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RAPID AND FINITE-TIME BOUNDARY STABILIZATION OF A KDV
SYSTEM

HOAI-MINH NGUYEN

ABSTRACT. We construct a static feedback control in a trajectory sense and a dynamic feedback
control to obtain the local rapid boundary stabilization of a KdV system using Gramian operators.
We also construct a time-varying feedback control in the trajectory sense and a time varying
dynamic feedback control to reach the local finite-time boundary stabilization for the same system.
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1. INTRODUCTION

This paper is devoted to studying the local rapid boundary stabilization and the local finite-time
boundary stabilization of a KdV system. More precisely, we investigate the stabilization of the
following control system, for L > 0,

Yt + Yo + Yzzz + YYz =0 in (0,+0) x (0, L),
(1'1) y('vL) = y(-,O) =0, ym("L) - ym("o) =u in (07 +OO)7
y(o’ ) = yO() in (OvL)’

where yo € L?*(0,L) is the initial state, u € L} [0,40) is a control, and y(t,-) € L*(0,L) is the
state at time t.

The controllability of the linearized system of (I.1]) depends strongly on L. It is known from the
work of Cerpa and Crépeau [5] that there is a discrete set of lengths N for which the linearized
system is not exactly controllable if L € A and the linearized system is exactly controllable
otherwise. Concerning system ([[.T]), the rapid stabilization of its linearized system for non-critical
lengths has been obtained by Cerpa and Crépeau [5]. They used the Gramian operators and
the analysis involves the optimal control theory as an application of the result of Urquiza [47]
(see also [23]). The feedback is thus understood in a weak sense, see, e.g., [37,[46,[48]. In a very
related setting where one controls the Neumann on the right, i.e., one controls y,(-, L) instead of
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2 H.-M. NGUYEN

Yz (-s L) — yz (-, 0), the local rapid stabilization of the nonlinear system for non-critical lengths was
obtained by Coron and Li [12] using a technique related to the backstepping method. To our
knowledge, the extension to the nonlinear setting using Gramian operators is open, and the local
stabilization in finite time is previously out of reach. The goal of this work is to give an answer
to this problem. More precisely, dealing with non-critical lengths, we construct a feedback control
in a trajectory sense, a notion introduced in [37], and a dynamic feedback control to obtain the
local rapid stabilization of (I.I]) using Gramian operators (see Theorem [[.T] and Theorem [I.2]). We
also construct a time-varying feedback control in the trajectory sense and a time-varying dynamic
feedback control to obtain the local finite-time stabilization of (II]). The ideas in the study of the
rapid stabilization are to modify the approach proposed in [37] to deal with the non-linear term,
which cannot be handled by directly using the proposal given there. Concerning the finite-time
stabilization, we additionally combine the ideas in [37] with the ones proposed by Coron and the
author in [I4] in the spirit of [36]. This thus involves the control cost of the linearized system in
small time.

1.1. Statement of the main results on the rapid stabilization. Define A : D(A)  L?(0,L) —
L?(0,L) as follows

D(A) = {w e H3(0,L); w(L) = w(0) = 0, wy(L) = wx(O)},
and
(1.2) Aw = —w" —w for w € D(A).

One can check that A is densely defined and closed in the Hilbert space L%(0, L) equipped with
the standard scalar product. Moreover,

(1.3) A is skew-adjoint, i.e., D(A) = D(A*) and A* = —A,

where A* denotes the adjoint of A.
Let B : R — D(A*)", where D(A*)" is the dual space of D(A*), be defined by

(1.4) <Bu w>D(A* Y, D(A*) = = UWyg (L)
Then B* : D(A*) = D(A) — R is given as follows, for w € D(A),
(1.5) B*w = wy(L).

Then the linearized system of (ILI]) (around the zero state) can be written under the form
{ y' = Ay + Bu in (0,+00),
y(0) = yo
(see, e.g., [37, Section 3| for the meaning of (I.6])). One can check that

(1.6)

(1.7) the control operator B is an admissible control operator for all L > 0 and 7" > 0,

i.e., for some positive constant C' = C (T, L),
(1.8) f |B*esA" 2|2 ds < CJ (z)|? dx for all z € L?(0, L),

since (see, e.g., Lemma [2.1])

(1.9) [€2(L, 201y < Cléoll 20,1 for all & € L*(0, L),
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where £ € Xp is the unique solution of the system

§t + &+ Eaze =0 in (0,7) x (0, L),
(1.10) §(,L) =¢(-,0) =0, &(L) = &(,0)=0 in (0,7),
£(0,-) = &) in (0, L).
Here and in what follows, we denote
(1.11) Xr = C([0,T]; L*(0, L)) n L*((0,T); H'(0, L)) for T > 0,
and
(1.12) X = C([0,4+0); L*(0, L)) n LE ([0, +0); H*(0, L)).

As usual, we denote (etA*) />0 the semigroup generated by A*,

The controllability of the linearized system of (I.1]) depends strongly on L. Denote

2 2
L1 e !

It is known that the linearized system of (L)) given by

Yt + Yz + Yzza = 0 in (0,7) x (0,L),
(1'14) y('vL) = y(70) = 07 y:c(aL) - y:c(70) = u() in (OaT)7
y(0,) = o(-) in (0, L),

is exactly controllable for all (or for some) T' > 0 if and only if L ¢ N, a result due to Cerpa and
Crépeau [5]. This is equivalent to the fact that for all (or for some) 7" > 0, it holds, for some
positive constant C,

T
(115) | teate. 2y e > Claoliaon,
for all & € L%(0, L) where ¢ € X is the unique solution of system (LI0) if and only if L ¢ N'. A
very closely related work was previously obtained by Rosier [39].

We are ready to introduce the Gramian operators used in our feedback controls. Given A > 0,
define Q = Q()\) : L*(0, L) — L*(0, L) as follows

0
(1.16) (Qz1,22)1200,1) = f 6_2)‘8<B*€_8A*21, B*e_SA*zg>R ds for z1, 29 € L*(0, L).
0

Here and in what follows, given a Hilbert space H, we denote (-, ) its scalar product and £(H)
the space of all continuous linear applications from H to H equipped with the standard norm,
which is denoted by || - | £(m)-

It is clear that @ is symmetric. It is worth noting that @ is invertible if L ¢ N since the
linearized system is exactly controllable in small time. An equivalent way to define @ is given by

ee}
(1.17) (Qz1,22)12(0,1) = J e8¢y 4 (s, L)éa.x(s, L) ds for 21,29 € L*(0, L),
0
where &; € Xo, (with j = 1, 2) is the unique solution of the system
Sj,t + gj,:c + Sj,xxx =0 in (Oa +OO) x (Oa L)7
(118) é}(,L) = fj(,O) =0, fj@(',L) — fj@(’, 0) =0 in (O, -I-OO)7

fj(O, ) = Zj in (O,L)
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One can check, see, e.g., [37], that @ satisfies the following important property:
(1.19) AQ + QA* — BB* +2)Q = 0,
where (I.I9) is understood in the following sense
(1.20) <{Qz1, A%22)12(0,1) + {A%21, Q22)12(0,1)
—(B*z1, B*20)r + 2XQ21, 22)120,) =0 V21,22 € D(AY).
We are ready to state the rapid stabilization of (1)) in the trajectory sense.

Theorem 1.1. Assume that L ¢ N, and let A > 0 and Ty > 0. Define Q = Q(\) by (LIG). There
exists € > 0 such that for yg € L?(0,L) with lyoll2(0,z) < &, there exists a unique weak solution
(y,7) € Xoo X Xo of the system

Yt + Yo + Yoz + YYz =0 in (0, +00) x (0, L),
Ui+ Uz + Yoaw + 20T + Jyo = 0 in (0, +00) x (0, L),
(1.21) y(,0) =y(, L) = 0,4x(- L) — yu(-,0) = (-, L)  in (0, +0),
9(,0) =3(, L) = 0,9x( L) — Ju(-,0) = 0 in (0, +0),
L y(0) = yo, ¥(0) = o := Q 1uo in (0, L).
Moreover, we have
(1.22) §(t) = Qy(t, ) fort >0,
(1.23) ly(t, M z20,) < 2672)\1&“90“L2(0,L) for t € [0, To],
and
(1.24) lylxz, < Clivoll2o,1)

for some positive constant C depending only on L and Ty. As a consequence of (L23)), for every
0 <5 < A, there exists € > 0 such that for every yo € L*(0, L) with |lyo| 120,y < €, it holds

(1.25) ly(t ) 20,0y < 2> yoll 20,y for t € [0, +00).
The proof of Theorem [[.Tis given in Section Bl

Remark 1.1. The definition of the weak solutions in Theorem [[.1] is given in Definition in
Section

Remark 1.2. Some comments on Theorem [[T] are in orders. Since (t,-) = Q 'y(t,-) for t = 0
by ([22]), the feedback of (I.I]) can be viewed as

—(Q‘ly(t,-)) -

xT

We only consider this feedback as a static one in a weak sense, the trajectory sense as used in [37],

since for y € L?(0, L), it is not clear how to give the sense to the action — (Qfly(t, )) . Note that
x

our feedback controls given by —7.(t,-) via (I.22]) are well-defined in the sense of Theorem [l for
all initial data yo € L%(0,L). This is different from the one given by the optimal control theory
used in [23147]. See [37] for more comments on this aspect.

We next deal with the dynamic feedback control. In this direction, we prove the following result.
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Theorem 1.2. Let L¢ N, A > Xg >0, \y >0, ¢ > 0, and Ty > 0, and let Q = Q(N\) be defined
by (LI6). Assume that
(1.26) Al — (2 + Co))\ > 0.

There exists € > 0 such that for yo,§o € L*(0,L) with |lyolr2(0,) |Joll r20,0) < &, there exists a
unique weak solution (y,7) € Xoo x Xo of the system

Y + Yo + Yozw + YYz = 0 in (0, +0) x (0, L),
e + Jo + Joaw + 207 = MQ 7y = QY) + Jyz =0 in (0,+) x (0, L),
(1.27) y(,0) = y(, L) = 0,y2(-, L) = y(+0) = =%u(, L) in (0,+00),
9(0) =9, L) = 0,9x(-, L) — u(-,0) = 0 in (0, +0),
k y(0) = o, ¥(0) =1%o in (0, L).
Moreover,
(1.28) Iollxey + [0, < ONQ (0. M 20,0y + 150, ) 120.)
and

(1.29) ly(t, 20,0y + 19, )llL2(0,1)

< ClQ7Me ™ (ly(0, ) 20,y + (0, ) £2(0,1) for t € [0, To],

where C' is a positive constant independent of A, A\, t, and (yo,%o0). As a consequence of (L29]),
for every 0 < v < \, there exist ¢ > 0 and C > 0 such that for yo, o € L?(0, L) with HyOHL2(0,L),
190l 20,y < €, it holds

(1.30) [y(t )20,y + 19 2 0,) < Ce_QVt(Hy(O, M r20,z) + 15(0, ‘)HL2(0,L)) for t € [0, +o0).

Here and in what follows, we denote HQ_lHE(LZ(O’L)) and Q| z(z2(0,1)) by |Q~1 and ||Q| for
notational ease.

The proof of Theorem is given in Section Ml

Remark 1.3. The definition of the weak solutions in Theorem is given in Definition 2.2] in
Section [21

Remark 1.4. System ([.2I)) is slightly different from the suggestions in [37]. If one closely follows
the suggestion in [37], the equation of § in (L21]) would be

(1.31) T + Yo + Uoax + 207 + J(QY)2 = 0 in (0, +00) x (0, L).

This requires us to make sense of the term (Q%),, which is not clear since ) is only a continuous,
linear map from L2(0, L) into L?(0, L). We bypass this issue by anticipating the conclusion and
replacing Qy by y in (L3I]). The term 3(QY), becomes gy, as given in ([2I]). Similarly, System
([C21) is also slightly different from the suggestions in [37] so that the nonlinear term can be
handled.

Remark 1.5. In Theorem [[.Tland Theorem [[.2] a new variable y is added. Adding a new variable
is very natural and has been used a long time ago in the control theory even in finite dimensions
for linear control systems, see, e.g., [8, Section 11.3] and [44, Chapter 7]. Coron and Pradly [16]
showed that there exists a nonlinear system in finite dimensions for which the system cannot be
stabilized by static feedback controls but can be stabilized by dynamic feedback ones. Dynamic
feedback controls of finite dimensional nature, i.e., the complement system is a system of differential
equations, have been previously implemented in the infinite dimensions, see, e.g., [I5l[18]. Our new
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variables are of infinite dimension nature. These are previously proposed in [36L[37] and are inspired
by the optimal control theory, see e.g. [19,26,[48[50] and the references therein.

We also construct a static feedback control in the trajectory sense and a dynamic feedback
control to obtain the local finite-time stabilization of the KdV. These results are given in Propo-
sition in Section [3 and Proposition in Section Ml respectively.

1.2. Related works. In this section, we briefly discuss the local boundary controllability and the
local stabilization of the KdV equation. We first deal with the controllability. When the controls
are y(-,0), y(-,L), y»(-, L), Russell and Zhang [42] proved that the KdV equation is small time,
locally, exactly controllable. The case of the left Dirichlet boundary control (y(-, L) = y,(-,L) =0
and y(-,0) is controlled) was investigated by Rosier [40] (see also [20]). We next discuss the case
where one controls the right Neumann boundary, i.e., y(-,0) = y(-, L) = 0 and y,(-, L) is a control.
Rosier [39] proved that the KdV system is small time, locally, exactly controllable provided that the
length L is not critical, i.e., L ¢ N, where N is also given by (L.I3]). To tackle the control problem
for a critical length L € A/, Coron and Crépeau introduced the power series expansion method [9].
The idea is to take into account the effect of the nonlinear term yy, absent in the corresponding
linearized system. Using this method, Coron and Crépeau showed [9] (see also [8, section 8.2])
that the KAV system is small time, locally, exactly controllable when the unreachable space of the
linearized system is of dimension 1. Cerpa [3] and Crépeau and Cerpa [6] developed the analysis
in [9] to prove that the KdV system is finite time, locally, exactly controllable for other critical
lengths. With Coron and Koenig [I1], we proved that such a system is not small time, locally, null
controllable for a class of critical lengths. This fact is surprising when compared with known results
on internal controls for the KdV equation. It is known, see [2,[32,38], that the KAV system with
y(-,0) = y(-, L) = yz(-, L) = 0 is small time, locally controllable using internal controls whenever
the control region contains an arbitrary, open subset of (0,L). It is worth noting that without
controls, i.e. the control is taken to be zero, the decay of the solutions for critical lengths might
occur but very slow, see e.g., [7,[34,45]. A related control setting is the one where one controls
the Dirichlet on the right. This control problem was first investigated by Glass and Guerrero [21].
To this end, in the spirit of Rosier’s work mentioned above, they introduced the corresponding
set of critical lengths, which is some how more involved. Concerning such a system, Glass and
Guerrero proved that the corresponding linearized KdV system is small time, exactly controllable
if L ¢ Np. Developing this result, they also established that the KAV system (IL1J) is small-time
locally controllable. Recently, the critical case was handled in [35]. To this end, we showed that
the KdV system with the Dirichlet controls on the right is not locally null controllable in small
time and established that the unreachable space of the linearized system is always of dimension
1. We also provide a criterion for the local controllability in finite time. In particular, we show
that there are critical lengths for which the system is not locally null controllable in small time
but locally exactly controllable in finite time. These phenomena are quite distinct in comparison
with the setting where one controls the Neumann on the right mentioned above.

The stabilization of the KdV equation has been previously studied with internal controls in
[27,30,31, 33,41, [42] and the references therein. Concerning the boundary controls for the KdV
equation, in addition to the work [4}[12] mentioned previously, we refer [5,[17,49] and the references
therein. It is worth noting that the backstepping related technique used in [12] has been developed
to study the stabilization for other settings such as hyperbolic systems [I,[I8], wave equations
[241/43], heat equations [14,29], Kuramoto-Sivashinsky equations [13], water waves systems [10],
Gribov operator [22]. An introduction of backstepping technique can be found in [25]. Concerning
the Neumann boundary control on the right, for a subclass of critical lengths, a time-varying
feedback was given in [I7] for which an exponential decay rate holds but cannot be arbitrary. It
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is interesting to know whether or not a similar phenomenon holds for ([L.I). It is completely open
to obtain the rapid stabilization of (LI]) even for time-varying feedbacks for critical lengths.

1.3. Organisation of the paper. Section 2] we establish some results used in the proof of the
stablization. The rapid stabilization is studied in Section [] and the finite-time stabilization is
investigated in Section [l

2. PRELIMINARIES

In this section, we first give the meaning of the weak solutions used in Theorem [[.1] and Theo-
rem[I.2l We then state and prove several well-posedness and stability results on the KdV equation.
We finally establish the upper bound of Q| = |Q|zz20.)) and Q7 = Q| z(r2(0,2)) with
Q@ = Q(A) being defined in (I.I6]), where the dependence on A is explicit.

We begin with the following definition.

Definition 2.1. Let L >0, T > 0, M € L(L*(0,L)), yo € L*(0,L), f € L*((0,7); L?(0, L)), and
he L*(0,T). A function y € X is a weak solution of the system

Yt + Yo + Yozz + My = f in (0,T) x (0,L),
(2'1) y(70) = y(7L) = anx('7L) - yx('70) =h in (07T)7
y<07 ) =Yo mn (07[/)7
if
T (L L T
(2.2) L L (f(t,a:) — My(t, -))cp(t,x) dx dt + L yo(x)p(0,x) dx + L h(t)pg(t, L) dt

T (L
= —j J Y(pr + Yz + Prgz) drdt
0o Jo
for all o € C3([0,T] x [0, L]) with o(T,-) =0 and ¢(-,0) = p(-, L) = @,(-, L) — p(-,0) = 0.
Concerning the nonlinear setting involving (y, ), we use the following definition.

Definition 2.2. Let L > 0, T > 0, M,M e L(L?(0,L)), and let yo, 5o € L*(0,L). A pair of
functions (y,y) € Xr x Xrp is a weak solution of

( Yt + Yo + Yaow + YYo= 0 in (0,T) x (0, L),
Ui+ Vo + Joww + MY+ My + Jyz = 0 in (0,T) x (0, L),
{ y(0) =yo, ¥(0) =1%o in (0, L).
if, under the form of (21)), y is the solution of the system with the internal source term f = —yy,
and the boundary source term h = —y,(-,L), and y is the solution of the corresponding system

with the internal source term f = —(My + My + yy.) and the boundary source term 0.

Remark 2.1. These definitions are compatible with the ones given in the semi-group language,
see e.g., [37, Section 3]: the weak solutions given here are also the weak solutions given in the
semigroup terminology in [37, Section 3.

We next discuss the well-posedness and the stability of the weak solutions. The following result
is on the linear setting given in (2.I]).
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Lemma 2.1. Let L > 0,0 < T < Ty, M € L(L*(0,L)), and let yo € L*(0,L), f € L*((0,T); L*(0, L)),
and h € L?(0,T). There exists a unique weak solution z € Xt of the system

Yt + Yz + Ygax + My =f in (0,T) x (0, L),
(2'4) y(70) = y('vL) = anx('7L) - y:c(70) =hin (OaT)7
y<07 ) = yO() in (07L)

Moreover,

(2.5) |yl xr + Iy (L lp20,m) < C<Hy0HL2(O,T) + [ £l Lo,y 20,1y + HhHL2(0,T)),
for some positive constant C independent of f, h, yo, and T.

Proof. We begin with the case M = 0 as follows. We first note that in the case f = 0 and yy = 0,
we have, for £ € C,

where
1 Q0 ite
g€, 1) = — t,x)e s dt.
9(§, z) %L y(t,z)

For £ € C, let \; = X\;(§) with j = 1,2,3 be the three solutions of the equation A\* + X + i€ = 0.
Taking into account the equation of g, we search for the solution of the form

3
(2.6) §(&,) = D aeN”,
j=1
where a; = a;(&) for j = 1,2,3. Using the boundary condition, we then have
Z?:l a; = 0,
Z?:1 ajet =0,

2]3-:1 aj)\j(e)‘jL — 1) = il,

where

A~

h(€) = \/%_w LOO h(t)e " dt.

This implies, with the convention A; 3 = A;, for £ € R,

elirel _ oAjal
(2.7) a; = YA hs for j =1,2,3,
where
1 1 1
Q — Q(é’) = e)\lL e)\zL e)\3L

)\1 (e)‘lL — 1) )\2(€>‘2L — 1) )\3(6)‘3L — 1)

As in the proof of [I1], Lemma 4.4] or [35, Proposition 3.1], one can show that there exists a solution
y € Xp satisfying (24) and (235) with M =0, f = 0, and yo = 0. The existence of a solution
y € Xp satisfying (2.4) and (235]) with M = 0 for a general f, yo, and h follows from [39] (4.17)].
The proof of the uniqueness in the case M = 0 can be proceeded as in [35] (see also [8, Chapter
8]). Let y € X be a solution with the zero data, i.e., f = 0, ygp = 0, and h = 0. Fix ¢ €
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C*((0,T) x (0,L)) (arbitrarily). Let § € X7 be a solution of the backward system

gt + gx + gxzx = w in (OuT) X (07-[/)7
g(ao) = 07 §(7L) = 07 gx(aL) - @x(,O) =0 in (OaT)v
g(T7) =0 in (OvL)

Using the construction given previously, one can assume that ¢ is smooth. Using the definition of
the weak solutions, we derive that

LT LL Y(t,z)y(t, ) dt dz = 0.

Since 1 € CX((0,T) x (0,L)) is arbitrary, we deduce that
y=0in (0,7) x (0, L).
The uniqueness is proved in the case M = 0.

The proof in the general case where M is not required to be 0 follows from the case M = 0 by
using appropriate weighted norms involving time in Xrp, see, e.g., [37, Section 4]. The details are
omitted. ]

The following result on a specific linear setting is useful.

Lemma 2.2. Let L > 0,0 <T < Ty, A = A\ > 0, and let §o € L*(0, L) and f € L'((0,T); L*(0, L)).
Let 5 € X1 be the unique weak solution of the system

o+ Yo+ Yowe + 200 = f in (0,T) x (0, L),
(28) :'7(70) = g(7L) = 0737%(7[/) - gx(vo) =0 in (OvT)7
:'7(07 ) = 370 n (07 L)
Then
(2.9) 15t ) 201y < €20, 2oy + Cl Al om)y220.2))
and
(2.10) [7lxs + 17 M2y < € (150, 20y + ATz om0 )

for some positive constant C independent of f, A, and T.

Remark 2.2. The difference between Lemma and Lemma [2T] is the explicit dependence on
the parameter A in Lemma This is useful to establish the finite-time stabilization result.

Proof. Set
Jor(t, ) = (t,)e* in (0,T) x (0, L).

We have
Pors + Pore + Poraaw = €M in (0,7) x (0,L),
(2.11) Y2x(0) = Gar (-, L) = 0,Jar (-, L) — Jar2(-,0) =0 in (0,T),
72x(0,-) = 7o in (0,L).

By the linearity of the system, it suffices to consider two cases f = 0 and g = 0 separately.
We first consider the case f = 0. Applying Lemma 2] to 725, we obtain

(2.12) [G2allx + 18202 (Ls )l 207y < ClF20 0, ) [ 220,17,
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and, since A is skew-adjoint,

(2.13) 1G2x(t, ) 20,7y = [922(05 ) [ L20,7)-
We derive from ([2.I2)) that
(2.14) 15t ) 200y = €170, ) 22 0.1 -

Considering the system of § and viewing 2Ay as a source term, after applying Lemma 2.1l to 7, we
obtain

(2.15) 19l xr + 172(Ls ) 20,7y < CIF(O0, ) L20,7)-

We next consider the case §p = 0. Applying Lemma 2.1 we derive from (2.11]) that, for
0<t<T,

[52allx, + 152a2(Ls 20,0 < CIFE I 0.0)02(0,1))-
This implies
(2.16) 19t M r20,0) < ClflLro,m)):02(0,0))-

Considering the system of § and viewing f— 2\y as a source, after applying Lemma 2] to 7, we
obtain

(2.17) 19 x7 + 172 (L, ez 0,m) < CA L1 0,m)):02(0,1))-
The conclusions in the case yg = 0 follow from (2.16]) and (Z.I7).
The proof is complete. O

We next derive an upper bound and a lower bound for |@Q| with @ = Q(X\) for which the
dependence on A is explicit. We begin with a result on an upper bound for ||Q|, which is a
consequence of the admissibility of the control (L.g]).

Lemma 2.3. Let L ¢ N, A = \g > 0 and let Q = Q(N\) be defined by (LI6). There exists a
positive constant C independent of A such that

(2.18) (Qz,2)12(0,1) < C’||z||%2(0’L) for all z € L*(0,L).
Proof. We have

0 n+1
(Qz,2)12(0,1) = f e 2| B*e A 22 ds = Z f e 2| B* e 22 ds
0

nz0 v
EYY f " retas 2 Y CePn|em |2, .
n=0 n n=0
The conclusion follows since ez | r2(0,) = 2220,y thanks to the fact that A is skew-adjoint. [J
Remark 2.3. As a consequence of (2.1I8]), we derive that
Q)| < C for A = Ao,
for some positive constant C' independent of .

We next derive a lower bound for the norm |Q()\)| when L ¢ A, which implies an upper bound
for |Q(\)7Y|. To this end, we first state an observability inequality, which is a consequence of a
result of Lissy on the cost of controls for small time of the KdV equation [28, Theorem 3.4].
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Proposition 2.1. [28, Theorem 3.4] Let L ¢ N and 0 < T < Ty. We have, for some positive
constant C independent of T,

T c
L Bre A2 5 ¢ 77 2|2, for all z € L0, L),

Using Proposition 211 we can prove the following result.

Lemma 2.4. Let L ¢ N, A = \g > 0 and let Q = Q(N\) be defined by (LI6). There exists a
positive constant C independent of A such that

(2.19) (Qz 21201y = €N |22a0.p) for all z € L*(0,L).
Proof. We have

o0 2\—2/3
<QZ, Z>L2(0,L) _ j 6—2)\8|B*e—sA*Z|2 ds > L » 6—2)\s|B*e—sA*z|2 ds
0 -

A—2/3 p i m
_ _AN1/3 A% roposition _ N3 /3, \—2/3 A%
>\ 2/36 4 \B*e sA 2‘2 > A 2/36 4 e CA He A A
A—2/3
This implies, since A is skew-adjoint,

ZHLz(o,L) .

_ 1/3
@z, 21200y = € |2] 20,1

which is the conclusion. O
Remark 2.4. As a consequence of (2.19]), we derive that
Q)Y < e for A= X,
for some positive constant C' independent of .
3. STATIC FEEDBACK IN THE TRAJECTORY SENSE FOR THE KDV SYSTEM

This section is devoted to the proof of Theorem [LI] and its finite-time stabilization version
Proposition The key point of the analysis of this section is the following result which in par-
ticularly implies Theorem [[.Il This result is also the key ingredient of the proof of Proposition
below on the local finite-time stabilization.

Proposition 3.1. Let L ¢ N, 0 < T < Ty, and A = N\g > 0, and let Q = Q(\) be defined by
(LI8). There exists € > 0 depending only on L, Ty, and \g such that for all yo € L?(0, L) if

(3.1) A+ ) (10 wol0.0) + ol 20y ) <
then there exists a unique weak solution (y,y) € X1 x Xp of the following system
( Yo+ Yo + Yazo + Yy =0 in (0,T),
Ut + o + Uwa + 207 + Yy = 0 in (0, 7)),
(3.2) § ¥(0) =y, L) = 0,y2(-, L) = 42(-,0) = =8 (-, L) in (0,T),
Y(0) =9( L) = 0,42 (-, L) = Ju(+,0) = 0 in (0, T),
( y(0) = w0, H(0) = Fo := Q "yo-
Moreover, we have
(3.3) y(t,) = Qy(t,-) for t € [0,T],

(3.4 5, Dllzomy + 19l + 13xr < C(lnollzzom + [ol20m)):
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and
(3.5) 19(t, 20,0 < 2e’2At<||y0||L2(o,T) + ||Z70||L2(0,T)> fort e [0,T].

Proof. Concerning the well-posedness and the stability of (y, 7), we only give the proof of (3.4]) and
BXE). The well-posedness can be proceeded by a standard fixed point argument, which involves
tha analysis used in the proof of (84]) and (3.3, and omitted. Applying Lemma 2] to y and
Lemma 2.2 to 9, we have

(3.6) Iyl x, < C(HZJOHLZ(O,L) + 192 L)l 20,1y + ||yyz||L1((0,T);L2(0,L)))
and
(3.7) 19 (- D) 20,7y + [l x7 < C<||Z70HL2(0,T) + >\Hl7y:vHLl((o,T);L2(0,L)))-

Here and in what follows, C' denotes a positive constant depending only on Tj, L, and Ag.

Combining (3.6) and (3.1 yields

3-8) lwlxr + 19lxr + 172C; L) 201

< C'(HyoHL2(o,L) + 9ol 20,y + ¥yl 0,1);2(0,1)) + >\||@7ym||L1((0,T);L2(0,L)))-
Since
1Yy L1 (0,1);L2(0,1)) < CHZJH%(T and | Jyzllo,1):220,)) < Cllxr ¥l x7,
it follows from (B.8)) that
(39 lolxe + e + 15, D)0y < (ool oy + loll2oir)
provided that
(3.10) Mlyolzzo.z) + 190l 20m)) <

for some small positive constant o depending only on Ty, L, and Ag. Condition ([B.I0]) is assumed
from later on. Applying Lemma 2.2 to 7, we obtain

(3.11) 15t ) 2200.0) < €150, ) 20,1y + ClgYa 11 (0,9):220,1)):
which yields, by (3.9),

(312 5.2z 0.0) < 21500 + O (Inolomy + oz
We now improve ([B12]). Set
Por(t,2) = XMy (t, x) in (0,T) x (0, L).
Then
Yort + Jora + Vorzae = —€2 Py, in (0,T) x (0, L).
We get, for 0 <t < T,
(3.13) 1524t ) r2(0,2) < 172200, ) £2(0,2) + ClTY2€* | 1 ((0,.00):22 0,1 -

We next estimate the last term. Using the interpolation inequality given in Lemma [B1] below,
we obtain

(3.14) f (f (s, s, )2 2 vz

0 0

t
si|~ 1/2 ~ 1/2
< jo (s, MR 1 W (3 Y2 1 e (5. ) 220,
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Using (B.12]), we derive from (B.14) that

t oL 12
J (j |37(5733)yw(3,33)€2)\s|2d33) ds
0 0

L oons( —2xsy ~ 172 1/2
<c L 2 (150, ) 20:m) + 10 aomy + 190l 3200,m)) 152 g 1y (55 220,

This yields, by (3.9),

t, (L 1/2 - 2
(3.15) jo(jo (s, 2)ya (s, ) P ) ds < €M (ol z2o.m) + o2

N 5/2
+ C€2At<Hy0HL2(o,T) + ||y0||L2(o,T)>

Since yox (¢, z) = 2M(t, z), we derive from ([B.I3) and (B.I5) that

2
(3.16) |15t M r20.2) < € *MTollr20.0) + Ce_)\t<HyOHL2(O,T) + ||y0HL2(o,T)>

N /
+ C(HyoHL2(o,T) + ||y0||L2(o,T)> :
We deduce from (3.16]) that

(3.17) i, Y20,y < 267 (ol z2(0,) + Iwol 2.1 )
as long as

4 ~
(3.18) P (ol 2.y + Iolzzr ) < @

for some positive constant a depending only on T, L, and ).

Assertion ([3.4]) and ([B.5) now follows from (3.9) and (B.I7) after noting (3.10) and (B.I8]).
We next establish ([B:3]) in the spirit of [37], which gives the meaning of the feedback in the

~

trajectory sense. Set, for t € [0,T] and x € (0,L), with f(t,z) = —y(t,2)y.(t,x) and f(t,z) =
—g(t,l‘)yw(t,l‘),

(3.19) ya(t,x) = e)‘ty(t,a:), a(t,x) = e)‘tg(t,x),
(3.20) Ot z) = e)‘tf(t,:n), and ]?)\(t,ib) = e)‘tf(t,:n),
and denote

Ay =A+ AL

We have, since A* = —A,
Y\ = Axyx — BB*yx + fo  in (0,7),
(3.21) Th= A+ i (0,7),
ya(0) = »(0), 7 (0) = 5(0).
Set, for t = 0,
Zx(t) = ya(t) — Qua(?).
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We formally have

d N o
%Z)\ = Axyx — BB*yx + fo + QAYY) — Qf

= Ax(yx — QUr) + ArQUn — BB s + QALGx — Qf»,
which yields, by (LI9]),
d

(3.22) 3= ANZy+ fr— Qfh.

We now give the proof of [3.22)) using the results in [37]. Let 7 > 0, ¢, € L?(0,L) and let
o€ O([0,7]; L?(0, L)) be the unique weak solution of the system

{ ¢ = —A%pin (0,7),
(1) = pr

(see, e.g., [37, Section 3] for the definition of the weak solutions for which ¢ satisfies).
Applying [37, Lemma 3.1] for Ay with ¢t = 7, we derive from [B3.2)) and ([B:23)) that
(3.24)

) o i20.) — Wr(0), 0012 0.0) = — fo (B (s), Bro(s)yds + jOT<fA<s, ) (s, ) ds.

(3.23)

Using (I.I9) and applying [37, Lemma 4.1] for Ay, yA(7 — ) and ¢(7 — ), we obtain
(325) (QuA(0), ¥(0)) = <QUA(T), ¢(7))

- | B B = s — | @Rlr—splr = )ds
Summing (F2) and (325), we deduce from @F2I) and (323) that
D)9 = A0 = [ (o) = Qo). ol .
This yields
()27 = 20). 7 o) = [ <o) = QR ot s

Since ¢(7) € H is arbitrary, we obtain

T

Za(r) = AZ,(0) + f eI (fy(5,) — QFa(s, ). ds

0
which implies ([B:22) (see also [37, Section 3]).
Note that
r=Qf =y — Qe = Zaya-
Assertion ([B.3) follows from (3.22]) for e sufficiently small. The proof is complete. O

In the proof of Proposition B.1], we used the following simple interpolation inequality.

Lemma 3.1. Let L > 0. We have

1/2 1/2 .
[l o0y < 1l a0 1) 1€ o0,y for @ € H(0, L) with ¢(0) = 0.
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Proof. The result is just a consequence of the fact, for = € [0, L],

T

w%m—w%m—wﬂm—zjqﬂ@w@@
0

and the Holder inequality. O
We next state and prove the finite-time stabilization result in the trajectory sense.

Proposition 3.2. Let L¢ N and T > 0. Let (t,) be an increasing sequence that converges to T
with tg = 0 and let (A\,) < Ry be an increasing sequence. Set so = 0 and s, = Zz;é Me(tes1 — tr)
forn = 1. There exists a constant v > 1 such that, if for large n,

(3.26) (o1 —t)An = A3 and  Moyi(tnso —tns1) < (1+ 1) An(tns1 — tn),
and
. Sn

n—-+0o0
n+ A

then there exists eg > 0 such that for all yo € L*(0,L) with |[yo|r2(0,) < €0, there exists a
unique pair (y,7) be such that y € X1 and 3§ € C([tn, tny1); L?(0, L)) A L2((tn, tny1); HY(0, L)), for
t, <t <tpi1 andn =0, and, for n =0, it holds

Yt + Yo + Yzzz + YYz = 0 in (tn, tni1),
Ut + U + Yuaw + 20 + Jyp = 0 in (tns tps1),
(3.28) y(,0) =y(, L) = 0,4:(, L) = y=(-,0) = =G (-, L) in (tn,tn+1),
¥(,0) =9(,L) = 0,92(-, L) — §(-,0) =0 n (tntn1),
Y(tn, ) = y(tn, o), Yltn, o) = Qplyltn, ) in (0, L),

where Qn = Q(\,) defined by (LIT) with A = \,,. Moreover, we have, for t,—1 <t < t, and for

n=1,
\L/3
ly(t, 20,1 ") |yoll£2(0,L)-

for some positive constant C' independent of n and yo. Consequently, it holds
y(t,-) — 0 in L*(0,L) ast — T_.

< efsn71+0(n+

Remark 3.1. There are sequences (t,) and ()\,,) which satisfy the conditions given in the above
proposition, for example, t, = T — T/n? and ), = n® for large n.

Proof. Applying Proposition B.1] and Lemmas 23] and 2.4] we have

_ _ 1/3
(3.29) ly(tn, )20,y < e A1 Un=in PO |y (4, 1) 20,1y for > 1.
It follows that, for v sufficiently large,
(3.30) ly(tn, Mirz,2) < €yl 20,1 for n > 1.

The conclusion now follows from Proposition 3.1l

It is worth noting that (3.26]) assure the existence of (y, §) by applying Proposition B.Ilin the time
interval (¢,,,t,+1) for all n > 1 (after a translation of time) since the condition (B.]) corresponding
to the time interval (¢,,t,41), i.€.,

4 J— J—
O+ 80 =00) (1QEy (1, Yo,z + yltns 2oy ) < 2

is ensured if the following condition holds, for large n,

1/3

An(tn+1—tn)+ Oy Hy(tnu ')HLZ(O,L) SE

4
es



16 H.-M. NGUYEN
if e¢ is sufficiently small. This holds by (:26) and ([3.29) if  is sufficiently large. O

4. DYNAMIC FEEDBACK FOR THE KDV SYSTEM

This section is devoted to the proof of Theorem and its finite-time stabilization version
Proposition The key point of the analysis of this section is the following result which not only
implies Theorem but also is the key ingredient of the proof of Proposition

Proposition 4.1. Let L¢ N, 0 <T < Ty, A > X >0, \y >0, and ¢ > 0, and let Q = Q(\) be
defined by (LI6). Assume that

(4.1) A1 > (2 + o)\
There exists € > 0 depending only on L, Ty, Mo, and co such that for all yo, 7o € L?(0, L) with
(4.2) XA TIQ7R (ol 20,0y + ol z20.) ) < =
then there exists a unique weak solution (y,y) € Xp x Xp of the following system
Yt + Yo + Yzzo + Yyz = 0 in (0,T) x (0, L),
e+ Uo + Yowa + 20 = QN (y — QY) + Jyo =0 in (0,T) x (0, L),
(4.3) q v(,0) =y(, L) =0, yx( L) = yu(+0) = =3u(-,L) in (0,7),
y(,0) =g(-, L) = 0,4 (-, L) = ¥a(+0) = 0 in (0,T),
( y(0,-) = o, ¥(0,-) = o in (0, L).
Moreover, it holds
(4.4) 1l x7 + 17 < CXQTH (190, ) 20,2y + 170, ) 22(0.1))

and

(45) (8, 20,0+ 15 2. < CIRQ™ e (w0, ) L2(0.0) + 170, ) 22(0,1)) for t € [0, T,
where C' is a positive constant independent of A, A1, T, and (yo,3o)-

Proof. Concerning the well-posedness and the stability of (y,y), we only give the proof of (44
and (LI). The well-posedness can be proceeded by a standard fixed point argument and omitted.

Set, for t € [0,T] and = € (0, L), with f = —yy, and f: — Yz,

(46) y)\(tv $) = e)\ty(tv $)7 g)\(t7 l‘) = e)\tg(t7 l‘),
(47) f)\(tv$) = e)\tf(tv$)7 and f)\(tv$) = e)\tf(tv$)7
and denote

Ay = A+ A
We have

Y\ =A\yx — BB*j + fx  in (0,1),
(48) A= —A5+ Q7 (a — Qi) + A i (0,7),
ya(0) = y(0), A (0) = 5(0).
Set, for t = 0,
Zx\(t) = ya(t) — QUA(D).
As in the proof of ([8:22]) in the proof of Proposition B}, we have
d

(4.9) %Z,\ = A\Zy — M Zx+ fr — Qh.
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We derive from (£.9) that, since A is skew-adjoint,

(4.10) 1Zx(, )20,y < M 7, (0, Mrz20,) + CeTMHN f — Qf”Ll((O,t);LQ(O,L))a
which yields

(4.11) y(t,) — Qu(t, 200y < e M y(0,) — Q0. ) 201y + Ce ™ |f — QF |1 ((0.:L2(0.1))-

Here and in what follows in this proof, C is a positive constant independent of A, ¢, T', and (yo, Jo)-
Applying Lemma 2.1] to y and Lemma 2.2] to 7, we have

(4.12) Iyl x, < C(HyOHL2(O,L) + 192 L)l 20,1y + ||yyz||L1((0,T);L2(0,L)))

and

(4.13)  [2(, L) 20,7y + 19] %7

< C<||2~70||L2(0,T) + QM Il — @il Lio.1).22(0.2)) + >\||@7ym||L1((0,T);L2(0,L)))-
Combining (@IT)), (EIZ), and @I3) yield, since [Q~!| = C by Lemma 23]

(4.14)  ylxr + [9lxz + 192(, L)l 200,m)

<cAlR7Y| (HyOHLz(o,L) + 190l 20,y + vyl Lrco,m);20,0)) + H@yxHLl((o,T);Lz(o,L)))~

Since

(4.15) lyyzlzromyrzon) < Clyli,  and |5yl rior)z20,0)) < Cllxe ¥l xzs
it follows from (4I4]) that

@16)  lulxe + Wlxr + 15l Dl oy < CNQ (Iool 2oy + il o
provided that

(4.17) M@~ ol 20,2y + 170l z20.1)) < .

for some small positive constant « depending only on Ty, L, and Ag; this condition is assumed
from later on.
Since

V=AY -2+ MQ Ty - Q)+ in (0,7),

it follows that
(4.18) Yor = —Agor + 7 in (0,7),
where, for t € [0,7T] and for x € (0, L),

gon(t,x) = €2>\t37(t,l‘) and g(t,x) = Alez)‘thl(y(t,:E) — Qg(t,x)) + €2>\tf(t,$).
We thus obtain, since A is skew-adjoint,
(4.19) 1G22 () 220,2) < 192000, ) £2(0,) + Clldl L1 ((0,6):22(0,L)) -
Combining (£I1)) and (£19) yields

77t 20,0y < € (150, 20,0y + 1@ o = Qfol 20,1y

+ Q7Y (HfHLl((o,T);LZ(o,L)) + HJ?HLl((O,T);LQ(O,L))) + e2>\tH]?HLl((O,T);LQ(O,L)))a
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which implies, since Q71| = C by Lemma 23]
(4.20) [yt )20,y < 0672/“”@71”(HyOHLZ(o,L) + HgOHLQ(O,L))

+ ClQM (£l 2 0.11:2200.0)) + I F 1 (0.1):22(0.2))) -
Since ||Q| < C' by Lemma 2.3 we derive from (£11]), (416), and (£20) that
(4.21) |y, )20,y + 13 )z20,0) < 0672/“”@71”(Hy(O)HLZ(O,L) +17(0)] 22(0,1))

+ CNQTH (19(0) 720,y + 15(O)Z20,1))-
We now improve (£21I]). From (ZI8]), we obtain

|92 (2, )HL2(0 L)

< 22200, ) 220,y + ClA Q™ (y — QD) L1 (0 £2(0,1)) + Cle™ Tyl (0,0:22(0,0))
which yields, by (411l and (4.16]), and Lemma [2.3]

(422) [or(t ) z20,0) < 152000, ) |22 0,y + CIQ™ 1y (0,-) — QF(O0. ) 20,1

2
+CNQH? (Hl/0||L2(o,T) + HyoHL2(0,T)) + Cle** Pyl 11 ((0.0):22 (0.1 -
We have, by Lemma [3.1]

t L 1/2
(4.23) f <f |§(s,x)yx(s,a:)ez)‘5|2da;> ds
0o “Jo
¢
si~ 1/2 ~ 1/2
< [ Mot M 965200
Using (4.21]), we derive from (4.23]) that

f j 7o 2)pa(s, ) ) as < f (21 (1O 20 + TO200.)

_ - N2 .
+ XIQM I (19(0) 20,y + 15(0) | z20.6))*) 155, ) ot 1 195, 2201y s
This yields, by (4.I6]),
¢ L~ 2Xs|2 1/2 L Xey—12 2 ~ 2
(4.24) 0( w5, ) dz) " ds < CAFM QTP (Iy(0)] 22,0, + 1FO)20,0))

3 _ 5 !
+ O PNQT 0,00y (190l 2202y + 10201 )-

Since yox(t, z) = M (t, z), we derive from [@22) and [@24) that
(4.25) |5t 202y < € M IToll 20,0y + Ce Q7 y(0,-) — Qu(0, )| 20,1

92\ _ ~ ERSY — ~
+ 217 (ol2eo.my + I0l2200.7) ) + CAE QT P o132 0,7) + 0132 0,1)

2 ~—1)3 3 ~ 15
+ OO Q7 (ol F2(0ry + 15017207y )-
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We thus reach from (£25]) that

(4.26) 19(t, M2 0,0) < CHQH_le_zM<||370||L2(0,L) + Hy0HL2(O,L))7
as long as

4 _ ~
(4.27) XPTIQ 2 ([0l 2o + ol 2ry ) < o

The conclusion now follows from (£I1)) and (£.26]), and (£.I6) after noting (AI7) and (A.27).
The proof is complete. O

Proposition 4.2. Let T > 0 and ¢ > 0. Let (t,) be an increasing sequence that converges to T
with to = 0 and let ()\ )s (An) © Ry be increasing sequences. Assume that i p = (2 + ¢)\,. Set
so =0 and s, =Yg )\k(tk+1 —tx) for n = 1. There exists a positive constant vy such that, if for
large n,

(4.28) (tns1 —tn)dn = VA3 and  Ausi(tnso — tnst) < (14 1/9)An(tns1 — tn),
and
S
(4.29) lim t— =+,
"+ )‘711/31

then there exists eg > 0 such that for all yo, %o € L*(0, L) with |yo|r2(0,1), [Tol r2(0,1) < €0, there
exists a unique pair (y,y) € X x Xp such that, for t, <t <t,+1 andn =0,

Yt + Yo + Yzzz T YUY =0 in (tmtn+l)7
gt + g:c + gLL‘LL‘LL‘ + +2)‘n§ - )‘1 nQil(y - Qng) + gyx =01n (tm tn—i—l)a

(4.50) Y0 = 4 L) = 0,4, L) — 1, 0) = ~Gal, L) i (tn,ts),
37("0) = :'7('7[/) = Ovyac('7L) - gm('70) =01n (tn7tn+1)7

and

(4'31) y(o’ ) = Yo, 37(0’ ) = :'70 in (07 L)7

where Qn, = Q(N\,) defined by (LIT) with A = \,. Moreover, we have, for t,—1 <t < t, and for
n=1,

Iyt 2.0y < e yol r2(0.1)-

for some positive constant C independent of n, in particular,
y(t,-) — 0 in L*(0,L) ast — T_.

Remark 4.1. There are sequences (), (An), (A1,,) which satisfy the conditions given in the
above proposition, for example, t,, = T — T//n?, A, = n®, and A, = 2, for large n.

Proof. Applying Proposition [4.1] and Lemmas 2.3] and 2.4, we have
(4.32) 9ty M izo,n) < €1 n=tn D+ CONED e 1 2o ) for m > 1.
It follows that

(4.33) ly(tn: 2.0y < € ol 20,2y for n > 1.

The conclusion now follows from Proposition [3.11



20 H.-M. NGUYEN

It is worth noting that (428]) ensure the existence of (y,7) by applying Proposition 1] in
the time interval (t,,t,+1) for all n > 1 (after a translation of time) since the condition (4.2])
corresponding to the time interval (¢,,t,+1), i.€.,

4 _ _ ~
Azeatn(tne1=in)y) HQn1H2<Hy(t7l7 MNz2o,n) + 19, ’)HL%O,L)) Sé6
is ensured if the following condition holds, for large n,

1/3
et tnst =t ¥ONT | o0 ) < e

if ¢ is sufficiently small. This holds by (28] and (4.32) O
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