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Abstract
Background Compression experiments are widely used to study the mechanical properties of materials at micro- and
nanoscale. However, the conventional engineering stress measurement method used in these experiments neglects to account
for the alterations in the material’s shape during loading. This can lead to inaccurate stress values and potentially misleading
conclusions about the material’s mechanical behavior, especially in the case of localized deformation.
Objective Our goal is to calculate true stress in cases of localized plastic deformation from standard experimental data
(displacement-force curve, aspect ratio, shear band angle and elastic strain limit).
Methods We use a simple mechanical-geometrical approach based on reasonable physical assumptions to get analytic
formulas of true stress and eliminating the need for finite element computations. Furthermore, in numerical simulations of
pillar compression, the formula-based true stress demonstrates strong alignment with the theoretical true stress.
Results We propose analytic formulas for calculating true stress in cases of localized plastic deformation commonly encoun-
tered in experimental settings for a single band oriented in arbitrary directions with respect to the vertical axis of the pillar.
Conclusions The true stress computed with the proposed formulas provides a more precise interpretation of experimental
results and can serve as a valuable and simple tool in material design and characterization.

Keywords Micro-pillars · Compression experiments · Shear bands · True stress

Introduction

Compression experiments conducted on pillars have proven
to be a valuable method for analyzing the mechanical behav-
ior of materials at the micro- and nano-scales. This approach
involves the fabrication of micro-pillars (often with focused
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ion beam (FIB) techniques) followed by an uni-axial com-
pression to study its mechanical response in a deformation
process under displacement or load control. This method has
been particularly useful for investigating the onset and evolu-
tion of plastic deformation inmaterials, by exploring the local
deformation mechanism (when compression test are carried
out in situ SEM), see for instance [1–11]. Specifically, micro-
pillar compression experiments have revealed numerous new
phenomena, including the transition from wild-to-mild plas-
ticity [10], pristine-to-pristine plastic deformation [12], the
"smaller is stronger" effect [13], size- and shape-dependent
flow stresses [9, 14, 15] and,microstructural control of plastic
flow [16], among others.

During such compression experiments, the material can
undergo significant plastic deformation, which can manifest
in either homogeneous deformation or slip/kink bands [17–
25]. Homogeneous deformation occurs when the material
undergoes uniform deformation throughout its structure,
while slip/kink bands result from localized deformation
that can form along some preferred orientation [26, 27].
The resulting engineering strain-stress curve is related to
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a displacement-force experimental recording, but in order
to accurately characterize the material’s mechanical behav-
ior, it is necessary to determine the Eulerian (true) stress
that is exerted within the deformation zone. It is especially
crucial to be able to accurately interpret the mechanical
properties of engineered or designed materials using vari-
ous methods to assess whether desired enhancements have
been achieved [28, 29]. The significance of using true stress
in assessing mechanical responses has been discussed in
prior studies related to the mechanical behavior of metallic
glass [30, 31]. However, of particular importance is the fact
that, to the best of our knowledge, there is currently no estab-
lished method to calculate the required load-bearing area to
evaluate true stress, during plastic localization mechanisms.

In this context, the aim of this study is to derive sim-
ple formulas for calculating true stress in cases involving
slip/kink band formation during mechanical loading while
avoiding the need for lengthy and complex finite element
computations that deal with large deformations of crystals.
Specifically, we consider a localization, observed frequently
in experiments as single band oriented in arbitrary directions
with respect to the vertical axis of the pillar, for which we
derive a formula and employ it to assess the reliability of pre-
vious experimental results. We have to mention here that the
proposed formula is completely geometric. Contrary to Finite
Elements (FEá computations, it does not need any material
modeling setup, hence it could be very useful in choice of
the constitutive law.

Simple Modeling of Pillars’ Deformation

After the initial loading process, which is associated with
small-strain linear elastic behavior, the pillars undergo sig-

nificant plastic deformation, making the elastic deformations
negligible in comparison to the plastic ones. From these plas-
tic deformation processes, two distinct scenarios emerge:
homogeneous and slip/kink band, as illustrated schematically
in (Fig. 1) and detailed subsequently. The Cauchy stress ten-
sors corresponding to these two deformation mechanisms
exhibit different patterns. In either scenario, the primary
challenge is to determine the true stress σ true within the
uniaxial Cauchy stress tensor σ = −σ trueez ⊗ ez , where ei
represents the elements of the orthonormal basis of the three-
dimensional Euclidean vector space, acting on the active area
Au .

To be more specific, let R0 and L0 represent the ini-
tial (Lagrangian) radius and height of the cylindrical pillar,
respectively, while R and L denote the current (Eulerian)
dimensions during deformation, as shown in (Fig. 1). Let
εeng = (L0 − L)/L0 denote the overall engineering strain.
Let F = −Fez represent the force applied to the top of
the pillar during deformation, where F = σ true Au , and
let σ engdenote the nominal (engineering) stress, i.e., F =
σ eng A0, with A0 = πR2

0 is the original cross-sectional area.
We assume knowledge of the initial pillar shape, specif-

ically the aspect ratio f0 = L0/2R0, and have access to
the engineering strain-stress curve, denoted as the function
εeng → σ eng(εeng). The primary objective of this paper is
to derive a simple formula for estimating the engineering
strain-true stress curve, represented as εeng → σ true(εeng).

Elastic Deformation

For εeng < εe (or equivalently for σ eng < σ
eng
e ) the pil-

lar exhibits a linear elastic behavior. Here, εe and σ
eng
e =

σ eng(εe) represent the strain and stress limits of elastic-
ity, which can be easily identified in each stress-strain (or

Fig. 1 Schematic representation of the nano or micro-pillar deformation. The linear elastic regime, εeng < εe, is followed by one of the two types
of plastic flow. Up: homogeneous deformation, Bottom: shear/kick band deformation (experimental illustration taken from [29])
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force-displacement) curve. Since the elastic strain limit εe,
is usually small (less that 3%) the elastic linear theory can
be accepted as a good approximation. If the deformed shape
is also a cylinder and the stress is uniaxial throughout the
pillar then Au = A = πR2, F = σ trueπR2 and σ eng R2

0 =
σ true R2. For anisotropic materials, such as monocrystals,
during the elastic phase, the pillar is no longer a perfect cylin-
der. However, since the deformation is small, the deviation
from a cylindrical shape can be neglected.

Following the Hooke’s law the volumetric strain εV =
(V0 − V )/V0 = (L0R2

0 − LR2)/L0R2
0 = (1 − (1 −

εeng)(R/R0)
2) is related to the true stress through the

compressibility modulus K by σ true = 3K εV . We get
a second order algebraic equation for (R0/R)2 to deduce
that (R0/R)2 = (1 − √

1 − 4δ(1 − εeng))/2δ, where δ =
σ eng/3K . Finally we have

σ true = 3K − √
9K 2 − 12Kσ eng(1 − εeng)

2
, for εeng ≤ εe,

which for small values of δe = σ
eng
e /3K and εe, gives the

well-known formula for true stress:

σ true = σ eng(1 − εeng), for εeng ≤ εe. (1)

Note that since 1 − εeng ≈ 1 for εeng < εe the difference
between the true and engineering stress in not significant, and
we can conclude that σ true ≈ σ eng during the elastic phase.

In most strain-stress curves, the elastic strain limit εe is
usually easy to extract by considering the end of the linear
behavior. In the following, εe will be considered as obtained
from the experimental results, but this assumption will not
imply any further considerations (i.e., εe) about the hardening
or softening plastic behavior of the pillar.

Homogeneous Uni-axial Stress

For larger deformations, εeng > εe, in the first scenario
the deformation is homogeneous and the stress through-
out the entire pillar is assumed to be uni-axial, given by
σ = −σ trueez ⊗ ez , where Au = A = πR2. For materi-
als modeled by a pressure-independent plasticity law, plastic
deformation is isochoric and the volume is preserved. If the
deformed shape remains a cylinder andwe neglect the further
elastic deformation of the volume then we get V = πR2L =
Ve = πR2

e Le, inwhich Re and Le are, respectively, the radius
and length of the pillar at the end of elastic phase (i.e. fixed
during post-elastic deformation). After some algebra we find

σ true = σ true
e

σ
eng
e (1 − εe)

σ eng(1 − εeng), for εeng > εe.

Since for small values of δe = σ
eng
e /3K we have σ true

e =
σ
eng
e (1 − εe) we get the well known formula

σ true = σ eng(1 − εeng), for εeng > εe. (2)

However, for large values of εeng , using the nominal stress
σ eng instead of the Cauchy stress σ true can significantly
alter the behavior of the stress-strain diagram, giving a false
impression of overall hardening-like behavior.

Due to the boundary conditions on the top and bottom,
the above assumption concerning the cylindrical shape of
the deformed sample is not always valid. Indeed, barreling
or bulging phenomena could occur, and the sample shape is
given by two diameters (the middle one and the top/bottom
one). If the minimum between the top/bottom and center
radii, denoted by Rm(εeng), could be measured during the
experiment, then true stress can be directly computed through
σ true = F/(πR2

m(εeng)), and we do not need the above
formula.

Slip/kink Band Plastic Deformation

In the second scenario, for εeng > εe, deformation is local-
ized in a narrow zone between two parallel planes with a
normal vector n, determined by the angleαwith respect to the
vertical axis ez , see (Fig. 2). The Cauchy stress tensor acting
in the shear band is given by σ = τ(n⊗ t+ t⊗n)− p I , where
t is the slip direction, τ is the shear stress and, I is the identity
matrix, while in two cylindrical regions above and below the
shear band it is assumed to be uniaxial, i.e., σ = σ trueez⊗ez
(see Fig. 2). This assumption is a schematic representation of
the stress distribution in the pillar with three non-vanishing
uniform stress zones which allows analytic computations.
Even if the stress distribution is expected to be much more
complicate this assumption seems to be globally verified in
FE computations (see for instance Fig. 4 bottom).

From the above assumptionwe can deduce that the expres-
sion for shear stress τ , acting in the shear band, is proportional
to the true stress:

τ = 1

2
sin(2α)σ true. (3)

It should also be noted that if the true stress σ true is known,
then (equation (3)) enables the calculation of the shear stress
τ as a function of the shear plastic strain γp, which is pro-
portional to the plastic axial engineering strain and can be
expressed as

γp = Le − L

cos(α)Hb
= (εeng − εe)L0

cos(α)Hb
,

in which Hb represents the thickness of the shear band. The
diagram of shear stress τ versus shear plastic strain γp is a
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Fig. 2 (Left): Schematic representation of localized plastic deformation following the elastic stage with the Cauchy stress tensor acting in different
regions of the pillar. (Right, top): The plan of the shear band with its area Ab between two ellipses representing the upper and lower sections of the
pillar. (Right, bottom) : Its projection on the horizontal plane (experimental image taken from [24])

very important tool in any discussion about the choice of the
plastic model to be considered, both in crystal plasticity and
for amorphous materials.

Let us now compute the area Au between the two disks
(or equivalently Ab = Au/ cos(α) the area between the two
ellipses)Ce andC corresponding to the projection on the basal
plane of the two cylinders (see Fig. 2). One of the circles is
translated by a distance of b = D cot(α), where D = Le−L
is the vertical displacement of the upper pillar region. After
some simple computations, one can find that the area Au

between the two regions is given by

Au = R2
e

[

π − b

Re

√

1 − b2

4R2
e

− 2 arcsin

(
b

2Re

)]

.

Denoting by f0 = L0/2R0 the initial shape number and by
fe = Le/2Re = (1 − εe)

3/2 f0 the shape number at the
end of the elastic phase, and by ε

eng∗ = (Le − L)/Le =
(εeng − εe)/(1 − εe) the engineering (plastic) deformation
with respect to the configuration at the end of the elastic
phase, we get

Au = R2
e	(ε

eng∗ fe cot(α)), (4)

where we have denoted by

	(s) = π − 2s
√
1 − s2 − 2 arcsin(s).

Taking into account that R2
0/R

2
e = (1−√

1−4δe(1−εe))/2δe
we can deduce that:

σ true = σ engπ(1 − √
1 − 4δe(1 − εe))

2δe	((εeng − εe) fe cot(α)/(1 − εe))
, for εeng > εe. (5)

Bearing in mind that εeng∗ fe = (εeng − εe) f0
√
1 − εe for

small values of εe and δe, we have R2
0/R

2
e ≈ 1 − εe we can

deduce a simplified formula for the true stress:

σ true = π(1 − εe)σ
eng

	((εeng − εe) f0
√
1 − εe cot(α))

, for εeng > εe

(6)

Note that to use the simplified formula we only need to
know the elastic limit εe, the shear band angleα and the initial
aspect ratio f0.However, the exact formula given in (equation
(5)) requires also δe: the ratio between engineering stress
σ
eng
e at the end of the elastic phase and the bulk modulus
K .

In contrast to the homogeneous deformation scenario, here
the true stress is larger than the engineering stress. Therefore,
inmany strain-stress diagrams, the plateau or softening of the
engineering stress should be viewed as a hardening of the true
stress.

Comparison with 2-D FE Computations

In the above model, the shear band thickness is assumed to
be small relative to the specimen length (i.e., Hb/L0 � 1), a
condition verified in many situations. For experiments where
this assumption is not verified, (equations (5) and (6)) need
to be revisited. Moreover, due to the Lagrangian description
of large plastic deformations in the shear band, finite element
simulations must contend with severe distortion of elements.
Consequently, their results exhibit a shear band thickness that
is unrealistically large, and computations are halted at inter-
mediate strains (less than 20%). Consequently, a conclusive
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comparison between the above formulas and Lagrangian FE
computations could not be made.

For this reason, we will use here an Eulerian approach
in the FE computations, capable of describing thin shear
bands. We will select an elastic perfectly plastic material
(see the Appendix for the constitutive equation) with the
Von-Mises yield limit σY , such that the theoretical shear
stress in the shear band is known (τth = σY /

√
3). From

(equation (3)), we can compute the theoretical true stress
σ true
th = 2σY /(

√
3 sin(2α)) for εeng > εe. Then, σ true

th can
be compared with the true stress σ true computed from (equa-
tions (5) or (6)) and the FE computations of the engineering
stress σ eng .

The ALE approaches of the shear bands, which require
re-meshing at each time step, are computationally very
expensive. Therefore, we have performed only 2-D computa-

tions here. For the two-dimensional case, the geometric true
stress formula (equation (6)) reads:

σ true = (1 − εe)σ
eng

1 − (εeng − εe) f0(1 − εe) cot(α)
, for εeng > εe.

(7)

In (Fig. 3), we have plotted the evolution of the shear
band in an elastic-perfectly plastic pillar of initial shape
number f0 = 2, with the following material constants:
E = 38235 MPa, ν = 0.34, σY = 1000 MPa. We remark
that the ALE computations of the Eulerian model were able
to handle a thin shear band. The angle of the shear band is,
as expected, α = 45◦ at the beginning, but we observe a
slight variation at the end of the deformation process. At the
bottom of (Fig. 3), the distribution of the Cauchy stress σzz

Fig. 3 2D Eulerian FE computation of the shear band localization in an elastic-perfectly plastic pillar with the plastic strain rate ε̇ p (up) and the
Cauchy stress σzz (bottom) in color scale. Evolution from for different values of εeng : 0% in a), 5.5% in b), 11% in c) and 22% in d)
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Fig. 4 FE computationswith an Eulerian elastic perfectly plasticmodel
of the engineering stress σ eng (in orange). In green the true stress σ true

computed with the formula (equation (7)) and in blue the theoretical
true stress σ true

th that we expect from the model

is plotted. One can remark that this distribution has, glob-
ally, a good agreement with the schematic stress distribution
plotted in (Fig. 2).

In (Fig. 4), we have plotted the engineering stress σ eng

(in orange) computed from the resultant force on the pillar’s
top of the FE simulations. From this curve, we obtain the
elastic strain to be εe = 0.031. In blue, we have plotted the
theoretical true stress σ true

th that we expect from the model,
and in green, the true stress σ true computed with (equation
(7)). We observe that the formula-based true stress closely
alignswith the theoretical true stress up to εeng < 18%.After
εeng = 18%, the true stress overestimates the theoretical one.
This is due to the variation of the shear band angle α, which
is larger at the end of the deformation process.

True Stress Computation and
Re-interpretation of the Stress-Strain Curves

In this section, we want to illustrate how the formulas
deduced in the previous section alter some experimental engi-
neering strain-stress curves reported in the literature.

As an example, we will reconsider the strain-stress behav-
ior of a crystal-glass symbiotic alloy investigated in [29].
In this study, the authors plotted the engineering strain-
stress curves to characterize the crystal-glass nano-laminated
alloy sample’smechanical properties comparedwith its crys-
talline and amorphous counterparts. Interestingly, the authors
found that the nano-laminated crystal-glass alloy appeared to
be tougher than its individual components when analyzing
the engineering stress data (see Fig. 4(a) in [29]). How-
ever, when we calculate the engineering strain vs. true stress
curves for two cases: (i) the crystal-glass nano-laminated
alloy undergoing homogeneous deformation using the con-
ventional formula provided in (equation (2)); (ii) the CrCoNi
crystal experiencing slip band deformation using (equation
(5)) with α = π/4, f0 =1, εe =2.5% and σ

eng
e =3.23

GPa (or the simplified formula given in (equation (6)), we
observe a contradictory outcome in both cases. Specifically,
the nano-laminated alloy exhibits softening, as shown in
(Fig. 5(a)), while the CrCoNi crystal demonstrates harden-
ing, as depicted in (Fig. 5(b)). This finding emphasizes the
significance of taking into account the current deformation
state of the material, even in the absence of a strong local-
ization.

We have to notice that, for the nano-laminated crystal-
glass alloy, we deal with a bulging deformation, and one
could expect that the true stress obtained through (equation
(2)) is slightly underestimated. Indeed, from the final shape

(Eq. 5)

(Eq. 6)

Fig. 5 Engineering strain vs. nominal stress (red) and true stress (blue) curves. Nominal stress values are taken from [29]) and the calculated true
stress curves are calculated using the formulas derived here. (a) homogeneous deformation of a crystal-glass nano-laminated alloy sample calculated
with the classical formulas (equations (1), (2)); (b) single shear band deformation of a CrCoNi crystal calculated with formulas (equations (1), (5))
(blue) and simplified formula (equation (6)) (green). Insets show the final state of the pillar at the end of the loading
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of the pillar, we observe that the central radius Rm is less
than 3% of the volume-preserving radius R, hence the under-
estimation of true stress is less than 6% at the end of the
deformation. This is negligible with respect to the difference
between engineering and true stress, plotted in (Fig. 5(a)),
which is on the order of 100%, and cannot change the above
conclusions.

Lastly, we emphasize that when comparing the true stress
curves obtained using (equation (5)) and the simplified for-
mulas provided in (equation (6)), as shown in (Fig. 5(b)), we
observed minimal differences, even at high strains.

Conclusion

In conclusion, our study provides formulas for calculat-
ing true stress in cases where slip/kink bands form during
mechanical loading in compression experiments on pillars.
These formulas are simple and need only the engineering
stress data, some geometric data (aspect ratio), and some
mechanical data (elastic limit) which are easy to get from
the experimental results. For slip/kink band plastic deforma-
tion the shear stress τ acting in the band can be recovered
from the uniaxial true stress σ true. The diagram shear plas-
tic strain- shear stress is then the main information on the
mechanical behavior of the material that can obtained from
a pillar experiment with a shear band localization.

Of course, our formula does not consider bending and
torsion, which cannot be easily traced by simple geometrical
arguments. However, in our opinion, their effects will be of
second-order. In a 2D finite element numerical simulation of
Eulerian elasto-plastic pillar compression, we compared the
formula-based true stress with the theoretical true stress and
we found a good agreement.

A more precise alternative to these simple formulas could
be very long and difficult FE computations involving large
deformations.Moreover, the FE computations needs to know
in advance the material type (mono-crystal, poly-crystal,
isotropic), its behavior (hardening, softening, etc) and the
constants that characterize the material. This means that
when localization occurs, the proposed geometric formula
gives the possibility to experimenters to interpret the data in
a simple manner without any preconceived notions about the
choice of model.

However, using these formulas, we re-evaluated the
robustness of previous experimental results and found that
considering the current deformation state of engineered
materials can be important for accurately interpreting their
mechanical behavior at small scales. To be more precise, our
analysis revealed that, in some cases, the true stress led to
conclusions that were exactly opposite to those found using
the engineering stress, while in other cases, the difference
is mainly quantitative and the overall trend is similar. To

conclude, our work provides a valuable tool for accurately
interpreting themechanical behavior ofmaterials under com-
pressive loads and for drawing appropriate conclusions based
on the true stress values.

Annex: Elastic Perfectly Plastic Eulerian
Model

The movement (flow) in the Eulerian description is given
by the velocity field, denoted v(t, ·) : Dt → R

d (here
Dt is the Eulerian domain occupied by the elasto-plastic
body at time t). The rate of deformation and the spin rate
are denoted by D = D(v) = (∇v + ∇T v)/2 and by
W = W(v) = (∇v−∇T v)/2, respectivelywhile theCauchy
stress tensor is σ (t, ·) : Dt → R

d×d
S . To describe the elasto-

plastic Eulerian model (see for instance [32]), we consider
the additive decomposition of the rate deformation tensor
into the elastic De and plastic rates D p of deformation

D = De + D p.

For the elastic range we considered the generalization of
Hooke’s law written in terms of the Jaumann rate of the
Cauchy stress tensor σ∇ = σ̇ − Wσ − σW (here σ̇ =
∂tσ + v · ∇σ is the total derivative) given by

σ∇(t) = λtrace(De)I + 2μDe, inDt ,

where λ,μ are the Lamé elastic coefficients. The plastic rate
of deformation is related to the Cauchy stress tensor through
the flow rule associated to the classical Von-Mises yield cri-
terion with no hardening (perfectly plastic material). To be
more precise, let F(σ ) = σeq − σY be the yield function,

with σY the yield limit and σeq =
√

3
2 |σ D| the Von-Mises

stress (σ D = σ − 1
3 trace(σ )I is the stress deviator). If we

denote the accumulated plastic strain by ε p (given through

the differential equation ε̇ p =
√

3
2 |D p|), then the flow rule

and the loading-unloading conditions read

D p = ε̇ p

σeq
σ D, ε̇ p ≥ 0, F(σ ) ≤ 0, ε̇ pF(σ ) = 0.
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