U
(n)
x,X and constant modulo πnL

over the explicit open affinoid V
(n)
x,X .

Proof. The proof is immediate from combining Theorem 5.19 and Theorem 4.16. �

Remark 5.24. Corollary 5.23 has the interesting consequence that the mod πnL representation

attached to a point of the neighborhood U
(n)
x,X is always defined over OL/π

n
L, even if the point

is not defined over L. A statement of this kind does not seem to appear in any of the previous

works dealing with local constancy.

With a slightly stronger assumption on the space X, we can give a generalization of Corollary

5.23 to the case when V is not a priori known to be a G-representation, but only a sheaf.

Corollary 5.25. Let X be a strictly quasi-Stein rigid space, and let V be a sheaf of G-

representation on X. Then V is a G-representation on X, and if V is absolutely irreducible

and residually multiplicity-free, then for every x ∈ X(L) and n ∈ Z≥1, V is pointwise con-

stant modulo pn over the explicit wide open U
(n)
x,X and constant modulo πnL over the explicit open

affinoid V
(n)
x,X .

5.5. Explicit local constancy of G-pseudorepresentations. We give a very obvious ap-

plication of Lemma 5.14 to pseudorepresentations over rigid analytic spaces (Proposition 5.27).

When applied to pseudorepresentations obtained as traces of sheaves of representations that are

not residually absolutely irreducible, our result is strictly weaker than what we already proved:

at the very least, the trace is insensitive to semisimplification, so that there is no hope of

studying the mod πn variation of a sheaf of representations via pseudorepresentation-theoretic

methods. On the other hand, in the residually absolutely irreducible case, we obtain a small

improvement on Theorem 5.19, in the sense that we can produce a mod pn pointwise constancy

neighborhood for a sheaf of G-representations, as opposed to a G-representation (Corollary

5.30).

We start with a simple definition. As before, let L be a p-adic field, with valuation ring OL
having maximal ideal mL and residue field kL. Let X be a rigid analytic space over L, and let

T : G→ OX(X) be a continuous pseudorepresentation of a profinite group G.

Definition 5.26. We say that T is pointwise constant mod pn (respectively, constant mod πnL)

if, for every g ∈ G, the function T (g) ∈ OX(X) is pointwise constant mod pn (respectively,

constant mod πnL) in the sense of Definition 5.6.

Let X be a flat, normal rigid analytic space over L and T : G→ OX(X) be a pseudorepresen-

tation. Assume that X admits an affine formal model. Then by Proposition 3.6(ii) and Remark

3.7(ii), there exists a flat, affine formal model X = SpfA of X and a continuous pseudorepre-

sentation T : G → OX (X ) that induces T via the natural map OX (X ) → OX(X). Given this

observation, the next proposition is a straightforward consequence of Lemma 5.14. For every
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y ∈ X(L), we denote by evy the specialization map of regular functions at y. We keep all the

notation from Section 5.3.

Proposition 5.27.

(i) For every x ∈ X(L), T is pointwise constant mod pn on U
(n)
x,X .

(ii) For every x ∈ X(L), T is constant mod πnL on V
(n)
x,X .

The exact analogue of Remark 5.22 about the optimality of X applies here, but we postpone

a discussion of it to Section 5.8.

We remark that this is compatible with the tautological fact that pseudorepresentations, or

Chenevier’s determinants, are residually constant over local rings (see [Che14, Definition 3.12]):

via Remark 5.11, Proposition 5.27 immediately gives the following.

Corollary 5.28. If X is an irreducible wide open, then T is pointwise constant modulo p.

We recall an immediate consequence of a result of Carayol.

Theorem 5.29 (cf. [Car94, Théorème 1]). Let V be a finite dimensional L-vector space and

ρ1, ρ2 : G → GL(V ) two residually absolutely irreducible continuous representations. Let n ∈

Z≥1. If the traces tr ρ1(g) and tr ρ2(g) are congruent modulo πnL for every g ∈ G, then for every

choice of lattices V1 and V2 for ρ1 and ρ2, V1 ⊗OL
OL/π

n
L and V2 ⊗OL

OL/π
n
L are isomorphic

as OL/π
n
L[G]-modules.

If T is residually absolutely irreducible, then we can combine Theorem 5.29 with Proposition

5.27 to deduce the following. We keep the notation of Proposition 5.27.

Corollary 5.30. Assume that T is the trace of a sheaf of G-representations V over X, and

that it is residually absolutely irreducible. Then V is pointwise constant mod pn on U
(n)
x,X .

Example 5.31. We mention a simple counterexample to Carayol’s theorem if ρ is residually

reducible: let ρ be the unramified representation of GQp mapping Frobp to the diagonal element

of eigenvalues 1+p and 1−p. Then the pseudorepresentation attached to ρ is constant equal to 2

modulo p2, but the reduction of ρ modulo p2 is not isomorphic to the identity. This corresponds

to the fact that, for n ∈ Z≥1, one cannot detect the mod pn Frobenius eigenvalues from the

mod pn reduction of its characteristic polynomial, as discussed in [AGM22].

5.6. Traces of sheaves of G-representations. A G-representation over an affinoid is point-

wise constant mod p up to semisimplification: indeed, the semisimplification of its mod p reduc-

tion is uniquely determined by the semisimplification of the mod p reduction of its associated

pseudorepresentation, which is constant by [Che21, Lemma 2.3(iv)]. We show that the notion

of sheaf of G-representations does not allow for more flexibility in this sense.

Let X be a rigid analytic space over L. Let T : G → OX(X) be a continuous pseudorepre-

sentation, and let V be a sheaf of G-representations over X. We record an obvious consequence

of a lemma of Chenevier.

Proposition 5.32. If X is connected, then T is pointwise constant modulo p. In particular, V

is pointwise constant mod p up to semisimplification.

Proof. Let U be an admissible affinoid covering of X; by splitting every element of U into its

connected components, we can assume that every U ∈ U is connected. By [Che21, Lemma

2.3(iv)], T |U is pointwise constant mod p for every U ∈ U. Since U is admissible, T is pointwise

constant mod p over the whole of X. The result about V follows by applying the first statement

to T = trV. �
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5.7. Comparison with a result of Kedlaya and Liu. Let K be a p-adic field. We refer

to [KL10, Section 2] for the definition of (ϕ,ΓK)-modules over an affinoid base X, and of the

Berger–Colmez functor attaching such an object to a p-adic Galois representation over X. Since

we only need the theory in this section, we do not go into any more details here. We briefly

explain a relation to our work of the results of Kedlaya–Liu concerning (ϕ,ΓK)-modules over

local coefficient algebras.

Let X be a wide open space over L. Then OX(X) is not a local coefficient algebra in the sense

of [KL10, Definition 4.1]: indeed, ifX is written as an increasing union of affinoids SpmAi, i ≥ 0,

with compact restriction maps Ai+1 → Ai, OX(X) is the projective limit of the Banach algebras

Ai, hence a Fréchet Qp-algebra, but not a Banach Qp-algebra itself. This corresponds to the

fact that the Berthelot generic fiber of SpfO+
X(X) is not Spm(O+

X(X) ⊗Zp Qp). We record a

standard example of this discrepancy.

Example 5.33. If one starts with the ring Zp〈T 〉 of analytic functions bounded by 1 on the

closed unit disc, completes it at the ideal (T ) and tensors with Qp over Zp (as indicated in

[KL10, Definition 4.1] as a way to produce a local coefficient algebra) one obtains Qp⊗ZpZp[[T ]],

which is strictly smaller than the ring of analytic functions on the open unit disc: for instance,

log(1 + T ) is an analytic function on the open disc whose expansion as a power series in T

contains unbounded denominators, hence it does not belong to Qp ⊗Zp Zp[[T ]].

More generally, we can apply the recipe of loc. cit. as follows: if X = SpmA is an L-affinoid,

x ∈ X(Qp) and X a formal model of X, completing OX (X ) at the ideal Ix defined in Section

5.3 and tensoring with Qp over Zp produces a local coefficient algebra Ax (i.e., the algebra

A
(1)
x ⊗Zp Qp, with the notation of Section 5.3). By the previous remarks, Ax is strictly smaller

than the ring of analytic functions on the wide open U
(1)
x,X . However, if one starts with an étale

(ϕ,ΓK)-module D over an affinoid X, one can produce a (ϕ,ΓK)-module Dx over Ax simply

by tensoring through the natural map A → Ax. Therefore, [KL10, Thoerem 0.1] allows one

to convert Dx into an Ax-linear GK -representation, hence a GK -representation over U
(1)
x,X after

extending scalars to OX(U
(1)
x,X ). Therefore, we have the following result, where we keep the

notation above (so that, crucially, X is affinoid).

Theorem 5.34 (Kedlaya–Liu). For every x ∈ X(Qp), the (ϕ,ΓK)-module D|
U

(1)
x,X

is attached to

a GK-representation over U
(1)
x,X . In particular, X admits a (not necessarily admissible) covering

U such that, for every U ∈ U, D|U is attached to a GK-representation over U .

Note that the fact that the mod p reduction is not necessarily constant along a family of étale

(ϕ,ΓK)-modules is exploited in the recent breakthrough [EG23].

The following is an immediate corollary of Proposition 5.32. Note that Kedlaya and Liu hint

to the fact that a (ϕ,ΓK)-module over a rigid analytic space can only come from a representation

of GK if it is residually constant up to semisimplification [KL10, Introduction]; this can be easily

deduced from the aforementioned lemma of Chenevier. We give a slightly stronger version of

the statement, where we replace a GK -representation with a sheaf.

Corollary 5.35. Let D be a sheaf of (ϕ,ΓK)-modules on X. For every x ∈ X(Qp), let ρx be the

mod p GK-representation attached to Dx. If D is attached to a sheaf V of GK-representations,

then the semisimplification of Vx is independent of x ∈ X(Qp).

Remark 5.36. By Kedlaya–Liu’s Theorem 5.34, one can find for every x ∈ X(Qp) an open

neighborhood U of x such thatD|U is attached to a GK -representationVU on U . By Proposition

5.32, VU is constant mod p up to semisimplification; write VU for its mod p reduction. If the
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resulting covering of X is admissible, then VU is independent of U : indeed, we can glue the

VU to a sheaf of GK -representations, and apply Corollary 5.35.

Example 5.37. We show what Corollary 5.35 gives for a standard example due to Chenevier

[BC08, Remarque 4.2.10]. Let X = SpmA be a Qp-affinoid, and write A+ for the subring of

power-bounded elements of A. Let T be an invertible element of A+. Let D be the rank 1

overconvergent (ϕ,Γ)-module over X defined, in a basis e, by ϕ(e) = Te and γ(e) = e for every

γ ∈ Γ. Then:

– D is isomorphic to the (ϕ,Γ)-module RX(δ) attached, in the standard way, to the character

δ : Q×
p → A× mapping p to T and defined as the identity on Z×

p ; it is étale, since T is a unit in

A+. In particular, whenever we specialize D at a point x ∈ X, we obtain the (ϕ,Γ)-module

attached to the character G×
Qp
→ Q×

p obtained from δ via local class field theory.

– D is attached to a character χ : GQp → A× if and only if the image of T under A+ → A+/p

is constant, i.e. belongs to F
×

p . Indeed, χ has to be an unramified character mapping Frobp,

a Frobenius at p, to T . In order for χ to exist, one must be able to define Frobnp for every

n ∈ Ẑ, for which it is necessary and sufficient that T p
k
− 1 converges to 0 (in the p-adic

topology of A) if k ∈ Z goes to ∞. This happens if and only if T ∈ A◦ is mapped to an

element of Fp under A+ → A+/p.

Note that, since A+ is equipped with the p-adic topology, the above condition on T is equiv-

alent to T being of the form u+ g for some u ∈ Z
×

p and g a topologically nilpotent element.

As a simple example of a case when D is not attached to a Galois character, one can take

A = Qp〈U, V 〉/(UV − 1) and T = U , so that X is the annulus of inner and outer radius 1.

If one were to take for instance T = 1 + pU , one would indeed be able to convert D into a

Galois character over the whole X.

– We can find a not necessarily admissible open covering U of X such that D|U is attached

to a character of GQp for every U ∈ U. With the notations of Section 5.3, if x is a point of

SpmA, the residue subdomain U
(1)
x,Spf A = (Spf A

(1)
x )rig is a wide open, and the topology on

A
(1)
x is the (p, Ix)-adic one. For T as above, we can write T = T (x) + (T − T (x)), where

T −T (x) ∈ Ix and T (x) is an element of Z
×

p ; in particular, T n makes sense in the (p, Ix)-adic

topology of A
(1)
x for every n ∈ Ẑ, so that D|(U

(1)
x,Spf A) is attached to the unramified character

of GQp mapping Frobp to T .

When x varies over X(Qp), SpmA is covered by the wide open subdomains U
(1)
x,SpfA, but such

a covering is not admissible in general: if it were, one would be able to glue the characters

defined over each subdomain to a global character, which we know to be impossible by the

above considerations.

– Kedlaya and Liu generalize the above picture to an overconvergent, étale (ϕ,Γ)-module D of

arbitrary rank by choosing a unit u ∈ Z
×

p and working over the locus Xu ⊂ X on which the

matrix attached to ϕ − u in some basis has all of its coefficients of positive p-adic valuation

(i.e. ϕ reduces to u mod p in A+/p). An argument along the lines of the above shows that

D|X0 is attached to a GQp-representation over X. As in the previous example, it is not

possible to glue the resulting GQp-representations into a sheaf as u varies.

Note that the above is also an explicit example of a case when the mod p local constancy

covering defined in [Tor24, Definition 2.3] cannot be taken to be admissible.

5.8. Optimal constancy neighborhoods. In this section we expand on Remark 5.22, by

studying under what conditions the neighborhoods U
(n)
x,X and V

(n)
x,X give the exact locus on which

a (pseudo-)representation is constant. For the whole section, assume that X is a rigid space

admitting an affine formal model.
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Notation 5.38. Let ρ : G → GLd(OX (X )) be a continuous representation. We denote by

OL[ρ(G)] the OL-subalgebra of OX (X ) topologically generated by the coefficients of ρ(g), when

g varies over G.

Let T : G → OX (X ) be a continuous pseudorepresentation. We denote by OL[T (G)] the

OL-subalgebra topologically generated by the elements T (g), when g varies over G.

Proposition 5.39. Let n ∈ Z≥1.

(i) Let V be a G-representation over X. Assume that V admits a model ρ : G→ GLd(OX (X )),

defined over a formal model X of X, such that OL[ρ(G)] = OX (X ), and let U be an open

subspace of X such that ρ is constant over U . Then U is contained in U
(n)
x,Xρ

.

(ii) Let T : G → OX(X) be a continuous pseudorepresentation. Assume that the image of T

lies in OX (X ) for a formal model X of X, and that OL[T (G)] = OX (X ). Let U be an

open subspace of X such that T is constant over U . Then U is contained in V
(n)
x,X .

Proof. We prove (i). Since ρ is constant over U , up to conjugating ρ, for every g ∈ G all of the

matrix coefficients of ρ(g) are constant mod πnL over U . Therefore, the same is true for every

element of OL[ρ(G)] = OX (X ). By definition, U
(n)
x,Xρ

is the largest subspace of X over which

every element of OX (X ) is constant mod πnL, so the conclusion follows. The proof of (ii) goes

exactly in the same way. �

Remark 5.40.

(i) In the setting of Proposition 5.39(i) (respectively, (ii)), if a formal model X with the

property OL[ρ(G)] = OX (X ) (respectively, OL[T (G)] = OX (X )), exists, then it is optimal

for the study of the mod pn variation of ρ (respectively, T ), since starting our construction

with X provides us with the largest possible neighborhoods on which ρ is (pointwise)

constant mod pn.

(ii) The ring OL[T (G)] is what is called the trace algebra of T in [CLM23, Section 2.1.2], and

the condition OL[T (G)] = OX (X ) is one of the conditions defining the admissibility of a

pseudorepresentation in [Bel19, Section 5.2] (cf. [CLM23, Definition 2.8]).

(iii) In the setting of Proposition 5.39(ii), if X is affine then by [Che21, Lemma 2.3(ii)],

OL[T (G)] is a semilocal profinite ring, local if X is connected. In particular, the con-

dition OL[T (G)] = OX (X ) can only be satisfied if OX (X ) is profinite, which in turn can

only happen if X is a wide open.

(iv) Let X = Spf A be an affine formal scheme, and ρ : G→ GLd(A) a continuous representa-

tion such that OL[ρ(G)] = A. For every surjective OL-algebra homomorphism π : A→ B,

the representation π ◦ ρ : G → GLd(B) (i.e., the pullback of ρ to a G-representation on

Spf B) satisfies OL[π ◦ ρ(G)] = π(OL[ρ(G)]) = B. In particular, the conclusion of Propo-

sition 5.39(i) also applies to π ◦ ρ. The same remark holds if we replace ρ with a pseu-

dorepresentation.

One could, for instance, apply our results to each factor of the semistable deformation

rings described by Breuil and Mézard in [BM02, Theorem 5.3.1], to obtain optimal sub-

spaces on which the mod pn reduction of semistable representations is constant (for weight

at most p− 1).

Example 5.41. Let ρ : GQp → Zp[[T ]]
× be the unramified character mapping any lift Frobp

of the Frobenius to 1 + T , and let V be the associated GQp-representation over the generic

fiber D◦(0, 1) of Spf Zp[[T ]], the wide open unit disc. Then Zp[ρ(GQp)] = Zp[[T ]], so that the

constancy neighborhoods U
(n)
x,Xρ

and V
(n)
x,Xρ

are optimal by Proposition 5.39(i).
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On the other hand, if we consider the unramified character ρ̃ : GQp → Zp[[T ]]
× mapping

Frobp to 1 + pT , then Zp[ρ(GQp)] = Zp[[1 + pT ]] is strictly smaller than Zp[[T ]] (clearly, it does

not contain T ), and one sees immediately that the constancy neighborhoods we defined are not

optimal: for instance, U
(1)
x,Xρ

is the affinoid disc of radius p−1, but ρ̃ is constant mod p over the

whole Spf Zp[[T ]]; V
(2)
x,Xρ

is the wide open disc of radius p−1, but ρ̃ is actually pointwise constant

mod p2 over the whole Spf Zp[[T ]].

We show that, for universal (pseudo-)representations, the obvious formal models are optimal

in the sense of Remark 5.40 above. Let V be a kL-vector space of finite dimension d and

ρ : G→ GL(V ) a continuous representation.

As before, we denote by X�
ρ the universal pseudodeformation space for ρ, equipped with

its model X�
ρ = SpfR�

ρ and with the universal deformation ρ�,univ. We write Xps
ρ for the

universal pseudodeformation space for tr ρ, equipped with its model X ps
ρ = SpfRps

ρ and with

the universal pseudodeformation T univ. Finally, if EndkL[G] = kL, we denote by Xρ the universal

pseudodeformation space for ρ, equipped with its model Xρ = SpfRρ and with the universal

deformation ρuniv.

The following lemma is key to the proof of the constancy statements in Proposition 5.39.

Lemma 5.42.

(i) Assume that EndkL[G] = kL. Pick any basis for the finite free Rρ module on which ρuniv

acts, and let R be the OL-subalgebra of Rρ generated by the coefficients of ρuniv(g) in this

basis, when g varies over G. Then R = Rρ.

(ii) Let R be the OL-subalgebra of Rρ generated by the coefficients of ρ�,univ(g) ∈ GLd(R
�
ρ )

when g varies over G. Then R = Rρ.

(iii) Let R be the OL-subalgebra of Rps
ρ generated by the elements T (g) when g varies over G.

Then R = Rps
ρ .

Proof. We prove (i). Clearly, ρuniv can be defined over R, i.e. there exists a continuous repre-

sentation ρR : G → GLd(R) such that ρuniv ∼= ρR ⊗R Rρ. Then, the pair (R, ρR) is a universal

deformation of ρ, hence the inclusion R→ Rρ is an isomorphism by universality. The proof of

(ii) and (iii) is exactly the same. �

Proposition 5.43. Let n ∈ Z≥1.

(i) Assume that EndkL[G] = kL. If ρuniv is pointwise constant mod pn (respectively, constant

mod πnL) over an open subspace U of Xρ, then U is contained in U
(n)
x,Xρ

(respectively, V
(n)
x,Xρ

)

for some x ∈ Xρ(Qp).

(ii) If ρ�,univ is pointwise constant mod pn (respectively, constant mod πnL) over an open

subspace U of X�
ρ , then U is contained in U

(n)

x,X�
ρ

(respectively, V
(n)

x,X�
ρ

) for some x ∈

X�
ρ (Qp).

(iii) If T univ is pointwise constant mod pn (respectively, constant mod πnL) on an open subspace

U of Xps
ρ , then U is contained in U

(n)

x,Xps
ρ

(respectively, V
(n)

x,Xps
ρ
) for some x ∈ Xps

ρ (Qp).

Proof. We prove the pointwise constancy part of (i). By the universal property of Rρ, the

universal deformation of ρ over OL/π
n
L-algebras is

ρuniv ⊗OL
OL/π

n
L : G→Rρ ⊗OL

OL/π
n
L.

Let U be an open subspace of Xρ such that ρuniv is pointwise constant mod pn over U, and let

x : Rρ⊗OL
OL/π

n
L → OL/π

n
L be the point of Rρ⊗OL

OL/π
n
L corresponding to the common mod

pn reduction of all the points in U .
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Let E is a finite extension of L with valuation ring OE and uniformizer πE . For every

y ∈ U(E), let ỹ : Rρ → OE be the rig-point of SpfRρ attached to y. Then the composition of

y with O → O/πnE factors through x. By Remark 5.16, U
(n)
x,Xρ

is precisely the locus of points of

Xρ with this property.

The proofs of (ii) and (iii) in the case of pointwise constancy go exactly as that for (i).

For the constancy statements in all of (i,ii,iii), we simply combine Proposition 5.39 and

Lemma 5.42. �

6. Arithmetic applications

We apply Corollary 5.23 to various specific families of representations of arithmetic interest.

In doing so, we refine some known results about the local constancy modulo powers of p of

families of crystalline or semistable local Galois representations (Proposition 6.5, Corollary

6.6, Remarks 6.7 and 6.8), and deduce some new ones both for local and for global modular

representations (Corollary 6.9, Proposition 6.10, Theorem 6.11, Corollary 6.12, Proposition 6.14,

Corollary 6.15).

6.1. Sheaves of trianguline GQp-representations. Following [BHS17, Section 2.2], we recall

two constructions of a deformation space for trianguline representations of GQp , a “functorial”

and a “geometric” one. We will use the interplay between the two constructions in order to

produce a sheaf of trianguline representations of GQp . Note that all of these section can be

rewritten, with very little change, with GQp replaced by GK , K a p-adic field. However, we

confine ourselves to the case K = Qp in our applications.

Let AffQp be the category of affinoid algebras over Qp. For every A ∈ AffQp , we denote by

RA the Robba ring with coefficients in A, defined as in [KPX14, Notation 2.1.1].

Recall that the functor

AffQp → Sets

B 7→ Homcont(Q
×
p , B

×)

is pro-represented by a Qp-rigid analytic space T . Similarly, the functor

AffQp → Sets

B 7→ Homcont(Z
×
p , B

×)

is pro-represented by a Qp-rigid analytic space W, which is isomorphic to a disjoint union of

p − 1 wide open rigid analytic 1-discs. From the isomorphism Q×
p
∼= Z×

p × p
Z, we deduce an

isomorphism

T ∼=W ×Gm

of Qp-rigid analytic spaces.

We introduce notation for a few special continuous characters Q×
p → Q×

p :

– x is the identity character,

– χ is the character attached by local class field theory to the cyclotomic character of GQp ,

that satisfies χ(p) = 1 and is the identity on Z×
p ;

– |x| is the character mapping y ∈ Q×
p to p−vp(y).

Clearly, χ = x|x|. We will often abuse of notation and write x for both the identity character

and an element of Qp, so that |x| = p−vp(x).

Inside of the rigid analytic space T , we identify an admissible open T reg whose points are

regular in the sense of Colmez and Chenevier (see for example [Che13, Section 2.27]). For any

B ∈ AffQp , we say that a character δ : Q×
p → B×, seen as a point in T (B), is regular if, for every
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z ∈ SpmB with residue field a finite extension K(z)/Qp, the specialization δz : Q
×
p → K(z)× of

δ at z is not of the form xi or χx−i for any non-negative integer i.

When studying trianguline representations of any dimension d ≥ 1, we will work over the

rigid analytic space of parameters T d, the product of d copies of T . We denote by T reg
d the

admissible open of T d defined by the following condition: if B ∈ AffQp ,

T reg
d (B) := {(δi)i ∈ T

d(B) : δi/δj ∈ T (A)
reg for all 1 ≤ i < j ≤ d}.

We recall a crucial definition. Let A ∈ AffQp and d ∈ Z≥1. We refer to [KPX14, Definition

2.2.12] for the definition of a (ϕ,Γ)-module over RA. Recall from [KPX14, Theorem 6.2.14] that

every (ϕ,Γ)-module of rank 1 over RA is isomorphic to RA(δ) for some continuous character

δ : Q×
p → A×.

Definition 6.1. A trianguline (ϕ,Γ)-module of rank d over RA is a pair (D,Fil•D) consisting of

a (ϕ,Γ)-module over RA and an increasing, exhaustive, separated filtration (Fil•D)i=1,...,d such

that, for every i ∈ {0, . . . , d−1}, Fili+1/Fili is a (ϕ,Γ)-module of rank 1 over RA, hence isomor-

phic to RA(δi) for a continuous character δi : Q
×
p → A×. We call the characters (δi)i=0,...,d−1

the parameters of (D,Fil•D).

A regular, trianguline, rigidified (ϕ,Γ)-module of rank d over RA is a triple (D,Fil•D, ν) where:

(1) (D,Fil•D) is a trianguline (ϕ,Γ)-module of rank d of whose parameters (δi)i=1,...,d define a

point of T reg
d (A);

(2) ν = (νi)i=0,...,d−1 is a family of isomorphisms νi : Fil
i+1(D)/Fili(D) → RA(δi) of (ϕ,Γ)-

modules.

We also refer to the datum ν as a rigidification of the regular trianguline (ϕ,Γ)-module (D,Fil•D).

We say that two regular, trianguline, rigidified (ϕ,Γ)-modules D1 and D2 are isomorphic if there

is an isomorphism of (ϕ,Γ)-modules D1 → D2 compatible with the filtrations and commuting

with the rigidifications.

We introduce a functor Fd : AffQp → Sets by defining Fd(A) as the set of trianguline, regular

and rigidified (ϕ,Γ)-modules of rank d up to isomorphism, for every A ∈ AffQp . We recall the

following result:

Theorem 6.2 ([Che13, Theorem B]). The functor Fd is representable by a rigid analytic space

Sd over Qp which is smooth and irreducible of dimension d(d+3)
2 .

In [Che13], as well as in [HS16, Theorem 2.4], such a functor is denoted F�
d , and the repre-

senting space S�
d , to emphasize the choice of a rigidification. We stick instead to the notation

of [BHS17], where, as we recall below, the notation � is reserved to a covering of a subspace of

S�
d trivializing a vector bundle of GQp-representations.

As part of the universality statement, Sd carries a universal trianguline, regular and rigidified

(ϕ,Γ)-module Duniv
d . For every point x of S�

d of residue field K(x), we denote by Dx the

(ϕ,Γ)-module over RK(x) obtained by specializing Duniv
d at x. For every affinoid subdomain

U = SpmA of Suniv
d , we denote by DU the (ϕ,Γ)-module over RA obtained by pulling back

Duniv
d along the embedding U →֒ S�

d .

Consider a continuous representation ρ : GQp → GLn(kL), and implicitly base change the

space S�
d to L. Following the proof of [BHS17, Theorem 2.6], we introduce a functor F�

d,ρ : AffQp →

Sets associating with A the set of triples (ρ,Fil•Drig(ρ), ν) where ρ : GQp → GLd(A) is a con-

tinuous representation, Drig(ρ) is the (ϕ,Γ)-module over RA defined by Berger and Colmez in

[BC09, Théorème A], Fil• is a triangulation of Drig(ρ), and ν a rigidification of it, such that

the parameter of Fil• is a triangulation of Drig(ρ) belongs to T
reg(A). By the proof of [BHS17,

Theorem 2.6], F�
d,ρ is representable by a rigid analytic space S�

d,ρ (denoted by S�
d (r) in loc. cit.).
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We sketch the construction of S�
d,ρ, following the proof of [BHS17, Theorem 2.6]. Let S�,0

d

be the locus in the trianguline variety Sd where Duniv
d is étale (it is in general a näıve open,

i.e. a not necessarily admissible union of open subspaces of S�
d ), and let Sadm

d be the maximal

subspace of S�,0
d with the property that Duniv

d |Sadm
d

is attached to a sheaf of GQp-representation

V via the construction of Berger and Colmez; it is well defined as a rigid subspace of S�
d by

[Hel12, Theorem 1.2]. We let S�,adm
d be the space of trivializations of the vector bundle V, that

naturally comes equipped with a projection π : S�,adm
d → Sadm

d , and with a GQp-representation

π∗V (not just a sheaf, since we trivialized V). Since GQp is topologically finitely generated,

there exists an admissible subspace of S�,adm
d over which π∗V admits a lattice V. Then S�

d,ρ

is defined as the subspace of S�,adm
d where the reduction of V is ρ. Observe that the above

construction equips S�
d,ρ with a map ψρ : S

�
d,ρ → Sd, that is not an embedding.

As in [BHS17, Definition 2.4], we defineX�
ρ,tri (noted X

�
tri(ρ) in loc. cit.) as the Zariski-closure

of the subset

U�
ρ,tri ⊂ X

�
ρ × T

n
L

consisting of pairs (ρ, (δi)i) of a lift ρ : GQp → GLn(L) of ρ and the parameter (δi)i of a

triangulation of Drig(ρ). We equip X�
ρ,tri with its reduced structure of closed analytic subspace

of X�
ρ ×T

n
L . We denote by X�,reg

ρ,tri the preimage of T reg
L,d under the natural morphism ω2 : X

�
ρ,tri →

T nL mapping a pair (ρ, (δi)i) to its parameter.

The rigid analytic spaces we introduced fit in a commutative diagram

(7)

S�
d,ρ Sd

X�
ρ X�

ρ,tri T nL

πρ
κ

ψρ

ω1 ω2

where:

– ω1, ω2 are the compositions of the embedding X�
ρ,tri ⊂ X�

ρ × T
n
L with the projections to the

two factors,

– πρ is obtained by factoring through X�
ρ,tri the morphism S�

d,ρ → X�
ρ × T

n
L mapping a triple

(ρ,Fil•Drig(ρ), ν) to the pair consisting of ρ and the parameter of Fil•Drig(ρ),

– the map ψρ is the one defined above.

Remark 6.3. Chenevier [Che13, Corollaire 3.18 and the discussion thereafter] defines a näıve

open Sd(ρ) of Sd (in his notation, S�
d ), equipped with a map Sd(ρ)→ Xd(ρ) to the ρ-component

of a character space for GQp . However, this character space is in general only equipped with

a universal determinant, or pseudorepresentation. We prefer to work with the space defined in

[BHS17], that is equipped with a map to the framed deformation space of ρ, since it allows us

to pullback a GQp-representation and a lattice from the deformation space.

Our interest in the construction lies in the next lemma. Let U be a wide open subspace of

Sd, contained in the étale locus S0
d , and let U = SpfO+

U (U).

Lemma 6.4. Assume that, for every x ∈ U(L), the representation of GQp attached to x is a

lift of ρ.

(i) The wide open space U carries a sheaf of GQp-representations V, and, for every n ≥ 1

and x ∈ U(L), V is pointwise constant mod pn over U
(n)
x,U .

(ii) If U is strictly quasi-Stein, ρ is multiplicity-free, and V is absolutely irreducible, then V

is a GQp-representation that is constant mod πnL over V
(n)
x,U , for every n ≥ 1.
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The point of part (i) is that, even if the sheaf ofGQp-representations is not aGQp-representation

(i.e., it is not supported by a free OU -module), we can still deduce that it is pointwise constant

on the subdomains of U defined in Section 5.3.

Proof. Since the residual representation is isomorphic to ρ at every L-point of S�
d , U is contained

in the image of the map ψρ described above. Since U is the tube of the unique point in its

special fiber, it is contained in the admissible locus Sadm
d by [Hel12, Theorem 1.2(iii)], so that

Duniv
d |U is attached to a sheaf of GQp-representations VU . Now (i) follows from Corollary 5.23.

Statement (ii) is an immediate consequence of Corollary 5.25. �

Note that, if d is the rank of V, then the cover ψρ : ψ
−1
ρ (U) → U is the GLd-torsor of

trivializations of V, that appears in the proof of Corollary 5.23.

6.2. Crystalline representations of dimension 2. In this section, we apply Theorem 5.19

to the study of GQp-stable lattices in crystalline representations of dimension 2. We start by

recalling how these representations are classified, up to twist, by their weight and the trace of

their crystalline Frobenius, and how to see them inside of the universal trianguline deformation

space introduced in Section 6.1.

As usual, let L be a p-adic field, with valuation ring OL having maximal ideal mL and residue

field kL. For an integer k ≥ 2 and an element ap ∈ mL, let Vk,ap be the dual of the crystalline,

L-linear representation whose associated filtered ϕ-module Dk,ap is a 2-dimensional L-vector

space equipped with the structures defined, in a basis (e1, e2), by

ϕ =

(
0 −1

pk−1 ap

)
, FiliDk,L =





Dk,L if i ≤ 0

Le1 if 1 ≤ i ≤ k − 1

0 if i ≥ k

.

Observe that the two eigenvalues of the crystalline Frobenius are the roots of the polynomial

T 2 − apT + pk−1.

By [Bre03, Proposition 3.1], every 2-dimensional, crystalline L-linear representation of GQp

is isomorphic to Vk,ap for some k, ap, up to twist with a crystalline character. Following [BC09,

Proposition 2.4.1], we recall that every representation as above admits a non-critical triangu-

lation (i.e. one whose associated Frobenius filtration is in general position with respect to the

Hodge filtration). The parameters δ1, δ2 : Q
×
p → L× of one such non-critical triangulation are

given as follows: if (ϕ1, ϕ2) is the ordering of eigenvalues of the crystalline Frobenius ϕ attached

to the triangulation, then for i = 1, 2 δi is the unique character satisfying

– δi(γ) = γ−k for all γ ∈ Z×
p , and

– δi(p) = ϕip
−k.

If ϕ1 is the root of T
2−apT+p

k−1 of smaller p-adic valuation, then the ordering (ϕ1, ϕ2) always

corresponds to a non-critical triangulation. With this choice, characters δ1, δ2 as above and

Colmez’s notation for trianguline representations [Col08, Section 0.3], we obtain an isomorphism

Vk,ap
∼= V (δ1, δ2). Now letD◦(0, 1) be the wide open unit disc over Qp. TheQp-points ofD

◦(0, 1)

are in bijection with GQp-orbits of elements of Qp of positive valuation. Since δ1 and δ2 obviously

vary in a p-adically analytic way as ap varies over D◦(0, 1), mapping ap ∈ D(0, 1) to the point

Vk,ap
∼= V (δ1, δ2) of the trianguline variety S�

2 gives an embedding D◦(0, 1) →֒ S�
2 compatible

with the (ϕ,Γ)-modules at every specialization on each side.

Because of Corollary 5.30, the representations Vk,ap are not specializations of a sheaf of GQp-

representations on the whole D◦(0, 1). However, if we restrict ourselves to a small enough

subdomain of D◦(0, 1), we can interpolate them with a GQp-representation, as follows.
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Let ρ : GQp → GL2(kL) be a continuous, multiplicity-free representation. Let U be a wide

open, strictly quasi-Stein subspace of D◦(0, 1) (e.g. a wide open subdisc), and let U be its formal

model SpfO+
U (U). Assume that Vk,ap is a lift of ρ for every ap ∈ U(L). Thanks to the above

discussion, we can embed D◦(0, 1), hence U , in S�
2 . Then Lemma 6.4 implies the following.

Proposition 6.5. The rigid analytic space U is equipped with a GQp-representation V that

specializes to Vk,ap at any ap ∈ U(L). Moreover, for every ap,0 ∈ U(L) and n ∈ Z≥1, the

GQp-representation V is pointwise constant mod pn over U
(n)
ap,0,U

.

(i) The GQp-representation V is pointwise constant mod pn over U
(n)
ap,0,U

; in particular, for

every finite extension E of L and ap ∈ U(E), there exist lattices Vk,ap,0 in Vk,ap,0, Vk,ap
in Vk,ap, and an isomorphism

Vk,ap,0 ⊗OE
OE/π

n
E
∼= Vk,ap ⊗OE

OE/π
n
E

of OE/π
n
E [G]-modules.

(ii) The GQp-representation V is constant modulo πnL over V
(n)
ap,0,U

.

Recall that if U is a wide open disc of radius pm and ap,0 ∈ U(L), then U
(n)
ap,0,U

is a wide

open disc of center ap,0 and radius pm−n, and V
(n)
ap,0,U

is an affinoid disc of center ap,0 and radius

pm−n. For instance, if we know that the isomorphism class of Vk,ap is constant modulo πL for

every ap with |ap − ap,0| < pm, we deduce that it is constant modulo πnL for every ap with

|ap − ap,0| < pm+1−n.

Proposition 6.5 allows us to recover mod πnL congruences among crystalline representations

from mod πL congruences. In particular, it allows one to slightly improve Torti’s result on

higher congruences [Tor22, Theorem 1.1] starting from the mod πL results of Berger–Li–Zhu,

Berger, and Torti himself, as in the following corollary.

Corollary 6.6. Let k ≥ 2 be an integer, and ap,0 ∈ mL \ {0}. Then one can take the domain U

in Proposition 6.5 to be the wide open disc of center ap,0 and radius 2vp(ap,0) +α(k− 1), where

α(k − 1) =
∑

s≥1⌊
s

pn(p−1)⌋. In particular:

(i) Proposition 6.5(i) holds for every ap ∈ mE satisfying

vp(ap − ap,0) > 2vp(ap,0) + α(k − 1) + n− 1;

(ii) Proposition 6.5(ii) holds over the affinoid disc of center ap,0 and valuation radius

2vp(ap,0) + α(k − 1) + n.

Proof. Let U be the wide open disc defined in the statement. By [Ber12, Theorem A] in the

residually irreducible case (and [BLZ04, Theorem 1.1.1] for the case ap,0 = 0), and the m = 1

case of [Tor22, Theorem 1.1] in the general case, we can find a lattice Vk,ap,0 in Vk,ap,0 such that

Vk,ap is a lift of the mod πL reduction V
(1)
k,ap,0

for every ap ∈ U(L). Therefore, we can apply

Proposition 6.5 to U , and we obtain the corollary. �

Remark 6.7. Torti [Tor22, Theorem 1.1] proves a mod pn pointwise constancy result over the

affinoid disc of Corollary 6.6(ii). We improve his statement to a mod pn pointwise constancy

result over the larger wide open disc defined by the inequality in Corollary 6.6(i).

Remark 6.8. As in [Ber12, Section 3], one can instead keep ap 6= 0 fixed and let k vary over

the points of a wide open disc D(k0, r) centered at a fixed k0 > 3vp(ap) + α(k − 1) + 1, inside

of the weight space W we introduced in Section 6.1. For r sufficiently small (but not explicit),

Berger embeds such a disc inside of the trianguline variety S�
2 in a way compatible with the

(ϕ,Γ)-modules on the two spaces. By [Ber12, Theorem B], there exists a non-explicit m ∈ Z≥1
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such that V k,ap
∼= V k0,ap for every k ∈ D(k0, p

−m). Therefore, Lemma 6.4 allows one to equip

D(k0, p
−m) with a sheaf of G-representations, and gives us that, for every n ≥ 1, Vk,ap and

Vk0,ap admit lattices with isomorphic mod πnL reductions if

vp(k − k0) > m+ n− 1.

Again, this is a small improvement on [Tor22, Theorem 1.2], in that we prove pointwise con-

stancy mod pn for k varying over a wide open disc, rather than over an affinoid disc contained

in it. We also weaken the assumption on k0 in loc. cit.: we only need it to satisfy Berger’s

assumption that k0 > 3vp(ap) + α(k − 1) + 1, rather than Torti’s stronger condition that also

depends on the depth n of the congruence we are looking at.

For small values of p, we can derive a global consequence of Remark 6.8 via a result of Ch-

enevier. We write GQ,p∞ for the Galois group over Q of the maximal extension of Q unramified

away from p and ∞.

Corollary 6.9. Assume that p ≥ 7, and let ρ1, ρ2 : GQ,p∞ → GL2(L) be two continuous repre-

sentations, crystalline at p. Let k1, ap,1 and k2, ap,2 be the corresponding local data at p. Then,

for every n ≥ 1, ρ1 and ρ2 admit isomorphic mod πnL reductions if either:

(i) k1 = k2, ap,1 6= 0 and vp(ap,2 − ap,1) > 2vp(ap,0) + α(k − 1) + n− 1;

(ii) ap,1 = ap,2 6= 0 and vp(k − k0) > m + n − 1, with m being the non-explicit constant

appearing in [Ber12, Theorem B].

If ρ1 and ρ2 are attached to two GL2/Q-eigenforms f1 and f2 of level Γ1(p), then the Hecke

eigensystems of f1 and f2 are congruent modulo πnL away from p.

Proof. By [Che08, Proposition 1.8], it is enough to check mod πnL congruences locally at p.

The first statement then follows from Remark 6.8. The statement about eigenforms follows by

writing Hecke eigensystems in terms of Frobenius eigenvalues in the usual way. �

6.3. Semi-stable representations of dimension 2. In this section, we apply Theorem 5.19

to the study of GQp-stable lattices in semi-stable representations of dimension 2. We start by

recalling how such representations are classified, up to twist, by their weight and L-invariant,

and how to see them inside of the universal trianguline deformation space introduced in Section

6.1.

Let π be a square root of p in Qp. Let k be an integer at least 2 and L ∈ P1(Qp) = Qp∪{∞}.

We denote by Vk,L the dual of the semistable representation of GQp whose associated (ϕ,N)-

module Dk,L is a 2-dimensional Qp-vector space equipped with the structures defined, in a basis

(e1, e2), by

ϕ =

(
̟k−2 0

0 ̟k−2

)
, N =

(
0 0

1 0

)
, FiliDk,L =





Dk,L if i ≤ 0

Qp(e1 + Le2) if 1 ≤ i ≤ k − 1

0 if i ≥ k

if L ∈ Qp, and by

ϕ =

(
̟k−2 0

0 ̟k−2

)
, N = 0, FiliDk,L =





Dk,L if i ≤ 0

Qp(e1 + e2) if 1 ≤ i ≤ k − 1

0 if i ≥ k

if L = ∞. The above description for Vk,∞ can be obtained by rewriting Vk,L, L ∈ Qp, in the

basis (e1,Le2), and letting L →∞.
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Clearly, Vk,L is semistable and non-crystalline of Hodge–Tate weights (0, k − 1) for every

L ∈ Qp. By a standard calculation, every semistable, non crystalline representation of GQp of

Hodge–Tate weights (0, k− 1) is, up to twist with a semistable character of GQp , isomorphic to

Vk,L for a unique L ∈ Qp. On the other hand, Vk,∞ is crystalline.

We will use the notation introduced in Section 6.1 for characters of Q×
p . Let α : Q×

p → Q
×

p

be the character πvp(x)|x|−1. Let δ1,k = |x|α and δ2,k = x−kα. We denote by V (δ1,k, δ2,k,L)

the unique trianguline representation attached to the above data as in [Col08, Section 0.3].

Via [Col08, Proposition 4.18], one checks that the representations Vk,L and V (δ1,k, δ2,k,L) are

isomorphic for every k ∈ Z≥2 and L ∈ P1(Qp).

Let P1,rig be the rigid analytic projective line over Qp, parameterized with a variable L.

Because of Corollary 5.30, the representations Vk,L are not specializations of a sheaf of GQp-

representations on the whole P1. However, if we restrict ourselves to a small enough subdomain

of P1, we can interpolate them with a GQp-representation, as follows.

Let ρ : GQp → GL2(kL) be a continuous, multiplicity-free representation. Let U be a wide

open, strictly quasi-Stein subspace of P1,rig (e.g. a wide open disc), and let U be its formal

model SpfO+
U (U). Assume that Vk,L is a lift of ρ for every L ∈ U(L). The construction of the

trianguline deformation space S�
2 in [Col08, Section 0.2] provides us with a closed immersion

Φk : P
1,rig →֒ S�

2 , mapping L ∈ P1,rig to the point Φk(L) of S
�
2 corresponding to the trianguline

representation Vk,L. We use Φk to embed U in S�
2 , and we deduce the following proposition

from Lemma 6.4.

Proposition 6.10. The rigid analytic space U is equipped with a sheaf of GQp-representations

V that specializes to Vk,L at any L ∈ U(L). Moreover, for every L0 ∈ U(L) and n ∈ Z≥1:

(i) The GQp-representation V is pointwise constant mod pn over U
(n)
L0,U

; in particular, for

every finite extension E of L and L ∈ U(E), there exist lattices Vk,L0 in Vk,L0 and Vk,L
in Vk,L and an isomorphism

Vk,L0 ⊗OE
OE/π

n
E
∼= Vk,L ⊗OE

OE/π
n
E

of OE/π
n
E [G]-modules.

(ii) The GQp-representation V is constant modulo πnL over V
(n)
aL0

,U .

Recall that if U is a wide open disc of radius pm and L0 ∈ U(L), then U
(n)
L0,U

is a wide open

disc of center L0 and radius pm−n, and V
(n)
L0,U

is an affinoid disc of center L0 and radius pm−n.

For instance, if we know that the isomorphism class of Vk,L is constant modulo πL for every L

with |L−L0| < pm, we deduce that it is constant modulo πnL for every L with |L−L0| < pm+1−n.

In the special case L0 =∞, we know explicitly of such an m by the work of Bergdall–Levin–

Liu [BLL23], so we are able to compare the mod pn reduction of certain semistable representation

with that of a crystalline representation.

Theorem 6.11. Assume that k ≥ 4 and p 6= 2. Then, if L is a p-adic field and L ∈ P1,rig(L)

satisfies

vp(L) < 2−
k

2
− vp((k − 2)!) + 1− n,

there exist lattices VL and V∞ in Vk,L and Vk,∞, respectively, such that VL⊗OL
OL/π

γL/Qp (n)

L
∼=

V∞ ⊗OL
OL/π

γL/Qp (n)

L as OL/π
γL/Qp (n)

L [GQp ]-modules.

Proof. By [BLL23, Theorem 1.1], we are allowed to apply Proposition 6.10 the wide open disc

U of center ∞ defined by the inequality vp(L) < 2 − k
2 − vp((k − 2)!). Such a disc is defined

over Qp, hence why the exponent γL/Qp
(n) appears. �
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When k < p, one can write down similar results for various other ranges of values of L

(in particular, for ranges including the L-invariants of modular eigenforms), thanks to the

computations of mod πL reductions of semistable representations performed by Breuil–Mezard

[BM02] and Guerberoff–Park [GP19].

In the same way as for crystalline representations, we can rely [Che08, Proposition 1.8] to

derive a global consequence of Remark 6.8 for small values of p.

Corollary 6.12. Assume that p ≥ 7, and let ρ : GQ,p∞ → GL2(L) be a continuous repre-

sentation, semistable at p, with associated local data k,L. Let ρ∞ be a representation whose

restriction to GQp is isomorphic to Vk,∞. Then, for every n ≥ 1, ρ and ρ∞ admit isomorphic

mod πnL reductions if vp(L) < 2− k
2 − vp((k − 2)!) + 1− n.

Proof. By [Che08, Proposition 1.8], it is enough to check mod πnL congruences locally at p. The

statement then follows from Theorem 6.11. �

Note that we do not state any automorphic consequence: standard estimates for the valuation

of the L-invariant show that no eigenform can have an L-invariant of valuation smaller than

2− k
2 − vp((k − 2)!).

6.4. Pseudorepresentations along the eigencurve. We give a small and not very explicit

application to the modulo pn variation of the Galois (pseudo-)representations carried by the

eigencurves for GL2/Q. In this non-explicit form, similar statements should hold for more

general eigenvarieties.

Fix a prime-to-p integer N ∈ Z≥1. Let E be the p-adic eigencurve of tame level Γ1(N), as

constructed by Coleman–Mazur, Buzzard, and Chenevier. It comes equipped with a morphism

to the weight space W we introduced in Section 6.1. Let h be a positive real number, κ a point

of W, and for every r ∈ pQ consider the wide open disc D◦(κ, r) ⊂ W of center κ and radius

r. Consider the subdomain E
≤h
r of the eigencurve whose points have slope ≤ h and weight in

D◦(κ, r). By [Bel21, Section II.3.3], there exists a radius r ∈ pQ such that the restriction of the

weight map gives us a finite map ω : E
≤h
r → D◦(κ, r). In particular, E

≤h
r is itself a wide open

in which classical points are dense, and a standard argument of Chenevier provides us with a

continuous pseudorepresentation GQ → OE (E
≤h
r ). For every irreducible component X of E

≤h
r ,

we obtain this way a continuous pseudorepresentation T : GQ → OX(X).

We will apply the following lemma. Let X = SpfA and Y = Spf B be two affine formal

schemes with rigid analytic generic fibers X and Y , respectively. Let f : X → Y be a finite map

of affine OL-formal schemes, attached to a homomorphism f∗ : B → A. Let f rig : X → Y be

the map induced by f on rigid generic fibers. Let y ∈ Y (L) be a point with a single preimage

x under f rig.

Lemma 6.13. There exists n0 ∈ Z≥0 such that, for every n ≥ n0, U
(n)
x,X = f rig,−1U

(n)
y,Y and

V
(n)
x,X = f rig,−1V

(n)
y,Y .

Proof. We use the notation of Section 5.3. By the finiteness of f , for every element Y ∈ Iy there

exist a0, . . . , ad ∈ OL such that P (Y ) :=
∑

i aiY
i ∈ Ix. For n sufficiently large, ‖P (Y )‖ < pn

implies ‖adY
d‖ < pn, hence ‖Y ‖ < pn/d since ad ∈ OL. This proves that f rig,−1U

(n)
y,Y ⊆ U

(n)
x,X .

The opposite inclusion is obvious (for every n ≥ 1), since every element of Iy can be seen as a

function on X via f . �

Now pick an irreducible component X of E
≤h
r , and let ωX : X → D◦(κ, r) denote the re-

striction of the weight map to X. Let x be a point of X, and κ = ωX(x). After possibly

choosing some r′ ∈ pQ, r′ < r and (implicitly) replacing X with the irreducible component of
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E
≤h
r ×D◦(y,r) D

◦(y, r′) containing X, we can assure that ω−1
X (ωX(x)) = {x}. Then, Proposition

5.27 and Lemma 6.13 give us the following proposition.

Proposition 6.14. There exists n0 ∈ Z≥0 such that, for every n ≥ n0, the pseudorepresen-

tation T is pointwise constant mod pn over ω−1
X (D◦(κ, p1−nr′)), and constant mod pn over

ω−1
X (D(κ, p−nr′)).

If we restrict ourselves to the ordinary part of the eigencurve, i.e. we consider the case h = 0

in the above picture, the situation is much simpler: every ordinary irreducible component X

of E is the rigid generic fiber of the formal scheme attached to a (schematic) Hida family; in

particular, X is finite and flat over W, so that we can take r = 1 as a radius adapted to h = 0.

By [HN20], conditionally on the spectral halo conjecture, this optimal situation only happens

in the ordinary case, as the weight map is never finite on nonordinary components of E .

We state a simple corollary of Proposition 6.14 for ordinary components.

Corollary 6.15. Let X be an ordinary component of E , and let κ ∈ W(Qp) be a weight with

the property that X has a single point x of weight κ. Then there exists n0 ∈ Z≥0 such that, for

every n ≥ n0, the pseudorepresentation T is pointwise constant mod pn over ω−1
X (D◦(κ, p1−n)),

and constant mod pn over ω−1
X (D(κ, p−n)). In particular, if L is a p-adic field, then the Hecke

eigensystems away from p of any two overconvergent eigenforms attached to L-points of X of

weight in D◦(κ, p1−n) are congruent mod πnL.

Remark 6.16.

(i) If the residual GQ-representation attached to the Hida family is absolutely irreducible,

then Corollary 5.30 allows one to deduce from Corollary 6.15 a mod pn pointwise constancy

result for the GQ-representation attached to the Hida family, not just its trace.

(ii) We could have deduced the congruence in the last statement of Corollary 6.15 by applying

Theorem 5.19 directly to the Hecke eigenvalue of each Hecke operator away from p, given

that it is interpolated by a power-bounded rigid analytic function on X.

(iii) For some p-adic families, it might be possible to show that the constancy neighborhoods

of Proposition 6.14 and Corollary 6.15 are optimal, by checking that the conditions of

Proposition 5.39 are satisfied by the associated (pseudo-)representation. This is the case,

for instance, of a Hida family with coefficients in Zp[[T ]] (i.e., everywhere étale over the

weight space), given that 1 + T belongs to the image of the determinant. Note that in

this special case Lemma 6.13 holds trivially with n0 = 1, so that the subsequent results

also hold with n0 = 1.

6.4.1. An explicit example. We thank Alexandre Maksoud for pointing us to the following (con-

jectural) example of an explicit equation for a Hida family. In [DG12, Section 7.3], Dimitrov

and Ghate guess the existence of a 3-adic Hida family of tame level 13 and ring of functions

I = Z3[[T ]][Y ]/(Y 2 + T ),

T being the weight variable. Clearly Z3[[T ]]→ I is only ramified at T = 0, which corresponds to

weight 1 in the normalization of loc. cit.. Therefore, Corollary 6.15 gives that any two classical

eigenforms appearing in I are congruent mod 3n as soon as their weights are congruent to 1

mod 3n−1.
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[Bel21] Joël Belläıche. The eigenbook—eigenvarieties, families of Galois representations, p-adic L-

functions. Pathways in Mathematics. Birkhäuser/Springer, Cham, 2021, pp. xi+316.
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[deJ95] Aise J. de Jong. “Crystalline Dieudonné theory via formal and rigid geometry”. Publ. Math.

Inst. Hautes Études Sci. 82 (1 1995), pp. 5–96.

[DG12] Mladen Dimitrov and Etnakh Ghate. “On classical weight one forms in Hida families”. J.
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[GP19] Lucio Guerberoff and Chol Park. “Semistable deformation rings in even Hodge-Tate weights”.

Pacific J. Math. 298.2 (2019), pp. 299–374.

[Hel12] Eugen Hellmann. Families of trianguline representations and finite slope spaces. 2012. url:

https://arxiv.org/abs/1202.4408.

[Hel16] Eugen Hellmann. “Families of p-adic Galois representations and (ϕ,Γ)-modules”. Comment.

Math. Helv. 91.4 (2016), pp. 721–749.

[HN20] Shin Hattori and James Newton. “Irreducible components of the eigencurve of finite degree

are finite over the weight space”. J. Reine Angew. Math. 763 (2020), pp. 251–269.

[HS16] Eugen Hellmann and Benjamin Schraen. “Density of potentially crystalline representations

of fixed weight”. Compositio Math. 152 (2016), pp. 1609–1647.

[Kie67] Reinhardt Kiehl. “Theorem A und Theorem B in der nichtarchimedischen Funktionentheo-

rie”. Invent. Math. 2 (1967), pp. 256–273.

[KL10] Kiran Kedlaya and Ruochuan Liu. “On families of (ϕ, Γ)-modules”. Algebra Number Theory

4.7 (2010), pp. 943–967.

[KPX14] Kiran S. Kedlaya, Jonathan Pottharst, and Liang Xiao. “Cohomology of arithmetic families

of (ϕ,Γ)-modules”. J. Amer. Math. Soc. 27 (2014), pp. 1043–1115.

[Maz89] Barry Mazur. “Deforming Galois representations”. Galois groups over Q. M.S.R.I. Publica-

tions. Berlin: Springer-Verlag, 1989, pp. 385–437.

[Och23] Tynan Ochse. “Weil reciprocity for rigid analytic curves”. PhD thesis. The University of

Texas at Austin, 2023. url: https://repositories.lib.utexas.edu/server/api/core/b

itstreams/b5a498b6-fb59-44cb-9b4f-7d292cc262e3/content.
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