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Abstract
Quantifying the autocorrelation range of species distribution in space is necessary forapplied ecological questions, like implementing protected area networks or monitoringprograms. However, the power of spatial sampling designs to estimate this range is neg-atively related with other objectives such as estimating environmental effects actingupon species distribution. Mixing random sampling points and systematic grid (‘hybrid’designs) is a classic solution tomake a trade-off. However, fractal designs (i.e. self-similardesigns with well-identified scales) could make an even better compromise, becausethey cover awide array of possible autocorrelation range values across scales. Usingmax-imum likelihood estimation in an optimal design of experiments approach, we comparederrors of hybrid and fractal designs when simultaneously estimating an effect actingupon a response variable and the residual autocorrelation range. We found that Pareto-optimal sampling strategies depended on the feasible grid mesh size (FGMS) over thestudy area, given the sampling budget.When the FMGSwas shorter than expected auto-correlation range values, grid design was the best option on all criteria. When the FMGSwas around or larger than expected autocorrelation range values, the choice of designsdepended on the effect under study. Fractal designs outperformed hybrid designs whenstudying the effect of a monotonic environmental gradient across space, while grid de-sign was more efficient for other types of question. Beyond the niche identified in ouranalysis, fractal designs may also appear interesting when studying response variableswith more heterogeneous spatial structure across scales, and when considering morepractical criteria of performance such as the distance needed to cover the design.
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Introduction
Autocorrelation has a double status in the study of biodiversity patterns (Legendre, 1993).

On the one hand, it is often seen as a nuisance, generating biases in regression models that seek
to link covariates to spatial patterns of biodiversity (Lennon, 2000). Many techniques to control
these undesirable effects are available, and now well popularized among ecologists (Dormann
et al., 2007). On the other hand, spatial autocorrelation may also be viewed as the signature
of some endogeneous process driving biodiversity patterns (McGill, 2010). In particular, it is of-
ten interpreted through the prism of limited dispersal. For instance, auto-regressive modelling
of species occupancy in metapopulation ecology (Bardos et al., 2015; Braak et al., 1998; Prugh,
2009; Ranius et al., 2010) or isolation by distance patterns on neutral markers in population
genetics (Manel and Holderegger, 2013; Ouborg et al., 1999; Vekemans and Hardy, 2004) are
often used to draw conclusion on species colonization or dispersal abilities. This interpretation
of autocorrelation range can be further reinforced in multi-taxonomic studies, when estimated
values are found to be correlated to species dispersal traits (Bonada et al., 2012). From this per-
spective, the accurate assessment of autocorrelation range has important implications to assess
the functional connectivity of habitat networks (Tischendorf and Fahrig, 2000) or build efficient
biodiversity monitoring strategies (Rhodes and Jonzén, 2011).

Virtual ecology (Zurell et al., 2010) offers a way to test whether sampling designs can accu-
rately detect or quantify effects of interest, before implementing it in the field. Beyond the ques-
tion of assessing the power of empirical designs, a virtual ecology analysis contributes to clearly
formulating the set of questions associated to a design. Many virtual studies have focused on
evaluating the potential of various sampling strategies to estimate the mean population density
of a species (e.g. Perret et al., 2022), the total abundance or the total species richness of a taxon
(e.g. Thiele et al., 2023) within a sampling area. However, only few virtual studies focused on effi-
cient designs to accurately estimate the autocorrelation range of biodiversity variables. An early
example is a study by Ferrandino (2004), which analyzed how various sampling schemes could
quantify the aggregation of a pathogen distribution among host plants. The main result was that
a regular grid sampling design could better estimate the total incidence of the pathogen over the
studied area, while more irregular designs (random or fractal) with the same number of points
could yield better estimates of the pathogen aggregation, for a wider range of true cluster sizes.
Fractals showed the best performance on the latter aspect. Similarly, Bijleveld et al. (2012) found
that a grid design was the best choice to estimate spatial or temporal trends on the mean of a tar-
get field of values while random design was better at estimating autocorrelation parameters. The
authors further showed that a hybrid strategy, mixing randomly chosen sites with a grid, stood
as a Pareto-optimal solution on the trade-off between the conflicting objectives (i.e. changing
to other designs necessarily generated performance loss on either objective). However, they did
not include fractal designs in their analysis. From a species community perspective, Marsh and
Ewers (2013) suggested that fractal sampling designs could be an interesting option to study the
autocorrelation range of species composition among communities through diversity partitioning
or distance-decay patterns (Lande, 1996; Nekola and White, 1999). They found that fractal de-
signs lead to non-parametric estimates of distance decay-curves more similar to an intensive
control than other classic strategies (regular grid and random design), calling for further investi-
gation.
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Fractal designs are characterized by a self-similar property (Falconer, 2003;Mandelbrot, 1983):
sub-parts of the design look like a contraction of the total design (see Fig. 2 below). Thanks to
this property, a single fractal design can cover discrete, contrasted spatial scales with a relatively
low sampling effort. They may offer a practical way to study autocorrelation over a broad set of
possible ranges. Ewers et al. (2011) emphasized the importance of such feature: it should con-
tribute to create versatile long-term designs, suitable for many resarch questions covering taxa
with contrasted dispersal abilities, home range sizes and sensitivity to environment, and facilitate
the study of links between scales. Given this high potential, we deemed necessary to compare
fractal designs with hybrid designs (including pure grid and pure random designs) regarding their
ability to simultaneouly estimate autocorrelation range and effects acting on a target variable in
space. By doing so, we hoped to synthesize the pros and cons associated to fractal sampling strat-
egy in terms of estimation power, and identify when then may constitute a valuable alternative
compared to more classic strategies on that respect.

We used the statistical framework of optimal design of experiments (Müller et al., 2012),
which has been repeatedly used to build and compare designs of temporal (Archaux and Bergès,
2008) or spatio-temporal (see Hooten et al. (2009) and references therein) biodiversity surveys.
This approach has rarely been applied to the specific problem of quantifying spatial autocorre-
lation though. An exception is the study by Müller (2007), which focused on the problem of
detecting autocorrelation with a test using Moran index (Moran, 1950), but did not consider
the estimation error associated to the corresponding range. Here, we focused on estimation er-
rors associated to an effect acting upon a response variable and to the residual autocorrelation
range respectively. We used maximum likelihood estimation, which offers a powerful heuristic
to theoretically explore the estimation accuracy of sampling designs through the analysis of the
inverse Fisher matrix (Abt and Welch, 1998). Zhu and Stein (2005) used this approach to nu-
merically search for best sampling positions to recover autocorrelation parameters of a random
field. They found that emerging designs with lowest error on estimates of autocorrelation pa-
rameters differed from random design, and tended to conciliate aggregated points at the center
of the surveyed area with points scattered close to the frontier. Such designs might be viewed
as harbouring dicrete scales, hence reinforcing the interest of explicitly assessing fractal designs’
performance.

When comparing hybrid and fractal designs, we had two expectations based on previous
litterature: (i) hybrid designs should consitute a continuous set of intermediary Pareto-optimal
designs between grid and random designs, meaning that when the proportion of random points
increases from 0 (grid design) to 1 (random design), the accuracy of the mean estimate of the
random field should decrease while the accuracy of the autocorrelation range estimate should
increase; (ii) fractal designs should be better than other designs at estimating small autocorrela-
tion ranges when they are built to harbour contrasted scales, hence creating new Pareto-optimal
solution focused on autocorrelation range estimation.

Methods
Spatial sampling designs

All spatial sampling designs harboured N = 27 sampling points. Sampling points were spread
within an area of study shaped as an equilateral triangle with a side length of L =

√
3 distance

units (Figs. 1, 2).
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Grid designs were obtained by generating a triangular grid matching the area of study with
mesh size equal to L/6 distance units (the ‘feasible grid mesh size’ below), hence obtaining 28

sampling points. Then one point was removed at random to obtain N = 27. Hybrid designs
were defined by choosing a fraction p of sites at random within a grid design and resampling
their new position at random in the area of study. Here we consider the N + 1 = 28 values of
p ∈ {0, 1/N, 2/N, ..., 1}. Note that p = 1 yields a pure random design (Fig. 1). Since all hybrid
designs included a random components, we considered 30 replicates for each value of p, which
led to 28 × 30 = 840 hybrid designs in total.

Figure 1 – Effect of the proportion of random sites p on hybrid sampling designs. Thetriangle is the area of study. Crosses show the position of the 27 sampling points. Themiddle panel corresponds to p = 5/27 ≈ 0.19.
Following Marsh and Ewers (2013), we simulated fractal designs using an iterated function

systems (Falconer, 2003) based on three similarities of the complex plane: Sk(z) = ρz + (1 −
ρ)e

2ikπ
3

− iπ
6 for k ∈ {0, 1, 2}. A sampling design was obtained by iterating three times the system

starting from a seed at the center of the area, hence yielding a sampling design withN = 33 = 27

plots. We varied the parameter ρ across designs. The parameter ρ drives the ratio between the
size of a part of the design and the size of the larger, auto-similar set of plots it belongs to. The
values of ρ considered in the study were : ρ = x

√
3/(2 +

√
3) with 28 distinct x values evenly

spaced on a log-scale from x = 10−1.5 to x = 1. We called x the ‘contraction parameter’ of
fractal design below. Note that x > 1 would generate a sampling design with overlapping sub-
components, which we considered as an undesirable property. The largest value x = 1 yields a
sampling design that is a subsample of a regular grid with mesh size of c.a. L/10. Lower x yielded
more irregular fractal sampling designs (Fig. 2).

Most of the analyses presented in next sections focus on the statistical power of fractal
and hybrid sampling designs to estimate some parameters driving the response of a variable
of interest. However, statistical designs also differ on more practical aspects such as the effort
needed to cover all the sampling sites. We computed the minimum distance necessary to cover
all the sampling sites of a design as a proxy of its practicability. This single proxy does not cover
all the dimensions that make a design practicable — and covering all these dimensions would
go much beyond the scope of the present work — but computing this simple criterion can still
reveal potential trade-offs between practical and statistical advantages of various designs.

Comparing the minimum distance needed to cover grid and fractal designs will prove of par-
ticular importance below. The minimum distance for grid design is (ArticleS1 supplementary
information, section 4):
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Figure 2 – Effect of the contraction parameter x on fractal sampling designs. The triangleis the area of study. Crosses show the position of the 27 sampling points.

(1) D∗(N, L) =
2(N − 1)L√
1 + 8N − 3

where N is the number of sampling points in the grid and L is the side length of sampling area.
Note that although hybrid designs harbour 27 sampling sites in previous sections, the underpin-
ning grid has N = 28 sampling sites.

When ρ < 1/3, which is equivalent to x < 0.72, the shortest spanning path length of a fractal
design is :

(2) D∗(n) = L

(
2 (1 − 2ρ)

1 − (3ρ)n

1 − 3ρ
+ (3ρ)n − ρn

)

where n is the number of iteration to generate the design (n = 3 in previous sections). For
x > 0.72, we kept this distance as a conservative estimate of the minimum distance needed to
cover the fractal, keeping in mind that the true minimum distance could be even smaller.

Modeling the observed variable
We assumed that observations of interest were driven by an environmental gradient with

auto-correlated residual variation. The vector of observations at each sampling points Y =

(Y1, ...,YN) followed the model :
(3) Yi = µ + βxi + Zi

where µ,β are parameters in R, xi is an environmental covariate and Z = (Z1, ...,ZN) is takenfrom a Gaussian random field with mean 0 and harbouring an exponential variogram (Cressie,
1993) without nugget effect. This meant that the covariance between Zi and Zj was:

(4) Cov [Zi ,Zj ] = σ2e− dij
as

where σ, as ∈ R+∗, dij is the distance between sampling points i and j . Parameter as corre-
sponded to the autocorrelation range. We considered 30 distinct as values evenly spaced on a
log-scale between 10−2 and 102.
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Modeling the environmental covariate
We modelled the environmental covariate using a product of two sine waves along the lati-

tudinal and longitudinal axes, generating a checkerboard pattern. We varied the period and the
phase of the checkerboard to create five contrasted situations in our analyses below (Fig. 3).

Figure 3 – Various spatial profiles for the environmental variable generated with a bidi-mensional checkerboard. The darkest blue color corresponds to an environmental valueof 0, the brightest red color corresponds to an environmental value of 1. The period ofthe checkerboard increases from left to right, the shift to the right increases from up tobottom. The environmental profiles that are presented in results are highlighted with athick frame. Those with a continuous frame correspond to monotonic profiles in space,while dashed frames those with a dashed frame correspond to markedly non-monotonicprofiles in space.
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Maximum likelihood estimation
We considered two distinct estimation problems of ecological interest : (i) estimating the

mean (µ) and the autocorrelation range (as ) of the response variable, in the absence of environ-
mental effect (β = 0); (ii) estimating the effect of the environmental covariate (β) on the response
variable and the residual autocorrelation range (as ).
Problem1 :mean versus autocorrelation range . Herewe assumed that that the observed covariate
had a constant mean in space, following the simplified version of model (3):

(5) Yi = µ + Zi

The aim was to accurately estimateg the range of spatial aurocorrelation as and the intercept
µ. The statistical model used to estimate parameters was model (5), i.e. we did not consider
potential errors on model specification. When comparing estimation errors on intercept and
autocorrelation range, we considered an exponentially-transformed intercept ν = eµ to obtain
the same domain of definition R+∗ as as . Summarizing parameters in a vector θ = (ν,σ, as), wefocused on the maximum likelihood estimate θ̂ = (ν̂, σ̂, âs).
Problem 2 : environmental effect versus autocorrelation range. Here the observed covariate fol-
lowed model (3). The aim was to accurately estimate the range of spatial aurocorrelation as andthe slope of the environmental effect β. The statistical model used to estimate parameters was
a reformulation of model (3) where we assumed that the environmental covariate has been cen-
tered in the dataset :
(6) Yi = µ̃ + βx̃i + Zi

where µ̃ = µ+βx̄ , x̃i = xi − x̄ and x̄ = 1
N

∑N
j=1 xj . We did not consider potential errors on model

specification. When comparing estimation errors on intercept and autocorrelation range, we
considered an exponentially-transformed slope γ = eβ to obtain the same domain of definition
R+∗ as as . Summarizing parameters of this model in a vector θ = (µ̃, γ,σ, as), we focused on themaximum likelihood estimate θ̂.
Estimation errors. Estimation error on a parameter θ (possibly ν, γ, as depending on the problem)
is quantified through the relative root mean square error:
(7) RRMSE(θ) =

√
E

[
(θ̂ − θ)2

]
/θ

In the context of stationary Gaussian random fields without nugget, it is known that the diagonal
terms of I(θ)−1, where I(θ) is the Fisher information matrix of the model with true parameters
θ, yield a qualitatively good approximation of the quadratic error on parameters in θ. By ‘quali-
tatively’, we mean that it allows to correctly rank designs according to their accuracy, even for
moderate sample sizes (Abt andWelch, 1998; Zhu and Stein, 2005). We therefore used the diag-
onal terms of I(θ)−1 as a theoretical approximation of quadratic error of θ̂ below. The error on
parameter θi was thus approached by RRMSE(θi ) =

√
[I(θ)−1]ii/θi . For hybrid designs, errors

were averaged across replicates to obtain a single error value per parameter of the model of
interest for each value of p.
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Comparing designs using Pareto fronts
When comparing designs on their ability to accurately estimate several parameters at a time,

we relied on the concept Pareto-optimality, defined as follows. Let generically denote the param-
eters of interest θ = (θ1, θ2). Denote RMSES(θi ) the error of sampling design S at estimating
parameter θi (where i = 1, 2). Generally, a design S0 is said to be Pareto-optimal within the set
of designs S at estimating the parameters in θ if and only if there is no other design in S that
would yield a lower estimation error on all the terms of θ. Formally, Pareto optimality of S0 isthus expressed as :
(8) ∀S1 ∈ S − {S0},

RRMSES0(θ1) < RRMSES1(θ1)or RRMSES0(θ2) < RRMSES1(θ2)
Because we considered designs that could show levels of errors numerically close, we modified
this definition to include an idea of ‘noticeable’ difference in estimation error. In our study, a
design S0 is said to be Pareto-optimal within the set of designs S if and only if:
(9) ∀S1 ∈ S − {S0},

ω RRMSES0(θ1) < RRMSES1(θ1)or ω RRMSES0(θ2) < RRMSES1(θ2)
where ω = 0.99 is a 1% tolerance factor on errors.

For each pattern of environmental covariate and each value of autocorrelation range as wesearched for designs that were Pareto-optimal within the set of designs of their own type (fractal
or hybrid respectively), and those that were Pareto optimal wihtin the set of all the designs
considered in the study.

For each pattern of environmental covariate, we also searched for designs that were Pareto-
optimal when considering an ‘average’ level of error across a range of as values. As detailed in
results, the value as = L/6 was associated to a marked transition in the qualitative patterns of
design errors. We thus considered a range of as values centered on this value on a log-scale,
starting from 0.1 × L/6 up to 10 × L/6. Because the level of RRMSEs strongly fluctuates in
magnitude across the range of as values, directly computing a mean of errors across the range
of as values is unappropriate. We resorted to first converting RRMSEs of designs at a given asvalue into ranks, and then averaging out the ranks attained by a design at each as value to obtainan averaged error rank on each parameter. Ultimately, the average error ranks were used in an
analysis of Pareto-optimality.

Results
Computing predicted errors
Problem 1. — The relative rootmean squared error associated to ν̂ and âs derived from the Fisher
information matrix (see Article S1 in Supporting Information, section 1) were:
(10) RRMSE(ν) = σ 1√

1′Σ̃−11RRMSE(as) = 1
as

√
2tr(Σ−1 ∂Σ

∂as
Σ−1 ∂Σ

∂as
)− 1

N
tr(Σ−1 ∂Σ

∂as
)tr(Σ−1 ∂Σ

∂as
)

RRMSEs did not depend on ν, hence we set ν = 1 without loss of generality. RRMSE(as ) did not
depend on σ, while RRMSE(ν) was proportional to σ. Because we were interested in the ranking
of designs, which remains identical up to a multiplicative constant, we set σ = 1 without loss of
generality in our conclusions either.
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Problem2. — The relative rootmean squared error associated to âs and α̂ derived from the Fisher
information matrix (see Article S1 in Supporting Information, section 1) were:
(11) RRMSE(γ) = σ

√
1′Σ̃−11

(x̃′Σ̃−1x̃)(1′Σ̃−11)−(1′Σ̃−1x̃)2

RRMSE(as) = 1
as

√
2tr(Σ−1 ∂Σ

∂as
Σ−1 ∂Σ

∂as
)− 1

N
tr(Σ−1 ∂Σ

∂as
)tr(Σ−1 ∂Σ

∂as
)

RRMSEs did not depend on µ̃ and γ, hence we set µ = 0 and γ = 1 throughout the study
without loss of generality. RRMSE(as ) did not depend on σ while RRMSE(γ) was proportional to
σ. Here again, because we were interested in the ranks of designs, which are identical up to a
multiplicative constant, we set σ = 1 without loss of generality in our conclusions either.

Note that RRMSE(as ) is identical in problems 1 and 2 (eqs. (10) and (11)).
Theoretical analysis of asymptotic errors

We performed a theoretical analysis of errors when as took extreme values (small or large).
We found that RRMSE(as) increased towards +∞ as as became small, irrespective of consid-
ered design (see Article S1 section 2 in Supporting Information). However, the speed of increase
varied across designs. Denoting dmin the smallest distance among two distinct sampling points,
designs with smaller dmin yielded smaller RRMSE(as) at low as values. The grid design (hybrid
design with p = 0) maximized dmin (see Article S1 in Supporting Information, section 3) and was
thus expected to yield consistently higher RRMSE(as) than other designs as as → 0. Fractal de-
signs could harbour arbitrarily small dmin by decreasing contraction parameter x , and were thus
expected to reach lower RRMSE(as) than any hybrid designs when x is sufficiently small.

In problem 1, RRMSE(ν) converged towards σ/
√
N as as became small, irrespective of the

sampling design. In our case, σ = 1 and N = 27, which yielded RRMSE(ν) ≈ 0.19. Given our
tolerance factor on Pareto optimality, we thus expected all designs to become Pareto-optimal for
problem 1 as as → 0. In problem 2, RRMSE(γ) converged towards σ/

[
SD(x)

√
N

] where SD(x) is
the standard deviation of the environmental covariate x across sampling points. Sampling designs
that would maximize the variance in x while harbouring small values of dmin should therefore bePareto-optimal.

For very large as values, RRMSE(as) converged towards √
2N/(N − 1) (≈ 1.44 when N =

27), irrespective of the sampling design (see Article S1 in Supporting Information, section 2). In
problem 1, RRMSE(ν) converged to σ (= 1 in our example), irrespective of the sampling design.
In problem 2, RRMSE(γ) converged to 0, irrespective of the sampling design. In either problem,
all the sampling designs were thus expected to converge towards very similar performance as
as increased, and thus be a Pareto-optimal strategy. Regarding RRMSE(ν), this phenomenon of
convergence among designs had already been shown on simulations in a previous study (Perret
et al., 2022).
Numerical analysis of Pareto fronts in problem 1

We discussed our results according to two main situations below : (i) as smaller than the
feasible grid mesh size (i.e. as < L/6 ≈ 0.29); (ii) as larger than the feasible grid mesh size (as >

L/6).
Fractal designs alone —. When as was below the feasible grid mesh size, RRMSE(as) of fractaldesigns showed a U-shaped pattern as x increased while RRMSE(ν) decreased as x increased
(as = 0.09 in Fig. 4). Therefore, only an upper range of x values corresponded to Pareto-optimal
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Figure 4 – Pareto fronts of fractal and hybrid sampling designs at selected levels of au-tocorrelation range as in problem 1. Lines show the RRMSEs of fractal (red line, trackingthe 28 values of x ) and hybrid (blue line, tracking the 28 values of p) designs. The end oflines materialized with a triangle corresponds to the most irregular design (x = 10−1.5 forfractal designs; p = 1 for hybrid designs). The end of lines materialized with a square cor-responds to the most regular design (x = 1 for fractal designs; p = 0 for hybrid designs).Dashed parts of lines (and open end symbols) show designs that are not Pareto-optimalwithin their own type, while solid parts of lines (and solid end symbols) show those thatare. Blue crosses show fractal designs that were Pareto-optimal within their own typeand are not anymore when introducing hybrid designs.
strategies within fractal designs (as = 0.09 in Fig. 4; Fig. 5). This upper range of Pareto-optimal
x values shrinked as as increased towards L/6 (Figs. 4, 5). As as increased above L/6, only an
intermediary range of x led to Pareto-optimal sampling strategies within fractal designs. This
range gradually broadened with as until the point where all designs became Pareto-optimal (Fig.
5), as theoretically expected.
Hybrid designs alone —. When as was below the feasible grid mesh size, RRMSE(as) of hybriddesigns decreased while RRMSE(ν) increased as p increased (e.g. as = 0.09, 0.17 in Fig. 4). There-
fore, any value of p yielded a Pareto-optimal strategy within hybrid designs (Fig. 5). As as in-creased above L/6, the variation of RRMSE(as) rapidly shifted from decreasing to increasing
with p while the profile of RRMSE(ν) remained unchanged. Therefore, only the most regular de-
signs remained Pareto-optimal among hybrid designs (as = 0.33, 0.62 in Fig. 4 and Fig. 5). When
as further increased, all the hybrid designs gradually came back to the Pareto front, like any other
designs, as theoretically expected (Fig. 5).
Fractal and hybrid designs together —. When as was below the feasible grid mesh size, fractal
designs never excluded a hybrid design (Fig. 5, right panel) and, reciprocally, hybrid designs only
rarely excluded a fractal designs (Fig. 5, left panel). The coexistence of fractal and hybrid de-
signs on the global Pareto front stemmed from the fact that fractal designs either lead to larger
RRMSE(ν) and lower RRMSE(as ) than hybrid designs, or generated errors comparable to hybrid
designs on both parameters (see e.g. as = 0.09 in Fig. 4). By contrast, as as values increased abovegridmesh size, hybrid designs led to the exclusion of fractal designs from the Pareto-front as long
as the errors of designs still had opportunity to noticeably vary (as = 0.33, 0.62 in Fig. 4; Fig. 5,
left panel).
Numerical analysis of Pareto fronts in problem 2

The five environmental patterns (Fig. 3) could actually be split in two groups with homoge-
neous error patterns : one group included the two patterns where the environmental covariate
had a monotonic profile (continuous frames in Fig. 3) and one group included the three patterns
where the environmental covariate had a markedly non-monotonic profile (dashed frames in Fig.
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Figure 5 – Pareto fronts of sampling designs as a function of autocorrelation range as inproblem 1. In the left panel, colored pixels indicates, for given as and x values, whetherthe corresponding fractal sampling design is Pareto-optimal within fractal and hybridsampling designs altogether (green pixels) or within fractal sampling designs only (orangepixels). Red pixels show fractal designs that are not Pareto optimal within the set of fractalsampling strategies. Similarly, in the right panel, colored pixels indicates, for given as and
p values, whether the corresponding hybrid sampling design is Pareto-optimal withinfractal and hybrid sampling designs altogether (green pixels) or within hybrid samplingdesigns only (orange pixels). Red pixels show hybrid designs that are not Pareto optimalwithin the set of hybrid sampling strategies. Therefore, in either panel, green and orangepixels show designs that are Pareto-optimal within their own type, and orange pixelsshows the fraction of these designs that are eliminated when introducing the other typeof design in the comparison. The horizontal dashed line as = L/6 is the size of feasiblegrid mesh size, it shows the limit between two situations discussed in main text. The asvalues illustrated in Figure 4 are reported on the ordinate axis using chevrons.

3). We presented our results using this grouping (monotonic versus non-monotonic) in the text,
while Fig. 6 shows results for each individual environmental pattern.

Monotonic environment.
Fractal designs alone —. When as was smaller than the feasible grid mesh size, RRMSE(γ) har-
boured a U-shaped pattern as x increased (slightly visible for as = 0.09 in the two first lines of Fig.
6). Because RRMSE(as) also harboured a U-shaped pattern, only fractal sampling designs with
intermediary x comprised between the minima for RRMSE(as) and RRMSE(γ)were Pareto opti-
mal within the set of fractal designs and this range of Pareto-optimal x values gradually shifted
towards higher values as as increased (Fig. 7). When as increased above the feasible grid mesh
size, we observed an upper range of Pareto-optimal x values which broadened as as increaseduntil encompassing all fractal designs, as their estimation errors all converged towards the same
value (Fig. 7).
Hybrid designs alone —. When as was smaller than the feasible grid mesh size, RRMSE(γ)mono-
tonically increased with p, while RRMSE(as) decreased. Therefore, any hybrid design along the
gradient of p was a Pareto-optimal strategy (as = 0.09, 0.17 in the first two lines of Fig. 6; Fig. 7).
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Figure 6 – Pareto front of fractal and hybrid sampling designs for various levels of au-tocorrelation range and environment profiles. The first column show the environmentprofile considered in the row. Rows with continuous (respectively dashed) frames cor-respond to monotonic (respectively non-monotonic) profiles in space. Columns two tofour show Pareto fronts for increasing levels of autocorrelation range (same legend as inFigure 4). The red triangle (irregular end of fractal designs) can be outside the panel tothe right. Red crosses show hybrid designs that are Pareto-optimal within their own typebut are not when introducing fractal designs.
When as increased above the feasible grid mesh size, the RRMSE(γ) remained monotonically in-
creasingwith p (as = 0.33, 0.62 in the first two lines of Fig. 6), whilewe sawbefore that RRMSE(as )abruptly shifted from decreasing to increasing. Therefore, only the most regular designs (lower
range of p) remained on the Pareto front (Fig. 7). This range broadenedwhen as further increasedbecause the estimation errors of all hybrid designs converged towards the same value.
Fractal and hybrid designs together —. When as was smaller than the feasible grid mesh size,
fractal designs excluded a large fraction of hybrid designs from the Pareto front, especially those
with a high proportion of random points (first two lines of as = 0.09 in Fig. 6; Fig. 7, upper right
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Figure 7 – Pareto fronts of sampling designs in problem 2. Panels correspond to one typeof design (fractal or hybrid) in one type of environment (monotonic or non-monotonic).We selected first line of Fig. 6 as a representative of monotonic environments, and thefourth line as a representative of non-monotonic environments. In each panel, the hor-izontal axis presents the regularity parameter of the design (x or p for fractal or hybriddesigns respectively). Colored pixels indicates, for given as and regularity parameter val-ues, whether the design is Pareto-optimal within fractal and hybrid designs altogether(green pixels) or within its own type only (orange pixels). Red pixels show designs thatare not Pareto optimal within their own type. Therefore, green and orange pixels showdesigns that are Pareto-optimal within their own type, and orange pixels shows the frac-tion of these designs that are eliminated when introducing the other type of design inthe comparison. The horizontal dashed line as = L/6 is the size of grid deign mesh size,it shows the limit between two situations discussed in main text.

panel). By contrast, when as increased above the feasible grid mesh size, hybrid designs with low
p led to the exclusion of fractal designs from the Pareto-front for all as values where the errorsof designs still had opportunity to noticeably vary (first two lines of as = 0.33, 0.62 in Fig. 6; Fig.
7, left panel).
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Non-monotonic environment.
Fractal designs alone —. When as was smaller than grid mesh size, RRMSE(γ) harboured a glob-
ally decreasing pattern as x increased (rows three to five in Fig. 6), although variation could be
more irregular at high x values in environment with highest ruggedness (row five in Fig. 6). Be-
cause RRMSE(as) harboured a U-shaped profile, the upper range of x values formed a range of
Pareto optimal strategy within fractal designs in environments with moderate ruggedness (e.g.
as = 0.09 in rows three and four of Fig. 6; Fig. 7). This upper range of x values shrinked as asincreased towards grid mesh size L/6. When as increased above L/6, the pattern of optimal x
values was qualitatively similar to the monotonic environment case (Fig. 7).
Hybrid designs alone —. Like for the case of monotonic environment depicted above, RRMSE(γ)
monotonically increasedwith p irrespective of the value of as (Fig. 6). Consequently, the situationwas here again qualitatively similar to the monotonic environment case.
Fractal and hybrid designs together —. Fractal designs rarely excluded hybrid designs from the
Pareto front (Fig. 7, bottom right panel), except in environment with high ruggedness where grid
design with high degree of randomness could occasionally be excluded (as = 0.09 in row five
of Fig. 6). When as was smaller than grid mesh size, hybrid designs excluded a large interme-
diary fraction of fractal designs from the Pareto front (sometimes all of them), mainly because
fractal design showed markedly higher errors at estimating the slope γ (Fig. 7). Fractal design
with lower x could persist when they harboured error very similar to some hybrid designs while
fractal designs with highest x score could persist because they ourperformed hybrid designs at
estimating autocorrelation range as (e.g. as = 0.09 in fourth row of Fig. 6). When as increasedabove grid mesh size, all the fractal designs became excluded by the grid design, irrespective of
the environment ruggedness (as = 0.33, 0.62 in rows three to five of Fig. 6; Fig. 7, bottom right).

Pareto-fronts of average rank of errors in problems 1&2

Figure 8 – Average rank of designs across the range of as values [0.028 − 2.8]. The rangecorresponds to 0.1 to 10 times the feasible grid mesh size L/6. Panel 1 corresponds toproblem 1 (mean versus autocorrelation range estimation). Panels 2 and 3 correspond toproblem 2 (slope versus autocorrelation range estimation) for monotonic (panel 2) or nonmonotonic (panel 3) environmental covariate. Red (respectively blue) dots correspond toaverage rank of RRMSEs for fractal (respectively hybrid) designs with various parameters.Designs with consecutive values of parameters are connected with a line. Triangles indi-cate most irregular designs within a type. Squares indicate most regular designs within atype. Filled dots show designs that belong to the Pareto front within all designs.
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Our results on average rank of errors are reported in Fig. 8. Hybrid designs with small p, simi-
lar to a grid, reached the lowest average ranks on RRMSE(ν) in problem 1 and the lowest average
ranks on RRMSE(γ) in problem 2. Conversely, fractal designs with intermediate contaction pa-
rameter x reached the lowest average ranks on RRMSE(as) in both problems. The global Pareto
front on average ranks of errors thus contained both hybrid and fractal designs, emphasizing
their complementarity. The steepness of the Pareto front in Fig. 8 shows how much the rank
of error on as is decreased when increasing the rank of error on ν or γ. The slope is steeper in
problem 2 for a monotonic environment, suggesting that the trade-off is the most interesting in
those cases.
Minimum distance needed to cover grid and fractal designs

The minimum distance needed to cover fractal designs was between c.a. 50% (lowest x ) and
c.a. 75% (largest x ) the distance needed to cover the grid design (Fig. 9).

Figure 9 – Minimum distance needed to cover fractal and grid design. Black dots showthe minimum distance for fractal designs at x values where formula (2) is valid. Whitedots shows the spanning path length of fractal design for x values where formula (2) isconservative, and the true shortest path may be even shorter. The horizontal red lineshows the spanning path length of the grid design.

Discussion
Many analyses of species spatial distribution at landscape scale aim at simultaneously esti-

mating effects acting on a populational response variable and the residual spatial autocorrelation
range of the response variable (Johansson et al., 2012; Ranius et al., 2010). Here, we compared
errors of various sampling designs on both objectives. Our main findings were that: (i) grid de-
sign was the best strategy among hybrid designs when averaging over a broad range of possible
autocorrelation range values; (ii) when the gridmesh sizewasmarkedly larger than the autocorre-
lation range of the response variable, fractal designs could estimate autocorrelation range more
accurately than all the hybrid designs, but their ability to estimate the mean of the response
variable or a non-monotonic environmental effect were heavily degraded; (iii) in those situations
of small autocorrelation range, fractal designs could outperform hybrid designs at estimating the
effect of a monotonic environmental covariate and become the only Pareto-optimal strategies
for this type of problem, an advantage that still remained perceivable when averaging over a
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broader range of autocorrelation ranges; (vi) from a practical perspective, fractal designs may be
easier to implement and monitor than a grid design because they have a shorter spanning path.
Grid design was the best strategy among hybrid designs when averaging over a broad range of pos-
sible autocorrelation range values. When autocorrelation range was smaller than the grid mesh
size, hybrid designs were spread along a Pareto front between grid and random designs. In other
words, increasing the degree of randomness (p) in the design tended to degrade the estimation
accuracy on the effect but improved the estimation accuracy on the autocorrelation range. This
pattern was in line with conclusions of a previous study (Bijleveld et al., 2012), and was robust
to changing the target effect (mean or environmental covariate). The fact that grid design was
inefficient at quantifying autocorrelation range when mesh size was above the autocorrelation
range has been repeatedly emphasized in previous studies, especially in the field of population
genetics and isolation by distance studies (Epperson and Li, 1997; Sokal and Oden, 1978). In
these situations, pairwise distances smaller than the grid mesh size are needed to accurately es-
timate the autocorrelation range, and such smaller distances were provided by the introduction
of random points in our study, hence leading to the observed Pareto front of hybrid designs.

Conversely, when the autocorrelation range was above the grid mesh size, increasing ran-
domness in hybrid designs always became detrimental to both estimation objectives because
accurately estimating effects and autocorrelation range did not require enriching the grid design
with small pairwise distances. This finding was robust to the effect considered, leading to the
general guideline that grid designs should be favoured when the autocorrelation range of target
response variable is larger than the feasible grid mesh size. In line with this advice, a recent sim-
ulation study (Perret et al., 2022) focusing on the problem of estimating the mean density of a
population (analogous to ν in problem 1 here) showed that when grid mesh size is equal to or
moderately lower than the autocorrelation range of the density, switching to a random design
generated the highest relative increase in error.

Averaging errors across autocorrelation ranges offers a way to assess designs ability to deal
with a variety of possible autocorrelation ranges of the response variable. This provides insights
about the design suitability for multi-taxonomic empirical studies involving species with con-
trasted dispersal abilities or home ranges. Using this approach, Bijleveld et al. (2012) found that
there was a Pareto front of hybrid designs between grid and random strategies. However, our
theoretical analysis showed that the magnitude of errors on autocorrelation range estimation
rapidly increases as the autocorrelation range decreases. Direct averaging across aurocorrela-
tion range values thus tends to give higher weights to situations with shorter autocorrelation
ranges, where there is indeed a Pareto front of hybrid designs. Here, we controlled this effect by
considering error ranks rather than error values when averaging across autocorrelation ranges.
The grid design then emerged as the best choice among hybrid designs to deal with a broad
range of possible autocorrelation range values. The question that remained was whether fractal
designs could show advantages compared to the grid design that hybrid designs did not.
Fractal designs yielded better estimates of short aurocorrelation ranges than hybrid designs. When
autocorrelation range was above the grid mesh size (and not too high to ensure that designs
still differed in accuracy), fractal designs were suboptimal compared to grid, because their main
contribution was, like random sampling points, to generate small pairwise distances.
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When autocorrelation range was lower than grid mesh size, we already mentioned that small
pairwise distances between sampling points were useful to estimate the autocorrelation range.
When considering autocorrelation ranges for which even the typical pairwise distances gener-
ated by random designs are still too large, fractal designs were able to reach lower estimation
error of autocorrelation range because decreasing their contraction parameter allowed generat-
ing arbitrarily small pairwise distances. This result is typically in line with the study of Ferrandino
(2004), which showed that fractals were more efficient at capturing fine scale aggregation of
a pathogen distribution than random or grid designs. Therefore, in our study, fractals could
constitute new Pareto-optimal strategies, focused on estimating short autocorrelation ranges.
Contrary to what could be expected (e.g. Simpson and Pearse, 2021), fractal designs showed
no clear pattern of ‘power concentration’ of autocorrelation range estimation (i.e. peaks of ac-
curacy) at few larger scales that would correspond to the design structure. We could visually
identify a weak signal of that type for the most irregular fractal designs (Fig. ??), but even in this
case it was dampened by the fact that error necessarily increases with scale, as the effective of
number pairwise distances available for estimation (i.e. after accounting for pseudo-replication)
decreases.

Decreasing the contraction parameter to improve the estimation of short autocorrelation
ranges generated a marked agregation of points in space, which degraded a lot the ability to
estimate the mean of response variable or the effect of a non-monotonic, rugged environmental
covariates. For these problems, choosing fractal designs with low contraction parameters thus
amounted to focus exclusively on accurately estimating small autocorrelation ranges, sacrific-
ing other objectives. Under these circumstances, the necessity of keeping a large study area
becomes unclear, and reducing the area of study may actually be a better option than imple-
menting a fractal design.

The unbalanced perfomance of fractal designs in estimation problems involving the mean of
the response variable or the effect of a non-monotonic covariate became even clearer when con-
sidering average errors of designs across a broad range of possible autocorrelation ranges. Some
fractal designs could be detected as slightly advantageous, on average, to estimate autocorrela-
tion range, because of their good performance when confronted to short ranges. However, the
cost on the estimation error of the effect was quite prohibitive : these designs did not reach the
first third of tested options on this criteron.
Fractal design completely outperformed hybrid designs when studying monotonic covariate under
short-ranged autocorrelation.. While the interest of fractal designs seemed quite limited when
estimating the mean of response variable across the study area or the effect of a rugged envi-
ronmental covariates, the picture was quite different when studying the effect of a monotonic
environmental covariate. There are many empirical questions related to species distributions
that involves monotonic environmental gradient in space: the effect of latitudinal gradient and
associated climatic trends across a biogeographic region, the effect of altitude on a mountaine
slope, the effect of salinity in an estuarine river etc. When studying the effect of this kind of
variables, the sparsity of fractal designs turned out to be advantageous, as conjectured by Guo
et al. (2023). Moderately increasing the contraction parameter yielded a higher standard devi-
ation of the covariate in the design compared to hybrid designs, hence leading to lower error
of the estimated effect. In the meantime, aggregating sampling points in space yielded better
estimates of short autocorrelation ranges. Thus, when studying a monotonic covariate under
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short autocorrelation range, fractal designs with intermediate contraction outperformed hybrid
designs on all objectives and constituted the only Pareto-optimal strategies.

This good performance of fractal designs was perceivable in the analysis of average perfor-
mance of designs across a broader range of autocorrelation range values. Like in other problems,
some fractal designs could be detected as slightly advantageous, on average, to estimate autocor-
relation range, but this time they also remained in the first third regarding environmental effect
estimation, making the trade-off with hybrid designs (and especially the grid) more interesting.

Most interesting fractal designs harboured intermediate contraction parameters, which raises
the question of identifying appropriate values in practice. While our aim here is to provide gen-
eral insights about the relative strength associated to fractal and hybrid designs, precise values
should be determined on a case-by-case basis. We strongly encourage operators to adopt a vir-
tual ecology approach (Zurell et al., 2010) and perform in silico simulation tests of contraction
parameters in their own system with their own budget to find adequate parameter values.
Sampling budget and sampled area size determine the position of feasible grid mesh size compared
to possible autocorrelation ranges. Our conclusions about average performance of designs across
possible autocorrelation ranges tightly depend on the range of values over which the average is
computed. For instance, if one had only considered autocorrelation range values lower than grid
mesh size, a Pareto front of hybrid designs would have emerged rather than the prominence of
grid design, while fractal designs would have reached better ranks on their ability to estimate
autocorrelation range. Considering autocorrelation range values lower than grid mesh size only
would correspond to a sampling budget too low to create a grid with mesh size that matches
even the longest autocorrelation ranges. This limitation may arise for large, biogeographic stud-
ies of species distributions, but seems quite pessimistic when working at landscape scale over
a range of taxa including species with good dispersal abilities or large home ranges. By contrast,
considering autocorrelation range values larger than grid mesh size only, would correspond to a
sampling budget high enough to create a grid with mesh size smaller than any possible autocor-
relation range, which seems quite idealistic. Here, we rather considered a more pragmatical case
— likely to correspond to many studies of species distribution within a landscape — where the
sampling budget allows implementing a grid design with mesh size taking an intermediate value
within possible autocorrelation ranges.

The previous comment shows the critical interplay between the surveyed area and the sam-
pling budget, which co-determine the feasible grid mesh size. This open the question of modulat-
ing the area of study, given a sampling budget which we did not explicitly explore here. Reducing
the studied area can lead to a shorter grid mesh size. Therefore, if the area is sufficiently reduced,
grid design can become lower than most of possible autocorrelation ranges, hence making grid
design an unambiguously robust choice. However, the area study cannot be freely reduced be-
cause of two limitations. First it increases pseudo-replication for the higher end of possible auto-
correlation ranges. Second, it is crucial to keep environmental variation within the area of study
when one aims at assessing the effect of environmental gradients (Albert et al., 2010; Field et
al., 2009). This is clearly illustrated by our results : the accuracy of the estimate of a covariate
effect increases with the standard deviation of the covariate across the area of study (see e.g.
our asymptotic analysis of error on γ for short autocorrelation range). Reducing the sampling
area necessarily contributes to reduce the environmental variation, particularly for monotonic
environmental covariates (see Guo et al. (2023) for a discussion on this point).
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Conclusions

Figure 10 – Recommended designs depending on the relative position of the feasible gridmesh size (FGMS) within possible autocorrelation range values. The FGMS decreaseswith the feasible number of sampling sites (N in our study) and increases with samplingarea size (e.g. area side length L in our study). Conclusions can differ depending on the tar-get estimation ‘problem’. We distinguish cases where, in addition to estimating autocor-relation range, one aims either at estimating the effect of a monotonic environmental co-variate across the area (‘Monotonic env.’) or at estimating the effect of a non-monotoniccovariate or a constant intercept (‘Other pb.’).
Adequate sampling strategies to jointly estimate environmental effects and autocorrelation

range of a response variable depend on the number of sampling sites that can be implemented
over the study area, and subsequent feasible grid mesh size (Fig. 10). When autocorrelation
range values are expected to be above the feasible grid mesh size, the grid design stands out
as the best option, and may thus be a robust choice in practical application. By contrast, when
autocorrelation range values are expected to be spread around or shorter than the grid mesh
size, the choice of designs depends on the effect of interest, and fractal designs outperformed
hybrid designswhen studyingmonotonic environmental gradients across the study area. In other
situations involving non-monotonic rugged covariates or simply estimating the global mean of
target variable over the study area, it seemed more efficient to implement a grid design.

Overall, the niche for fractal designs in terms of estimation error seems limited to estimating
the effect of monotonic environmental gradients under autocorrelation ranges that are equal
or shorter to feasible grid mesh size. However, it should be noted that estimation errors is one
criteria among others to choose a sampling strategy, and it has to be inserted in a broader multi-
criteria analysis that also accounts e.g. for the distance needed to perform the survey. On that
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respect we showed that it is typically shorter to cover a fractal design than a grid design with
equivalent sampling budget, which may rehabilitate the fractal option beyond the niche iden-
tified here. It should also be noted that we evaluated designs on a simple scenario with a par-
simonious autocorrelation structure (only positive autocorrelation, steadily decreasing in space
with a single well-defined range). However, biological patterns often stem from heterogeneous
drivers acting at different scales (Guo et al., 2023; Ricklefs, 2008; Thuiller et al., 2015). For in-
stance, when studying the distribution of a species in space, competition among conspecifics
may drive negative autocorrelation (i.e. underdispersion) at a given spatial scale, while limited
dispersal may drive positive autocorrelation at a coarser grain (see Bolker and Pacala (1997) for
a theoretical analysis of these effects in plant populations). In the meantime, non-measured en-
vironmental variables may also leave various autocorrelation signatures across scales (Legendre,
1993). Designs that harbour a clear hierarchical structure — like fractal designs — may be par-
ticularly adapted to capture such heterogeneity (Simpson and Pearse, 2021), provided that the
scales of variation induced by the hypothesized processed match the hierarchy of the design.
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