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Abstract

This talk concerns the solution of the Helmholtz
equation in a medium composed of a bounded
heterogeneous domain and an unbounded homo-
geneous one. Such problems can be expressed
using classical FEM-BEM coupling techniques.
We solve these coupled formulations using it-
erative solvers based on substructuring Domain
Decomposition Methods (DDM), and aim to de-
velop a convergence theory, with fast and guar-
anteed convergence.

A recent article [1] proposed a substructur-
ing Optimized Schwarz Method, with a non-
local exchange operator, for Helmholtz problems
on a bounded domain with classical conditions
on its boundary (Dirichlet, Neumann, Robin).
The variational formulation of the problem can
be written as a bilinear application associated
with the volume and another with the surface,
for which, under certain sufficient assumptions,
convergence of the DDM strategy is guaranteed.

In this presentation we show how some spe-
cific FEM-BEM coupling methods fit, or not,
the previous framework, in which we consider
Boundary Integral Equations (BIEs) instead of
classical boundary conditions. In particular, we
prove that the symmetric Costabel coupling sat-
isfies the framework assumptions, implying that
the convergence is guaranteed.

Keywords: Helmholtz equation, substructur-
ing DDM, FEM-BEM coupling, guaranteed con-
vergence, symmetric Costabel coupling

1 DDM substructuring framework

We consider the scattering of an acoustic wave
by a penetrable heterogeneous bounded domain
Ω1, with refractive index n ∈ L∞(Ω1), assuming
that Ω0 := R

d \ Ω1 is homogeneous.
For each Ωj , consider interior γjN (resp. γjD)

and exterior γjN,c (resp. γjD,c) Neumann (resp.
Dirichlet) traces, the orientation given by the
unit normal vector to ∂Ωj outgoing with respect

to Ωj. Denote trace operators γj := (γjD, γ
j
N ),

γjc := (γjD,c, γ
j
N,c) and the interface Γ := ∂Ω1.

We seek to solve the transmission problem

∆u1 + n(x) k2u1 = f, in Ω1,

∆u0 + k2u0 = 0, in Ω0,

γ0D(u0)− γ1D(u1) = g, on Γ,

γ0N (u0) + γ1N (u1) = h, on Γ,

+ Sommerfeld condition

(1)

with k2 > 0, f ∈ H−1(Ω1) a source term. It
is known that there exists a unique solution in
Hloc(∆,Rd).

Problem (1) can be reformulated equivalently
as an equation posed only on the interface Γ, fol-
lowing the Optimized Schwarz Method proposed
by [2,4], and involving a non-local exchange op-
erator Π — as in [1] — and a scattering opera-
tor S:

(Id+ΠS)q = b

for q ∈ H− 1

2 (Γ)×H− 1

2 (Γ).
Ensuring ΠS is a contraction implies strong

coercivity of Id+ΠS, and thus convergence of
iterative schemes (at continuous level), such as
Richardson or GMRes. The framework of [1]
identifies several sufficient assumptions, which
will be described afterward, to ensure this con-
tractivity. Our contribution consists in using
BIEs from FEM-BEM coupling techniques, in-
stead of classical Dirichlet, Neumann or Robin
boundary conditions, and studying if those as-
sumptions are satisfied.

On the one hand, (1) is supposed to rewrite

as: find u in H(Ω1 × Γ) := H1(Ω1) × H− 1

2 (Γ)
such that

AΩ1×Γ(u) = rhs, (2)

where rhs stands for some source term, and
AΩ1×Γ takes the form:

〈AΩ1×Γ(u, p), (v, q)〉 := 〈AΩ1
(u|Ω1

), v|Ω1
〉

+〈AΓ(γ
1
D(u), p), (γ

1
D(v), q)〉

(3)
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where AΩ1
corresponds to a volume part which

accounts for the first line of Equation (1). AΓ :
HB(Γ) → HB(Γ)∗ corresponds to a pure surface
part accounting for the outer boundary contri-
bution, with HB(Γ) := H

1

2 (Γ) × H− 1

2 (Γ). On
the other hand, our convergence theory requires:

(a) Im(〈AΓ(φ, p), (φ, p)〉) ≤ 0 ∀(φ, p),

(b) range(AΩ1×Γ) is closed in H(Ω1 × Γ)∗.

2 Application with FEM-BEM coupling

The expression of AΓ relies on Boundary Inte-
gral Operators. We introduce Gk the Helmholtz
k-outgoing Green kernel, and

SLk(q)(x) :=

∫

Γ

Gk(x− y)q(y) dσ(y),

DLk(v)(x) :=

∫

Γ

(γ0NGk)(x− y)v(y) dσ(y),

A :=

(

{γ0D} ◦DLk {γ0D} ◦ SLk

{γ0N} ◦DLk {γ0N} ◦ SLk

)

,

with {γ0•} := (γ0• + γ0•,c)/2, • ∈ {D,N}, the
mean of interior and exterior traces.

We choose here to focus on two classical FEM-
BEM coupling methods: the Johnson-Nédélec
one [5], and the symmetric Costabel one [3].
Then, the assumptions (2) and (3) on AΩ1×Γ

rewriting are fulfilled. Indeed, 〈AΩ1
(u), v〉 :=

∫

Ω1
∇u(x) · ∇v(x) dx −

∫

Ω1
k2n(x)u(x)v(x) dx,

and the volume equation writes

〈AΩ1
(u), v〉+

∫

Γ

γ0

N
(u)γ1

D
(v) =

∫

Ω1

fv+

∫

Γ

h γ1

D
(v).

Johnson-Nédélec method is then obtained by
adding to the the volume equation a BIE derived
using the first line of operator A.

A second BIE can also be derived using the
second line of operator A, allowing to express
γ0N (u) as a sum of BIEs. Symmetric Costabel
method is then derived by replacing γ0N (u) in
the volume equation with this new expression,
and by adding to the volume equation the BIE
derived using the first line of operator A (the
same as in Johnson-Nédélec method).

Using Dirichlet transmission condition for
both methods, problem (1) is thus reformulated
with AΩ1×Γ satisfying (3) — see Theorems 1
and 2 for expressions of AΓ. Defining the skew-
symmetric pairing

[(u, p), (v, q)] := 〈q, u〉 − 〈p, v〉,

which puts in duality HB(Γ) with itself, we state
our new contributions.

Theorem 1 The operator AΓ for Johnson-Nédélec

coupling writes: ∀(φ, p) ∈ HB(Γ), (v, q) ∈ HB(Γ)

〈AΓ(φ, p), (v, q)〉 :=

[(

Id−A

2

)

(φ, p), (0, q)

]

+ [(φ, p), θ(v, 0)]

with θ(v, q) = (−v, q). We show that

∃(Φ, P ) ∈ HB(Γ) | Im(〈AΓ(Φ, P ), (Φ, P )〉) > 0.

In the case of Johnson-Nédélec coupling, assump-
tion (a) appears too restrictive. Yet, this does
not discard convergence of DDM schemes.

Theorem 2 The operator AΓ for Costabel cou-

pling writes: ∀(φ, p) ∈ HB(Γ), (v, q) ∈ HB(Γ)

〈AΓ(φ, p), (v, q)〉 :=−

[

A

2
(φ, p), (v, q)

]

+
1

2
[(φ, p), θ(v, q)]

from which it can be shown

∀ (φ, p) ∈ HB(Γ), Im(〈AΓ(φ, p), (φ, p)〉) ≤ 0.

In the case of Costabel coupling, a gener-
alized Gårding inequality can be also derived,
implying that AΩ1×Γ is Fredholm with index 0.
Thus, except for spurious resonances (Dirich-
let eigenvalues of Laplacian problem in Ω1), as-
sumption (b) is fulfilled, and the convergence of
the substructuring method can be proved.
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