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ABSTRACT: The paper presents the development of metamodels for the prediction of the load-
displacement response of steel piles driven in sand subjected to pull-out. Two metamodels are created for the 
evaluation of the tensile capacity and initial stiffness of the pile. They were developed based on the outcomes 
of a finite element testing campaign, employing models of parameters derived from the tip resistance of cone 
penetration tests. Two hundreds finite element simulations, which included various soil-pile configurations, 
were required to calibrate accurate metamodels. Assessment of the procedure was carried out with reference 
to available data on a model pile and related cone penetration test results. The approach relies on particularly 
simplified finite element models, but it can be extended to accommodate modelling features of higher com­
plexity. The results find application to the design of offshore piles used as anchors for floating structures. 

INTRODUCTION 

The paper focuses on the drained, static load-
displacement response of steel open-ended piles 
subjected to pull-out. In the offshore environment, 
tensile loading conditions may become critical for 
piles employed as anchor foundations, particularly 
when used with vertical or taut line moorings. In the 
context of offshore wind exploitation, these solutions 
offer an attractive alternative to catenaries, as they 
may allow to contain the area over which a floating 
wind farm would extend, aiding with a reduction of 
the investment costs (Castro-Santos & Diaz-Casas 
2016). 

The tensile response of offshore piles is traditionally 
estimated using the shaft load-transfer curve approach, 
combined with ultimate shaft friction prediction 
methods. The development of load-transfer curves 
dates back to the Fifties and several formulations are 
now available as comprehensively reviewed in Bohn 
et al. (2017). In sand, the tensile capacity is now esti­
mated according to cone penetration test-based proced­
ures (CPT-methods), which predictive performance 
was assessed in Schneider et al. (2008). The approach 
is very accurate and its implementation straightfor­
ward, however, uncertainties may arise when selecting 
the most suitable formulation among those available 
(Foglia et al. 2017, Schmoor et al. 2018). 

Finite element or finite difference models 
can be also employed to describe the pile tensile load-

displacement curve (De Nicola & Randolph 1993; van 
tol & Broere 2006; De Gennaro et al. 2008). 

The implementation and calibration of these 
models can be, however, a complex and computa­
tionally onerous task. To overcome this limitation, 
metamodelling techniques can be employed, as they 
allow to store the results of finite element analyses in 
simple mathematical functions, which have the 
advantage of an easy implementation and low com­
putational cost (Sudret 2008). 

In this paper, metamodels are developed to predict 
some behavioural features of piles driven in 
a homogeneous sand bed. Building up on the experi­
ence matured in the context of the CPT-methods over 
the last decade, a simple CPT-based Finite Element 
(FE) modelling strategy is adopted to investigate the 
pile response when subjected to a tensile load through 
a parametric study. A Polynomial Chaos Expansion 
(PCE) metamodel (Xiu & Karniadakis 2002) is built 
from the results obtained by the FE study. The predic­
tion capacity of the developed metamodel is then 
assessed with respect to selected data included in the 
ZJU-ICL experimental database of piles driven in sand 
(Yang et al. 2015). 

2 FE SIMULATION PROGRAMME 

A FE parametric study was carried out, in which 
an upward vertical displacement was applied to 
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a whished in place model pile. They were total stress, 
small-strain and static analyses and the software suite 
Abaqus FEA (ABAQUS 2014) was used to the scope. 

2.1 Details of the FE models 

The FE models used in the parametric study 
involved a pile foundation of diameter D, length 
L and wall thickness t. The pile is subjected to 
a drained axial pull-out test from a uniform sand 
deposit, that is characterised by a constant value of 
the relative density Dr and a constant effective unit 
weight (γ’ = 10  kN/m3). The models were axial-
symmetric, with zero displacement boundaries set 
at a distance of 15D from the pile shaft and 
10D down the pile tip. A sensitivity study was car­
ried out which showed that, to avoid any conver­
gence issues, a very fine uniform mesh was 
required in the vicinity of the pile (Figure 1). 

Assuming a fully plugged failure, the pile was 
modelled as a solid, deformable element, obeying 
to a linear elastic constitutive law. It features 
a uniform cross section. The equivalent density and 
elastic properties were calculated to account for the 
section geometry on the pile weight and axial 
deformation. 

The soil response was modelled as linear-elastic 
and perfectly plastic, failing according to the 
Mohr-Coulomb criterion. Model parameters are 
derived from an artificial cone tip resistance 
(qc,FE). The particular form of the trend is gener­
ated according to the relation given by Jamiolk­
owski et al. (2003) as this was also used in the 
interpretations made in the ZJU-ICL database 
(Yang et al. 2015). 

where 

where pa = atmospheric pressure and σ’ v0 = in situ 
vertical effective stress. 

The soil’s Young modulus was prescribed to vary 
with the artificial cone tip resistance according to 
Robertson (2009) 

where 

applies to the net tip resistance and Ic = soil behav­
iour type index. Soil peak strength and dilation 
angles were implemented in the FE models accord­
ing to well-established Bolton (1986) correlation. 
The critical state interface friction angle was taken 
constant (δcv = 29°), as it is generally done for steel 
driven piles in case interface tests are not available 

Figure 1. Distribution of the mesh size along the FE 
models geometry and applied boundary conditions. 

(Schneider et al. 2008). Piles were wished in place, 
therefore the effects of installation on the soil stress 
state prior to loading was implemented to ensure that 
the radial stress on the pile was, at any soil depth, 
that predicted by Jardine et al. (1998) 

2.2 Sampling and results 

Five independent input variables were considered in 
the design of the FE test programme. The pile was 
described by three variables, whose range was estab­
lished to encompass the geometries encountered in the 
ZJU-ICL experimental database. Two variables were 
used for the definition of the soil model: the relative 
density and the modulus factor, αE, which  were  

Table 1. Input variables for the FE test programme. 

Input variable Range 

Pile diameter D [m] 0.20 – 1.00 
Pile slenderness L/D [-] 10 – 70 
Pile wall thickness ratio D/t [-] 10 – 100 
Soil density Dr [%] 40 – 100 
Soil modulus factor αE [-] 3 – 10 
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allowed to vary within a realistic range for clean sands 
(i.e., Ic = 1.31  – 2.05). All the input variables are col­
lected in Table 1, along with their domain of variation. 

The FE analyses were conducted with certain com­
bination of the input variables by using the Latin 
Hypercube Sampling technique (LHS, McKay et al. 
1979). According to the LHS, each input variable 
range is divided into intervals of equal probability. The 
number of intervals is equivalent to the sample dimen­
sion and the location of the design point (i.e. the com­
bination of inputs) is taken randomly within the 
interval. This method allows for an optimum coverage 
of the input variable domain and the sample size can 
be easily increased. 

In this study, the five input variables were first 
combined to create a LH sample of size 50 (S50), 
which was increased to 100 (S100) and then to 200 
(S200). In Figure 2, the results of the 200 simulations 
are shown in terms of normalised vertical force 
(V/(γ’DL2)) and displacement (w/D). Two outputs 
variables were identified along the curves, the nor­
malised tensile capacity (Vult/(γ’DL

2)) and the nor­
malised initial stiffness (Kt/(γ’L

2)), which was 
evaluated as the initial tangent to the curve. 

The input combinations and the resulting outputs 
were then used for the development and calibration 
of the PCE metamodels. To validate the metamodels 
further FE analyses were performed on a new 
sample of size 50 (Sval). 

DEVELOPING METAMODELS 

A metamodel (MM) or surrogate model is the model 
of a model, and metamodelling is the process of gener­
ating such MMs. A metamodel is an explicit mathem­
atical algorithm representing the relation between input 

Figure 2. Results of the FE test programme in terms of 
dimensionless force and displacement. 

and output variables and it approximates the complex 
and implicit function defined by the emulated model  
(this model is either deterministic or random). They 
are generally grouped into classification and regression 
types. When the aim is to predict a continuous target 
variable, as in the case examined in this paper, the 
regression type, such as the PCE, is to be used. In this 
work, the open-source Python package OpenTURNS 
(Baudin et al. 2016) was used to build the MMs. 

3.1 Details of the PCE 

A given model is described by a vector X in which 
a finite number of input random variables are gath­
ered. The response vector Y, which collects the 
output quantities, can be represented as the applica­
tion of a mathematical model to the input vector. 
The PCE is an algorithm which approximate this 
function, and the chaos representation of the 
response vector is defined as the linear combination 
of selected multivariate orthonormal basis, Ψk(Z), 
and their corresponding coefficient αk as repre­
sented by 

with Z obtained by applying an isoprobabilistic 
transform to the input vector (Z = T(X)). 

The choice of the family of orthonormal basis 
(e.g., Legendre, Hermite, Krawtchouk) depends on 
the distribution type of the input variables, which 
are rescaled by the isoprobabilistic transform into 
common distribution types (e.g., uniform, normal, 
binomial). The following step consists on the deter­
mination of the coefficients, αk, associated to each 
polynomial basis. These coefficients are estimated 
according to a suitable regression strategy (Sudret 
2008). The most common are the least squares 
strategy that minimise the quadratic error between 
the model response and the polynomial approxima­
tion, and the integration strategy, which uses the 
inner product rules, thanks to the orthogonality and 
normality property of the polynomial basis. 

3.2 Calibration and validation of the PCE 

Two MMs were calibrated using the results of the 
FE test programme as follows. The combinations of 
the five input variables listed in Table 1 were col­
lected in the input vector X, and the selected outputs 
(i.e., the normalised pile tensile capacity load and 
tangent initial stiffness) represented two response 
surfaces (i.e., Y). A uniform distribution of the input 
variable was selected as the most suitable to be 
applied to sample created with the LHS technique. 
Consequently, the Legendre orthonormal polynomial 
basis were chosen as associated to this distribution 
type. As for the evaluation strategy to compute the 
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polynomials coefficients, the least squares method 
was selected as it was shown to provide more accur­
ate results, if compared to the integration strategy. 

The calibration (i.e. the identification of coeffi­
cient αk) of the two MMs was carried out using the 
results of the FE test programme originated by the 
created samples (S50, S100, S200). Accordingly, three 
MMs (MM50, MM100, MM200) were created for each 
of the two outputs (Vult/(γ’DL

2), Kt/(γ’L
2)) to explore 

the influence of the sample size on their accuracy. To 
the aim, the validation set of input-output combin­
ations (Sval) was used, with the predictive coeffi­
cient, Q2, defined by 

where N is the size of the validation sample (N=50) 
and Var(Y) is the variance of the FE model outputs. 

The MMs predictions are compared with the 
results of the FE testing campaign with reference 
to the two considered outputs: the tensile capacity 
(Figure 3a) and the initial stiffness (Figure 3b). 
Different markers are used to identify the MM’s 
predictions built on different sample sizes. Some 
scatter is observed in the prediction of MM cali­
brated with the smaller sample size (MM50), par­
ticularly at low and high output values and this is 
particularly evident for the prediction of the ten­
sile capacity. The increase in the sample size, 
reduces the error at either end of the output distri­
bution, with MM200 ensuring an excellent accur­
acy, consistent for both the outputs and estimated 
to be larger than 0.98. 

4 ASSESSMENT OF THE PROCEDURE 

4.1 Experimental data 

The data used to explore the approach potential as 
a predictive tool were selected among those avail­
able in ZJU-ICL experimental database. The data­
base was developed with the scope of validating the 
CPT-methods for axial pile capacity. Therefore, the 
results of the pile loading tests are always accompan­
ied by the relevant CPT tip resistance profiles. 

Among all, the data of a pile subjected to pull-out 
was chosen. The selection was made to ensure that 
the foundation and the soil had characteristics con­
sistent with the FE models used in the calibration 
procedure and that are describable through the pro­
posed set of input. The adopted pile was steel, open-
ended driven, the soil was uniform, dense, fine to 
medium flandrian marine sand. The qc profile at the 
test location is shown in Figure 4a. 

The qc data were processed to estimate the rela­
tive density at the pile location according to equation 

Figure 3. Accuracy of the MMs in predicting: (a) the ten­
sile capacity; (b) the initial stiffness. 

1. For a further and likely estimate of the results, the 
expression suggested by ISO standards (ISO, 2016) 
for the implementation of the CPT-methods was also 
employed 

where p’ m = effective mean in situ stress. 
The profiles of relative density estimated with 

equations 1 and 7 are shown in Figure 4b, along 
with their average values. Application of equation 1 
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to the two average relative density values returns the 
artificial tip resistance profiles inserted in Figure 4a, 
which are implemented in the FE models according 
to the procedure described in section 1.1. 

Table 2 collects the input data used for the FE and 
MMs. These includes the experimental pile geom­
etry, the average relative densities, and two values of 
αE, corresponding to possible upper and lower bound 
for Ic, estimated using the information on the test 
site available in Jardine et al. (2006). 

Table 2. Input data for FE and MM. 

D [m] L/D [-] D/t [-] Dr [%] αE [-] 

0.457 42.23 33.8 72.04; 76.25 5 
72.04; 76.25 7 

Figure 4. a) CPT data at the pile test location(redrawn 
from Yang et al. 2015 and artificial profile): (a) evolution 
of the cone resistance qc and (b) relative density Dr depend­
ing on depth. 

4.2 FE models and MM prediction 

The data in Table 2 were employed first to assess the 
FE strategy presented in section 1.1. This validation 
plays a crucial role in the development of MMs, as 
their performance relies upon the robustness of the 
mechanical models they stem from. 

Four FE analyses were performed (as detailed in 
Table 2) and the results are shown to compare well 
with the experimental data in terms of load-
displacement curves (Figure 5). A close approxima­
tion of the initial stiffness and non-linearity prior to 
failure are observed, with the experimental capacity 
falling in the rather narrow band defined by the 
results obtained with the two sets of FE simulations 
performed with the two different estimates of relative 
density. The average FE capacity is 1443 kN, very 
close to the experimental data (1450 kN). The initial 

experimental stiffness (about 380 MN/m) is slightly 
underestimated by the FE models, which predicted an 
average value of 310 MN/m and 270 MN/m with αE 
equal to 5 and 7, respectively. A better fit could be 
obtained with a larger value of the modulus factor. 

To assess the ability of the MM to reproduce the 
experimentally observed behaviour, the most accurate 
MMs were used (MM200). The predictions for the dif­
ferent input combinations of Table 2 are inserted in 
Table 3. 

These results are compared with those predicted 
with the FE models in Figure 3 (triangular markers), 
showing consistency of the MM200 accuracy. Combin­
ing the outputs of the two MMs a bi-linear response 
can be drawn and a direct comparison with the experi­
mental load-displacement curve can be pursued, as 
depicted in Figure 6. As the MMs were built to predict 
selected behavioural features, they were not expected 
to capture the entire curve, but to provide a good esti­
mation of the initial experimental stiffness and tensile 
capacity. Capacity values well compared with the 
results of API and NGI methods: 1450 kN and 1559 
kN, respectively. A slightly higher estimate was 
observed when compared to the prediction of the 
UWA, ICP and Fugro approaches, respectively 1304 
kN, 1310 kN and 1100 kN. 

The results were obtained using a very simplified 
FE strategy and produced encouraging results. 
A better implementation of the qc profile as input 

Table 3. Predictions of MM200. 

Dr = 72%; Dr = 72%; Dr = 76%; Dr = 76%; 
Outputs αE = 5  αE = 7  αE = 5  αE = 7  

Vult [kN] 1597 1478 1641 1433 
Kt [MN/ 350 326 280 261 
m] 

Figure 5. Experimental and FE load-displacement curves. 
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Figure 6. Experimental and MM200 load-displacement 
curves. 

variable should be pursued for a more reliable pro­
cedure. A possible way could be to follow the 
approach recently proposed by Cai et al. 2021. 

5 CONCLUDING REMARKS 

The paper has presented the development of a novel 
procedure for the prediction of the tensile response of 
steel displacement piles in sand. The approach has 
made use of a metamodelling technique, employed to 
store the results of a FE test programme with the aim 
of make them available for preliminary design 
purposes. 

The FE models were simple, with soil parameters 
easily identifiable from CPT results. The modelling 
choices largely relied on the recent advance in the 
prediction of the axial capacity of offshore piles in 
sand with the CPT-based methods, thanks to which, 
available empirical correlations, had been validated 
on a large database of model tests. 

The results obtained, although preliminary, have 
shown that: 

–	 a simple CPT-based FE modelling strategy can 
produce results which compare well with 
experimental data, encouraging further 
validation; 

–	 MMs can be built using a relatively small 
number of FE simulations and provide very 
accurate results over wide domains of input 
variables; 

–	 inputs of MMs can be easily identified based on 
the interpretation of CPT data and produces 
good estimate of the experimental response. 

Overall, the implementation of MMs is rather 
straightforward, avoiding the laborious FE modelling 
activities. MMs also run at a negligible 

computational cost and are therefore suitable to para­
metric studies, which can be, in turn, interpreted in 
a probabilistic framework. The procedure, here pre­
sented in its essential steps, can be further extended 
to accommodate modelling features of higher com­
plexity, increasing the number of input variables and 
can be employed to predict other behavioural 
aspects, increasing the numbers of outputs. 
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