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RAPID AND FINITE-TIME BOUNDARY STABILIZATION OF A KDV

SYSTEM

HOAI-MINH NGUYEN

Abstract. We construct a static feedback control in a trajectory sense and a dynamic feedback
control to obtain the local rapid boundary stabilization of a KdV system using Gramian operators.
We also construct a time-varying feedback control in the trajectory sense and a time varying
dynamic feedback control to reach the local finite-time boundary stabilization for the same system.
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1. Introduction

This paper is devoted to studying the local rapid boundary stabilization and the local finite-time
boundary stabilization of a KdV system. More precisely, we investigate the stabilization of the
following control system, for L ą 0,

(1.1)

$
’’&
’’%

yt ` yx ` yxxx ` yyx “ 0 in p0,`8q ˆ p0, Lq,
yp¨, Lq “ yp¨, 0q “ 0, yxp¨, Lq ´ yxp¨, 0q “ u in p0,`8q,

yp0, ¨q “ y0p¨q in p0, Lq,
where y0 P L2p0, Lq is the initial state, u P L2

locr0,`8q is a control, and ypt, ¨q P L2p0, Lq is the
state at time t.

The controllability of the linearized system of (1.1) depends strongly on L. It is known from the
work of Cerpa and Crépeau [5] that there is a discrete set of lengths N for which the linearized
system is not exactly controllable if L P N and the linearized system is exactly controllable
otherwise. Concerning system (1.1), the rapid stabilization of its linearized system for non-critical
lengths has been obtained by Cerpa and Crépeau [5]. They used the Gramian operators and
the analysis involves the optimal control theory as an application of the result of Urquiza [47]
(see also [23]). The feedback is thus understood in a weak sense, see, e.g., [37, 46, 48]. In a very
related setting where one controls the Neumann on the right, i.e., one controls yxp¨, Lq instead of

1
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yxp¨, Lq ´ yxp¨, 0q, the local rapid stabilization of the nonlinear system for non-critical lengths was
obtained by Coron and Lü [12] using a technique related to the backstepping method. To our
knowledge, the extension to the nonlinear setting using Gramian operators is open, and the local
stabilization in finite time is previously out of reach. The goal of this work is to give an answer
to this problem. More precisely, dealing with non-critical lengths, we construct a feedback control
in a trajectory sense, a notion introduced in [37], and a dynamic feedback control to obtain the
local rapid stabilization of (1.1) using Gramian operators (see Theorem 1.1 and Theorem 1.2). We
also construct a time-varying feedback control in the trajectory sense and a time-varying dynamic
feedback control to obtain the local finite-time stabilization of (1.1). The ideas in the study of the
rapid stabilization are to modify the approach proposed in [37] to deal with the non-linear term,
which cannot be handled by directly using the proposal given there. Concerning the finite-time
stabilization, we additionally combine the ideas in [37] with the ones proposed by Coron and the
author in [14] in the spirit of [36]. This thus involves the control cost of the linearized system in
small time.

1.1. Statement of the main results on the rapid stabilization. DefineA : DpAq Ă L2p0, Lq Ñ
L2p0, Lq as follows

DpAq “
!
w P H3p0, Lq;wpLq “ wp0q “ 0, wxpLq “ wxp0q

)
,

and

(1.2) Aw “ ´w3 ´ w for w P DpAq.

One can check that A is densely defined and closed in the Hilbert space L2p0, Lq equipped with
the standard scalar product. Moreover,

(1.3) A is skew-adjoint, i.e., DpAq “ DpA˚q and A˚ “ ´A,

where A˚ denotes the adjoint of A.
Let B : R Ñ DpA˚q1, where DpA˚q1 is the dual space of DpA˚q, be defined by

(1.4) xBu,wyDpA˚q1,DpA˚q “ uwxpLq.

Then B˚ : DpA˚q “ DpAq Ñ R is given as follows, for w P DpAq,

(1.5) B˚w “ wxpLq.

Then the linearized system of (1.1) (around the zero state) can be written under the form

(1.6)

#
y1 “ Ay `Bu in p0,`8q,
yp0q “ y0

(see, e.g., [37, Section 3] for the meaning of (1.6)). One can check that

(1.7) the control operator B is an admissible control operator for all L ą 0 and T ą 0,

i.e., for some positive constant C “ CpT,Lq,

(1.8)

ż T

0
|B˚esA

˚
z|2 ds ď C

ż L

0
|zpxq|2 dx for all z P L2p0, Lq,

since (see, e.g., Lemma 2.1)

(1.9) }ξxpL, ¨q}L2p0,T q ď C}ξ0}L2p0,Lq for all ξ0 P L2p0, Lq,
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where ξ P XT is the unique solution of the system

(1.10)

$
’’&
’’%

ξt ` ξx ` ξxxx “ 0 in p0, T q ˆ p0, Lq,
ξp¨, Lq “ ξp¨, 0q “ 0, ξxp¨, Lq ´ ξxp¨, 0q “ 0 in p0, T q,

ξp0, ¨q “ ξ0p¨q in p0, Lq.
Here and in what follows, we denote

(1.11) XT “ Cpr0, T s;L2p0, Lqq X L2pp0, T q;H1p0, Lqq for T ą 0,

and

(1.12) X8 “ Cpr0,`8q;L2p0, Lqq X L2
locpr0,`8q;H1p0, Lqq.

As usual, we denote
`
etA

˚ ˘
tě0

the semigroup generated by A˚.

The controllability of the linearized system of (1.1) depends strongly on L. Denote

(1.13) N “
#
L “ 2π

c
k2 ` kl ` l2

3
; k, l P N`

+
.

It is known that the linearized system of (1.1) given by

(1.14)

$
’’&
’’%

yt ` yx ` yxxx “ 0 in p0, T q ˆ p0, Lq,
yp¨, Lq “ yp¨, 0q “ 0, yxp¨, Lq ´ yxp¨, 0q “ up¨q in p0, T q,

yp0, ¨q “ y0p¨q in p0, Lq,
is exactly controllable for all (or for some) T ą 0 if and only if L R N , a result due to Cerpa and
Crépeau [5]. This is equivalent to the fact that for all (or for some) T ą 0, it holds, for some
positive constant C,

(1.15)

ż T

0
|ξxpt, Lq|2 dt ě C}z0}L2p0,Lq,

for all ξ0 P L2p0, Lq where ξ P XT is the unique solution of system (1.10) if and only if L R N . A
very closely related work was previously obtained by Rosier [39].

We are ready to introduce the Gramian operators used in our feedback controls. Given λ ą 0,
define Q “ Qpλq : L2p0, Lq Ñ L2p0, Lq as follows

(1.16) xQz1, z2yL2p0,Lq “
ż 8

0
e´2λsxB˚e´sA˚

z1, B
˚e´sA˚

z2yR ds for z1, z2 P L2p0, Lq.

Here and in what follows, given a Hilbert space H, we denote x¨, ¨yH its scalar product and LpHq
the space of all continuous linear applications from H to H equipped with the standard norm,
which is denoted by } ¨ }LpHq.

It is clear that Q is symmetric. It is worth noting that Q is invertible if L R N since the
linearized system is exactly controllable in small time. An equivalent way to define Q is given by

(1.17) xQz1, z2yL2p0,Lq “
ż 8

0
e´2λsξ1,xps, Lqξ2,xps, Lq ds for z1, z2 P L2p0, Lq,

where ξj P X8 (with j “ 1, 2) is the unique solution of the system

(1.18)

$
’’&
’’%

ξj,t ` ξj,x ` ξj,xxx “ 0 in p0,`8q ˆ p0, Lq,
ξjp¨, Lq “ ξjp¨, 0q “ 0, ξj,xp¨, Lq ´ ξj,xp¨, 0q “ 0 in p0,`8q,

ξjp0, ¨q “ zj in p0, Lq.
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One can check, see, e.g., [37], that Q satisfies the following important property:

(1.19) AQ `QA˚ ´BB˚ ` 2λQ “ 0,

where (1.19) is understood in the following sense

(1.20) xQz1, A˚z2yL2p0,Lq ` xA˚z1, Qz2yL2p0,Lq

´ xB˚z1, B
˚z2yR ` 2λxQz1, z2yL2p0,Lq “ 0 @ z1, z2 P DpA˚q.

We are ready to state the rapid stabilization of (1.1) in the trajectory sense.

Theorem 1.1. Assume that L R N , and let λ ą 0 and T0 ą 0. Define Q “ Qpλq by (1.16). There

exists ε ą 0 such that for y0 P L2p0, Lq with }y0}L2p0,Lq ď ε, there exists a unique weak solution

py, ryq P X8 ˆX8 of the system

(1.21)

$
’’’’’’’&
’’’’’’’%

yt ` yx ` yxxx ` yyx “ 0 in p0,`8q ˆ p0, Lq,
ryt ` ryx ` ryxxx ` 2λry ` ryyx “ 0 in p0,`8q ˆ p0, Lq,

yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ ´ryxp¨, Lq in p0,`8q,
ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in p0,`8q,

yp0q “ y0, ryp0q “ ry0 :“ Q´1y0 in p0, Lq.
Moreover, we have

(1.22) rypt, ¨q “ Q´1ypt, ¨q for t ě 0,

(1.23) }ypt, ¨q}L2p0,Lq ď 2e´2λt}y0}L2p0,Lq for t P r0, T0s,
and

(1.24) }y}XT0
ď C}y0}L2p0,Lq

for some positive constant C depending only on L and T0. As a consequence of (1.23), for every

0 ă γ ă λ, there exists ε ą 0 such that for every y0 P L2p0, Lq with }y0}L2p0,Lq ď ε, it holds

(1.25) }ypt, ¨q}L2p0,Lq ď 2e´2γt}y0}L2p0,Lq for t P r0,`8q.

The proof of Theorem 1.1 is given in Section 3.

Remark 1.1. The definition of the weak solutions in Theorem 1.1 is given in Definition 2.2 in
Section 2.

Remark 1.2. Some comments on Theorem 1.1 are in orders. Since rypt, ¨q “ Q´1ypt, ¨q for t ě 0
by (1.22), the feedback of (1.1) can be viewed as

´
´
Q´1ypt, ¨q

¯
x
.

We only consider this feedback as a static one in a weak sense, the trajectory sense as used in [37],

since for y P L2p0, Lq, it is not clear how to give the sense to the action ´
´
Q´1ypt, ¨q

¯
x
. Note that

our feedback controls given by ´ryxpt, ¨q via (1.22) are well-defined in the sense of Theorem 1.1 for
all initial data y0 P L2p0, Lq. This is different from the one given by the optimal control theory
used in [23,47]. See [37] for more comments on this aspect.

We next deal with the dynamic feedback control. In this direction, we prove the following result.
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Theorem 1.2. Let L R N , λ ą λ0 ą 0, λ1 ą 0, c0 ą 0, and T0 ą 0, and let Q “ Qpλq be defined

by (1.16). Assume that

(1.26) λ1 ´ p2 ` c0qλ ą 0.

There exists ε ą 0 such that for y0, ry0 P L2p0, Lq with }y0}L2p0,Lq, }ry0}L2p0,Lq ď ε, there exists a

unique weak solution py, ryq P X8 ˆX8 of the system

(1.27)

$
’’’’’’’&
’’’’’’’%

yt ` yx ` yxxx ` yyx “ 0 in p0,`8q ˆ p0, Lq,
ryt ` ryx ` ryxxx ` 2λry ´ λ1Q

´1py ´Qryq ` ryyx “ 0 in p0,`8q ˆ p0, Lq,
yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ ´ryxp¨, Lq in p0,`8q,

ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in p0,`8q,
yp0q “ y0, ryp0q “ ry0 in p0, Lq.

Moreover,

(1.28) }y}XT0
` }ry}XT0

ď Cλ}Q´1}
`
}yp0, ¨q}L2p0,Lq ` }ryp0, ¨q}L2p0,Lq

˘

and

(1.29) }ypt, ¨q}L2p0,Lq ` }rypt, ¨q}L2p0,Lq

ď C}Q´1}e´2λt
`
}yp0, ¨q}L2p0,Lq ` }ryp0, ¨q}L2p0,Lq

˘
for t P r0, T0s,

where C is a positive constant independent of λ, λ1, t, and py0, ry0q. As a consequence of (1.29),
for every 0 ă γ ă λ, there exist ε ą 0 and C ą 0 such that for y0, ry0 P L2p0, Lq with }y0}L2p0,Lq,

}ry0}L2p0,Lq ď ε, it holds

(1.30) }ypt, ¨q}L2p0,Lq ` }rypt, ¨q}L2p0,Lq ď Ce´2γt
`
}yp0, ¨q}L2p0,Lq ` }ryp0, ¨q}L2p0,Lq

˘
for t P r0,`8q.

Here and in what follows, we denote }Q´1}LpL2p0,Lqq and }Q}LpL2p0,Lqq by }Q´1} and }Q} for
notational ease.

The proof of Theorem 1.2 is given in Section 4.

Remark 1.3. The definition of the weak solutions in Theorem 1.2 is given in Definition 2.2 in
Section 2.

Remark 1.4. System (1.21) is slightly different from the suggestions in [37]. If one closely follows
the suggestion in [37], the equation of ry in (1.21) would be

(1.31) ry1 ` ryx ` ryxxx ` 2λry ` rypQryqx “ 0 in p0,`8q ˆ p0, Lq.
This requires us to make sense of the term pQryqx, which is not clear since Q is only a continuous,
linear map from L2p0, Lq into L2p0, Lq. We bypass this issue by anticipating the conclusion and
replacing Qry by y in (1.31). The term rypQryqx becomes ryyx as given in (1.21). Similarly, System
(1.21) is also slightly different from the suggestions in [37] so that the nonlinear term can be
handled.

Remark 1.5. In Theorem 1.1 and Theorem 1.2, a new variable ry is added. Adding a new variable
is very natural and has been used a long time ago in the control theory even in finite dimensions
for linear control systems, see, e.g., [8, Section 11.3] and [44, Chapter 7]. Coron and Pradly [16]
showed that there exists a nonlinear system in finite dimensions for which the system cannot be
stabilized by static feedback controls but can be stabilized by dynamic feedback ones. Dynamic
feedback controls of finite dimensional nature, i.e., the complement system is a system of differential
equations, have been previously implemented in the infinite dimensions, see, e.g., [15,18]. Our new
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variables are of infinite dimension nature. These are previously proposed in [36,37] and are inspired
by the optimal control theory, see e.g. [19, 26,48,50] and the references therein.

We also construct a static feedback control in the trajectory sense and a dynamic feedback
control to obtain the local finite-time stabilization of the KdV. These results are given in Propo-
sition 3.2 in Section 3 and Proposition 4.2 in Section 4, respectively.

1.2. Related works. In this section, we briefly discuss the local boundary controllability and the
local stabilization of the KdV equation. We first deal with the controllability. When the controls
are yp¨, 0q, yp¨, Lq, yxp¨, Lq, Russell and Zhang [42] proved that the KdV equation is small time,
locally, exactly controllable. The case of the left Dirichlet boundary control (yp¨, Lq “ yxp¨, Lq “ 0
and yp¨, 0q is controlled) was investigated by Rosier [40] (see also [20]). We next discuss the case
where one controls the right Neumann boundary, i.e., yp¨, 0q “ yp¨, Lq “ 0 and yxp¨, Lq is a control.
Rosier [39] proved that the KdV system is small time, locally, exactly controllable provided that the
length L is not critical, i.e., L R N , where N is also given by (1.13). To tackle the control problem
for a critical length L P N , Coron and Crépeau introduced the power series expansion method [9].
The idea is to take into account the effect of the nonlinear term yyx absent in the corresponding
linearized system. Using this method, Coron and Crépeau showed [9] (see also [8, section 8.2])
that the KdV system is small time, locally, exactly controllable when the unreachable space of the
linearized system is of dimension 1. Cerpa [3] and Crépeau and Cerpa [6] developed the analysis
in [9] to prove that the KdV system is finite time, locally, exactly controllable for other critical
lengths. With Coron and Koenig [11], we proved that such a system is not small time, locally, null
controllable for a class of critical lengths. This fact is surprising when compared with known results
on internal controls for the KdV equation. It is known, see [2, 32, 38], that the KdV system with
yp¨, 0q “ yp¨, Lq “ yxp¨, Lq “ 0 is small time, locally controllable using internal controls whenever

the control region contains an arbitrary, open subset of p0, Lq. It is worth noting that without
controls, i.e. the control is taken to be zero, the decay of the solutions for critical lengths might
occur but very slow, see e.g., [7, 34, 45]. A related control setting is the one where one controls
the Dirichlet on the right. This control problem was first investigated by Glass and Guerrero [21].
To this end, in the spirit of Rosier’s work mentioned above, they introduced the corresponding
set of critical lengths, which is some how more involved. Concerning such a system, Glass and
Guerrero proved that the corresponding linearized KdV system is small time, exactly controllable
if L R ND. Developing this result, they also established that the KdV system (1.1) is small-time
locally controllable. Recently, the critical case was handled in [35]. To this end, we showed that
the KdV system with the Dirichlet controls on the right is not locally null controllable in small
time and established that the unreachable space of the linearized system is always of dimension
1. We also provide a criterion for the local controllability in finite time. In particular, we show
that there are critical lengths for which the system is not locally null controllable in small time
but locally exactly controllable in finite time. These phenomena are quite distinct in comparison
with the setting where one controls the Neumann on the right mentioned above.

The stabilization of the KdV equation has been previously studied with internal controls in
[27, 30, 31, 33, 41, 42] and the references therein. Concerning the boundary controls for the KdV
equation, in addition to the work [4,12] mentioned previously, we refer [5,17,49] and the references
therein. It is worth noting that the backstepping related technique used in [12] has been developed
to study the stabilization for other settings such as hyperbolic systems [1, 18], wave equations
[24, 43], heat equations [14, 29], Kuramoto-Sivashinsky equations [13], water waves systems [10],
Gribov operator [22]. An introduction of backstepping technique can be found in [25]. Concerning
the Neumann boundary control on the right, for a subclass of critical lengths, a time-varying
feedback was given in [17] for which an exponential decay rate holds but cannot be arbitrary. It
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is interesting to know whether or not a similar phenomenon holds for (1.1). It is completely open
to obtain the rapid stabilization of (1.1) even for time-varying feedbacks for critical lengths.

1.3. Organisation of the paper. Section 2, we establish some results used in the proof of the
stablization. The rapid stabilization is studied in Section 3 and the finite-time stabilization is
investigated in Section 4.

2. Preliminaries

In this section, we first give the meaning of the weak solutions used in Theorem 1.1 and Theo-
rem 1.2. We then state and prove several well-posedness and stability results on the KdV equation.
We finally establish the upper bound of }Q} “ }Q}LpL2p0,Lqq and }Q´1} “ }Q´1}LpL2p0,Lqq with
Q “ Qpλq being defined in (1.16), where the dependence on λ is explicit.

We begin with the following definition.

Definition 2.1. Let L ą 0, T ą 0, M P LpL2p0, Lqq, y0 P L2p0, Lq, f P L1pp0, T q;L2p0, Lqq, and
h P L2p0, T q. A function y P XT is a weak solution of the system

(2.1)

$
’’&
’’%

yt ` yx ` yxxx `My “ f in p0, T q ˆ p0, Lq,
yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ h in p0, T q,

yp0, ¨q “ y0 in p0, Lq,
if

(2.2)

ż T

0

ż L

0

´
fpt, xq ´Mypt, ¨q

¯
ϕpt, xq dx dt `

ż L

0
y0pxqϕp0, xq dx `

ż T

0
hptqϕxpt, Lq dt

“ ´
ż T

0

ż L

0
ypϕt ` ϕx ` ϕxxxq dx dt

for all ϕ P C3pr0, T s ˆ r0, Lsq with ϕpT, ¨q “ 0 and ϕp¨, 0q “ ϕp¨, Lq “ ϕxp¨, Lq ´ ϕxp¨, 0q “ 0.

Concerning the nonlinear setting involving py, ryq, we use the following definition.

Definition 2.2. Let L ą 0, T ą 0, M, ĂM P LpL2p0, Lqq, and let y0, ry0 P L2p0, Lq. A pair of

functions py, ryq P XT ˆXT is a weak solution of

(2.3)

$
’’’’’’’’&
’’’’’’’’%

yt ` yx ` yxxx ` yyx “ 0 in p0, T q ˆ p0, Lq,

ryt ` ryx ` ryxxx ` ĂMry `My ` ryyx “ 0 in p0, T q ˆ p0, Lq,
yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ ´ryxp¨, Lq in p0, T q,

ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in p0, T q,
yp0q “ y0, ryp0q “ ry0 in p0, Lq.

if, under the form of (2.1), y is the solution of the system with the internal source term f “ ´yyx
and the boundary source term h “ ´ryxp¨, Lq, and ry is the solution of the corresponding system

with the internal source term rf “ ´pĂMry `My ` ryyxq and the boundary source term 0.

Remark 2.1. These definitions are compatible with the ones given in the semi-group language,
see e.g., [37, Section 3]: the weak solutions given here are also the weak solutions given in the
semigroup terminology in [37, Section 3].

We next discuss the well-posedness and the stability of the weak solutions. The following result
is on the linear setting given in (2.1).
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Lemma 2.1. Let L ą 0, 0 ă T ă T0,M P LpL2p0, Lqq, and let y0 P L2p0, Lq, f P L1pp0, T q;L2p0, Lqq,
and h P L2p0, T q. There exists a unique weak solution z P XT of the system

(2.4)

$
’’&
’’%

yt ` yx ` yxxx `My “ f in p0, T q ˆ p0, Lq,
yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ h in p0, T q,

yp0, ¨q “ y0p¨q in p0, Lq.

Moreover,

(2.5) }y}XT
` }yxpL, ¨q}L2p0,T q ď C

´
}y0}L2p0,T q ` }f}L1pp0,T qq;L2p0,T qq ` }h}L2p0,T q

¯
,

for some positive constant C independent of f , h, y0, and T .

Proof. We begin with the case M ” 0 as follows. We first note that in the case f ” 0 and y0 ” 0,
we have, for ξ P C,

iξŷ ` ŷx ` ŷxxx “ 0 in R ˆ p0, Lq,
where

ŷpξ, xq “ 1?
2π

ż 8

0
ypt, xqe´itξ dt.

For ξ P C, let λj “ λjpξq with j “ 1, 2, 3 be the three solutions of the equation λ3 ` λ ` iξ “ 0.
Taking into account the equation of ŷ, we search for the solution of the form

(2.6) ŷpξ, ¨q “
3ÿ

j“1

aje
λjx,

where aj “ ajpξq for j “ 1, 2, 3. Using the boundary condition, we then have

ř3
j“1 aj “ 0,

ř3
j“1 aje

λjL “ 0,
ř3

j“1 ajλjpeλjL ´ 1q “ ĥ,

where

ĥpξq “ 1?
2π

ż 8

0
hptqe´itξ dt.

This implies, with the convention λj`3 “ λj, for ξ P R,

(2.7) aj “ eλj`2L ´ eλj`1L

detQ
ĥ3 for j “ 1, 2, 3,

where

Q “ Qpξq :“

¨
˝

1 1 1
eλ1L eλ2L eλ3L

λ1peλ1L ´ 1q λ2peλ2L ´ 1q λ3peλ3L ´ 1q

˛
‚.

As in the proof of [11, Lemma 4.4] or [35, Proposition 3.1], one can show that there exists a solution
y P XT satisfying (2.4) and (2.5) with M ” 0, f ” 0, and y0 ” 0. The existence of a solution
y P XT satisfying (2.4) and (2.5) with M ” 0 for a general f , y0, and h follows from [39, (4.17)].

The proof of the uniqueness in the case M ” 0 can be proceeded as in [35] (see also [8, Chapter
8]). Let y P XT be a solution with the zero data, i.e., f ” 0, y0 ” 0, and h ” 0. Fix ψ P
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C8
c

`
p0, T q ˆ p0, Lq

˘
(arbitrarily). Let ry P XT be a solution of the backward system

$
’’&
’’%

ryt ` ryx ` ryxxx “ ψ in p0, T q ˆ p0, Lq,
ryp¨, 0q “ 0, ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in p0, T q,

rypT, ¨q “ 0 in p0, Lq.
Using the construction given previously, one can assume that ry is smooth. Using the definition of
the weak solutions, we derive that

ż T

0

ż L

0
ψpt, xqypt, xq dt dx “ 0.

Since ψ P C8
c

`
p0, T q ˆ p0, Lq

˘
is arbitrary, we deduce that

y “ 0 in p0, T q ˆ p0, Lq.
The uniqueness is proved in the case M ” 0.

The proof in the general case where M is not required to be 0 follows from the case M ” 0 by
using appropriate weighted norms involving time in XT , see, e.g., [37, Section 4]. The details are
omitted. �

The following result on a specific linear setting is useful.

Lemma 2.2. Let L ą 0, 0 ă T ă T0, λ ě λ0 ą 0, and let ry0 P L2p0, Lq and f P L1pp0, T q;L2p0, Lqq.
Let ry P XT be the unique weak solution of the system

(2.8)

$
’’&
’’%

ryt ` ryx ` ryxxx ` 2λry “ rf in p0, T q ˆ p0, Lq,
ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in p0, T q,

ryp0, ¨q “ ry0 in p0, Lq.
Then

(2.9) }rypt, ¨q}L2p0,T q ď e´2λt}ryp0, ¨q}L2p0,T q ` C} rf}L1pp0,T qq;L2p0,Lqq

and

(2.10) }ry}XT
` }ryxpL, ¨q}L2p0,T q ď C

´
}ryp0, ¨q}L2p0,T q ` λ} rf}L1pp0,T qq;L2p0,Lqq

¯

for some positive constant C independent of rf , λ, and T .
Remark 2.2. The difference between Lemma 2.2 and Lemma 2.1 is the explicit dependence on
the parameter λ in Lemma 2.2. This is useful to establish the finite-time stabilization result.

Proof. Set

ry2λpt, xq “ rypt, xqe2λt in p0, T q ˆ p0, Lq.
We have

(2.11)

$
’’&
’’%

ry2λ,t ` ry2λ,x ` ry2λ,xxx “ e2λt rf in p0, T q ˆ p0, Lq,
ry2λp¨, 0q “ ry2λp¨, Lq “ 0, ry2λ,xp¨, Lq ´ ry2λ,xp¨, 0q “ 0 in p0, T q,

ry2λp0, ¨q “ ry0 in p0, Lq.

By the linearity of the system, it suffices to consider two cases rf ” 0 and ry0 ” 0 separately.

We first consider the case rf ” 0. Applying Lemma 2.1 to ry2λ, we obtain

(2.12) }ry2λ}XT
` }ry2λ,xpL, ¨q}L2p0,T q ď C}ry2λp0, ¨q}L2p0,T q,
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and, since A is skew-adjoint,

(2.13) }ry2λpt, ¨q}L2p0,T q “ }ry2λp0, ¨q}L2p0,T q.

We derive from (2.12) that

(2.14) }rypt, ¨q}L2p0,T q “ e´2λt}ryp0, ¨q}L2p0,T q.

Considering the system of ry and viewing 2λry as a source term, after applying Lemma 2.1 to ry, we
obtain

(2.15) }ry}XT
` }ryxpL, ¨q}L2p0,T q ď C}ryp0, ¨q}L2p0,T q.

We next consider the case ry0 ” 0. Applying Lemma 2.1, we derive from (2.11) that, for
0 ă t ď T ,

}ry2λ}Xt ` }ry2λ,xpL, ¨q}L2p0,tq ď C}fe2λs}L1pp0,tqq;L2p0,Lqq.

This implies

(2.16) }rypt, ¨q}L2p0,Lq ď C}f}L1pp0,T qq;L2p0,Lqq.

Considering the system of ry and viewing rf ´ 2λry as a source, after applying Lemma 2.1 to ry, we
obtain

(2.17) }ry}XT
` }ryxpL, ¨q}L2p0,T q ď Cλ}f}L1pp0,T qq;L2p0,Lqq.

The conclusions in the case y0 ” 0 follow from (2.16) and (2.17).

The proof is complete. �

We next derive an upper bound and a lower bound for }Q} with Q “ Qpλq for which the
dependence on λ is explicit. We begin with a result on an upper bound for }Q}, which is a
consequence of the admissibility of the control (1.8).

Lemma 2.3. Let L R N , λ ě λ0 ą 0 and let Q “ Qpλq be defined by (1.16). There exists a

positive constant C independent of λ such that

(2.18) xQz, zyL2p0,Lq ď C}z}2L2p0,Lq for all z P L2p0, Lq.

Proof. We have

xQz, zyL2p0,Lq “
ż 8

0
e´2λs|B˚e´sA˚

z|2 ds “
ÿ

ně0

ż n`1

n

e´2λs|B˚e´sA˚
z|2 ds

(1.3)
ď

ÿ

ně0

e´2λn

ż n`1

n

|B˚esAz|2 ds
(1.9)
ď

ÿ

ně0

Ce´2λn}enAz}2L2p0,Lq.

The conclusion follows since }enAz}L2p0,Lq “ }z}L2p0,Lq thanks to the fact that A is skew-adjoint. �

Remark 2.3. As a consequence of (2.18), we derive that

}Qpλq} ď C for λ ě λ0,

for some positive constant C independent of λ.

We next derive a lower bound for the norm }Qpλq} when L R N , which implies an upper bound
for }Qpλq´1}. To this end, we first state an observability inequality, which is a consequence of a
result of Lissy on the cost of controls for small time of the KdV equation [28, Theorem 3.4].
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Proposition 2.1. [28, Theorem 3.4] Let L R N and 0 ă T ă T0. We have, for some positive

constant C independent of T ,
ż T

0
|B˚e´sA˚

z|2 ě e
´ C

T1{2 }z}2L2p0,Lq for all z P L2p0, Lq.

Using Proposition 2.1, we can prove the following result.

Lemma 2.4. Let L R N , λ ě λ0 ą 0 and let Q “ Qpλq be defined by (1.16). There exists a

positive constant C independent of λ such that

(2.19) xQz, zyL2p0,Lq ě e´Cλ1{3}z}2L2p0,Lq for all z P L2p0, Lq.
Proof. We have

xQz, zyL2p0,Lq “
ż 8

0
e´2λs|B˚e´sA˚

z|2 ds ě
ż 2λ´2{3

λ´2{3

e´2λs|B˚e´sA˚
z|2 ds

ě λ´2{3e´4λ1{3

ż 2λ´2{3

λ´2{3

|B˚e´sA˚
z|2

Proposition 2.1
ě λ´2{3e´4λ1{3

e´Cλ1{3}e´λ´2{3A˚
z}L2p0,Lq.

This implies, since A is skew-adjoint,

xQz, zyL2p0,Lq ě e´Cλ1{3}z}L2p0,Lq,

which is the conclusion. �

Remark 2.4. As a consequence of (2.19), we derive that

}Qpλq´1} ď eCλ1{3
for λ ě λ0,

for some positive constant C independent of λ.

3. Static feedback in the trajectory sense for the KdV system

This section is devoted to the proof of Theorem 1.1 and its finite-time stabilization version
Proposition 3.2. The key point of the analysis of this section is the following result which in par-
ticularly implies Theorem 1.1. This result is also the key ingredient of the proof of Proposition 3.2
below on the local finite-time stabilization.

Proposition 3.1. Let L R N , 0 ă T ď T0, and λ ě λ0 ą 0, and let Q “ Qpλq be defined by

(1.16). There exists ε ą 0 depending only on L, T0, and λ0 such that for all y0 P L2p0, Lq if

(3.1) pλ` e
4

3
λT q

´
}Q´1y0}L2p0,Lq ` }y0}L2p0,Lq

¯
ď ε,

then there exists a unique weak solution py, ryq P XT ˆXT of the following system

(3.2)

$
’’’’’’’&
’’’’’’’%

yt ` yx ` yxxx ` yyx “ 0 in p0, T q,
ryt ` ryx ` ryxxx ` 2λry ` ryyx “ 0 in p0, T q,

yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ ´ryxp¨, Lq in p0, T q,
ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in p0, T q,

yp0q “ y0, ryp0q “ ry0 :“ Q´1y0.

Moreover, we have

(3.3) ypt, ¨q “ Qrypt, ¨q for t P r0, T s,

(3.4) }ryxp¨, Lq}L2p0,T q ` }y}XT
` }ry}XT

ď C
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯
,
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and

(3.5) }rypt, ¨q}L2p0,Lq ď 2e´2λt
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯
for t P r0, T s.

Proof. Concerning the well-posedness and the stability of py, ryq, we only give the proof of (3.4) and
(3.5). The well-posedness can be proceeded by a standard fixed point argument, which involves
tha analysis used in the proof of (3.4) and (3.5), and omitted. Applying Lemma 2.1 to y and
Lemma 2.2 to ry, we have

(3.6) }y}XT
ď C

´
}y0}L2p0,Lq ` }ryxp¨, Lq}L2p0,T q ` }yyx}L1pp0,T q;L2p0,Lqq

¯

and

(3.7) }ryxp¨, Lq}L2p0,T q ` }ry}XT
ď C

´
}ry0}L2p0,T q ` λ}ryyx}L1pp0,T q;L2p0,Lqq

¯
.

Here and in what follows, C denotes a positive constant depending only on T0, L, and λ0.
Combining (3.6) and (3.7) yields

(3.8) }y}XT
` }ry}XT

` }ryxp¨, Lq}L2p0,T q

ď C
´

}y0}L2p0,Lq ` }ry0}L2p0,Lq ` }yyx}L1pp0,T q;L2p0,Lqq ` λ}ryyx}L1pp0,T q;L2p0,Lqq

¯
.

Since
}yyx}L1pp0,T q;L2p0,Lqq ď C}y}2XT

and }ryyx}L1pp0,T q;L2p0,Lqq ď C}ry}XT
}y}XT

,

it follows from (3.8) that

(3.9) }y}XT
` }ry}XT

` }ryxp¨, Lq}L2p0,T q ď C
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯

provided that

(3.10) λp}y0}L2p0,Lq ` }ry0}L2p0,T qq ď α,

for some small positive constant α depending only on T0, L, and λ0. Condition (3.10) is assumed
from later on. Applying Lemma 2.2 to ry, we obtain

(3.11) }rypt, ¨q}L2p0,Lq ď e´2λt}ryp0, ¨q}L2p0,T q ` C}ryyx}L1pp0,T qq;L2p0,Lqq,

which yields, by (3.9),

(3.12) }rypt, ¨q}L2p0,Lq ď e´2λt}ryp0, ¨q}L2p0,T q ` C
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯2
.

We now improve (3.12). Set

ry2λpt, xq “ e2λtrypt, xq in p0, T q ˆ p0, Lq.
Then

ry2λ,t ` ry2λ,x ` ry2λ,xxx “ ´e2λtryyx in p0, T q ˆ p0, Lq.
We get, for 0 ď t ď T ,

(3.13) }ry2λpt, ¨q}L2p0,Lq ď }ry2λp0, ¨q}L2p0,Lq ` C}ryyxe2λs}L1pp0,tqq;L2p0,Lqq.

We next estimate the last term. Using the interpolation inequality given in Lemma 3.1 below,
we obtain

(3.14)

ż t

0

´ ż L

0
|ryps, xqyxps, xqe2λs|2 dx

¯1{2
ds

ď
ż t

0
e2λs}ryps, ¨q}1{2

L2p0,Lq
}ryxps, ¨q}1{2

L2p0,Lq
}yxps, ¨q}L2p0,Lq.
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Using (3.12), we derive from (3.14) that

ż t

0

´ ż L

0
|ryps, xqyxps, xqe2λs|2 dx

¯1{2
ds

ď C

ż t

0
e2λs

´
e´2λs}ryp0, ¨q}L2p0,T q ` }y0}2L2p0,T q ` }ry0}2L2p0,T q

¯1{2
}ryxps, ¨q}1{2

L2p0,Lq
}yxps, ¨q}L2p0,Lq.

This yields, by (3.9),

(3.15)

ż t

0

´ ż L

0
|ryps, xqyxps, xqe2λs|2 dx

¯1{2
ds ď Ceλt

´
}y0}L2p0,T q ` }ry0}L2p0,T q

¯2

` Ce2λt
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯5{2
.

Since y2λpt, xq “ e2λtrypt, xq, we derive from (3.13) and (3.15) that

(3.16) }rypt, ¨q}L2p0,Lq ď e´2λt}ry0}L2p0,Lq ` Ce´λt
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯2

` C
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯5{2
.

We deduce from (3.16) that

(3.17) }rypt, ¨q}L2p0,Lq ď 2e´2λt
´

}ry0}L2p0,Lq ` }y0}L2p0,Lq

¯

as long as

(3.18) e
4

3
λT

´
}ry0}L2p0,Lq ` }y0}L2p0,Lq

¯
ď α

for some positive constant α depending only on T0, L, and λ0.

Assertion (3.4) and (3.5) now follows from (3.9) and (3.17) after noting (3.10) and (3.18).

We next establish (3.3) in the spirit of [37], which gives the meaning of the feedback in the

trajectory sense. Set, for t P r0, T s and x P p0, Lq, with fpt, xq “ ´ypt, xqyxpt, xq and rfpt, xq “
´rypt, xqyxpt, xq,

(3.19) yλpt, xq “ eλtypt, xq, ryλpt, xq “ eλtrypt, xq,

(3.20) fλpt, xq “ eλtfpt, xq, and rfλpt, xq “ eλt rfpt, xq,
and denote

Aλ “ A` λI.

We have, since A˚ “ ´A,

(3.21)

$
’’&
’’%

y1
λ “ Aλyλ ´BB˚ryλ ` fλ in p0, T q,

ry1
λ “ ´A˚

λryλ ` rfλ in p0, T q,
yλp0q “ yp0q, ryλp0q “ ryp0q.

Set, for t ě 0,

Zλptq “ yλptq ´Qryλptq.
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We formally have

d

dt
Zλ “ Aλyλ ´BB˚ryλ ` fλ `QA˚

λryλ ´Q rfλ

“ Aλpyλ ´Qryλq `AλQryλ ´BB˚ryλ `QA˚
λryλ ´Q rfλ,

which yields, by (1.19),

(3.22)
d

dt
Zλ “ AλZλ ` fλ ´Q rfλ.

We now give the proof of (3.22) using the results in [37]. Let τ ą 0, ϕτ P L2p0, Lq and let
ϕ P Cpr0, τ s;L2p0, Lqq be the unique weak solution of the system

(3.23)

#
ϕ1 “ ´A˚

λϕ in p0, τq,
ϕpτq “ ϕτ

(see, e.g., [37, Section 3] for the definition of the weak solutions for which ϕ satisfies).
Applying [37, Lemma 3.1] for Aλ with t “ τ , we derive from (3.2) and (3.23) that

(3.24)

xyλpτq, ϕpτqyL2p0,Lq ´ xyλp0q, ϕp0qyL2p0,Lq “ ´
ż τ

0
xB˚ryλpsq, B˚ϕpsqy ds `

ż τ

0
xfλps, ¨q, ϕps, ¨qy ds.

Using (1.19) and applying [37, Lemma 4.1] for Aλ, ryλpτ ´ ¨q and ϕpτ ´ ¨q, we obtain

(3.25) xQryλp0q, ϕp0qy ´ xQryλpτq, ϕpτqy

“
ż τ

0
xB˚ryλpτ ´ sq, B˚ϕpτ ´ sqy ds´

ż τ

0
xQ rfλpτ ´ s, ¨q, ϕpτ ´ s, ¨qy ds.

Summing (3.24) and (3.25), we deduce from (3.21) and (3.23) that

xZλpτq, ϕpτqy ´ xZλp0q, ϕp0qy “
ż τ

0
xfλps, ¨q ´Q rfλps, ¨q, ϕps, ¨qy ds.

This yields

xZλpτq, ϕpτqy ´ xZλp0q, eτA˚
ϕpτqy “

ż τ

0
xfλps, ¨q ´Q rfλps, ¨q, epτ´sqA˚

ϕpτ, ¨qy ds.

Since ϕpτq P H is arbitrary, we obtain

Zλpτq “ eτAZλp0q `
ż τ

0
epτ´sqA

`
fλps, ¨q ´Q rfλps, ¨q

˘
, ds

which implies (3.22) (see also [37, Section 3]).
Note that

fλ ´Q rfλ “ eλtpy ´Qryqyx “ Zλyx.

Assertion (3.3) follows from (3.22) for ε sufficiently small. The proof is complete. �

In the proof of Proposition 3.1, we used the following simple interpolation inequality.

Lemma 3.1. Let L ą 0. We have

}ϕ}L8p0,Lq ď }ϕ}1{2
L2p0,Lq

}ϕ1}1{2
L2p0,Lq

for ϕ P H1p0, Lq with ϕp0q “ 0.
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Proof. The result is just a consequence of the fact, for x P r0, Ls,

ϕ2pxq “ ϕ2pxq ´ ϕ2p0q “ 2

ż x

0
ϕ1psqϕpsq ds

and the Hölder inequality. �

We next state and prove the finite-time stabilization result in the trajectory sense.

Proposition 3.2. Let L R N and T ą 0. Let ptnq be an increasing sequence that converges to T

with t0 “ 0 and let pλnq Ă R` be an increasing sequence. Set s0 “ 0 and sn “ řn´1
k“0 λkptk`1 ´ tkq

for n ě 1. There exists a constant γ ą 1 such that, if for large n,

(3.26) ptn`1 ´ tnqλn ě γλ1{3
n , and λn`1ptn`2 ´ tn`1q ď p1 ` 1{γqλnptn`1 ´ tnq,

and

(3.27) lim
nÑ`8

sn

n` λ
1{3
n`1

“ `8,

then there exists ε0 ą 0 such that for all y0 P L2p0, Lq with }y0}L2p0,Lq ď ε0, there exists a

unique pair py, ryq be such that y P XT and ry P Cprtn, tn`1q;L2p0, Lqq XL2pptn, tn`1q;H1p0, Lqq, for
tn ď t ă tn`1 and n ě 0, and, for n ě 0, it holds

(3.28)

$
’’’’’’’&
’’’’’’’%

yt ` yx ` yxxx ` yyx “ 0 in ptn, tn`1q,
ryt ` ryx ` ryxxx ` 2λry ` ryyx “ 0 in ptn, tn`1q,

yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ ´ryxp¨, Lq in ptn, tn`1q,
ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in ptn, tn`1q,
yptn, ¨q “ yptn, ¨q, ryptn, ¨q “ Q´1

n yptn, ¨q in p0, Lq,
where Qn “ Qpλnq defined by (1.17) with λ “ λn. Moreover, we have, for tn´1 ď t ď tn and for

n ě 1,

}ypt, ¨q}L2p0,Lq ď e´sn´1`Cpn`λ
1{3
n´1q}y0}L2p0,Lq.

for some positive constant C independent of n and y0. Consequently, it holds

ypt, ¨q Ñ 0 in L2p0, Lq as t Ñ T´.

Remark 3.1. There are sequences ptnq and pλnq which satisfy the conditions given in the above
proposition, for example, tn “ T ´ T {n2 and λn “ n8 for large n.

Proof. Applying Proposition 3.1 and Lemmas 2.3 and 2.4, we have

(3.29) }yptn, ¨q}L2p0,Lq ď e´2λn´1ptn´tn´1q`Cp1`λ
1{3
n´1

q}yptn´1, ¨q}L2p0,Lq for n ě 1.

It follows that, for γ sufficiently large,

(3.30) }yptn, ¨q}L2p0,Lq ď e´sn´1`Cn}y0}L2p0,Lq for n ě 1.

The conclusion now follows from Proposition 3.1.
It is worth noting that (3.26) assure the existence of py, ryq by applying Proposition 3.1 in the time

interval ptn, tn`1q for all n ě 1 (after a translation of time) since the condition (3.1) corresponding
to the time interval ptn, tn`1q, i.e.,

pλn ` e
4

3
λnptn`1´tnqq

´
}Q´1

n yptn, ¨q}L2p0,Lq ` }yptn, ¨q}L2p0,Lq

¯
ď ε,

is ensured if the following condition holds, for large n,

e
4

3
λnptn`1´tnq`Cλ

1{3
n }yptn, ¨q}L2p0,Lq ď ε.
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if ε0 is sufficiently small. This holds by (3.26) and (3.29) if γ is sufficiently large. �

4. Dynamic feedback for the KdV system

This section is devoted to the proof of Theorem 1.2 and its finite-time stabilization version
Proposition 4.2. The key point of the analysis of this section is the following result which not only
implies Theorem 1.2 but also is the key ingredient of the proof of Proposition 4.2.

Proposition 4.1. Let L R N , 0 ă T ď T0, λ ą λ0 ą 0, λ1 ą 0, and c0 ą 0, and let Q “ Qpλq be

defined by (1.16). Assume that

(4.1) λ1 ą p2 ` c0qλ.
There exists ε ą 0 depending only on L, T0, λ0, and c0 such that for all y0, ry0 P L2p0, Lq with

(4.2) λ2e
4

3
λT }Q´1}2

´
}y0}L2p0,Lq ` }ry0}L2p0,Lq

¯
ď ε,

then there exists a unique weak solution py, ryq P XT ˆXT of the following system

(4.3)

$
’’’’’’’&
’’’’’’’%

yt ` yx ` yxxx ` yyx “ 0 in p0, T q ˆ p0, Lq,
ryt ` ryx ` ryxxx ` 2λry ´ λ1Q

´1py ´Qryq ` ryyx “ 0 in p0, T q ˆ p0, Lq,
yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ ´ryxp¨, Lq in p0, T q,

ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in p0, T q,
yp0, ¨q “ y0, ryp0, ¨q “ ry0 in p0, Lq.

Moreover, it holds

(4.4) }y}XT
` }ry}XT

ď Cλ}Q´1}
`
}yp0, ¨q}L2p0,Lq ` }ryp0, ¨q}L2p0,Lq

˘

and

(4.5) }ypt, ¨q}L2p0,Lq`}rypt, ¨q}L2p0,Lq ď C}Q´1}e´2λt
`
}yp0, ¨q}L2p0,Lq`}ryp0, ¨q}L2p0,Lq

˘
for t P r0, T s,

where C is a positive constant independent of λ, λ1, T , and py0, ry0q.
Proof. Concerning the well-posedness and the stability of py, ryq, we only give the proof of (4.4)
and (4.5). The well-posedness can be proceeded by a standard fixed point argument and omitted.

Set, for t P r0, T s and x P p0, Lq, with f “ ´yyx and rf “ ´ryyx,
(4.6) yλpt, xq “ eλtypt, xq, ryλpt, xq “ eλtrypt, xq,

(4.7) fλpt, xq “ eλtfpt, xq, and rfλpt, xq “ eλt rfpt, xq,
and denote

Aλ “ A` λI.

We have

(4.8)

$
’’&
’’%

y1
λ “ Aλyλ ´BB˚ryλ ` fλ in p0, T q,

ry1
λ “ ´A˚

λryλ ` λ1Q
´1pyλ ´Qryλq ` rfλ in p0, T q,

yλp0q “ yp0q, ryλp0q “ ryp0q.
Set, for t ě 0,

Zλptq “ yλptq ´Qryλptq.
As in the proof of (3.22) in the proof of Proposition 3.1, we have

(4.9)
d

dt
Zλ “ AλZλ ´ λ1Zλ ` fλ ´Q rfλ.
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We derive from (4.9) that, since A is skew-adjoint,

(4.10) }Zλpt, ¨q}L2p0,Lq ď ep´λ1`λqt}Zλp0, ¨q}L2p0,Lq ` Cep´λ1`λqt}f ´Q rf}L1pp0,tq;L2p0,Lqq,

which yields

(4.11) }ypt, ¨q ´Qrypt, ¨q}L2p0,Lq ď e´λ1t}yp0, ¨q ´Qryp0, ¨q}L2p0,Lq ` Ce´λ1t}f ´Q rf}L1pp0,tq;L2p0,Lqq.

Here and in what follows in this proof, C is a positive constant independent of λ, t, T , and py0, ry0q.
Applying Lemma 2.1 to y and Lemma 2.2 to ry, we have

(4.12) }y}XT
ď C

´
}y0}L2p0,Lq ` }ryxp¨, Lq}L2p0,T q ` }yyx}L1pp0,T q;L2p0,Lqq

¯

and

(4.13) }ryxp¨, Lq}L2p0,T q ` }ry}XT

ď C
´

}ry0}L2p0,T q ` λλ1}Q´1}}y ´Qry}L1pp0,T q;L2p0,Lqq ` λ}ryyx}L1pp0,T q;L2p0,Lqq

¯
.

Combining (4.11), (4.12), and (4.13) yield, since }Q´1} ě C by Lemma 2.3,

(4.14) }y}XT
` }ry}XT

` }ryxp¨, Lq}L2p0,T q

ď Cλ}Q´1}
´

}y0}L2p0,Lq ` }ry0}L2p0,Lq ` }yyx}L1pp0,T q;L2p0,Lqq ` }ryyx}L1pp0,T q;L2p0,Lqq

¯
.

Since

(4.15) }yyx}L1pp0,T q;L2p0,Lqq ď C}y}2XT
and }ryyx}L1pp0,T q;L2p0,Lqq ď C}ry}XT

}y}XT
,

it follows from (4.14) that

(4.16) }y}XT
` }ry}XT

` }ryxp¨, Lq}L2p0,T q ď Cλ}Q´1}
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯

provided that

(4.17) λ}Q´1}p}y0}L2p0,Lq ` }ry0}L2p0,T qq ď α,

for some small positive constant α depending only on T0, L, and λ0; this condition is assumed
from later on.

Since

ry1 “ ´A˚ry ´ 2λry ` λ1Q
´1py ´Qryq ` rf in p0, T q,

it follows that

(4.18) ry1
2λ “ ´A˚ry2λ ` rg in p0, T q,

where, for t P r0, T s and for x P p0, Lq,
ry2λpt, xq “ e2λtrypt, xq and rgpt, xq “ λ1e

2λtQ´1
`
ypt, xq ´Qrypt, xq

˘
` e2λt rfpt, xq.

We thus obtain, since A is skew-adjoint,

(4.19) }ry2λpt, ¨q}L2p0,Lq ď }ry2λp0, ¨q}L2p0,Lq ` C}rg}L1pp0,tq;L2p0,Lqq.

Combining (4.11) and (4.19) yields

}ry2λpt, ¨q}L2p0,Lq ď C
´

}ryp0, ¨q}L2p0,Lq ` }Q´1}}y0 ´Qry0}L2p0,Lq

` }Q´1}
`
}f}L1pp0,T q;L2p0,Lqq ` } rf}L1pp0,T q;L2p0,Lqq

˘
` e2λt} rf}L1pp0,T q;L2p0,Lqq

¯
,
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which implies, since }Q´1} ě C by Lemma 2.3,

(4.20) }rypt, ¨q}L2p0,Lq ď Ce´2λt}Q´1}
`
}y0}L2p0,Lq ` }ry0}L2p0,Lq

˘

` C}Q´1}
`
}f}L1pp0,T q;L2p0,Lqq ` } rf}L1pp0,T q;L2p0,Lqq

˘
.

Since }Q} ď C by Lemma 2.3, we derive from (4.11), (4.16), and (4.20) that

(4.21) }ypt, ¨q}L2p0,Lq ` }rypt, ¨q}L2p0,Lq ď Ce´2λt}Q´1}
`
}yp0q}L2p0,Lq ` }ryp0q}L2p0,Lq

˘

`Cλ2}Q´1}3
`
}yp0q}2L2p0,Lq ` }ryp0q}2L2p0,Lq

˘
.

We now improve (4.21). From (4.18), we obtain

}ry2λpt, ¨q}L2p0,Lq

ď }ry2λp0, ¨q}L2p0,Lq ` C}λ1e2λsQ´1py ´Qryq}L1pp0,tq;L2p0,Lqq ` C}e2λsryyx}L1pp0,tq;L2p0,Lqq,

which yields, by (4.11) and (4.16), and Lemma 2.3,

(4.22) }ry2λpt, ¨q}L2p0,Lq ď }ry2λp0, ¨q}L2p0,Lq ` C}Q´1}}yp0, ¨q ´Qryp0, ¨q}L2p0,Lq

` Cλ2}Q´1}3
´

}y0}L2p0,T q ` }ry0}L2p0,T q

¯2
` C}e2λsryyx}L1pp0,tq;L2p0,Lqq.

We have, by Lemma 3.1,

(4.23)

ż t

0

´ ż L

0
|ryps, xqyxps, xqe2λs|2 dx

¯1{2
ds

ď
ż t

0
e2λs}ryps, ¨q}1{2

L2p0,Lq
}ryxps, ¨q}1{2

L2p0,Lq
}yxps, ¨q}L2p0,Lq.

Using (4.21), we derive from (4.23) that

ż t

0

´ ż L

0
|ryps, xqyxps, xqe2λs|2 dx

¯1{2
ds ď C

ż t

0
e2λs

´
e´2λs}Q´1}

`
}yp0q}L2p0,Lq ` }ryp0q}L2p0,Lq

˘

` λ2}Q´1}3
`
}yp0q}L2p0,Lq ` }ryp0q}L2p0,Lq

˘2¯1{2
}ryxps, ¨q}1{2

L2p0,Lq
}yxps, ¨q}L2p0,Lq ds.

This yields, by (4.16),

(4.24)

ż t

0

´ ż L

0
|ryps, xqyxps, xqe2λs|2 dx

¯1{2
ds ď Cλ

1

2 eλt}Q´1}2
`
}yp0q}2L2p0,Lq ` }ryp0q}2L2p0,Lq

˘

`Cλ
3

2 e2λt}Q´1}3
LpL2p0,Lqq

´
}y0}

5

2

L2p0,T q
` }ry0}

5

2

L2p0,T q

¯
.

Since y2λpt, xq “ e2λtrypt, xq, we derive from (4.22) and (4.24) that

(4.25) }rypt, ¨q}L2p0,Lq ď e´2λt}ry0}L2p0,Lq ` Ce´2λt}Q´1}}yp0, ¨q ´Qryp0, ¨q}L2p0,Lq

` e´2λtλ2}Q´1}3
´

}y0}2L2p0,T q ` }ry0}2L2p0,T q

¯
` Cλ

1

2 e´λt}Q´1}2p}y0}2L2p0,T q ` }ry0}2L2p0,T qq

` Cλ
3

2 }Q´1}3
´

}y0}
5

2

L2p0,T q
` }ry0}

5

2

L2p0,T q

¯
.
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We thus reach from (4.25) that

(4.26) }rypt, ¨q}L2p0,Lq ď C}Q}´1e´2λt
´

}ry0}L2p0,Lq ` }y0}L2p0,Lq

¯
,

as long as

(4.27) λ2e
4

3
λT }Q´1}2

´
}ry0}L2p0,Lq ` }y0}L2p0,Lq

¯
ď α.

The conclusion now follows from (4.11) and (4.26), and (4.16) after noting (4.17) and (4.27).

The proof is complete. �

Proposition 4.2. Let T ą 0 and c ą 0. Let ptnq be an increasing sequence that converges to T

with t0 “ 0 and let pλnq, pλ1,nq Ă R` be increasing sequences. Assume that λ1,n ě p2 ` cqλn. Set

s0 “ 0 and sn “ řn´1
k“0 λkptk`1 ´ tkq for n ě 1. There exists a positive constant γ such that, if for

large n,

(4.28) ptn`1 ´ tnqλn ě γλ1{3
n , and λn`1ptn`2 ´ tn`1q ď p1 ` 1{γqλnptn`1 ´ tnq,

and

(4.29) lim
nÑ`8

sn

n` λ
1{3
n`1

“ `8,

then there exists ε0 ą 0 such that for all y0, ry0 P L2p0, Lq with }y0}L2p0,Lq, }ry0}L2p0,Lq ď ε0, there

exists a unique pair py, ryq P XT ˆXT such that, for tn ď t ă tn`1 and n ě 0,

(4.30)

$
’’’’’&
’’’’’%

yt ` yx ` yxxx ` yyx “ 0 in ptn, tn`1q,
ryt ` ryx ` ryxxx ` `2λnry ´ λ1,nQ

´1
n py ´Qnryq ` ryyx “ 0 in ptn, tn`1q,

yp¨, 0q “ yp¨, Lq “ 0, yxp¨, Lq ´ yxp¨, 0q “ ´ryxp¨, Lq in ptn, tn`1q,
ryp¨, 0q “ ryp¨, Lq “ 0, ryxp¨, Lq ´ ryxp¨, 0q “ 0 in ptn, tn`1q,

and

(4.31) yp0, ¨q “ y0, ryp0, ¨q “ ry0 in p0, Lq,
where Qn “ Qpλnq defined by (1.17) with λ “ λn. Moreover, we have, for tn´1 ď t ď tn and for

n ě 1,

}ypt, ¨q}L2p0,Lq ď e´sn´1`Cn}y0}L2p0,Lq.

for some positive constant C independent of n, in particular,

ypt, ¨q Ñ 0 in L2p0, Lq as t Ñ T´.

Remark 4.1. There are sequences ptnq, pλnq, pλ1,nq which satisfy the conditions given in the
above proposition, for example, tn “ T ´ T {n2, λn “ n8, and λ1,n “ 2λn for large n.

Proof. Applying Proposition 4.1 and Lemmas 2.3 and 2.4, we have

(4.32) }yptn, ¨q}L2p0,Lq ď e´2λn´1ptn´tn´1q`Cp1`λ
1{3
n´1

q}yptn´1, ¨q}L2p0,Lq for n ě 1.

It follows that

(4.33) }yptn, ¨q}L2p0,Lq ď e´sn´1`Cn}y0}L2p0,Lq for n ě 1.

The conclusion now follows from Proposition 3.1.
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It is worth noting that (4.28) ensure the existence of py, ryq by applying Proposition 4.1 in
the time interval ptn, tn`1q for all n ě 1 (after a translation of time) since the condition (4.2)
corresponding to the time interval ptn, tn`1q, i.e.,

λ2ne
4

3
λnptn`1´tnqq}}Q´1

n }2
´

}yptn, ¨q}L2p0,Lq ` }ryptn, ¨q}L2p0,Lq

¯
ď ε,

is ensured if the following condition holds, for large n,

e
4

3
λnptn`1´tnq`Cλ

1{3
n }yptn, ¨q}L2p0,Lq ď ε.

if ε0 is sufficiently small. This holds by (4.28) and (4.32) �
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