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DEBATE

Should AI models be explainable 
to clinicians?
Gwénolé Abgrall1,2*, Andre L. Holder3, Zaineb Chelly Dagdia4, Karine Zeitouni4 and Xavier Monnet1 

Abstract 

In the high-stakes realm of critical care, where daily decisions are crucial and clear communication is paramount, com-
prehending the rationale behind Artificial Intelligence (AI)-driven decisions appears essential. While AI has the poten-
tial to improve decision-making, its complexity can hinder comprehension and adherence to its recommendations. 
“Explainable AI” (XAI) aims to bridge this gap, enhancing confidence among patients and doctors. It also helps 
to meet regulatory transparency requirements, offers actionable insights, and promotes fairness and safety. Yet, defin-
ing explainability and standardising assessments are ongoing challenges and balancing performance and explainabil-
ity can be needed, even if XAI is a growing field.
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Introduction
The healthcare sector has witnessed a surge in Artificial 
Intelligence (AI) models, particularly in crucial areas 
such as medical imaging, perioperative, and critical care, 
where extensive volumes of data are constantly gener-
ated. In these fields, the rapid development of AI-based 
models holds significant potential for enhancing medical 
decision-making and improving patient outcomes [1].

However, a recent survey of intensive care unit (ICU) 
professionals sheds light on their doubts regarding AI [2]. 

Seventy-one percent of participants were either unsure 
or disagreed that AI can be used reliably in ICU deci-
sion-making. The usual diffidence in a novelty may be 
at least partially responsible. However, this lack of con-
fidence could also come from distrust of decisions based 
on algorithms that resemble "black boxes". This prompts 
the question: should AI models be made explainable to 
clinicians?

Background
The AI literature offers varied interpretations of explain-
ability, underscoring the absence of a formal defini-
tion. Sometimes, explainability is mistakenly used 
interchangeably with interpretability and transparency 
[3]. Interpretability may refer to the degree to which a 
human can understand the internal mechanisms and 
decision-making processes of an AI model [4]. Interpret-
able models are designed to be easily understood and 
straightforward, enabling users to trace and grasp how 
inputs are transformed into outputs, sometimes through 
an identifiable pathophysiologic rationale. Examples of 
inherently interpretable models include decision trees 
and linear regression, where the logic and rules govern-
ing the model’s decisions are clear and easy to follow.
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Explainability, in contrast, involves techniques and 
methods used to make the decisions of more complex, 
often opaque models (like deep neural networks) under-
standable to humans. This typically involves post hoc 
explanations, which are generated after the model has 
made its decisions. Hence, techniques such as Local 
Interpretable Model-agnostic Explanations (LIME) and 
Shapley Additive Explanations (SHAP) are commonly 
used to clarify which factors influenced the model’s pre-
dictions and why they did so, without necessarily simpli-
fying the model itself or understanding the underlying 
biochemical mechanism (See Additional file 1).

Models should be explainable for clinicians: yes!
A right to explanation?
The European General Data Protection Regulation 
(GDPR) requires that individuals be informed about 
automated decision-making processes. This includes 
their underlying mechanisms, significance, and poten-
tial consequences of their application for the individual. 
The information provided should be sufficiently com-
prehensive to ensure the understanding of the decision’s 
rationale and, potentially, their right to challenge the 
algorithm’s outcomes (Articles 13, 14, 15, 22 and Recital 
71 [5, 6]).

While the GDPR does not explicitly define a "right to 
explanation," some experts interpret these requirements 
as effectively establishing one [7]. Nonetheless, there is 
considerable debate about the extent to which the regula-
tion genuinely provides this right [8–10].

The recent Artificial Intelligence Act emphasises the 
necessity of transparency and human oversight in high-
risk AI systems. Specifically, it mandates that these sys-
tems—including many AI-powered medical devices 
[11]—must be designed and developed to ensure "suf-
ficient transparency to enable users to interpret the sys-
tem’s output" and "use it appropriately" (Article 13 [12]). 
This emphasis on transparency aims to build trust and 
accountability by making AI systems understandable and 
open to scrutiny. However, the Act does not provide spe-
cific level for explainability [10].

Facilitating AI acceptance in decision‑making
In the high-pressure environment of the ICU, doctors 
need clarity when making decisions, especially when 
using AI-based support systems [13]. The lack of trans-
parency in AI models can impede trust in their diagnos-
tic, therapeutic, and prognostic suggestions, leading to 
potential "decision paralysis". This is further exacerbated 
by accountability concerns: how can one take responsi-
bility for decisions based on AI models that are not fully 
understood [14]?

Critical care doctors frequently encounter syndrome-
based diseases, such as acute kidney injury (AKI) and 
sepsis, as well as events like the need for mechanical sup-
port, all marked by notable heterogeneity. Their partially 
understood nature poses challenges for many AI models 
to promptly identify effective interventions for treatment 
or prevention. Explainable AI (XAI) models can be more 
actionable (for definitions and descriptions of explainable 
AI (XAI) terminology, consult the Additional file 1). For 
instance, the models developed by Lauritsen et  al. [15], 
provide early warnings for various critical illnesses, while 
pinpointing the specific factors driving their predictions 
for each patient. These models not only offer state-of-
the-art, real-time predictions for critical illnesses like 
sepsis, AKI, or acute lung injury (ALI), but also provide 
insights into the electronic health records underpinning 
these predictions that would otherwise have remained 
unidentified. Such an approach enables practitioners 
to respond more effectively and personally, focusing on 
modifiable factors.

From a patient’s perspective, the opacity of AI sys-
tems can also impair their comprehension, impact-
ing their informed consent and autonomy. This lack 
of clarity could unintentionally shift decision-making 
power from patients and doctors to less transparent 
algorithms, potentially fostering a new kind of medical 
paternalism where it is assumed that "computers know 
the best" [16]. To navigate these challenges effectively, 
clinicians could benefit from understanding the ration-
ale behind the outcomes produced by AI-based mod-
els. The paramount focus should be on deciphering why 
a particular AI model arrives at specific results and the 
underlying factors influencing its decision-making pro-
cess. This approach parallels the collaborative mental 
models that clinicians establish with their colleagues, 
akin to seeking a second opinion [17]. In addition, with 
this knowledge in hand, clinicians should communicate 
more effectively with patients and their families, facilitat-
ing informed decisions about their healthcare [18].

Ensuring safety, clinical relevance, and fairness
Engineers and clinicians have distinct expectations about 
model explainability. Engineers typically focus on the 
interpretability of the model’s inner workings, such as 
for debugging purposes, whereas clinicians emphasise 
the clinical relevance of its outputs [19]. Hence, draw-
ing a parallel with their role in pharmacovigilance, clini-
cians should play a central role in evaluating AI models 
throughout their lifecycle.

In this context, explainable models may help identifying 
spurious correlations that could lead to iatrogenic harm. 
For example, Deasy et al. [20] proposed an AI model that 
predicts in-hospital mortality for ICU patients using 
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numerous variables derived from the MIMIC-III data-
base [21], a comprehensive collection of critical care 
data, without prior variable selection. A closer look into 
its functioning revealed that certain features, such as a 
priest’s visit, were strong predictors of imminent mor-
tality. In a scenario where this model is applied practi-
cally, if religious visit patterns change, the model might 
wrongly predict how likely patients are to survive. This 
could cause medical teams to either act too slowly or take 
unnecessary actions.

Similarly, during the COVID-19 pandemic, research-
ers harnessed AI-driven models to analyse X-rays and 
CT scans for quick identification of COVID-related 
pneumonia. DeGrave et  al. used post-hoc explainability 
methods such as saliency maps and generative adversar-
ial networks (GANs) to study their trustworthiness. Sali-
ency maps highlight the most influential image regions 
for model predictions, while GANs transform images 
to reveal key features differentiating classes (See Addi-
tional file 1). They demonstrated that some deep-learning 
models took ’shortcuts’ by relying on features like lateral-
ity markers (e.g., the "R" letter adjacent to the right side 
of the radiograph) or patient positioning to draw their 
conclusions, rather than focusing on medically relevant 
pathology [22], rendering their predictions less reliable.

To ensure the transparent use of AI in healthcare, a 
thorough examination of potential biases and disparities 
arising from the inclusion or exclusion of certain vari-
ables is essential. An important example is the historical 
use of racial or ethnic data in calculations of glomerular 
filtration rates, a practice that has led to increased diag-
nostic disparities in kidney disease among marginalised 
groups [23]. Consequently, when AI is used for purposes 
such as predicting AKI, it is imperative for clinicians to 
clearly understand how the algorithm incorporates sensi-
tive demographic data. They need to be keenly aware of 
the effects of such data on both the accuracy and fairness 
of the model’s predictions, in order to avoid reinforcing 
existing healthcare inequalities [24]. This is not only ethi-
cally prudent, but in some instances has become a gov-
ernmental priority [25].

Models should be explainable for clinicians: no!
The proof is in the pudding?
When a model has no significant impact or has proven 
its performance sufficiently, the cost of explanation may 
outweigh the benefit [26]. If an AI model consistently 
outperforms a clinician, even without being explain-
able, it could be considered ethically justifiable to use it. 
In such cases, employing the AI as a co-pilot becomes a 
viable option, provided the clinician can independently 
verify and confirm the accuracy of the AI’s decisions [27].

It is sometimes suggested that there may be a trade-
off between accuracy and explainability when incorpo-
rating an explanation mechanism in AI systems [28]. A 
study [29] found that in medical scenarios (e.g., stroke 
diagnosis), the general public prioritised accuracy over 
explainability, emphasising the need for accurate and 
timely decisions for better outcomes. Conversely, in non-
healthcare scenarios (e.g., criminal justice), explainability 
was valued more for ensuring fairness and transparency. 
Although post-hoc explainability can help mitigate the 
trade-off between accuracy and explainability, the dif-
ference in priorities across different sectors of soci-
ety underscores the need for context-specific AI policy 
development and public engagement.

Likewise, it can be argued that even in intensive care, 
especially in predictive models, there are areas where 
understanding the associations behind an algorithm mat-
ters less than its efficiency and promptness. For instance, 
the Hypotension Prediction Index (HPI) from Edwards 
Lifesciences Corp. (Irvine, USA) uses a machine learn-
ing algorithm to forecast hypotension by analysing physi-
ological alterations in the artery waveform. By employing 
variables selected from millions of individual and com-
binatorial ones, derived from invasive arterial line 
waveform analysis, it efficiently predicts and prevents 
intraoperative hypotension, despite lacking a straightfor-
ward physiological explanation for its output [30, 31].

Is explainability reliable?
Explainability, as previously mentioned, can have mul-
tiple meanings, and can vary according to stakeholders’ 
unique expectations (Fig. 1). Additionally, numerous XAI 
methods exist (Additional file 1: Fig. S1), yet standardised 
methods for assessing their accuracy and comprehensive-
ness are deficient [32, 33].

Even state-of-the-art XAI methods often provide erro-
neous, misleading, or incomplete explanations, especially 
as the complexity of models increases [10]. For example, 
post-hoc methods, which use external tools to clarify an 
algorithm’s operations often without deeply examining 
its core workings, are inherently prone to approxima-
tions [34]. When attempting to emulate the predictions 
of black-box models, they might rely on different features 
for their explanations, potentially leading to a misinter-
pretation of the model’s true processes. Moreover, iden-
tifying an AI model’s key features does not ensure their 
effective or expected use, particularly from a clinical per-
spective [28]. For instance, saliency maps can indicate 
where the model is “looking,” but not what the model 
actually “sees” [34].

These caveats partly explain why there is still no con-
sensus on whether AI models, as seen in decision sup-
port systems, should inherently possess explainability 
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as a core attribute [35]. In this context, recent advance-
ments in generative AI, such as OpenAI’s ChatGPT, pre-
sent significant challenges to reliable explainability. These 
challenges notably include model complexity, limited 
access to the internal workings of proprietary systems, 
and the difficulty of evaluating explanations without clear 
benchmarks [36].

Recognising our own cognitive biases
We should recognise the ubiquity of black boxes in vari-
ous domains. In many medical practices, clinicians com-
monly use numerous medications such as paracetamol, 
as well as diagnostic tools like as lab tests and magnetic 
resonance imaging (MRI), without fully understanding 
their inner workings. This prevailing lack of transparency 
mirrors the concept of black boxes, where the intrica-
cies of interventions remain elusive. Similarly, the human 
body remains an enigma in many respects [37].

Furthermore, human clinicians are often not held 
to the same stringent standards of explainability as 
AI systems [38]. Everyday crucial decisions made by 
an intensivist, such as admitting patients to the inten-
sive care unit, often involve elements of inexplicabil-
ity due to intuition or implicit biases [39]. AI systems, 
on the other hand, can be held to a higher standard of 

explainability, which may not always be realistic or nec-
essary. This double standard has led some authors to 
argue that the explainability requirements for AI should 
be considered relative to those of human decision-mak-
ers [40] for a fair and practical evaluation of decision-
making in medical contexts.

Healthcare practitioners might place unwarranted 
confidence in models that highlight explainability. In 
fact, when using these models, their capacity to iden-
tify and correct major model errors seems reduced. 
Authors have suggested that this overconfidence may, 
in part, arise from an "information overload" effect [32, 
41], which might also induce data fatigue.

Similarly, it is essential not to consider the workings 
of AI models strictly through an "anthropomorphic" 
perspective or to insist on just causal explanations. AI 
models can integrate factors that significantly improve 
predictive accuracy, even if these factors do not have a 
clear causal link to the model’s outcomes [42]. While 
it is vital to steer clear of spurious correlations, it is 
worth noting that not all diseases are entirely under-
stood in causal terms. Some might be influenced by 
unpredictable external factors, rather than being purely 
deterministic.

Fig. 1  Which explainability for which audience?



Page 5 of 8Abgrall et al. Critical Care          (2024) 28:301 	

From explainable AI to trustworthy AI
Ensuring the trustworthiness of AI systems is essential 
for promoting their widespread adoption in high-stakes 
ICU environments and for their routine use in decision-
making. While explainability plays a role, it is neither 
fully sufficient [43] nor strictly indispensable for cultivat-
ing acceptance of AI systems. Trust does not arise merely 
from meeting a single criterion; it emerges from a combi-
nation of AI system attributes, including reliability, safety, 
fairness, and auditability [44]. These principles should 
act as a framework for evaluating AI systems throughout 

various stages of their lifecycle, from data collection and 
preprocessing to model training, evaluation, and deploy-
ment [3, 45].

Transparency of AI systems, as advocated by regula-
tions, appears here as a cornerstone to foster trust in AI 
technologies. In a holistic approach to system opacity, 
it refers to the degree to which appropriate information 
about a device—including its intended use, development, 
performance, and underlying logic—is clearly commu-
nicated to stakeholders. [46]. The recent AI Act empha-
sises the need for transparency and human oversight in 

Table 1  Top 10 must-knows for clinicians using AI models

1. Objective & Scope

Purpose: Model’s primary goal (e.g., prediction, diagnosis, recommendation)

Target population: The patient demographic the model caters to

2. Model insights

Structure: A concise description of the model’s design

Explainability: Clarity of the model outputs for clinicians and patients

Key variables: Main features the model use, and their medical relevance

3. Data source

Data origin: Where training and validation data comes from, ensuring relevance to clinician’s patient base

Adaptability: Ability to retrain the model using local datasets

Open access: Accessibility to data/code for replication (e.g., on platforms like GitHub)

4. Evaluation & Validation

Performance metrics: Measures of model accuracy

Benchmarking: Comparison to simpler, more interpretable models

Practical validation: Testing in real clinical settings, beyond just retrospective data

5. Model limitations

Performance concerns: Situations or conditions where model efficacy may diminish

Reliability: Model’s expression of confidence and uncertainty in its results

Error management: Approaches for handling and correcting inaccurate outputs

6. Clinical integration

Human oversight: Human involvement in model-driven decisions

Workflow integration: Model’s fit into existing clinical processes

User experience: Interface design and clarity of information

Training & education: learning resources provided for staff and clinicians

7. Ethical considerations

Demographic equity: Performance consistency across diverse patient groups

Fairness audit: Efforts to identify and rectify potential biases

8. Regulatory aspects

Data privacy & security: Protocols for patient data management and protection

Legal adherence: Compliance with regulations like GDPR, AI Act

Clinician liability: Responsibilities when using the model

9. Maintenance & Audit

Safety checks: Monitoring model safety and efficiency

Updates & evolution: Keeping the model current line with new data and insights

10. Feedback & Reporting

Feedback channels: Systems for collecting and addressing user feedback

Adverse event: Procedures to handle and report any negative outcomes associated with the model’s deployment
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high-risk AI systems. Instead of mandating the use of 
XAI tools, it ensures users receive pertinent documenta-
tion and information [47].

In the ICU context, this information could be pre-
sented via user-friendly graphical interfaces, comple-
mented by a robust documentation approach. This could 
include "model facts" sheets [37], specifically designed to 
provide essential model information to clinical end users. 
Table 1 summarises the essential aspects clinicians need 
to focus on when implementing AI Models in the health-
care environment.

Conclusion
Over the past decade, research in AI and machine learn-
ing applications in medicine has witnessed an impressive 
20-fold increase [48]. However, the practical integration 
of these advanced methodologies into healthcare can be 
hindered by trust issues [19]. Increased transparency is 
deemed essential, and explainability is considered a cru-
cial component of this endeavour, even though ques-
tions persist about determining the appropriate level of 
explainability for a specific audience (Fig. 1). This implies 
facing challenges across legal, ethical, technical, and eco-
nomic dimensions [47].

The notion that a necessary trade-off exists between 
accuracy and explainability in AI models is being re-eval-
uated with the expansion of the field of XAI research [34, 
49, 50]; (Additional file 1: Fig. S2). In medical AI, where 
models are typically based on detailed, structured data 
grounded in physiopathology, the performance difference 
between interpretable and more complex models often 
turns out to be minimal [34].

However, explainability alone does not guarantee effec-
tive AI application. It remains pivotal to grasp the impli-
cations of employing AI models, as well as to understand 
when and how to integrate them into clinical judgement 
while preserving patient autonomy in shared decision-
making [16].
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