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Abstract

In this article, we prove the existence of rigid analytic families of G-stable lattices with locally
constant reductions inside families of representations of a topologically compact group G, extending
a result of Hellman obtained in the semi-simple residual case. Implementing this generalization
in the context of Galois representations, we prove a local constancy result for reductions modulo
prime powers of trianguline representations of generic dimension d. Moreover, we present two
explicit applications. First, in dimension two, we extend to a prime power setting and to the
whole rigid projective line a recent result of Bergdall, Levin and Liu concerning reductions of
semi-stable representations of Gal(Q

p
/Qp) with fixed Hodge-Tate weights and large L-invariant.

Second, in dimension d, let Vn be a sequence of crystalline representations converging in a certain
geometric sense to a crystalline representation V . We show that for any refined version (V, σ)
of V (or equivalently for any chosen triangulation of its attached (ϕ,Γ)-module Drig(V ) over the
Robba ring), there exists a sequence of refinement σn of each of the Vn such that the limit as
refined representations (Vn, σn) converges to the (V, σ). This result does not hold under the weaker
assumption that Vn converges only uniformly p-adically to V (in the sense of Chenevier, Khare and
Larsen).

1 Introduction

Let p be a prime number. The study and classification of reductions of representations of the absolute
Galois group of Qp, denoted GQp , plays a central role in modern number theory from modularity lifting
theorems to the study of slopes of classical or overconvergent modular forms and it is still an open
problem. Moreover, such topic is of independent local interest and presents wild differences when is
approached by restricting oneself to study reductions of certain subclasses of representations of GQp in
characteristic zero such as crystalline or semi-stable.
Numerous different strategies have recently been implemented to attack this problem and they share the
common point which, in simple terms, consists of identifying certain p-adic parameters which explicitly
classify to some extent either the representations of interest themselves or the corresponding object in
an equivalent category. Letting such parameters vary p-adically leads to explicit conditions which allow
us to either obtain an explicit description of the reductions or, when this is not possible, to understand
when small p-adic deformations of such parameters give the same reductions. We will refer generically
to the latter phenomena as the local constancy property.
The several approaches present in the literature include Fontaine and Kedlaya’s theory of (ϕ,Γ)-modules
in p-adic Hodge theory and its integral version via Wach modules (see for example [BLZ04], [Ber12]
and [Tor22]) or more generally via Breuil-Kisin modules (see for example [BM02], [BL20], [BLL23],
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[Liu21] and [Par17]); the p-adic and mod p Langlands correspondence (see for example [BG09], [Bha20],
[Ars21], [BGR18] and [BG15]) and via deformation theory and universal analytic families (see for exam-
ple [Roz20]). Already by looking at the seminal work of Breuil and Mezard concerning a classification
of residual reduction of semi-stable representations of dimension 2 in low weights, it is evident the
difficulty of performing explicit computations. This reflects the high dependency of the reductions on
the parameters coming for example from integral p-adic Hodge theory, which is one of the reasons why
most of the results available in the literature (as the ones mentioned above) concern the cases of low
dimension, i.e. 2 and 3. The aim of this article is to prove that it is always possible to produce, in any
dimension d, local constancy results for reductions of a large class of representations which includes the
crystalline and semi-stable ones.
In a similar spirit of the deformation theory approach, the strategy that we decided to adopt consists
of considering the large class of trianguline representations introduced by Colmez in dimension 2 (see
[Col08]) and later extended to the high dimensional case by Chenevier (see [Che13]). These representa-
tions arise naturally in rigid analytic families and they can be used to interpolate for example crystalline
or semi-stable representation, providing a new set of analytic parameters. A first (and to our knowledge
only) instance of the use of such approach in this context is due to Berger in his work concerning local
constancy result for residual semi-simple reductions of crystalline representations of dimension 2 when
the Hodge-Tate weights vary p-adically (see [Ber12]).
Understanding if and how it is possible to extend such approach to the more general context of congru-
ences modulo prime powers among trianguline representations of any dimension d has been the starting
point of this work. This article is the natural continuation of the author’s previous work [Tor22] in which
the strategy is successfully tested on the simpler task of extending the results of Berger mentioned above
to a prime power setting but only for the 2-dimensional crystalline case.
The problem of proving the existence of congruences between representations interpolated by some ana-
lytic families can be expressed in a pure algebraic setting of finite-dimensional representations of certain
topological groups. For example, thanks to the work of Hellmann (see [Hel16]), we know that it is possi-
ble to prove a local constancy result in the semi-simple residual case for adic families of representations
of a compact topological group.
The aim of this article is double-folded. First, introduce a notion of local constancy for reductions of
families of representations which agrees to the one commonly used in the semi-simple residual case (see
for example [Ber12] and [Hel16]), it is suitable to the more delicate prime power setting and finally
which allows us to extend the result of Hellmann. Second, apply the results obtained in the algebraic
setting to the context of trianguline Galois representations and deduce some new local constancy results
as well as some new symmetries of the trianguline variety. We proceed now in describing the main
results of this article.
Let X be a reduced quasi-compact, quasi-separated Qp-rigid analytic space. The reduced hypothesis
is assumed here for simplicity of expression and it will be removed in the rest of the article since be-
ing locally constant is a local property. Let G be a compact topological group. Let V be a family of
representations of G over X, i.e. a locally free coherent OX-module of uniform rank d ∈ Z≥1 endowed
with a continuous OX-linear action of G. It is well known (see for example Lemma 3.18 in [Che20])
that V admits a G-stable integral subfamily T (seen as a locally free module over the subsheaf of power
bounded elements O◦

X
) such that we have an isomorphism T[ 1p ]

∼= V of OX[G]-modules.
Let V be a finite dimensional representations of G over some finite extension of Qp. We denote by

V
ss

the semi-simplification of a residual reduction of V . By the Brauer-Nesbitt theorem, such residual
representation does not depend on the choice of a stable lattice. Hence, it is not required to explic-
itly describe an integral substructure for a family V in order to give a satisfying notion of semi-simple
residual local constancy. Indeed, intuitively we can say that V has locally constant semi-simplification
modulo p if the map which associates to each x the representation V

ss

x is locally constant (or equivalently
the map which associates to each x the collection of characteristic polynomials as functions in x) where
Vx is the specialization of V at x. This is the definition which many authors refer to (see for example
[Ber12], [Bha20], [BL20]), included the result below. Helmann proved in the adic context the following
(see [Hel16]):
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Proposition 1.1. Let X be an adic space locally of finite type over Qp and let V be a family of rep-
resentations of a compact group G over X. At any point x ∈ X, the semi-simplification of the residual
reduction of the specialization of V at x is locally constant, i.e. (V⊗ k(x))ss is locally constant.

Extending this result to a prime power setting presents many extra difficulties when compared to the
residual case. First, since the semi-simplification process is not available anymore we need to keep at
all time a precise control of the involved lattices. Moreover, in practice, we say that two d-dimensional
representations V and V ′ of G defined over the same finite extension of Qp are congruent modulo
pn if there exist lattices T and T ′ respectively in V and V ′ such that their reduction modulo pn are
isomorphic as representations of G. Hence, this condition is not an equivalence relation (as in the semi-
simple residual case) as it fails in being transitive.
Dealing with local constancy phenomena in a rigid analytic setting versus the adic setting has its
advantages and disadvantages. In the adic setting, the main strong points consist on having directly
an integral model and having a proper topology (rather than a G-topology) and hence notion of locally
constant functions makes sense without the need of clarification. Indeed, any continuous morphism
from a topological space to a space with discrete topology is locally constant. This can be used as a
direct argument when one wants to prove the local constancy of the semi-simple residual reduction of an
adic family of representations as it is possible to directly apply that to the coefficients of characteristic
polynomials. This constitutes the key argument in the proof of Hellmann’s result. However, in a
prime powers setting, control over the coefficients of the characteristic polynomial is not enough and
we need to introduce and work with an integral structure that, contrary to the adic setting, can be
controlled quite explicitly once its existence is proven in the rigid analytic context thanks to Raynaud
and Berthelot’s theory of admissible formal models. Moreover, there are some drawbacks of defining
the local constancy property in terms of p-adic maps sending any point x to its attached residual
representation as introduced before, e.g. how one can define it in a prime power context when the
points don’t have the same definition field. In order to overcome all these difficulties, the rigid analytic
setting come into help because it allows us to explicitly describe and control what it means to have
congruent sections and moreover it allows in many examples to have a quite tight control on the local
constancy radius, as we will see later. For these reasons, we considered the rigid analytic setting as our
main setting but it is straightforward to translate all of the results in an adic setting.
Intuitively, we say that the a family T is locally constant modulo pn (for some n ∈ Z≥1) if locally the
push-forward of the O◦

X
/pnO◦

X
-module T/pnT via the affine specialization morphism e∗ : O◦

X
(X) → OK∗

has a constant action of G. This will have the consequence that for any point x ∈ X there exists a open
admissible neighborhood U (n) defined over Kx, such that for any y ∈ U (n) (whose field of definition Ky

is a finite extension of Kx) we have that as OKy -modules, the lattices satisfy Tx ≡ Ty mod π
γ(n)
y where

γ is a positive arithmetic function such that γ(1) = 1 and it depends only on the ramification of Ky over
Kx and where πy denotes a uniformizer of Ky. Note that the hope of always getting γ(n) = n · eKy/Kx

(or equivalently getting exactly a congruence modulo pn after the specialization) will be disappointed
in general. For the purposes of this introduction we limited ourself to give a generic notion of how the
local constancy property modulo prime powers will look like and we will give a more precise geometric
definition later in the article. Now, we state the first result of this article:

Proposition 1.2. Let X be a quasi-separated, quasi-compact Qp-rigid analytic space. Let V be a family
of representations of G over X and let T be an integral subfamily of representations of G defined over
an admissible integral model X in the sense of Raynaud (of generic fiber X) such that T[ 1p ]

∼= V as

OX[G]-modules. For every positive integer n ∈ Z≥1, the integral family T is locally constant modulo pn.

Note that in the residual case (i.e. n = 1), we recover the result of Hellmann as well as its extension
to the new residual non-semisimple case. Indeed, as we will see later in the article with an example
in dimension two, we are able to distinguish residually locally constant families whose reductions is
non-split.
As we will clarify later, the result above has been stated in an abstract algebraic setting and it can be
applied as well for example in some global context, e.g. for rigid analytic families of modular forms (see
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for example [COR23]) or to p-adic system of eigenvalues attached to the automorphic representations
of a unitary group. Indeed, a result concerning local constancy modulo prime powers in the weight has
been proven by Chenevier (see [Che20]) in the latter setting. However, this is for now beyond our goals
in this article and we proceed by introducing the local setting in which we will work.
Let G = GQp be the absolute Galois group of Qp after having fixed an algebraic closure of Qp. Colmez
introduced the notion of trianguline representations of GQp (see [Col08]), i.e. finite dimensional repre-
sentation V over a finite extension E of Qp whose attached (ϕ,Γ)-module over the Robba ring Drig(V )
can be obtained via consecutive extensions of (ϕ,Γ)-modules of rank 1. A choice of such extension is
called a triangulation of V . It is well-known thanks to the groundbreaking work of Colmez (see [Col08])
and Chenevier (see [Che13]) that the class of trianguline representations of dimension d ∈ Z≥1, together
with other data concerning the triangulation, is parametrized by a reduced, regular Qp-rigid analytic
space of dimension d(d + 3)/2 denoted S�

d . We will describe in details such space later in the article.

Moreover, there exists a naive open (i.e. arbitrary union of admissible opens) S�,0
d which is the étale

locus inside S�
d over which there exists a universal family Vtri of trianguline representations seen as a

locally free coherent O
S

�,0
d

-module of uniform rank d endowed with a linear action of the Galois group

GQp which satisfies the universal property that after specialization of V at any point in S�,0
d one recov-

ers exactly the trianguline representation corresponding to the point x. Chenevier (see Prop. 3.17 in
[Che13]) proved that the universal family Vtri admits an integral subfamily Ttri seen as a locally free
(of uniform rank d) module over the subsheaf of power bounded sections. As a direct application of the
local constancy result in this trianguline setting, we deduce the following:

Proposition 1.3. Let d be a positive integer and let T := Ttri, defined as a locally free coherent module
over S�,0

d . For every x ∈ S�,0
d there exists a countable system of open affinoid neighborhoods {Ω(n)}n≥1

inside S�
d , a countable compatible set {A(n)} where each A(n) is a model of the Qp-affinoid algebra

O(Ω(n)) such that:

1. (étale) · · · ⊂ Ω(n) ⊂ Ω(n−1) ⊂ · · · ⊂ Ω = Ω(0) ⊂ S�,0
d ;

2. (specialization) for each y ∈ Ω(n), we have an isomorphism Drig(Ty ⊗A(n) O(Ω(n))y) ∼= Dy of
regular, rigidified trianguline (ϕ,Γ)-modules;

3. (local constancy modulo pn) for each n ≥ 1, we have that T is locally constant mod pn on Ω and
constant modulo pn on Ω(n).

Here Dy denotes the trianguline (ϕ,Γ)-module attached to the point y, whose definition field is O(Ω(n))y.

This result is a refinement of a strong result Chenevier (see [Che13]) and it has a deep significance
in terms of understanding the reductions of crystalline and semi-stable representations. As mentioned
before, most of the results in the literature describing the reductions of certain classes of representations
are of the local constancy type and are mainly limited to the cases of dimension 2 and 3 which are
already very hard to deal with in terms of explicit computations. The novelty of this result resides in its
transversal approach which allow us to prove that such congruences always will exists in any dimension
and it will be always possible to find all these congruences even in a prime power setting because the
existence of integral stable lattices in families is granted. Of course, the price to pay with this approach
is that one loses control of the explicit parameters. However, all these result can be made explicit
once one is able to understand an explicit description for the local constancy radius in the residual
case. Indeed, it will turn out that the local constancy radius is a linear function in the exponent of
the prime powers with known coefficient being the residual local constancy radius. As a motivating
example for this, we will present an application of this result in the study of reductions of semi-stable
representations of GQp of dimension 2 with large L-invariant and fixed Hodge-Tate weights. Indeed,
very recently Bergdall, Levin and Liu (see [BLL23]) proved that semi-simple residual local constancy
holds for that specific class of semi-stable representations. In order to state their result properly we will
need to introduce some notations (consistent as much as possible with [BLL23]).
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Let vp be the normalized p-adic valuation onQp. Let π ∈ Qp such that π2 = p. LetQp2 be the unramified
quadratic extension of Qp of absolute Galois group GQp2

, denote by η its quadratic character modulo p

and by ω2 a fundamental character of level 2 for Qp2 . Up by twisting by a crystalline (or equivalently
semi-stable) character, every semi-stable non-crystalline 2-dimensional representation Vk,L depends on
two parameters k ∈ Z≥2 and L ∈ Qp. We can extend the parameter L to live in the set P1(Qp), by
setting Vk,∞ to be the unique crystalline representation whose trace of the crystalline Frobenius ap
satisfies ap = πk−2 + πk. For any k and L, denote by V

ss

k,L the semi-simple residual reduction of Vk,L.

Bergdall, Levin and Liu proved (see [BLL23]) that, assuming k ∈ Z≥4, and p 6= 2, if vp(L) < 2 − k
2 −

vp((k − 2)!), then the reduction V
ss

k,L does not depend on the parameter L and as a consequence it is

isomorphic to the semi-simple residual reduction V k,∞, whose explicit description is known to be the

representation Ind
GQp

GQ
p2
(ωk−1

2 η) (thanks to the early work of Berger, Li and Zhou in [BLZ04] and its

improved version by Bergdall and Levin in [BL20]).
We are able to extend this result to a prime power setting and to the whole projective line where L
varies. To be precise, we prove the following:

Proposition 1.4. Let k ≥ 2 be a fixed positive integer and let p be a fixed prime. Let L1 be a E-point in
P1,rig, for some finite extension E of Qp. Inside P1,rig, there exists a compatible system of E-subaffinoid
closed balls {BL1,p−rn }n≥1 centered in L1 of radius p−rn ∈ |E×| and there exists a GQp-stable lattice
T1 inside Vk,L1 such that for any L2 ∈ BL1,p−rm then there exist a GQp -stable lattice T2 ⊂ Vk,L2 which
satisfy the following congruence

T1 ≡ T2 mod π
γ(m)
L2

as OKL2�π
γ(m)
L2

OKL2

[GQp ]-modules,

with γ(m) = eKL2/E
(m−1)+1 where KL2 is the finite extension of E over which the point L2 is defined.

Moreover, the local constancy radiuses satisfy the linear relation rn = r1 + n for all n ≥ 1.

The different approach we adopt to prove the above proposition allows us not only to extend the result of
Bergdall, Levin and Liu to reductions modulo prime powers but it gives some more info on the residual
side too. Indeed, for example it includes the subtle case p = 2, which is particularly hard to deal with
(even in the crystalline case) especially for explicit computations due to the extra conditions imposed
by the fact that the topological group Γ is not procyclic anymore (reason why such case has been
avoided in [Ber12] and in [Tor22]). Technical problems arise as well when p = 2 in the construction
of certain Kisin modules as noted by Bergdall, Levin and Liu (see remark 1.4 in [BLL23]), however
all the trianguline setting and constructions work well in such case as already observed by Colmez in
[Col08]. To our knowledge, this is the only local constancy result known when p = 2. In characteristic
2, the descriptions of V k,L and even of the crystalline representation V k,∞ are unknown, however we
deduce that such congruence still must exist. Finally, in the last part of the article, we will present
some examples where we have to deal with those reductions which are non-semisimple, showing that
for example in dimension two, it is possible to produce locally constant families for all the non-split
reductions of semi-stable representations (whose existence is granted by Ribet’s lemma).
The final result of this article that we want to present concerns instead crystalline representations of
general dimension d. The problem that we want to study consists in understanding the positions of
trianguline points on the Colmez and Chenevier’s trianguline variety which corresponds to a certain fixed
crystalline representation. To give a more precise idea, let V be a generic crystalline representation
of dimension d over some finite extension E over Qp. The (ϕ,Γ)-module Drig(V ) attached to V is
trianguline in d! ways, i.e. there are d! possible filtrations available which make it a trianguline module.
Indeed, the set of filtrations on Drig(V ) is in bijection with the refinements of V , or equivalently an
order on the set of d! eigenvalues of the crystalline Frobenius (see for example prop 2.4.1 in [BC09]).
As a consequence, there are d! points (counted with multiplicities because the crystalline eigenvalues
could be not all distinct) on S�

d such that when we specialize the trianguline universal family Vtri to
those points we obtain exactly V . Although those points share the same rational representation V , the
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specialization of an integral subfamily Ttri of the universal trianguline family might be different. Of
course there are some simple cases, for example if the residual representation of V is irreducible there
is a unique Galois stable lattice and there will be actually no difference between the description on the
universal trianguline family in those points.
There are many interesting question around this topic. For example, one could ask if it is true that
all the stable lattices in a crystalline representation belong to an integral subfamily of some restriction
of the universal trianguline family. The answer to this question is unknown to us. However, we will
consider some related examples when the answer is affirmative. Another interesting and challenging
question is to understand how the trianguline points attached to V move when V vary p-adically. More
precisely, we can ask whether is true that if we take another generic crystalline representation V ′ which
is congruent to V modulo some sufficiently large prime power then some of their trianguline points are
close in the trianguline variety. The converse of this is statement holds thanks to the local constancy
result that we prove in this article. A different way of describing this last problem is if, instead of dealing
with sufficiently high prime powers, we deal with p-adic limit of representations. The question then
becomes if it is true that if we have a sequence of crystalline representations Vn converging p-adically
to a crystalline representation V then for some refinement of V we have that there exist refinements of
the Vn’s whose limit converges in the trianguline variety and is exactly the refined version of V . This
turns out to be false and in order to correct it we will strengthen the notion of p-adic convergence
of our sequence. Bellaiche, Khare and Larsen (see [BKL05]), introduced several notions of converging
p-adic representations. In our case, p-adic convergence is what is called uniform physical convergence
in [BKL05] and naively speaking means that each entries of every matrix attached to an element of
the group GQp converges uniformly as a p-adic function. It turns out that such notion is too weak to
control some integral sequence of lattices inside the sequence of representations (as already observed by
Bellaiche, Khare and Larsen) and at the same time it is too weak to keep track of p-adic informations
on the filtration. This is the reason why we introduce a geometric notion of being congruent modulo
prime powers (or equivalently a geometric notion of convergence), which naively speaking means that
they are sufficiently close as points in their rigid analytic universal deformation space. We will say that
such representations are geometrically congruent modulo some prime power. It turns out that such
definition of convergence will allow us to track not only integral structure but p-adic information on all
refinements as well. In precise terms, we have the following:

Proposition 1.5. Let V and V ′ two crystalline representations of dimension d defined over a finite
extension E of Qp. Denote by TriV and TriV ′ the two sets of d! triangulations of respectively V and V ′

seen as trianguline representations.
There exists a positive integer n such that if V and V ′ are geometrically congruent modulo pn then:

for all τ ∈ TriV , there exists ητ ∈ TriV ′ such that DV,τ , DV ′,ητ ∈ Ω
(n)
V,τ ∩ Ω

(n)
V ′,ητ

,

where Ω
(n)
∗ denotes the local constancy modulo pn neighborhood of the point ∗ inside S�,0

d .

This result adds some new information concerning the symmetry of the trianguline variety S�
d . Indeed,

in terms of limits of converging sequences of crystalline representation this result can be thought as
a discrete approach (in a mathematical sense) in addressing the problem of joining refined crystalline
representations via some rigid analytic trianguline family. Bellaiche and Chenevier’s theory of refined
families of Galois representations (see [BC09]) has, as one if its main goals, to describe when it is possi-
ble to create a rigid analytic deformation of a certain fixed nice refined crystalline representation which
deforms as well analytically the refinement. This is highly technical and delicate hypothesis on the re-
finements needs to be considered (for example assuming that the crystalline representation is generic).
Here, we only deal with understanding if and how refinements discretely vary in a sequence and how is
this related with the existence of analytic integral subfamilies of lattices, however in this weaker discrete
framework we do not need to require that the crystalline representations involved are generic.
Note also that our result doesn’t come directly from applying the theory of refined families in the sense
of Bellaiche and Chenevier. Indeed, if one has a refined family of representations joining two refined
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versions of V and V ′ it is not possible to permute the parameters of the family in order to have another
refined family joining all the other refined versions of V and V ′ (see Remark 4.2.6 in [BC09]). In other
words, refined families do not behave well when we want to permute the analytic parameters. The ques-
tions related to the interpretation of our result in terms of converging limit of crystalline representations
provided an extra motivation for our work. As a final note, we mention that is not needed to insist on
the fact that the limit of the crystalline sequence is itself crystalline if we assume that the Hodge-Tate
weights are bounded thanks to a result of Berger (see [Ber04]).
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which allowed me to carry on the final part of this project. This work was supported in part by Agence
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2 Integral rigid analytic families of representations of a com-

pact group and their reductions

Let p be a prime and let E denote a finite extension of Qp whose ring of integers is OE. Let X be
a quasi-separated, quasi-compact Qp-rigid analytic space and let G be a compact group. Let d be a
positive integer. By a family of representations of G over X we mean a locally free (of uniform rank d)
coherent OX-module V (i.e. OX-sheaf) endowed with a continuous OX-linear action of G. If we further
assume that X is an affinoid space then by Kiehl’s theorem (see sec. 6.1 in [Bos14]), since the sheaf
cohomology over any admissible cover U satisfies H1(U,V) = 0, we have that there exists a locally free
(of uniform rank d) OX(X)-module V endowed with a continuous OX(X)-linear action of G such that
we have a G-invariant isomorphism V ∼= V ⊗ OX of OX-sheaves. In general, if X is not affinoid, for a
family of representations fo G over X we can only say that there exists an admissible affinoid cover {Xi}
such that when the family is restricted to each of the Xi then it comes from a OXi(Xi)[G]-module; this
is precisely the condition for V to be coherent as a G-equivariant OX-module.
Since our main objective is to study reductions of representations of G, the first step should be to
properly define what we mean by integral family of representations of G over X. In order to do that,
we will rely on Raynaud’s theory of formal schemes.
For any Qp-rigid analytic space X as introduced above, one of the main results of Raynaud’s theory, is
that there exists an admissible formal Zp-scheme X and localized by admissible formal blowing-ups (see
for example sec. 8.4 in [Bos14]) whose generic fiber is exactly X.
By an integral family of representations of G over a Qp-rigid analytic space X we mean a locally free
(of uniform rank d) coherent OX -module T with a continuous OX -linear action of G, where X is a
an admissible formal model for X. Note that, since any admissible formal model X is in particular
locally topologically of finite presentations, the condition for T of being coherent is equivalent to say
that there exists an open affine covering {Xi}i∈J of X such that the restriction T|Xi is associated to
a finite OXi(Xi)-module for all i ∈ J (see sec. 8.1 in [Bos14]). In general, if X = Spf(A) is an affine
formal scheme and T is a coherent OX -module, we cannot directly deduce that T comes from a OX (X )-
module, or in other words it is not available an analogue of Kiehl’s theorem in the context of affine
formal geometry in such generality. One has indeed to require that A is a Noetherian adic ring (see
Prop. 10.10.5 in [Gro60]) or slightly more generally A is an R-algebra topologically of finite presentation
where R is a Noetherian adic ring (see Prop. 8.1.5 in [Bos14]). These restrictions will not affect us in
the applications because we will consider cases when A is a model of some Qp-affinoid algebra, i.e. a
Zp-algebra topologically of finite type, or equivalently a quotient of Zp〈t1, . . . , tn〉 by a finitely generated
ideal (which is, in particular, a p-adic Noetherian ring).
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Given a family of representations of G, say V, over X we will show that it is always possible to find an
integral subfamily T with prescribed reductions type. This will be achieved in two different steps. First,
we will prove that an integral family always exists (even if, in general, will not come from an integral
module). This result is well-known but we will include a proof in the affinoid case for completeness.
Second, we will prove that locally it is always possible to find an integral model whose reduction modulo
prime powers satisfy a local constancy property. It is interesting to know that research has been carried
on in this direction and the most general result is limited to the semi-simple residual case and has been
proved in the case of families of representations over adic spaces (see Prop. 5.11 in [Hel16]). Given an
integral family T of representations of G over an admissible affine formal Zp-scheme X , it is possible
to attach to it a rational family V := T[ 1p ] of representations of G over X := X rig by simply inverting

p. Indeed, we have a canonical morphism OX ⊗Zp Qp → OX (which is an isomorphism under the
assumption that the space is normal, this is a result of DeJong, see sec. 7 in [Jon95]) whose image
is actually contained in the sheaf O◦

X
of power bounded functions. Thus, it makes sense to consider

integral subfamilies of a given family of representations of G over a Qp-rigid analytic space X. Note the
subtlety that if one starts with an integral module T over an admissible formal model, than a reduced
hypothesis might be necessary if one still wants T to be an integral subfamily of T[ 1p ] because there
might be some torsion obstruction.
The following result grants always the existence of an integral model for a relatively large class of rigid
analytic spaces (see also Lemma 3.18 in [Che20]):

Proposition 2.1. Let X be a quasi-separated, quasi-compact Qp-rigid affinoid space. Let V be a family
of representations of G over X. There exists an admissible Zp-formal scheme X (of rigid generic fiber
X) of finite type over Zp and T an integral subfamily of representations of G such that T[ 1p ]

∼= V as

OX[G]-modules.

Remark 1. Note that the hypothesis of being quasi-compact and quasi separated are necessary in order
to apply Raynaud’s theory of formal models. The affinoid hypothesis here is only needed in order to
deal with classical modules (instead of general coherent sheaves) which allow us to deliver the idea of
the proof easily. On the other hand, contrary to classic algebraic geometry setting, if one wants to deal
with classical modules we need the affinoid assumption on X in order to have acyclicity of any coherent
OX-module. Indeed, there are rigid analytic spaces which are quasi-compact and separated but not
affinoid (see the very interesting article of Liu [Liu88] for a counterexample).

Proof. Let A be an integral model of A. Let W be a finite and free A-module such that W⊗A A = V.
Since A is open inside A, and since V is a topological finite direct sum of copies of A we have that W is
open inside V. The action of G can be represented by a continuous map G×W → V. Since W is open
inside V, then the subgroup HW ⊂ G stabilizing W is an open subgroup of G. Since G is profinite, we
have that HW is of finite index. Let {gi}i be a finite set of representatives for the left HW-cosets in G.
Hence, defining S as

∑

i giW we have that S is a G-stable, finite A-module such that S⊗A A = V.
In general, it is not true that S is free as a A-module, so in order to find a free module satisfying all the
required properties we will work locally using Raynaud’s theory of formal models.
Let Vx be an affinoid open neighborhood of x ∈ X . Denote by AVx its corresponding affinoid algebra (it
is a quotient of A) and define VVx := V⊗A AVx . As every affinoid algebra morphism is in particular a
contraction, denote by ÃVx the model for the affinoid algebra AVx defined by the natural projection from
A to AVx . Denote by VVx = Spf(ÃVx) the integral formal scheme (of rigid generic fiber Vx) attached
to the model ÃVx via Raynaud’s theory. We can now restrict our integral subfamilies of G-modules to
the affinoid open Vx by defining SVx := S ⊗A ÃVx . We have that SVx is a finite ÃVx -module with a
continuous ÃVx -linear action of G and such that the natural scalar extension map SVx ⊗ÃVx

AVx
∼= VVx

is an isomorphism of AVx [G]-modules.
Now that we have set the problem locally, we can make full use of Raynaud’s theory of formal integral
models. Indeed, let I be the Fitting ideal (of ÃVx) of the ÃVx -module SVx . The ideal I defines a
blow-up morphism of formal schemes (see sec. 3.3 of [Con08] for the construction):
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BlI : ZVx → VVx

A priori, the formal scheme ZVx is not affine but up to considering an affine open covering of ZVx and
without loss of generality, we can substitute the admissible open Vx with a sufficiently small affine
open neighborhood of x, say Ux, such that the blow-up morphism constructed is actually a morphism
between affine formal schemes. Since we are repeating all the above constructions, all the subscripts Vx
will now be substituted without loss of generality with Ux affinoid open neighborhood of x contained
in Vx. This implies that the formal integral scheme ZUx is the formal spectrum of a model AUx (a
priori, different from ÃUx) of the Qp-affinoid algebra A. Indeed, we recall that the blow-up morphism
induces an isomorphism on the generic fiber which in this case is the Qp-rigid analytic affinoid space
Ux = Spm(AUx). Now, consider the blow-up morphism

BlI : ZUx = Spm(AUx) → VUx = Spm(ÃUx).

Identifying the finite AUx -module S as a coherent sheaf on the formal scheme Vx, we can pull it back to a
coherent sheaf of the affine formal scheme ZUx = Spf(AUx) via the blow-up morphism BlI : ZUx → VUx ,
i.e. formally we define TUx := Bl∗I(SUx). By construction of the blow-up via the Fitting ideal I of
the ÃUx -module S, the AUx-module TUx will be finite and free and inherits the AUx -linear action of G
compatible with the base change, i.e. we have an isomorphism TUx ⊗AUx

AUx
∼= VUx of AUx [G]-modules.

This concludes the proof.

2.1 Local constancy mod pn for reductions of integral rigid analytic families

In the previous section, we have granted the existence of integral subfamilies (essentially seen as integral
vector bundles over formal admissible models of the rigid analytic parametrizing space), we will proceed
by showing that actually it is possible to prove that such integral model satisfies some local constancy
property for any reductions modulo pn. As a first step, we will clarify what we mean by local constancy
for reductions of an integral family of representations of G over X.
Let T be an integral family of representations of G over X meant in its general form as collection of a
coherent sheaf of finite, locally free OX -modules over the admissible formal scheme which is the special
fiber attached by Raynaud theory to its rigid analytic generic fiber X and a set of continuous maps
G→ AutOX (U)(T(U)) for all admissible opens U inside X .
Let n be a positive integer. Since for every n ≥ 1, the sheaf pnOX is an open ideal sheaf, it makes sense
to consider the quotient sheaf obtained via the sheafification of OX /p

nOX . Naturally, we can define
T(n) as the OX [G]-module given by the sheafification of the pre-sheaf tensor product T⊗OX

(OX /p
nOX )

(whose action of G is given by the action on the left factor). Clearly, we have that pnOX ⊂ AnnOX
(T(n))

which is the annihilator of T(n) as a OX -module and the usual commutative algebra properties hold (see
for example Lemma 17.23.3. in [Stacks]). Note that the tensor product of coherent sheaves is coherent
(see for example Lemma 17.16.6 in [Stacks]). Note also that one could have equivalently defined T(n)

as the quotient of OX -modules given by T/pnT. It is straightforward to check that those two sheaves
are isomorphic as OX [G]-modules.
Now, in order to understand better the local constancy phenomena, we need to realize what it means
to be congruent modulo pn in OX (U) and how congruent elements behave after specialization. In
particular, the obvious expectations that specializations of congruent sections modulo pn are as well
congruent modulo pn (meaning with the same positive integer n) is false and in general, one cannot be
so optimistic to keep as much informations on the valuations.
Before proceeding in an explicit description of congruent sections modulo pn, we need a little basic
algebraic detour (see [VW09] for an application in a different context).

Definition 2.2. Let Qp/K/L be a chain of finite extensions. Let eL/K be the ramification index of L
over K. For every positive integer n, we define γL/K(n) := (n− 1)eL/K + 1.
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The function γL/K satisfies some useful immediate properties. For n = 1, we have that γL/K(1) = 1.
If L is an unramified extension of K, then γL/K(n) = n. If Qp/K/L/M is a chain of finite extension,
then the multiplicative property (by composition) holds: γM/K = γM/L ◦ γL/K. The integer γL/K is the
minimal one such that the embedding OK →֒ OL induces the embedding

OK/π
n
KOK →֒ OL/π

γL/K(n)

L OL.

As a consequence, for all α, β ∈ K, we have that the usual notion α ≡ β mod pn is equivalent to say
|α− β|p ≤ p−n which holds if and only if |α− β|K ≤ p−γK/Qp(n).
Let f, g ∈ OU , fix a positive integer n, fix x ∈ U and assume that evx : OU (U) → OE is the specialization
map at x (or to be very precise, the specialization map at the point in the chosen special fiber of U
attached to the point x) where OE is as usual the ring of integers of the finite extension E of Qp over
which the point x is defined.
The aim is to understand what it means that the sections f and g are congruent modulo pn in terms
of their specializations. The key is, of course, that the topology of the integral models OU (U) (which
are Zp-algebras topologically of finite type) is the p-adic one, i.e. induced by the p-adic norm of the
attached affinoid algebras and as a consequence, the algebra OU (U)/p

nOU (U) has the discrete topology.
We have that f and g are congruent modulo pn if for every point z ∈ U we have that

|f(z)− g(z)|p ≤ p−n,

now if z = x is defined over the finite extension E we will have that

|f(x)− g(x)|E/Qp
≤ p−γE/Qp(n),

where γE/Qp
(n) is optimal in the sense that is the minimal integer for which the above relation is satis-

fied. In other words, we have the following commutative diagram:

OU(U) OU(U)/p
nOU(U)

OE OE/π
γE/Qp(n)

E OE

Prn

evx
evx

PrγE/Qp
(n)

This allows us to create a direct system of torsion modules over the standard field inclusion and define

the ring Z/pnZ := lim
−→
K

OK/π
γK/Qp (n)

K OK.

For example, for n = 1, we have the usual algebraic closure Z/pZ = Fp. By construction, the topo-

logical ring Z/pnZ contains all the images of all the specialization maps evz : OU (U)/p
nOU (U) →

OKz/π
γKz/Qp(n)

Kz
OKz for all z ∈ U , where Kz is the field of definition of the point z.

This construction finally leads us into give the following:

Definition 2.3. Let n be a positive integer. An integral family of representations T of G over X is
locally constant modulo pn if there exists an affine open covering {Ui} of X such that the OUi/p

nOUi-
module (T|Ui)

(n) it is finite, free of rank d and for all y, z ∈ Ui, we have an isomorphism as G-modules
ev∗y(T

(n)) ∼= ev∗z(T
(n)) between the push-forwards of the module T(n) via the specialization maps respec-

tively at y and z composed with the natural inclusion in Z/pnZ, i.e. ev∗ : OUi → OK∗
→֒ Z/pnZ at any

point ∗ with field of definition K∗.

Remark 2. Note that introducing the ring Z/pnZ was necessary otherwise the previous equality would
have made no sense. Note as well the subtle point that one shouldn’t be tempted to define the local
constancy property modulo pn by asking that, as a G-equivariant sheaf, the OU/p

nOU -module T(n) is
the constant one (that would indeed imply that since these are sheaves of Zp-module, the representation
T(n) would be defined over Z/pnZ which is of course not true in general).
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One can immediately check that the intuitive expectation for local constancy for reductions mod pn

is satisfied when the points y and z have the same field of definition, say E, which is unramified over
Qp. Indeed, in that case we have an isomorphism:

Tx/p
nTx ∼= Ty/p

nTy of OE�pnOE

[

G
]

-modules.

In the context of adic spaces and adic families of representations, Hellmann proved that the semi-
simplification of the residual reduction of an adic family is locally constant. In precise terms, the result
is the following (see [Hel16]):

Proposition 2.4. Let X be an adic space locally of finite type over Qp and let V be a vector bundle on
X endowed with a continuous action of a topological compact group G.
At any point x ∈ X, the semi-simplification of the residual reduction of the specialization of V at x is
locally constant, i.e. (V⊗ k(x))ss is locally constant.

We are able to extend the above theorem in a much greater generality and the proof is based on a
totally different approach which is required because looking at the characteristic polynomials as locally
constant functions is not enough as we have explained before.
The main result of this section is the following:

Proposition 2.5. Let X be a quasi-separated, quasi-compact Qp-rigid analytic space. Let V be a family
of representations of G over X and let T be an integral subfamily of representations of G over an integral
model X such that T[ 1p ]

∼= V as OX[G]-modules.
For every positive integer n ∈ Z≥1, the integral family T is locally constant modulo pn.

Remark 3. When n = 1 we can recover the result of Hellmann (see [Hel16]) and deduce some extra
information as well. Indeed, as we deal directly with integral modules we do not need to apply any
semi-simplification process to the residual reduction of the family T. As we will see later in dimension
two, this will have many practical interesting consequences. For example, we are able to prove local
constancy result when the residual reduction is not semisimple allowing us to distinguish between a
Borel reduction type and a completely split reduction type.

Remark 4. It is interesting to point out that despite the main goal of this article is to study local
constancy phenomena for trianguline representations of Gal(Qp/Qp), the above result has applications
in the global context as well. As this is outside the scope of this article, we will limit ourself to give
a generic description of the settings where local constancy modulo pn arises. As first instance, one
could consider the setting of integral models attached to rigid analytic Coleman’s families, i.e. analytic
families of overconvergent modular forms. In this setting one can construct analytic families of Galois
stable lattices attached to a Coleman family and our local constancy results can be applied. See for
example the recent preprint [COR23].
Another example concerns the setting of irreducible automorphic representations attached to unitary
groups defined over some totally real number field. Indeed, Chenevier proved a local constancy result
for such representations when a certain notion of weight vary p-adically (see Theorem 1.3 in [Che20]).
In order to be slightly more precise, if U is a sufficiently nice unitary group, Chenevier defines irre-
ducible automorphic representations of U to be congruent modulo pn if their attached p-adic systems of
eigenvalues (seen as elements in a certain dual Hecke algebra, in the same spirit of the classical case) are
congruent modulo pn for the classic p-adic norm. Chenevier proves (see Theorem 1.6 in [Che20]) that
such p-adic systems of eigenvalues are parametrized, together with other data, by a rigid analytic space
X , which admits a a rigid analytic weight map k : X → W (sending essentially each representation Π
to its weight k(Π)) where W is the usual weight space parametrizing multiplicative characters of the
maximal compact subgroup T ◦ of the diagonal Qp-torus of U , i.e. W := Hom(T ◦,Grig

m ). Chenevier’s
local constancy result is an immediate consequence of the existence of such analytic morphism, i.e. a
direct argument for local constancy because his result does not involve any Galois-stable coherent sheaf
but naively speaking p-adically close points on a certain moduli space. Indeed, by pulling back a suffi-
ciently small p-adic ball neighborhood of k(Π) can grant (together with a density result, see Theorem
1.6 in [Che20]) the existence of congruent representations modulo prime powers.
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2.2 Proof of Prop. 2.5

As the locally constant property is a local property, without loss of generality we can assume that the
space X is reduced (eventually by replacing it with its underlying reduced space). Moreover, again
without loss of generality, we can assume that the integral subfamily T is a proper O◦

X
(X)[G]-module.

Let ρ denote the G-representation attached to V and denote by ρ◦ the representation attached to its
integral subfamily T. The strategy of the proof consists in explicitly describing a sufficiently small open
admissible neighborhood of a fixed point x ∈ X in such a way that the coefficients of the restricted
representation T will be converging integral power series whose valuation after specialization can be
controlled via an adapted rigid analytic Lipschitz property. As a consequence we will be able to obtain
informations about higher reductions of T modulo prime powers. We start by describing locally the
space X around the fixed point x ∈ X. Without loss of generality we can assume that X has strictly
positive dimension. We will denote by Kx the field of definition of the point x ∈ X (when the dependence
on x is established we might simplify the notation and write directly K). The simplified local description
of a neighborhood of x ∈ X is possible thanks to a variant of the Kiehl’s tubolar neighborhood theorem
as proven by Berger and Chenevier (see Prop. 4.4 and 4.5 in [BC10]), which in precise terms states:

Proposition 2.6. Let X be a Qp-rigid analytic space of dimension strictly positive. If x ∈ X is a regular

point, then there exists a rigid analytic morphism i : B1,+
Kx

→ X such that i is a closed immersion and
i(0) = x and such that its image is contained in an affinoid neighborhood of x. If x ∈ X is not regular,
it is still possible to find such morphism i up to replacing the field Kx with a finite extension.

For simplicity, we will now assume that x ∈ X is a regular point; the irregular case can easily be settled
using the same argument with just the necessity of working eventually with finite extensions. Now that
we have an explicit description of a neighborhood of x we can pull back the rational family V (and its
integral subfamily T) via the natural analytic closed immersion i : B1,+

rx,Kx
→ X for a certain radius rx.

Denote the i-pull back families families still V and T. Such representations have coefficients respectively
in the reduced Tate algebra O(B1,+

rx,Kx
) ∼= Kx〈

T
sx
〉 for some sx ∈ K× such that |sx| = rx, and its integral

model which is a subring of power bounded elements O◦(B1,+
rx,Kx

) ∼= OKx〈
T
sx
〉. After this simplification, it

becomes possible to control the valuations of elements in these coefficient rings thanks to the following
result, which is essentially a p-adic analytic version of the Lipshitz property for analytic functions:

Lemma 2.7. Let K be a finite extension of Qp and let d ≥ 1 a positive integer. Let r = (ri)i=1,...,d ∈

|K
×
|d and let z1, . . . , zn ∈ K

×
such that |zi| = ri. Let T

n
r = K〈T1

z1
, . . . , Td

zd
〉 be the K-affinoid Tate algebra

attached to the closed d-dimensional rigid ball of radius r, denoted Bd,+r . For any finite extension L of
K, let f ∈ T nρ and let u, v ∈ Bd,+r (L) then:

|f(u)− f(v)| ≤ rmax|f |ρ|u− v|,

where rmax = maxi ri and |f(T )| = |
∑

ν aνT
ν1
1 . . . T νdd | = maxi,ν |aν |r

νi
i .

Proof. The result follows at once by a direct computation with the definition of the norms involved in
the affinoid algebras. See also Prop. 7.2.1 in [BGR84].

Thanks to the Kiehl’s tubular neighborhood theorem we can simplify further the computations and
consider only analytic functions in one variable. The power of this strategy resides in the fact that
this computations give rise to an explicit linear local constancy parameter once the residual radius is
known. Indeed, in order to exhibit a congruence modulo some prescribed prime power between the
representations corresponding to two points, say u and v, one just need to verify in formulas that, once

12



a positive integer is fixed m, the following diagram commutes:

Gl(T) ∼= Gld(O
◦(B1,+

rx,K
))

G Gl(Tu) ∼= Gld(OKu) Gl(Tv) ∼= Gld(OKv )

Gld(Z/pmZ)

evu evv

ρ◦

ρ◦v

ρ◦u

Prm Prm

i.e. for any g ∈ G we have that |ρ◦u(g) − ρ◦v(g)| ≤ pm. Assume now that the radius rx is of the form
pr for some r ∈ Z and assume that |u − v| ≤ p−m for some positive integer m with p−m ≤ pr. For
any f ∈ O◦(B1,+

r,K ) (i.e. a power bounded element or in other words |f |sup ≤ 1), and for the points

u, v ∈ B
1,+
pr ,K we have that the following Lipschitz property is satisfied:

|f(x)− f(y)| ≤ pr|x− y| ≤ pr−m

It is then clear that as long as we require that for a prescribed n ∈ Z≥1, the radius rn satisfies rn := n+r,
we get for any u, v such that |u − v| ≤ p−rn the congruence modulo p−n we were looking for and this
concludes the proof. Note that in all our discussion we never required u and v to be defined over the
same field extension as we always work with the p-adic norm on a fixed algebraic closure of Qp.

3 Rigid analytic families of lattices in trianguline representa-

tions and their reductions

In this section, we will keep the same notations as in Chenevier (see [Che13]) and Hellmann (see also
[Hel16], even though in this reference families of representations are meant over adic spaces instead of
the rigid analytic perspective that we adopt). Now, we will introduce the notion of trianguline, regular
and rigidified (ϕ,Γ)-modules and we will recall their main properties.
Let d be a positive integer. Let p be a prime and consider a Qp-affinoid algebra A. We will denote by
RA the Robba ring with coefficients in A. Let AffQp be the category of affinoid algebras over Qp.
Let T be the Qp-rigid analytic space parametrizing the continuous characters of Q×

p . In more precise
terms, the rigid analytic space T represents the functor associating to each B ∈ AffQp the set T (B) :=
Homcont(Q

×
p , A

×). It is well known that we have an isomorphism T ∼= W × Gm of Qp-rigid analytic
spaces. Here W denotes the space characterizing continuous characters of Z×

p and itself consists of a
finite disjoint union of open rigid analytic balls. We recall the usual definition of to special characters:
the character x ∈ T (Qp) will denote the identity character and the character χ ∈ T (Qp) the cyclotomic
character (by local class field theory) satisfying χ(p) = 1 and being the identity on Z×

p .
Inside the rigid analytic space T we can identify a special admissible open T reg whose points consist
in the regular characters in the sense of Colmez and Chenevier (see for example [Che13]). Namely,
for any B ∈ AffQp a character δ : Q×

p → B× (seen as a point in T (B)) is said to be regular if for
every z ∈ Sp(B) the character δz : Q×

p → k(z)× obtained by specialization from δ to z is not of the

form xi or χx−i for any non-negative integer i. We want to study trianguline representations of generic
dimension d ≥ 1, we will consider the rigid analytic space T d, i.e. the product of d copies of T . Denote
by T reg

d inside T d the admissible open defined by the following condition: if B ∈ AffQp , we define
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T reg
d (B) := {(δi)i ∈ T d(B) : δi/δj ∈ T (A)reg for all 1 ≤ i < j ≤ d}.

We have the following (we will keep as much as possible the notation of Chenevier, see [Che13]):

Definition 3.1. Let A ∈ AffQp . A regular, trianguline, rigidified (ϕ,Γ)-module over RA is a triple
(D,Fil(D), ν) where:

1. (regular, trianguline) (D,Fil(D)) is a trianguline (ϕ,Γ)-module over RA where the attached pa-
rameters (δi) are inside T reg

d (A);

2. (rigidified) ν = (νi) is a family of isomorphisms νi : Fili+1(D)/Fili(D) → RA(δi) compatible with
the (ϕ,Γ)-actions where i = 0, . . . rankRA(D)− 1.

Define the functor F�
d : AffQp → Sets by associating to each A ∈ AffQp the set F�

d (A) of trianguline,
regular and rigidified (ϕ,Γ)-modules over A up to isomorphism. We have the following key result of
Chenevier (see Thm. B in [Che13]):

Theorem 3.2. The functor F�
d is representable by a rigid analytic space over Qp, say S

�
d , which is

irreducible, regular and equidimensional of dimension d(d+3)
2 .

It is useful to recall the following result concerning an explicit description of an affinoid open neighbor-
hood of any point in the trianguline rigid space (this is Cor. 3.5 in [Che13]):

Proposition 3.3. For any x ∈ S�
d there exists an open affinoid neighborhood Ux inside S�

d and an
open affinoid neighborhood Ωδ(x) of δ(x) inside T reg

d and an isomorphism of rigid analytic spaces i :

Ux → Ω× B
d(d−1)

2 such that Pr2 ◦ i = δ.
Here Pr2 denotes the projection map on the second factor and Br denotes the rigid analytic closed
affinoid ball of dimension r ∈ Z≥1.

It is possible to identify the crystalline points on the trianguline space with some explicit conditions
on the parameter characters. Indeed, let E be a finite extension of Qp and define the set Ad(E) inside
T reg
d (E) as the set of points (δi) ∈ T d(E) such that:

1. δi(p)/δj(p) 6= p±1 for all i < j;

2. there exist a sequence (ki) ∈ Z such that δi(γ) = γ−ki for all γ ∈ Γ and i = 1, . . . , d;

3. k1 < k2 < · · · < kd.

Then we have the following result of Chenevier (see Lemma 3.15 in [Che13]):

Proposition 3.4. A rigidified, regular, trianguline (ϕ,Γ)-module over RE such that its attached pa-
rameters belong to Ad(E) is crystalline.

Colmez (in dimension 2) and Chenevier (general dimension) proved that rigidified, regular trianguline
(ϕ,Γ)-modules over some Robba ring arise naturally in analytic families. The way this has been proved
consisted of showing the existence of a universal family of such modules which is nothing else then the
pull back of the universal family of multiplicative characters of Q×

p via the analytic morphism S�
d → T reg

d

induced by the natural morphism of functor F�
d → T reg

d .
Our goal is to prove that this universal family, whose local existence is granted by the work of Colmez
and Chenevier, admits an integral model whose reductions modulo prime powers can be controlled.
Chenevier (see Prop. 3.17 in [Che13]) proved that any point in the étale locus on the trianguline variety
S�
d admits a sufficiently small affinoid open neighborhood, say Ω, over which the unique universal

trianguline family V admits an integral subfamily T (over some integral model A ofO(Ω)) which satisfies
that Drig(T[

1
p ]) is isomorphic to the universal rigidified trianguline (ϕ,Γ)-module and the universal

property which states that such isomorphism is compatible with any pullback via any analytic affinoid
morphism ψ : Z → Ω, i.e. the (ϕ,Γ)-module Drig(ψ∗T[

1
p ]) is isomorphic with the rigidified trianguline

(ϕ,Γ)-module induced via pullback from the universal one on S�
d via Z → S�

d .
The main result of this section is the following:
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Proposition 3.5. Let d be a positive integer and let T := Ttri, defined as a locally free coherent module
over S�,0

d . For every x ∈ S�,0
d there exists a countable system of open affinoid neighborhoods {Ω(n)}n≥1

inside S�
d , a countable compatible set {A(n)} where each A(n) is a model of the Qp-affinoid algebra

O(Ω(n)) such that:

1. (étale) · · · ⊂ Ω(n) ⊂ Ω(n−1) ⊂ · · · ⊂ Ω = Ω(0) ⊂ S�,0
d ;

2. (specialization) for each y ∈ Ω(n), we have an isomorphism Drig(Ty ⊗A(n) O(Ω(n))y) ∼= Dy of
regular, rigidified trianguline (ϕ,Γ)-modules;

3. (local constancy modulo pn) for each n ≥ 1, we have that T is locally constant mod pn on Ω and
constant modulo pn on Ω(n).

Here Dy denotes the trianguline (ϕ,Γ)-module attached to the point y, whose definition field is O(Ω(n))y.

Remark 5. Note that the system of models {A
(n)
x } is compatible in the sense that there are natural

quotient maps A
(n)
x → A

(n+1)
x induced by the open immersions Ω

(n+1)
x →֒ Ω

(n)
x . As we will see later,

this has the very interesting consequence that there is a choice of a specific lattice for which the local
constancy works and such choice does not depend on the fixed positive integer n.

Remark 6. The above result has the deep meaning that congruences of local constancy type will always
appear in any dimension for a large class of representations which includes the crystalline and the semi-
stable ones. In particular, once identified some trianguline parameters, namely any rigid analytic affinoid
morphism ψ : Z → S�

d with image in the étale locus, one can pull back the universal family to Z and
apply the local constancy results modulo prime powers. Such strategy can be done quite explicitly in
some cases. One example of a 1-dimensional rigid analytic family of dimension two representations, can
be found in [Tor22] when an explicit rigid analytic affinoid closed immersion Φ : Z → S2 is defined
where Z is the rigid affinoid closed ball centered in 0 and of radius 1 such that Φ(1− k) correspond to a
crystalline point for any k ∈ Z≥2 which allowed the author to prove a local constancy result in the weight
modulo prime powers for the crystalline representations of the form Vk,ap with vp(ap) > 0. Another
explicit example will be presented in the next section and it concerns a 1-dimensional family of two-
dimensional semi-stable representations of fixed Hodge-Tate weights parametrized by the L-invariant
where varies in an affinoid subspace inside P1,rig.

Proof. Let T be the universal integral trianguline family defined by Chenevier (see [Che13]) on the

affinoid Ω ⊂ S�,0
d . The idea is to directly apply the local constancy result proved in the previous section

for abstract family for n = 1. Note the crucial point that thanks to a result of Chenevier (see Theorem

3.2, loc. cit.), the Qp-rigid analytic space S�,0
d is regular and hence when applying the Kiehl’s tubolar

neighborhood theorem we will not lose any information on the congruence mod pn due to finite extension.
This implies that we can identify an affinoid neighborhood Ω(1) of x inside Ω over which the reduction
modulo p will be constant. By repeating the same argument, we construct a chain of open affinoids
{Ω(n)}n≥1 which satisfies the property (1). Since T is the universal family of trianguline lattices, by
specializing T at each point y ∈ Ω(n) and after inverting p will give the expected rational trianguline
representations corresponding to the point y. The property (2) will then be satisfied automatically and

the local constancy property will hold by Prop. 2.5 and the fact that every point on S�,0
d is regular.

4 Application of the previous results

In this section, we are going to apply the local constancy reduction results we obtained previously on
the trianguline variety to some specific cases. In the first subsection, we extend to a prime setting and
to the whole projective line a local constancy result obtained by Bergdall, Levin and Liu (see [BLL23])
for semi-simple residual reductions of semi-stable representations of GQp of dimension two and of fixed

Hodge-Tate weights and large L ∈ P1(Qp). In the second subsection, we study how the triangulations
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of a crystalline representation V of general dimension d vary when the representation V vary p-adically.
In particular we prove that if V and V ′ are sufficiently p-adically close then all their refinements will be
in some sense p-adically close. This addresses the interesting problem of understanding if there exists
some p-adic integral control over the filtrations of some crystalline trianguline (ϕ,Γ)-module.

4.1 Semi-stable representations of dimension 2

The goal of this section is to extend to a prime power setting a result of Bergdall, Levin and Liu (see
[BLL23]) concerning local constancy for semi-simple residual reduction for semi-stable representation
of GQp of dimension 2. First we introduce some notation (as consistent as possible with the one in
[BLL23]). Let x and |x| denote respectively the identity character on Q×

p and the character of Q×
p

sending x to p−vp(x). Hence, we have the cyclotomic character χ = x|x|. Let π ∈ Qp such that π2 = p.
Let Qp2 be the unramified quadratic extension of Qp of absolute Galois group GQp2

, denote by η its
quadratic character modulo p and by ω2 a fundamental character of level 2 for Qp2 .

Let k ≥ 2 be a positive integer and let L ∈ Qp. We define the weakly admissible filtered (ϕ,N)-module

Dk,L := Qpe1 ⊕Qpe2 where:

ϕ =

(

πk 0
0 πk−2

)

N =

(

0 0
1 0

)

Fili(Dk,L) =











Dk,L if i ≤ 0

Qp · (e1 + Le2) if 1 ≤ i ≤ k − 1

0 if k ≤ i

By the work of Fontaine and Colmez (see [CF00]), there is an equivalence, say Dst between the category
of weakly admissible filtered (ϕ,N)-modules and the category of semi-stable representations. Hence, let
Vk,L be the unique semi-stable non-crystalline representation of Hodge-Tate weights {0, k−1} such that
Dst(V

∗
k,L) = Dk,L, where the

∗ denotes as usual the dual representation. Up to twist by a crystalline (or
equivalently a semistable) character, all the semi-stable representations are of this form (see [BM02]).
The representations Vk,L are always irreducible except when k = 2. The parameter L can be extended
to the whole projective line by defining Vk,∞ to be the unique crystalline representation of HT weights
{0, k − 1} and of trace of the crystalline Frobenius equal to πk + πk−2.
Bergdall, Levin and Liu (see [BLL23]) proved the following interesting result:

Proposition 4.1. Assume k ∈ Z≥4, and p 6= 2. Then if

vp(L) < 2−
k

2
− vp((k − 2)!),

we have the isomorphism V k,L ∼= V k,∞ ∼= Ind
GQp

GQ
p2
(ωk−1

2 η).

The proof relies on an explicit description of the Breuil-Kisin modules (which in some sense generalize
Breuil’s strongly divisible lattices) attached to the representation Vk,L. It is definitely worth mentioning
that an approach with strongly divisible modules has been used to get some local constancy result in
the context of 3-dimensional representations (see [Par17]).
The result above occupies an important place in the literature as it gives in some instances the optimal
bound. Other explicit results concerning the description of the semi-simple reductions modulo p (and
the universal semi-stable deformation rings attached) have been proven in the case of low Hodge-Tate
weights, i.e. less than p − 1 (see for example the groundbreaking work of Breuil and Mézard [BM02]
and recent generalizations by Guerberoff and Park [GP19]). The advantage of working with low weights
is that one can take full advantage of the theory of strongly divisible modules in order to control the
integral representations involved thanks to the work of Liu (see [Liu08]) which solves a conjecture of
Breuil (see [Bre02]).
In order to not impose such conditions on the weight and to still place ourself in a setting in which is
possible to somehow explicitly control the lattices inside semi-stable representations, we need to resort
to a different method. The idea indeed is to explicitly describe such semi-stable representations in terms
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of trianguline representations and interpolate them with the universal family. In order to be precise,
we first describe explicitly how we can determine the trianguline data attached to the representation
Vk,L. According to the work of Colmez (see [Col08]), trianguline representations of dimension two are
parametrized by a Qp-rigid analytic space S2 whose points are of the form s = (δ1, δ2,L) where δ1, δ2 are
multiplicative characters of Q×

p and L ∈ Ext(R(δ1),R(δ2))). For each point s, we denote the trianguline
representations attached to it as V (δ1, δ2,L). We have the following:

Lemma 4.2. Let Vk,L be the semi-stable representation of Hodge-Tate weights {0, k− 1} and invariant
L ∈ P1,rig(E). We have an isomorphism of trianguline representations:

Vk,L ∼= V (δ1,k, δ2,k,L),

where δ1,k = xk−1α−1, δ2,k = |x|−1α−1 and α is the multiplicative character of Q×
p such that α(p) = π−k

and sends Z×
p to 1.

Proof. We are going to describe the dual of the representation V ∗
k,L as a trianguline representation.

Notice that it will be straightforward to deduce from that the description of Vk,L as a trianguline
representation because V (η1, η2,L)

∗ = V (η−1
2 , η−1

1 ,L) for all multiplicative characters η1 and η2 (see for
example Prop. 4.4 in [Col08]). Describing Vk,L as a trianguline representation follows as a corollary of
a result of Colmez (see Prop. 4.18 in [Col08]). Indeed, the way of proceeding is to associate to compute
the Weil-Deligne module WDk,L attached to the weakly admissible filtered (ϕ,N)-module Dk,L. It is
straighforward to check that the WD-module WDk,L is determined by the action of the Weil groupWQp

(i.e. ρ :WQp → Gl(WDk,L)) and by the action of N :

ρ(g) =

(

α(g) 0
0 pdeg(g)α(g)

)

and N =

(

0 0
1 0

)

where α is the multiplicative character of Q×
p satisfying α(p) = π−k and sending Z×

p to 1 . Moreover,

the above actions satisfy N(ρ(g)) = p−deg(g)ρ(g)N for all g ∈WQp . Here deg(g) ∈ Z denotes the integer

such that g(x) = xp
deg(x) for all x ∈ Fp. Note the action of ϕ on the filtered (ϕ,N)-module can be

recovered from ρ by evaluating it on an element of degree −1 (say Frob−1), which in particular implies
that the eigenvalues of ϕ are the inverse of the ones of ρ(Frob−1).

Now let s = (δ1,k, δ2,k,L) be the trianguline module corresponding to L ∈ Ext(R(δ1,k),R(δ2,k)) (which
by [Col08] is isomorphic to P1(E) where E is the field of definition of s). If k > 2 the representation Vk,L
is irreducible and if it is semi-stable and non-crystalline (i.e. L 6= ∞) a result of Colmez (see Theorem
0.5 in [Col08]) ensure us that s correspond to the unique trianguline (ϕ,Γ)-module whose attached
representation is exactly Vk,L.
We present the main result of this section:

Proposition 4.3. Let k ≥ 2 be a fixed positive integer and let p be a fixed prime. Let L1 be a E-point in
P1,rig, for some finite extension E of Qp. Inside P1,rig, there exists a compatible system of E-subaffinoid
closed balls {BL1,p−rn }n≥1 centered in L1 of radius p−rn ∈ |E×| and there exists a GQp-stable lattice
T1 inside Vk,L1 such that for any L2 ∈ BL1,p−rm then there exist a GQp -stable lattice T2 ⊂ Vk,L2 which
satisfy the following congruence

T1 ≡ T2 mod π
γ(m)
L2

as OKL2�π
γ(m)
L2

OKL2

[GQp ]-modules,

with γ(m) = eKL2/E
(m−1)+1 where KL2 is the finite extension of E over which the point L2 is defined.

Moreover, the local constancy radiuses satisfy the linear relation rn = r1 + n for all n ≥ 1.

Proof. The result follows directly from pulling back the universal trianguline family via the rigid analytic
open immersion Φk : P1,rig → S�,0

2 sending Φk(L) to the unique etale, trianguline (ϕ,Γ)-module Dk,L
such that Drig(V

∗
k,L)

∼= Dk,L and then applying the local constancy results as in the previous section.
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Now, as an interesting application to a specific case we can deduce the following interesting corollary.
Indeed, applying the above result to the case of p = 2 and ∞ we get the first example of local constancy
phenomena for reductions in characteristic 2. Note in fact that in most of the previous works (such
as [Ber12], [Tor22] , [BG15], [BL20] and [BLL23]), this case is always avoided essentially because the
computations become more complicated in characteristic 2 for example the pro-finite group Γ is not
pro-cyclic anymore. In precise terms we have the following:

Corollary 4.4. Let n and k be positive integers. There exists ln ∈ Z≥1 such that if L ∈ P1,rig(E) then

Vk,L ≡ Vk,∞ mod 2
γE/Q2

(n)

[E:Q2] for v2(L) ≥ ln,

as representations of Gal(Q2/Q2).
Moreover, all the reductions involved correspond to a fixed lattice in Vk,∞.

Example 4.1 (Explicit construction of locally constant integral families of semi-stable representations
whose residual reduction is reducible and non-split). Fix once and for all the parameter k ≥ 5. For any
L ∈ E, the representation Vk,L is semi-stable non-crystalline of Hodge-Tate weights {0, k−1} and defined
over E. Assume that we are in the Fontaine-Laffaille range, i.e. k−1 < p−1. The representations of this
type have been classified case by case via explicit conditions on the valuations of k and L thanks to the
work of Breuil, Mezard, Guerberoff, Park and Wan (see [BM02], [GP19] and [LP22]) using the theory of
strongly divisible modules. We are going to show how this classification can be used to produce explicit
analytic families of stable lattices inside semi-stable representations whose locally constant reduction is
reducible and non-split and whose local constancy radius mod pn is explicit.
Keeping a consistent notation with [LP22], define a(k−1) := H k−3

2
+H k−1

2
where Hm denotes the m-th

harmonic number. Assume L satisfies vp(L− a(k − 1)) = 4−k
2 . One of the results of [LP22], is that the

representation Vk,L admits two (and only two, by a general remark concerning 2-dimensional semi-stable
lifts of residual representations with trivial endomorphisms ring) classes of GQp -stable non-homothetic
lattices. Fix a representative for each class, say Tk,L and T ′

k,L and denote respectively by ρk,L and ρ′k,L
the attached GQp -representations. We have that ρk,L := ρk,L mod πE satisfies:

ρk,L
∼=

(

µcLχ
k−2 ∗

0 µdLχ

)

with ∗ 6= 0,

where cL = (k−2)L
p3−kλ

mod πE, dL = p
(k−2)Lλ mod πE, χ denotes the mod-p cyclotomic character and if

x ∈ E× we have that µx : GQp → E× is the unramified character sending Frobp to x.
It is straightforward to compute the reduction of the other integral representation ρ′k,L by simply
applying Ribet’s lemma (because k ≥ 5 and in particular Vk,L is irreducible) and observe that there
is a unique non-trivial extension of the characters µcLχ

k−2 and µdLχ because dimFp(H
1(GQp , χ

i)) = 1
if 1 < i < p − 1. We will focus on the representation ρk,L and by the previous observation will be
immediate to deduce similar conclusions for ρ′k,L. Note also that ρssk,L

∼= ρ′ssk,L
Let Zk be the rigid analytic E-affinoid space defined as all the points L ∈ P

1,rig
E such that vp(L− a(k−

1)) = 4−k
2 . Let Vk be the restriction of the universal trianguline family to the space Zk. By a result of

Colmez (see Theorem 0.5 (iii)in [Col08]), and since the representations Vk,L are all irreducible (because
k > 2), there exists a unique E-point L ∈ Zk such that specializing Vk at L we get exactly Vk,L. Because
of the explicit description of the coefficients cL and dL, it is now straightforward to check that if L′ is
another element in Zk which satisfies vp(L

′ − L) ≥ 1 then we have that ρk,L
∼= ρk,L′ .

Let now Z
ρk,L

k be the affinoid subspace inside Zk consisting of all L′ which satisfy vp(L
′ − L) ≥ 1. As

a consequence, the universal trianguline family Vtri admits on the residual locally constant subspace

Z
ρk,L

k an integral family Ttri which parametrizes the unique class of stable lattices in each Vk,L which
give as residual reduction ρk,L. For any fixed L, a direct computation shows that the description of the
weakly admissible filtered (ϕ,N)-module and the description of the rigidified, trianguline (ϕ,Γ)-module
match (via the identification given by comparing the attached Weil-Deligne representation attached
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to Vk,L). This allows us to connect the trianguline families with the families of lattices coming from
families of strongly divisible lattices as defined by Breuil. In particular, thanks to the work of Breuil

et al. (see [BM02] and [LP22]) we can identify on Z
ρk,L

k the family Ttri with the rigid analytic family
of representations obtained by applying the functor Tst to the universal analytic family M of strongly
divisible lattices whose residual reduction is the Breuil module corresponding to ρk,L constructed in

[LP22], i.e. we have an isomorphism Ttri
∼= Tst(M) as O

Z
ρk,L
k

(Z
ρk,L

k )[GQp ]-modules.

Finally, for any positive integer n, define Z
n,ρk,L

k as the affinoid subspace of Z
ρk,L

k of points L′ such that

vp(L
′ − L) ≥ n (with the obvious identification Z

1,ρk,L

k = Z
ρk,L

k ). By our local constancy results, it is

now straightforward to check that if L′ is a K-point in Z
n,ρk,L

k for some finite extension K of E, then
we have:

Ttri(L
′)�pnTtri(L

′)
∼= Ttri(L)�pnTtri(L)

as O
Z

n,ρk,L
k

�pnO
Z

n,ρk,L
k

[GQp ]-modules

or equivalently,

Tk,L′�
π
γK/E(n)

K Tk,L′

∼= Tk,L�πnETk,L
as OK�

π
γK/E(n)

K OK
[GQp ]-modules,

where everything is well defined since we have the embedding OE/π
n
EOE →֒ OK/π

γK/E(n)

K OK. All the
above steps can of course be repeated for the integral representation ρ′k,L which gives as well of another

integral subfamily of the universal trianguline family over the same affinoid, namely Z
ρk,L

k = Z
ρ′k,L

k ,
over which the residual reducible non-split reduction will be ρ′k,L. This concludes our example.

4.2 Crystalline representations of dimension d

Let E be a finite extension of Qp. First we recall some basic fact about crystalline filtered ϕ-module. Let
V be a crystalline representation of dimension d over E of GQp := Gal(Qp/Qp) with distinct Hodge-Tate
weights {k1, k2, . . . , kd}. Let DV := Drig(V ) its attached crystalline (ϕ,Γ)-module of rank d over the
Robba ring RE (note that what follows can be applied also for non-étale crystalline modules but we
do not need such general definition, see for example [Che11]). Consider now the attached filtered E[ϕ]-
module Dcris(V ) and assume that all the eigenvalues of the crystalline Frobenius ϕ acting on Dcris(V )
are distinct. Fix a refinement F = (Fi)i=1,...,d of V , i.e. a complete E[ϕ]-stable flag inside Dcris(V ) such
that:

F0 = {0} ( F1 ( . . . ,( Fd = Dcris(V ).

For a refinement, being critical essentially means that it is in general position with the Hodge filtration
induced on Dcris from DdR. In our case, it is useful to use an equivalent definition for a refinement to
be non-critical. Namely, a refinement is non-critical if and only if the sequence of Hodge-Tate weights
attached to it is increasing, hence it is exactly k1 < · · · < kd (see prop 2.4.7 in [BC09]).
Moreover, the refinement F satisfies the property that ϕ acts on the rank one quotient Fi/Fi−1 via
multiplication of ϕi for all i = 1, . . . , d. Hence, giving a refinement F is equivalent to give an order
to the set of eigenvalues of crystalline Frobenius {ϕ1, . . . , ϕd}. Every refinement F induces a trian-
gulation T on the attached (ϕ,Γ)-module Drig(V ) over RE, namely T = (Fili(Drig(V )))i=1,...,d where
Fili(Drig(V ))) := RE[1/t]Fi∩Drig(V ). This essentially implies that the crystalline (ϕ,Γ)-module DV is
trianguline overRE in exactly d! ways. An important result of Bellaiche and Chenevier (see prop 2.4.1 in
[BC09]) shows that there is a bijection (whose explicit description is essentially the one above) between
the set of refinements F of Dcris(V ) and the set of triangulations of T inside Drig(V ). We say that DV

is generic (in the sense of Bellaiche and Chenevier, see [BC09] or equivalently defined in [Che13]) if it
satisfies the following properties: all the eigenvalues {ϕi} of the crystalline Frobenius acting on Dcris(V )
satisfy ϕiϕ

−1
j 6∈ {1, p±1} for all i, j (in particular they are all distinct) and all of the d! refinements
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of Dcris(DV ) (corresponding to the d! ordering of the ϕi’s) are non-critical. Such definition of course

extends naturally to all the crystalline points in the etale locus of the trianguline variety S�,0
d .

Under the assumption that V is generic crystalline, Bellaiche and Chenevier also proved that the pa-
rameter (δi : Q×

p → E×)i of the triangulation T can be expressed in terms of F via the formulas

δi(p) = ϕip
−si and δi(γ) = γ−ki for all γ ∈ Z×

p . So, fixing a crystalline representation V of dimension

d, is equivalent to fix d! points (possibly with multiplicity) in S�,0
d which can described as the points of

the form sT := (DV , T ) where T varies among the d! triangulations of DV = Drig(V ).
In order to have an example in mind, one can think of the crystalline representation of dimension two of
GQp attached to a classical modular cuspidal eigenform of level N coprime with p whose two refinements
(or equivalently the two attached points on the trianguline variety S2) correspond to the two trianguline
representations attached to its two p-stabilizations in level pN .
In the general case of a crystalline representation V and its attached d! points on S�

d , many interesting
questions arise from trying to understand how the universal trianguline family differs in a neighborhood
of those points. For example, one could ask if it is true that each stable lattice in V appears as the
specialization of an integral analytic subfamily of one of the trianguline families interpolating some
refinement of V . This is unknown to us in such generality. There are however some known cases. For
example, if one assume that the residual reduction is irreducible then it is clear that it has to exists
a unique class of stable lattices in V and so the claim is true. Moreover, another special case has
been treated in the previous section, when it is shown that when the residual reduction is non-split all
the non-homothetic classes of stable lattices in semi-stable representations of dimension two and low
Hodge-Tate weights can be interpolated by a trianguline integral family.
Another interesting and challenging question concerns how the relative positions of such points vary
when the representations V vary p-adically. In other words, if V ′ is another crystalline representation
of dimension d such that V ≡ V ′ mod pn for some positive integer n, then what can we say about the
relative positions of the corresponding two sets of points in the trianguline space S�

d .
As we want the deal with any type of reduction modulo prime powers, it is necessary to establish a
basic geometric control over the lattices involved. In order to do that, we first introduce a deformation
setting.
Let E be a finite extension of Qp, let OE its ring of integer and let kE be its finite residue field. Let
r a continuous representation of GQp on a kE-vector space VkE of dimension d. Fix a basis b of VkE .
Consider the functor which associates to each local artinian OE-algebra A of residue field kE the set
of equivalence classes of triples (VA, ι, b) where VA is a finite, free A-module of rank d endowed with a
A-linear continuous action of GQp , where ι : VA⊗A kE → VkE is a GQp -equivariant isomorphism and b is

a basis of VA such that ι(b ⊗ 1) = b. This is the functor of the framed deformations of dimension d of
the residual representation r. It is pro-represented by a complete, Noetherian, local OL-algebra denoted
R�
r . There should be no confusion between the square exponent in here and the context of rigidified tri-

anguline modules. We denote by X�
r the E-rigid analytic space attached to the formal scheme Spf(R�

r )
by the functor constructed by Raynaud and Berthelot from the category of locally Noetherian formal
schemes over OE such that the reduction modulo an ideal of definition is a scheme locally of finite type

over kE, to the category of rigid analytic spaces over E. For every point x ∈ X�
r denote by U

(n)
x the local

constancy neighborhood modulo pn defined previously. Note that U
(n)
x is an open affinoid neighborhood

of x defined over E. Note also that the rigid analytic spaces that we are now considering are defined
over the finite extension E, so all the results presented in the previous section concerning specializations
will hold with γ•/E instead of γ•/Qp

. We introduce the following:

Definition 4.5. Let K be a finite extension of E.Two K-linear representations V and V ′ are geometri-
cally congruent modulo pn if there exist GQp -stable lattices T and T ′, respectively inside V and V ′, such

that the corresponding K-points t and t′ inside X�
r satisfy t, t′ ∈ V ⊆ U

(n)
t ∩U

(n)
t′ for some affinoid open

subset V.
In particular, the isomorphism T�

π
γK/Qp (n)

K T
∼= T ′

�
π
γK/Qp (n)

K T ′ holds as OK�
π
γK/Qp (n)

K OK
[GQp ]-modules.
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Remark 7. Using the construction that we introduced in the previous section concerning the ring
Z/pnZ, the above definition can easily be extended to representations that are not defined on the same
field extension. For simplicity of expression, we will proceed by dealing with representations defined
over the same field.

The main result of this section is the following:

Proposition 4.6. Let V and V ′ two crystalline representations of dimension d. Denote by TriV and
TriV ′ the two sets of d! triangulations of respectively V and V ′ seen as trianguline representations.
There exists a positive integer n such that if V and V ′ are geometrically congruent modulo pn then:

for all τ ∈ TriV , there exists ητ ∈ TriV ′ such that DV,τ , DV ′,ητ ∈ Ω
(n)
(V,τ) ∩ Ω

(n)
(V ′,ητ )

,

where Ω
(n)
∗ denotes the local constancy modulo pn neighborhood of ∗ inside S�,0

d .

Remark 8. In order to prove this result a first impulse is to try to have some p-adic control over the
triangulations which is of course related to understanding the relative positions of the d! triangulations
of the crystalline representations V and V ′ in a local admissible formal model of a sufficiently small
neighborhood of some refinement of V inside the étale locus S�,0

d . However, while in the previous section
we recalled an explicit description of an affinoid neighborhood of a crystalline point in S�

d , there are no
explicit informations on any of its admissible formal models. This is partly due to the lack of integral
substructures in the Robba ring. For this reason, such approach seems to us rather difficult to be dealt
with explicitly, so we came up with another method in the spirit of deformation theory with respect to
a general residual reduction (i.e. not necessarily semi-simple).

Proof. Denote by t and t′ respectively two points corresponding to V and V ′ on X�
ρ . We have to prove

that there exists an admissible open subset V of U
(n)
t such that if t′ belongs to V then the statement is

true. The idea is to identify inside the trianguline space an analytic subspace over which the residual
representation (a priori not semi-simple) of the universal representation is constant and show, through
the existence of a rigid analytic morphism (which will depend on a choice of a family of triangulations)
from such subspace to the deformation space, that if we pull back points that are sufficiently close in
the deformation space that also in this subspace will be close. For technical reasons, we will not use
an admissible open subset in S�

d but some rigid analytic space with a similar structure. Repeating this
argument for every choice of triangulation will give locally the wished result. In order to have these
ingredients, we will rely on some of the work of Breuil, Hellmann and Schraen (see [BHS17]).
Let r : GQp → Gld(kE) be the residual representation attached to the residual reduction of V and V ′

obtained by reducing the lattices corresponding to the points in the special fiber above t and t′. Let
F�(r) be the functor that attach to each reduced rigid analytic space over E, say X, the equivalence
class of (r,Fil•, δ, ν) where r : GQp → Gld(O

◦
X
) is a continuous morphism such that for every point

z ∈ X, the reduction of r ⊗OKx (here Kx is the field of definition of the point x, which is in this case a
finite extension of E and OKx is its ring of integers) coincide with r; the collection Fil• is an increasing

filtration of sub-(ϕ,Γ)-modules inside D†
rig(r) which are locally direct summand as RX-modules such

that Fil0 = 0 and Fild = D†
rig(r) (here RX denotes the Robba ring over the E-rigid analytic space

X); the parameters δ ∈ T d
reg(X) are regular characters over X and finally the isomorphisms ν give

the rigidifications νi : Fili/Fili−1
∼= RX(δi) for i = 1, . . . , d. The functor F�(r) is representable

by a E-rigid analytic space which we denote by S�(r) (see sec. 2.2 in [BHS17]). In naive terms,
the rigid analytic space S�(r) parametrizes trianguline integral representation with constant residual
reduction. Now we have to clarify what is the relation with the subfamilies of lattices inside Chenevier
and Colmez’s universal trianguline family over the rigid analytic space S�

d which parametrizes regular,
rigidified, trianguline modules. First, we point out that there is a little conflict of notation which could
mislead the reader as it once mislead the author in the tentative of maintaining both the notation used
by Chenevier (in [Che13]) and by Breuil, Hellmann and Schraen (in [BHS17]). Indeed, with current
notation there exists a rigid analytic morphism ψ : S�(r) → S�

d , however this morphism is not an
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immersion of any kind. In order to define such morphism we proceed by steps. First, we identify
inside S�

d the open étale locus, which in this article and in Chenevier’s (see [Che13]) has been denoted

S�,0
d (this is called admissible locus Sadm

d in the notation of [BHS17]) via the characterizing property
of admitting a universal Galois family of representations or in more precise terms, a G-stable vector
bundle whose specialization at any point gives exactly the correspondent trianguline representation in
that point. Now, since we want to deal with proper Galois representations over Gln, it is necessary to
modify the open étale locus S�,0

d because the universal family V is only locally free as a O
S

�,0
d

-module.

This can be done directly by trivializing the universal vector bundle of trianguline representations on
S�,0
d by viewing it as a Gln-torsor and as a consequence obtaining a rigid analytic space Yd (which

in [BHS17] is denoted by S�,adm
d , therefore the conflict of notation with S�,0

d as admissibility here

means simply étale) together with a rigid analytic morphism πr : Yd → S�,0
d . As a last step, one can

verify that the rigid analytic space Sd(r) parametrizing the deformations of lattices inside trianguline
representations of constant residue reduction r identifies with the open subspace of points of Yd whose
attached representation has reduction r. To summarize, we defined the following morphism given by
the composition:

ψr : S
�(r) →֒ Yd → S�,0

d,E →֒ S�

d,E.

Finally, we introduce the space of trianguline deformations X�

tri(r) of the residual representation r. Let
T the Qp-rigid analytic space of multiplicative characters of Q×

p and for the finite extension E, let

TE := T ×Qp E be its base change parametrizing its E-points. Define U�

tri(r)
reg be the set of points of

the form (x, δ) ∈ X�
r × T d

reg such that if rx denotes the GQp -representations attached to x (compatible
with the specialization of the universal deformation family constructed above) then its (ϕ,Γ)-module

D†
rig(rx) over the Robba ring RKx is trianguline of parameters δ = (δ1, . . . , δd). We are ready now to

define the E-rigid analytic space X�

tri(r) as the Zariski closure of U�

tri(r)
reg inside X�

r × T d
E . Finally, we

have also an analytic morphism πr : S
�(r) → X�

r × T d
E sending (r,Fil•, δ, ν) 7→ (r, δ).

Moreover, since the image of πr is exactly U�

tri(r)
reg we get that

πr : S
�(r) → X�

tri(r) →֒ X�

r × T d
E .

Now, we can compare points coming from deformation theory and the relative positions of the corre-
sponding trianguline lattices. Denote by ξr : S

�(r) → X�
r the composition of πr with the projection on

the first factor. We have the following diagram:

X�
r × T d

E X�
r

S�(r)

S�,0
d,E S�

d

Pr1

ξr

ψr

πr

i

We can proceed now to prove the claim. Let t and t′ be the points inside X�
r corresponding respectively

to the representations T [ 1p ] = V and T ′[ 1p ] = V ′. Here T and T ′ are the lattices whose attached integral

representations correspond to the points in the formal model Spf(R�
r ) whose image in the generic fiber

X�
ρ is exactly t and t′. The integralrepresentations attached to the lattices T and T ′ will be the one

giving the strong congruence V ≡ V ′ modulo pn. Let σt be a fixed triangulation of Dt := Drig(V )
corresponding to the parameters δt ∈ T d

E . Since V is crystalline, fixing a triangulation σt is equivalent
to fixing an order of the eigenvalues of the crystalline Frobenius acting on Dcris(V ). The point (t, δt)
belongs to U�

tri(r)
reg (see also cor. 2.12 in [BHS17]) which is exactly the image of πr. Let αt ∈ S�(r)
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be the point (t,Fil•,σt , δt, νt) (where νt is a fixed rigidification corresponding to the ordered parameters
δt). The point αt by construction satisfies ξr(αt) = Pr1(πr(αt)) = Pr1((t, δt)) = t inside X�

r . On the

other side, we have ψr(αt) = (Dt,Fil•,t, δt, νt). We will denote by sσt the point in S�,0
d,E coinciding with

ψr(αt).

As defined before, for any positive integer n, let U
(n)
t be the open affinoid neighborhood of t giving

the local constancy modulo pn inside X�
r and let Ω

(n)
σt be the open affinoid local constancy mod pn

neighborhood of sσt inside S
�,0
d,E . Now, define the non-empty open affinoidW

(n)
t := ξ−1

r (U
(n)
t )∩ψ−1

r (Ω
(n)
σt )

inside S�(r). If V and V ′ are sufficiently geometrically congruent modulo pn, we have that there exists

a sufficiently small admissible open Zσt

t,t′ (containing both t and t′) inside U
(n)
t . Up to restriction,

we can assume that ξ−1
r (Zt,t′) is contained in W

(n)
t . Hence, there exists a triangulation τt′ of Dt′

and a corresponding point βτt′ ∈ W
(n)
t such that ξr(βτt′ ) = t′ inside X�

r . In particular, since the

analytic morphism ξr : S�(r) → X�
r has to induce locally a morphism on the corresponding formal

models, we have that βτt′ = (t′,Fil•,τt′ , δt′ , νt′) where the parameters δt′ are uniquely determined by the
triangulation τt′ . Indeed, since V

′ is generic crystalline, the parameters δt′ depend only on the order of
the eigenvalues of the crystalline Frobenius acting on Dcris(V

′). Finally, since

sτt′ := ψr(βτt′ ) ∈ ψr(ξ
−1
r (Zσt

t,t′)) ⊆ ψr(W
(n)
t ) ⊆ Ω(n)

σt
,

we have found a trianguline point sτt′ inside S�,0
d,E corresponding to the representation V ′ which belong

to the local constancy mod pn neighborhood of sσt . Repeating the argument for each fixed triangulation
σt among all the d! triangulations available allows us to find the admissible open Zt,t′ := ∩σtZ

σt

t,t′ which
gives the desired result and the proof is complete.
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