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ON THE LIMIT LAW OF THE SUPERDIFFUSIVE
ELEPHANT RANDOM WALK

HÉLÈNE GUÉRIN, LUCILE LAULIN, KILIAN RASCHEL, AND THOMAS SIMON

Abstract. When the memory parameter of the elephant random walk is above a critical threshold,
the process becomes superdiffusive and, once suitably normalised, converges to a non-Gaussian
random variable. In a recent paper by the three first authors, it was shown that this limit variable
has a density and that the associated moments satisfy a nonlinear recurrence relation. In this work,
we exploit this recurrence to derive an asymptotic expansion of the moments and the asymptotic
behaviour of the density at infinity. In particular, we show that an asymmetry in the distribution
of the first step of the random walk leads to an asymmetry of the tails of the limit variable. These
results follow from a new, explicit expression of the Stieltjes transformation of the moments in
terms of special functions such as hypergeometric series and incomplete beta integrals. We also
obtain other results about the random variable, such as unimodality and, for certain values of the
memory parameter, log-concavity.

1. Introduction and statement of the results

The one-dimensional elephant random walk (ERW) was introduced in 2004 by Schütz and Trimper
[26] to see how memory could induce subdiffusion in random walk processes. It turned out that the
ERW is always at least diffusive; nevertheless, the simple definition of the process, together with
the underlying depth of the results, has led to a great deal of interest from mathematicians over the
last two decades.

The ERW process (Sn)n⩾0 is defined as follows. We denote its successive steps by (Xn)n⩾0. The
elephant starts at the origin at time zero: S0 = 0. For the first step X1, the elephant moves one
step to the right with probability q or one step to the left with probability 1− q, for some q in [0, 1].
The next steps are performed by uniformly choosing an integer k from the previous times. Then
the elephant moves exactly in the same direction as at time k with probability p ∈ [0, 1], or in the
opposite direction with probability 1− p. In other words, defining for all n ⩾ 1,

Xn+1 =

 +XU(n) with probability p,

−XU(n) with probability 1− p,

with U(n) an independent uniform random variable on {1, . . . , n}, the position of the ERW at time
n+ 1 is

Sn+1 = Sn +Xn+1.

The probability q is called the first step parameter and p the memory parameter of the ERW. An
ERW trajectory is sampled in Figure 1.

Date: September 12, 2024.
2020 Mathematics Subject Classification. 60K35; 60E05; 60E10; 60G50; 40E05; 33E12; 05A10.
Key words and phrases. Algebraic ordinary differential equation; Elephant random walk; Incomplete beta function;

Log-concavity; Mittag-Leffler function; Strong Tauberian theorem; Superdiffusive limit; Unimodality.
1

ar
X

iv
:2

40
9.

06
83

6v
1 

 [
m

at
h.

PR
] 

 1
0 

Se
p 

20
24



2 H. GUÉRIN, L. LAULIN, K. RASCHEL, AND T. SIMON

A wide range of literature is now available on the ERW and its extensions, see for instance
[2, 7, 11, 10, 12, 22]. The behaviour of the process, in particular its dependency on the value of
p with respect to the critical value 3/4, is now well understood. In the diffusive regime p < 3/4

and the critical regime p = 3/4, a strong law of large numbers and a central limit theorem for the
position, properly normalized, were established, see [2, 7, 8, 26] and the more recent contributions
[5, 9, 14, 18, 28]. The main change between the two regimes is the rate of the associated convergences.

Figure 1. Left display: a trajectory of the elephant random walk in the superdif-
fusive regime until time n = 1000, with p = 0.92 and q = 1. Right display: a
simulation of the density of L1 for the same parameters.

Introduce a := 2p − 1. In this paper, we will focus on the superdiffusive regime a > 1/2 (i.e.,
p > 3/4), which is more intriguing. It has been established that

lim
n→∞

Sn
na

= Lq a.s.

where Lq is a non-degenerate, non-Gaussian random variable, see [2, 4, 7]. Moreover, the fluctuations
of the ERW around its limit Lq are Gaussian by [21]. These results were established thanks to a
martingale approach.

While the limit variable Lq has remained mysterious for some time, the recent paper [20] estab-
lished several properties of it, such as the existence of a density, a recursive formula for the moments,
the finiteness of the moment-generating function and the moment problem. This was achieved by
reformulating the ERW in terms of urn processes together with fixed point equations.

In the present work, we pursue this line of research and obtain fine properties of the distribution,
via other methods. We discard the case a = 1 which is of no interest, since then Lq

a.s.
= X1 is the

first step of the elephant random walk. We focus the study on the distribution of L1, the limit
of the superdiffusive ERW random variable with parameter a ∈ (1/2, 1) and first step parameter
q = 1. As observed in [20, Rem. 2.3], there is a simple relation between the distribution of L1 and
the general asymptotic variable Lq:

Lq
d
= (2ξq − 1)L1, (1)

where ξq is a Bernoulli variable with parameter q, independent of L1. Our first result is the following.

Theorem 1.1. The random variable L1 is unimodal.
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If we set φ for the density function of L1 on R, which is known to exist thanks to [20, Thm 1.3],
let us recall that the unimodality of L1 means that this function has a unique local maximum.
Our method to obtain this important property is to show first the discrete unimodality of Sn itself
on Z for all n, and then take the renormalized limit defining L1. This discrete unimodality is
obtained by induction, using the (non-homogeneous) Markovian character of the ERW. A classical
refinement of unimodality for sequences or functions is the log-concavity, which is also known as a
strong unimodality property since it preserves unimodality under additive convolution. For more
details on this topic, see for example the survey papers [25, 27]. In the present paper, we are able
to characterize the log-concavity of the ERW for all n in terms of a certain threshold parameter a0
– see Proposition 2.2, which implies that the function φ is log-concave on R for all a ∈ (1/2, a0].

We also believe that the ERW becomes log-concave for all a ∈ (1/2, 1) and n large enough, but this
non-trivial problem, which involves complicated polynomials, still eludes us.

Our next results give the precise asymptotic behaviour of φ at ±∞. These estimates involve a
curious parameter ρa, which has not appeared yet in the ERW literature:

ρa :=

(
1√
π
Γ

(
1

2
+

1

2a

)
Γ

(
1− 1

2a

))a

=

(
B
(
1
2 + 1

2a , 1−
1
2a

)
2

)a

. (2)

As proved in Proposition 3.5, the function a 7→ ρa is decreasing on (1/2, 1) from +∞ to 1, see also
Figure 2.

Theorem 1.2. One has

φ(x) ∼ ca x
2a−1
2(1−a) e

−(1−a)
(

aax
ρa

) 1
1−a

as x→ ∞, with ca an explicit constant given in (31).

For a ∈ (1/2, 1), we have 1
1−a > 2 and we hence recover the fact, first pointed out by Bercu in

[3, Rem. 3.2], then refined in [20, Cor. 2.12], that the distribution of L1 is sub-Gaussian.

Theorem 1.3. One has

φ(−x) ∼ ĉa x
2a2−3a−1

2(1−a2) e
−(1−a)

(
aax
ρa

) 1
1−a

as x→ ∞, with ĉa an explicit constant given in (38).

Interestingly, the above estimates imply an asymmetry to the right of the random variable L1,

at the level of the density function. We notice that for a ∈ (1/2, 1) (actually for a ∈ (0, 1)),
2a−1
2(1−a) >

2a2−3a−1
2(1−a2)

. Due to the construction of L1, it is not surprising to have a heavier tail at
+∞ compared to −∞. In fact, L1 is the asymptotic variable when the process starts from a step
X1 = +1 a.s., with a memory parameter p > 3/4. The memory parameter being large, the random
walk tends to repeat its previous steps, with a first step to the right. The elephant is therefore
more likely to move to the right. Observe that this asymmetry is peculiar to the case q = 1. For
q ∈ (0, 1) indeed, the random variable Lq has density φq(x) = qφ(x)+(1−q)φ(−x) and the following
corollary, which is an immediate consequence of Theorems 1.2 and 1.3, shows that this density has
comparable tails at ±∞.
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Figure 2. Left display: graph of the exponential growth ρa on (12 , 1). The function
ρa is decreasing on (12 , 1), as will be proved in Proposition 3.5. Middle display: the
ratio mn/(

2a
a+1ρ

n
a) converges to 1 as n→ +∞, according to Theorem 3.1 (computa-

tions made for a = 2
3 , using the exact recurrence relation (12)). Right display: the

ratio n
2a
a+1 (mn − 2a

a+1ρ
n
a)/ρ

n
a converges to a constant depending on the parity of n,

see (11), once again for a = 2
3 .

Corollary 1.4. With the above notation, for q ∈ (0, 1), one has

φq(x) ∼ q ca x
2a−1
2(1−a) e

−(1−a)
(

aax
ρa

) 1
1−a

and φq(−x) ∼ (1− q) ca x
2a−1
2(1−a) e

−(1−a)
(

aax
ρa

) 1
1−a

as x→ ∞.

In the case q = 1, the difference between the two tails of the densities is specified in the next
result, which is also a direct consequence of Theorems 1.2 and 1.3.

Corollary 1.5. With the above notation, one has

φ(x)

φ(−x)
∼

4Γ
(
1−a
1+a

)
(a+ 1)

2a
1+a

(
a

ρ
2−1/a
a

) 2a
1−a2

x
2a

1−a2 as x→ ∞.

Our proofs of Theorems 1.2 and 1.3 are based on a combination of exact computations using
special functions (such as hypergeometric functions, incomplete beta integrals and Mittag-Leffler
functions) together with singularity analysis of generating functions (such as strong Tauberian theo-
rems). Although the techniques for proving the two tails of the density are similar, the asymptotics
on the half-negative line is significantly trickier. Let us present three main aspects of our methods.

The first step is to start from the moment calculation made in [20, Thm 1.4]

E[Ln
1 ] =

n!mn

Γ(1 + an)
, for all n ⩾ 1, (3)

and the non-linear recurrence relation for the sequence {mn} to be recalled in (12). We will deduce1

an algebraic differential equation for the Stieltjes-like generating function

M(x) =
∑
n⩾0

mnx
n = 1 + x +

a

2a− 1
x2 +

a+ 1

2(2a− 1)
x3 + · · · , (4)

1In general, if a power series (4) satisfies an algebraic differential equation, then its coefficients {mn} should satisfy
a recurrence relation. On the other hand, the existence of a recurrence relation at the level of the coefficients does
not necessarily imply that the associated power series satisfies a differential equation. In other words, the existence
of a non-trivial differential equation for our power series M(x) in (4) is a result in itself.
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see (15). Surprisingly, despite its apparent complexity, the differential equation (15) admits a
closed-form solution, which can be expressed in terms of a certain (incomplete beta) integrals, or
equivalently in terms of some hypergeometric functions; see Proposition 3.2. In a sense, the explicit
expression for M(x) is an integrability property of the ERW.

In the second step, we prove that the series (4) has a first positive singularity at the point 1
ρa

,
with ρa introduced in (2), and we obtain a series expansion at that point with the help of the exact
expression given in the first step. Using the singularity analysis on generating functions developed
in [16], we can deduce an asymptotic expansion of the moments, viewed as the coefficients of the
power series (4). See Theorem 3.1 for the precise statement.

The third step aims at proving Theorems 1.2 and 1.3 on the asymptotic behavior of the density φ
at ±∞. The general idea is to apply the strong Tauberian theorems of [15], where the fine properties
of the exponential generating function

Ψ(r) = E[erL1 ] =
∑
n⩾0

(
E[Ln

1 ]

n!

)
rn (5)

can be transferred into asymptotic estimates of the density at ±∞. This is the most delicate
part of the paper, which intrinsically requires an expansion of the integer moments up to the fifth
order. The latter implies an expansion of Ψ(r) in terms of generalized Mittag-Leffler functions and
we can then apply the global estimates of Wright – see [29, 17] – on such functions in order to
derive a sufficient control on Ψ and its derivatives and to perform accurately the inverse Laplace
approximation method of [15]. For the reader’s comfort, we also offer as an intermediate result in
Proposition 3.7 a proof of the asymptotic behaviour at both infinities under the logarithmic scale,
which is a simpler consequence of Kasahara’s exponential Tauberian theorem.

2. Proof of Theorem 1.1

By definition, we have

n−aSn
d−→ L1

as n → ∞. We first show that the random variable Sn, taking values in {2k − n, k = 1, . . . , n}, is
unimodal for every n ⩾ 1 and all p ∈ [0, 1] (which covers cases where the ERW is not necessarily
superdiffusive).

Setting P (n, k) = P[Sn = 2k − n] and Q(n, k) = (n− 1)!P (n, k), it follows from the definition of
the ERW that {Q(n, k), 1 ⩽ k ⩽ n, n ⩾ 1} is a triangular array defined recursively by Q(1, 1) = 1

and

Q(n+ 1, k) = (np− ak)Q(n, k) + (qn+ a(k − 1))Q(n, k − 1) (6)

for all n ⩾ 1 and 1 ⩽ k ⩽ n + 1, where we have set q = 1 − p and, here and throughout, we make
the convention Q(n, 0) = Q(n, n+ 1) = 0. Let us briefly prove (6). The Markov property yields

P (n+1, k) = P[Sn+1 = 2k−n−1|Sn = 2k−n]P (n, k)+P[Sn+1 = 2k−n−1|Sn = 2k−n−2]P (n, k−1).
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To conclude to (6), we multiply the above equation by n!, use the notation Q(n, k) and the explicit
transition probabilities of the ERW, namely

P[Sn+1 = 2k − n− 1|Sn = 2k − n] =
1

2

(
1− a

2k − n

n

)
,

P[Sn+1 = 2k − n− 1|Sn = 2k − n− 2] =
1

2

(
1 + a

2k − n− 2

n

)
.

We need to show that for every n ⩾ 1 the finite sequence {Q(n, k), 1 ⩽ k ⩽ n} is unimodal, that
is – see e.g. Definition 4.1 in [13] – there exists a maximal index kn ∈ {1, . . . , n} such that{

Q(n, k) ⩾ Q(n, k − 1) for all k ⩽ kn,
Q(n, k) ⩽ Q(n, k − 1) for all k > kn.

To do so, we use an induction on n starting from the unimodal sequence {Q(1, 1) = 1}. Let n ⩾ 1

and suppose that the finite sequence {Q(n, k), 1 ⩽ k ⩽ n} is unimodal. Decomposing

Q(n+ 1, k + 1) − Q(n+ 1, k) =

(np− a(k + 1))
(
Q(n, k + 1)−Q(n, k)

)
+ (nq + a(k − 1))

(
Q(n, k)−Q(n, k − 1)

)
implies that Q(n + 1, k + 1) ⩾ Q(n + 1, k) for all k = 1, . . . , kn − 1 by the induction hypothesis,
since then one has np− a(k+1) ⩾ np− akn ⩾ n(p− a) = n(1− p) ⩾ 0. In particular, if kn = n, the
sequence {Q(n+ 1, k), 1 ⩽ k ⩽ n+ 1} is unimodal with maximal index kn+1 = n or kn+1 = n+ 1.

In the case kn < n, one necessarily has Q(n, n) ⩽ Q(n, n− 1) by the maximality of kn, and we first
show that this implies

p ⩽
n+ 1

n+ 2
· (7)

Indeed, if the contrary held, then we would also have (k + 2)p > k + 1 ⇔ a(k + 1) > kp for all
k = 1, . . . , n. Since on the other hand one has

Q(k + 1, k + 1)−Q(k + 1, k) = (a(k + 1)− kp)Q(k, k) + (kq + a(k − 1))(Q(k, k)−Q(k, k − 1))

for all k = 1, . . . , n, an induction starting from Q(1, 0) = 0 and Q(1, 1) = 1 readily implies then
Q(k + 1, k + 1) > Q(k + 1, k) for all k = 1, . . . , n, a contradiction in the case k = n− 1.

Therefore, since (7) implies np ⩾ a(k + 1) for all k = 1, . . . , n, we also have Q(n + 1, k + 1) ⩽

Q(n + 1, k) for all k = kn + 1, . . . , n. Putting everything together, we deduce that the sequence
{Q(n + 1, k), 1 ⩽ k ⩽ n + 1} is unimodal as required, with maximal index kn+1 = kn if Q(n +

1, kn + 1) < Q(n+ 1, kn) and kn+1 > kn if Q(n+ 1, kn + 1) ⩾ Q(n+ 1, kn).

In order to complete the proof of the unimodality of L1, we focus on the superdiffusive case
a ∈ (1/2, 1) and consider the step function fn defined by

fn(x) =
naP (n, k)

2

if x ∈ (n−a(2k − n − 1), n−a(2k − n + 1)] for some k ∈ {1, . . . , n} and fn(x) = 0 otherwise. It is
clear from the above unimodality of Sn that fn(x) is a unimodal density function on R. Moreover,
it is easy to see by construction that the corresponding distribution function Fn(x) =

∫ x
−∞ fn(y) dy

is such that
sup
x∈R

∣∣Fn(x) − P[n−aSn ⩽ x]
∣∣ ⩽ max{P (n, k), k = 1, . . . , n}.
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Setting mn = max{Q(n, k), k = 1, . . . , n− 1} and

Mn = max{Q(n, k), k = 1, . . . , n} = max{(n− 1)!pn−1,mn}

for all n ⩾ 2, we see by definition that mn+1 ⩽ (n − a)Mn and Q(n + 1, n + 1) = pnQ(n, n) ⩽

(n − a)Mn for n large enough. This shows that there exists n0 ⩾ 1 such that Mn+1 ⩽ (n − a)Mn

for all n ⩾ n0, whence

max{P (n, k), k = 1, . . . , n} =
Mn

(n− 1)!
⩽

Mn0

(1− a)n0−1

(
(1− a)n−1

(n− 1)!

)
→ 0 as n→ ∞.

Putting everything together shows that Fn(x) → P[L1 ⩽ x] for all x ∈ R and, by stability of
unimodality under weak convergence – see e.g. Theorem 1.1 in [13], that L1 is unimodal. □

Remark 2.1. (a) If φ′(0) > 0, then the modes of L1 are necessarily positive. Observe that for
the Mittag-Leffler random variable with parameter a > 1/2, which is an approximation of L1 from
the point of view of integer moments and is also a strictly unimodal random variable, the mode is
positive (whereas it is zero if a ⩽ 1/2). The known lower bound M > E[L1]−

√
3Var[L1] where M

is any mode of L1 – see e.g. Lemma 1.7 in [13] implies that these modes are indeed positive for a
close enough to 1.

(b) Simulations show that in the case q ∈ (0, 1), the random variable Lq is not unimodal in
general. By (1) and Theorem 1.1 the density of Lq is the superposition of two unimodal functions
and we conjecture that for every a ∈ (1/2, 1) there exists q(a) ∈ [0, 1/2] such that Lq is bimodal if
|q − 1/2| < q(a) and unimodal if |q − 1/2| ≥ q(a). This problem is believed to be challenging.

We now show a refinement of the unimodality property for the ERW for certain values of the
parameter a. Recall that a sequence {uk, k = 1, . . . , n} of positive numbers is log-concave if

u2k ⩾ uk−1uk+1

for all k = 1, . . . , n, where we have set u0 = un+1 = 0.

Proposition 2.2. The sequence {P[Sn = 2k − n], k = 1, . . . , n} is log-concave for every n ⩾ 1 if
and only if a ∈ [−1, a0] where a0 = 0.61803... is the unique positive root of a3 + 4a2 + 2a = 3.

Proof. With the above notation, we have to show that the sequence {Q(n, k), k = 1, . . . , n} is log-
concave for all n ⩾ 1 if and only if a ∈ [−1, a0]. The sequences {Q(1, 1)} and {Q(2, 1), Q(2, 2)} are
always log-concave. We compute Q(3, 1) = (1−a)/2, Q(3, 2) = (1−a)(2+a)/2, Q(3, 3) = (1+a)2/2

and see that the log-concavity of {Q(3, 1), Q(3, 2), Q(3, 3)} amounts to

(1− a)(2 + a)2 ⩾ (1 + a)2 ⇐⇒ 3 − 2a − 4a2 − a3 ⩾ 0 ⇐⇒ a ∈ [−1, a0],

which shows the only if part. We next suppose a ∈ [−1, a0] and show that {Q(n, k), k = 1, . . . , n} is
log-concave for all n ⩾ 1 by an induction on n. From the above discussion, the property is true for
n = 1, 2, 3 and we will show later that it is also true for n = 4. Assuming that {Q(n, k), k = 1, . . . , n}
is log-concave for some n ⩾ 4, we first show

Q(n+ 1, n)2 ⩾ Q(n+ 1, n+ 1)Q(n+ 1, n− 1).



8 H. GUÉRIN, L. LAULIN, K. RASCHEL, AND T. SIMON

Setting An = Q(n+ 1, n)2 − Q(n+ 1, n+ 1)Q(n+ 1, n− 1) and using (6) we compute, after some
simplifications,

4An = n2(1− a)2Q(n, n)2 + n(n(1− a2)− 6a+ 2a2)Q(n, n)Q(n, n− 1) + 4a2Q(n, n− 1)2

+ n(1 + a)(n(1 + a)− 4a))(Q(n, n− 1)2 − Q(n, n)Q(n, n− 2))

⩾ n2(1− a)2Q(n, n)2 + n(4− 6a− 2a2)Q(n, n)Q(n, n− 1) + 4a2Q(n, n− 1)2

⩾ n2(1− a)2Q(n, n)2 − 4na(1− a)Q(n, n)Q(n, n− 1) + 4a2Q(n, n− 1)2

= (n(1− a)Q(n, n) − 2aQ(n, n− 1))2 ⩾ 0,

where in the first inequality we have used the induction hypothesis and n ⩾ 4, and in the second
inequality we have used a ⩽ a0 ⩽ 2/3 which implies 4−6a−2a2+4a(1−a) = 2(1+a)(2−3a) ⩾ 0.

We next prove

Q(n+ 1, k)2 ⩾ Q(n+ 1, k + 1)Q(n+ 1, k − 1)

for all k = 2, . . . , n− 1. Setting Bk,n = Q(n+ 1, k)2 −Q(n+ 1, k + 1)Q(n+ 1, k − 1) and using (6)
again we compute

Bk,n = (np− a(k + 1))(np− a(k − 1))Bk,n−1 + (nq + ak)(nq + a(k − 2)Bk−1,n−1

+ a2 (Q(n, k)−Q(n, k − 1))2 − (np− a(k + 1))(nq + a(k − 2))Q(n, k − 2)Q(n, k + 1)

+
(
2a2 + 2(np− ak)(nq + a(k − 1))− (nq + ak)(np− a(k − 1))

)
Q(n, k − 1)Q(n, k)

⩾ (np− a(k + 1))(nq + a(k − 2)) (Q(n, k − 1)Q(n, k)−Q(n, k − 2)Q(n, k + 1)) ⩾ 0,

where the second equality follows from the induction hypothesis. To complete the proof, it remains
to show that {Q(n, k), k = 1, . . . , n} is log-concave for all a ∈ [−1, a0] and n = 4. The above
discussion and the case n = 3 already implies Q(4, 2)2 ⩾ Q(4, 1)Q(4, 3) and we hence just need to
check that A3 ⩾ 0, with the above notation, which amounts after some simplifications to

P (a) = 54 + 36a − 83a2 − 123a3 − 63a4 − 13a5 ⩾ 0.

The polynomial P (a) is easily seen to decrease on [1/2, 1] with P (1/2) > 0 and P (1) < 0 and has
hence a unique root a1 = 0.63606.. > a0, so that P (a) ⩾ 0 for all a ∈ [1/2, a0]. Moreover, we have

4A3 ⩾ 9(1− a)2Q(3, 3)2 + 3(3− 6a− a2)Q(3, 3)Q(3, 2) + 4a2Q(3, 2)2

⩾ (3(1− a)Q(3, 3) − 2aQ(3, 2))2 ⩾ 0

as well for all a ∈ [−1, 1/2], since then 3− 6a− a2 + 4a(1− a) = (1 + a)(3− 5a) ⩾ 0. □

Remark 2.3. One can show that there exists an increasing sequence {aq, q ⩾ 0} such that

{Q(n, k), k = 1, . . . , n} is log-concave for all n ⩾ q + 3 ⇐⇒ a ⩽ aq

for all q ⩾ 0, and that xq is the unique root on (1/2, 1) of a certain real polynomial Pq whose degree
is smaller than 2q + 3. One has
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P0 = 3 − 2X − 4X2 − X3

P1 = 54 + 36X − 83X2 − 123X3 − 63X4 − 13X5

P2 = 360 + 834X + 247X2 − 1259X3 − 2009X4 − 1423X5 − 514X6 − 76X7

and

P3 = 11250 + 8325X − 13781X2 − 24282X3 − 13396X4 − 1024X5 + 2518X6 + 1361X7 + 229X8

with a0 ≃ 0.61803, a1 ≃ 0.63606, a2 ≃ 0.67060 and a3 ≃ 0.68408. We conjecture that

lim
q→∞

aq = 1.

However, this problem seems challenging because of the very complicated character of the underlying
polynomials.

The following is an interesting consequence of Proposition 2.2.

Corollary 2.4. The density of L1 is log-concave on R for all a ∈ (1/2, a0].

Proof. The argument is analogous to that of the end of the proof of Theorem 1.1 except that we
consider here the piecewise affine density gn defined for all n ≥ 2 by

gn(x) =
na

2− (P (1, n) + P (n, n))

(
P (k, n) +

na(P (k + 1, n)− P (k, n))(x+ n− 2k)

2

)
if x ∈ (n−a(2k−n), n−a(2k−n+2)] for some k ∈ {1, . . . , n−1} and gn(x) = 0 otherwise. The log-
concavity of the sequence {P (n, k), k = 1, . . . , n} readily implies the log-concavity of the function
gn on R for all a ∈ (1/2, a0], and it follows easily from Scheffé’s lemma and the end of the proof
of Theorem 1.1 that the real random variable with density gn converges weakly to L1 as n → ∞.
Since log-concavity is a stable property under weak convergence – see e.g. Theorem 2.10 in [13], this
shows altogether that L1 has a log-concave density for all a ∈ (1/2, a0]. □

Remark 2.5. A positive answer to the open problem stated in Remark 2.3 would imply by the
same approximation argument that L1 has a log-concave density on R for all a ∈ (1/2, 1). Observe
that this property is in accordance with the superexponential behaviour of the density at ±∞ stated
in Theorems 1.2 and 1.3.

3. Moment estimates

In this section we establish sharp estimates for the positive integer moments of L1, which play a
crucial role in the proof of Theorems 1.2 and 1.3, and have an independent interest. The principal
estimate is given in (10) below. However, the proof of Theorem 1.2 requires an expansion up to the
third order whereas that of Theorem 1.3 needs an expansion up to the fifth order, which is given in
(11) with the notation

κa =
ρ

2
a+1
a

4

(
a+ 1

a

) 2a
a+1

and δa =
1− a

1 + a
· (8)
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Our main tool to get the moment estimates is the singularity analysis of [16], where expansions
are given in terms of Pochhammer symbols which we recall to be defined by (x)0 = 1 and (x)n =

x(x+ 1) · · · (x+ n− 1), for all n ⩾ 1 and x ∈ R. This can be easily transformed into an expansion
in descending powers of n thanks to the asymptotics

(x)n
n!

=
Γ(x+ n)

Γ(x)Γ(1 + n)
=

nx−1

Γ(x)

(
1 +

x(x− 1)

2n
+ O

(
n−2

))
, (9)

which is valid for all x > 0 – see [23] for a more complete version. The asymptotic expansion with
Pochhammer symbols will also be convenient along the proof of Theorems 1.2 and 1.3, thanks to
the direct connection with generalized Mittag-Leffler functions and their behaviour at infinity.

Theorem 3.1. One has

E[Ln
1 ] ∼

2a ρna n!

(a+ 1)Γ(1 + an)
as n→ ∞. (10)

More precisely, one has the asymptotic expansion

E[Ln
1 ] =

2a ρna n!

(a+ 1)Γ(1 + an)

(
1 + κa

(δa)n
n!

(
(−1)n +

a− 1

3a+ 1

)
+

(2δa)n
(n+ 1)!

(
(−1)nκ−1 + κ+1

)
+

(δa)n
(n+ 1)!

(
(−1)nκ−2 + κ+2

)
+ O

(
n−2

))
(11)

as n → ∞, where ρa is introduced in (2), κa and δa in (8), κ−1 , κ
+
1 , κ

−
2 and κ+2 are computable real

constants depending on a.

The proof of this theorem relies on the representation (3), where the sequence {mn} is defined
by m0 = m1 = 1 and

mn =
1

na− cn

n−1∑
i=1

cimimn−i, (12)

for every n ⩾ 2, where ci = 1 for even i and ci = a for odd i. By Lemma 2.10 and Corollary 2.14
in [20], for every a ∈

(
1
2 , 1
)

there exists Ca > 0 such that 0 < mn ⩽ Cn
a for all n ⩾ 0, which shows

that the generating function (4) has a positive radius of convergence. We will first give an exact
expression of M(x), showing that this radius is actually 1/ρa, with ρa introduced in (2). Set

F (x) =
1

a

∫ ∞

x

du

u1+1/a
√
1 + u2

(13)

and consider the function
G(x) = F−1(x−1/a − ρ1/aa ) (14)

for every x ∈ (0, 1/ρa), where F−1 denotes the compositional inverse of the decreasing function F

on (0,∞).

Proposition 3.2. For every x ∈ (0, 1/ρa), one has

M(x) =

(
G(x)

x

) 1
a (
G(x) +

√
1 +G(x)2

)
,

with G defined by (14).

The next paragraph is devoted to the proof of this proposition. Then, in Section 3.2, we will
analyze precisely the behaviour of M(x) as x→ 1/ρa and prove Theorem 3.1.
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3.1. Proof of Proposition 3.2. Multiplying the recurrence relation (12) by (na−cn)xn and taking
the generating functions yields first the following ODE for the series M(x) in (3.2):

M(x) + axM ′(x) − pM(x)2 − (1− p)M(x)M(−x) = 0, (15)

which appears as a mix of an ordinary (algebraic) differential equation and a functional equation,
because of the term M(−x). Separating M(x) = A(x) +B(x) with

A(x) =
∑
n⩾0

m2nx
2n and B(x) =

∑
n⩾0

m2n+1x
2n+1,

the above equation can be rewritten as

A + B + axA′ + axB′ − p(A2 + 2AB +B2) − (1− p)(A2 −B2) = 0

and isolating the even and odd parts, we obtain the differential system{
A + axA′ − p(A2 +B2) − (1− p)(A2 −B2) = 0,

B + axB′ − 2pAB = 0.
(16)

Using the second equation we express A in terms of B and B′, and then plugging this identity in the
first equation, we obtain after cleaning denominators and simplification an autonomous, classical
ODE on B(x), which reads

a(a+ 1)x2BB′′ − a(a+ 2)x2B′2 + x((a+ 1)2 − 2)BB′ − (a+ 1)2B4 +B2 = 0. (17)

The following lemma shows that B(x) is also the solution to an implicit equation, involving the
function F in (13). It is worth noticing that Lemma 3.3 is the first place where the non-trivial
quantity ρa appears.

Lemma 3.3. For every x ∈ (0, 1/ρa), the function B(x) is the unique solution of

x1/aF
(
(x1/aB(x))a/(a+1)

)
+ (ρax)

1/a = 1. (18)

In particular, one has B(x) → ∞ as x → 1/ρa and the convergence radius of the series defining
B(x) is 1/ρa.

Proof. We first remark that the solution of (18) exists and is uniquely defined as

B(x) = x−1/a
(
F−1(x−1/a − ρ1/aa )

)a+1
a
, (19)

which is a smooth function on (0, 1/ρa). Moreover, since

x1/aF
(
(x1/aB(x))a/(a+1)

)
=

x1/a

a

∫ ∞

(x1/aB(x))a/(a+1)

du

u1+1/a

(
1√

1 + u2
− 1

)
+

(
x

B(x)

)1/(a+1)

and since for any a ∈ (1/2, 1), the integral on the right-hand side is bounded as a function of x, we
obtain limx→0

x
B(x) = 1, whence B is right-differentiable at zero with B(0) = 0 and B′(0) = 1.

We now prove that B satisfies (17). Dividing (18) by x1/a and differentiating with respect to x
we obtain, after a few elementary computations,

1

a+ 1

(
1 + ax

B′

B

)
=

(
B

x

) 1
a+1
√
1 + x

2
a+1B

2a
a+1 .
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Taking the square of the previous identity and simplifying, we get(
B

x

) 2
a+1

= −B2 +
1

(a+ 1)2

(
1 + ax

B′

B

)2

. (20)

Differentiating (20) with respect to x and multiplying by B
x , we obtain

2

a+ 1

(
B

x

)′(B
x

) 2
a+1

=
B

x

d

dx

(
−B2 +

1

(a+ 1)2

(
1 + ax

B′

B

)2
)
. (21)

Using both (20) and (21), we can eliminate the term (Bx )
2

a+1 (which contains a non-integer power
of B), and obtain a classical ODE on B. After a few simplifications, we exactly obtain (17).

We now show that any solution B of (17) with B(0) = 0 and B′(0) = 1 must satisfy (18), which
will complete the proof. Observe that by (17), we necessarily have B′′(0) = 0. Moreover, the
previous discussion shows that for any α > 0, the function

x−1/a − 1

a

∫ α(
x1/aB(x)

)a/(a+1)

du

u1+1/a
√
1 + u2

is a constant cα. It remains to compute this constant. We observe that

cα =
1

a

∫ α(
x1/aB(x)

)a/(a+1)

(
1− 1√

1 + u2

)
du

u1+1/a
+ x−1/a

(
1−

(
x

B(x)

) 1
a+1

)
+ α−1/a.

Since 2− 1
a > 0, taking the limit when x→ 0, we deduce

cα =
1

a

∫ α

0

(
1− 1√

1 + u2

)
du

u1+1/a
+ α−1/a → 1

a

∫ ∞

0

(
1− 1√

1 + u2

)
du

u1+1/a

as α→ ∞. We finally compute

1

a

∫ ∞

0

(
1− 1√

1 + u2

)
du

u1+1/a
=

1

a

∫ ∞

0

cosh v − 1

(sinh v)1+1/a
dv

=
2−1/a

a

∫ ∞

0

dv(
sinh v

2

)1/a−1(
cosh v

2

)1+1/a

=
2−1/a

a

∫ ∞

0

dx

x1/2a(1 + x)1+1/2a

=
2−1/aΓ

(
1 + 1

a

)
Γ
(
1 + 1

2a

) Γ

(
1− 1

2a

)
=

B
(
1
2 + 1

2a , 1−
1
2a

)
2

= ρ1/aa

where we have used the changes of variable u = sinh v and x =
(
sinh v

2

)2 and the duplication
formula for the Gamma function. Putting everything together shows that any solution B of (17)
with B(0) = 0 and B′(0) = 1 satisfies (18), as required. □

We can now finish the proof of Proposition 3.2. The above Lemma 3.3 and the second equation
in (16) show after some light algebraic computations that

B(x) = x

(
G(x)

x

)a+1
a

and A(x) =

(
G(x)

x

) 1
a √

1 +G(x)2 (22)

for every x ∈ (0, 1/ρa), whence the required expression for the generating function M(x). □
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3.2. Proof of Theorem 3.1. We will use the convergent series representations

x−1/a − ρ1/aa =
ρ
1/a
a (1− xρa)

a

∑
n⩾0

(1 + 1/a)n
(n+ 1)!

(1− xρa)
n (23)

for every x ∈ (0, 1/ρa), and

F (z) = z−(1+1/a)
∑
n⩾0

(−1)n(1/2)n
(1 + a+ 2an)n!

z−2n (24)

for every z > 1. The first one is a simple consequence of x−1/a = ρ1/a
(
1 − (1 − xρa)

)−1/a and the
binomial theorem, whereas the second one follows from the change of variable

F (z) =
1

2a

∫ 1/z2

0
v

1−a
2a

dv√
1 + v2

=
1

2a

∑
n⩾0

(−1)n(1/2)n
n!

(∫ 1/z2

0
v

1−a
2a

+n dv

)
,

see (13), where in the second equality we have applied the binomial theorem to (1+v2)−1/2 and the
involved series is easily seen to be absolutely convergent for all z > 1, so that the switching between
the sum and the integral is justified. The Lagrange inversion formula – see e.g. Appendix E in [1] –
implies then after some computations the expansion

F−1(y) ∼
(

1

(a+ 1)y

) a
a+1

1 −
∞∑
j=1

cj y
2ja
a+1

 as y → 0,

with

c1 =
a(a+ 1)

2a
a+1

2(3a+ 1)
·

The further constants cp can be computed explicitly from (24) and, here and throughout, we have
used the usual notation ∼ for asymptotic expansions – see e.g. Appendix C of [1]. This entails

F−1(y)
a+1
a ∼ 1

(a+ 1)y

1 −
∞∑
j=1

c̃j y
2ja
a+1

 as y → 0, (25)

with

c̃1 =
(a+ 1)

3a+1
a+1

2(3a+ 1)

and where the c̃p can be computed recursively from the cp. In order to obtain our moment estimates,
we will combine Proposition 3.2, Equations (19), (23) and (25) and the classical singularity analysis
of [16]. First, observe that (24) can be expressed as a hypergeometric series,

F (z) =
z−(1+1/a)

a+ 1
2F1

[
1/2 1/2 + 1/2a

3/2 + 1/2a
;−1/z2

]
, (26)

which shows by Euler’s integral formula – see e.g. Theorem 2.2.1 in [1] – that the function F is
holomorphic on C \

(
(−∞, 0] ∪ {iu, u ∈ [−1, 1]}

)
. It will actually turn out from the alternative

representation (28) below that this function is holomorphic on the whole cut plane C \ (−∞, 0].

This implies that there exists ε > 0 such that the function z 7→ F−1(z)
a+1
a appearing in (25) is

holomorphic on the cut open disk {|z| < ε} \ (−∞, 0]. Writing again

z−1/a − ρ1/aa = ρ1/aa

((
1− (1− zρa)

)−1/a − 1
)
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and applying Proposition 3.2 show that there exists η > 0 such that the function z 7→ M(z) is
holomorphic on the indented open disk ∆a,η = {|z − 1/ρa| < η} ∩ {| arg(z − 1/ρa)| > (1 − a)π}.
Since a > 1/2, we are in position to apply [16, Thm 1] to the generating function M in (4) around
the critical point z = 1/ρa. Plugging (23) in (25) and applying Proposition 3.2 imply

M(z) − 2a

(a+ 1)(1− zρa)
= O

(
(1− zρa)

−δa
)

as z → 1/ρa inside ∆a,η.

Therefore, using δa < 1 and applying Theorem 1 in [16], we obtain

mn ∼ 2a ρna
a+ 1

which gives the principal estimate (10). See Figure 2 for an illustration of the above asymptotic
result.

In order to get the higher order asymptotics (11), we have to handle the odd and even moments
separately. We shall begin with the odd moments and consider the renormalized sequence µn =

ρ−2n−1
a m2n+1, whose generating function reads

∑
n⩾0

µnu
n =

B(x)

ρa x
=

1

ρa

(
G(x)

x

)1+1/a

= ρ1/aa

(∑
n⩾0

(1/2 + 1/2a)n
n!

(1− u)n

)
G(x)1+1/a,

where we have set u = x2ρ2a, the second equality is given by (22), and the third equality follows
from the binomial theorem applied to x−1−1/a = ρ

1+1/a
a

(
(1 − (1 − u)

)−(1/2+1/2a)
. Using (25) and

plugging in the series representation

y = x−1/a − ρ1/aa =
ρ
1/a
a (1− u)

2a

∑
n⩾0

(1 + 1/2a)n
(n+ 1)!

(1− u)n

=
ρ
1/a
a (1− u)

2a

(
1 +

2a+ 1

4a
(1− u) + O(1− u)2

)
(27)

which is a variation on (23), we deduce the expansion

∑
n⩾0

µnu
n ∼ 2a

(a+ 1)(1− u)
×

(∑
n⩾0

(1/2 + 1/2a)n
n!

(1− u)n

)1 −
∞∑
j=1

c̃j y
2ja
a+1


∑
n⩾0

(1 + 1/2a)n
(n+ 1)!

(1− u)n

∼ 2a

(a+ 1)(1− u)

(
1 +

1− u

4a
+ O(1− u)2

)1 −
∞∑
j=1

c̃j y
2ja
a+1


∼ 2a

a+ 1

(
1

1− u
− ĉ1

(1− u)δa
+

1

4a
+ ĉ2(1− u)1−2δa + ĉ3(1− u)1−δa + O(1− u)

)
as u→ 1, with

ĉ1 =
c̃1 ρ

2
a+1
a

(2a)
2a
a+1

= 2δaκa

(
a+ 1

3a+ 1

)
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and ĉ2, ĉ3 are computable constants. Applying Corollary 3 in [16], we deduce

µn =
2a

a+ 1

(
1− ĉ1 (δa)n

n!
+
ĉ2(2δa − 1)n

n!
+
ĉ3(δa − 1)n

n!
+ O

(
n−2

))
=

2a

a+ 1

(
1− c̄1(δa)2n+1

(2n+ 1)!
+
c̄2 (2δa)2n+1

(2n+ 2)!
+
c̄3 (δa)2n+1

(2n+ 2)!
+ O

(
2n+ 1

)−2
)

with

c̄1 = 2κa

(
a+ 1

3a+ 1

)
and c̄2, c̄3 are computable constants and where in the second equality we have used (9), which
implies

(δa)n
n!

= 2
2a
a+1

(δa)2n+1

(2n+ 1)!

(
1 +

2a(3 + a)

(a+ 1)2n
+ O(n−2)

)
.

We now proceed to the even moments and consider the sequence νn = ρ−2n
a m2n, whose generating

function reads, similarly as above,∑
n⩾0

νnu
n = A(x) =

(
G(x)

x

)1/a√
1 +G(x)2 = B(x)

(∑
n⩾0

(−1/2)n(−1)n

n!
G(x)−2n

)
with the same notation u = ρ2ax

2. This implies the expansion∑
n⩾0

νnu
n =

√
u

(∑
n⩾0

µnu
n

)(∑
n⩾0

(−1/2)n(−1)n

n!
G(x)−2n

)

=

(
1 − 1− u

2

)(∑
n⩾0

µnu
n

)(
1 +

1

2G(x)2
− 1

8G(x)4

)
+ O(1− u)2

as u→ 1. Using

1

G(x)2
= ((a+ 1)y)

2a
a+1

1 +
∑
j⩾1

cj y
2ja
a+1

−2

with the expansion (27), and the previous estimates on the odd moments we deduce, after some
simplifications,∑

n⩾0

νnu
n ∼

2a

a+ 1

(
1

1− u
+

ĉ4
(1− u)δa

+
1− 2a

4a
+ ĉ5(1− u)1−2δa + ĉ6(1− u)1−δa + O(1− u)

)
as u→ 1, with

ĉ4 =

a ρ
2

a+1
a

3a+ 1

(a+ 1

2a

) 2a
a+1

= 21+δaκa

(
a

3a+ 1

)
and ĉ5, ĉ6 are computable constants. Applying again Corollary 3 in [16], we obtain

νn =
2a

a+ 1

(
1 +

ĉ4 (δa)n
n!

+
ĉ5 (2δa − 1)n

n!
+
ĉ6 (δa − 1)n

n!
+ O

(
n−2

))
=

2a

a+ 1

(
1 +

c̄4 (δa)2n
(2n)!

+
c̄5 (2δa)2n
(2n+ 1)!

+
c̄6 (δa)2n
(2n+ 1)!

+ O
(
(2n)−2

))
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with

c̄4 =
4a κa
3a+ 1

and c̄5, c̄6 are computable constants. Putting together the expansions of odd and even moments
completes the proof. □

Remark 3.4. Applying the transformation (2.3.12) in [1] to the hypergeometric expression (26)
gives the series representation

F (z) = −ρ1/aa + z−1/a
2F1

[
1/2 − 1/2a

1− 1/2a
;−z2

]
, (28)

which defines an analytic function on the cut disk {|z| ⩽ 1} \ (−∞, 0]. By (19), this shows that the
function C(x) = B(x)

a
a+1x

1
a+1 is the solution to the implicit equation

C(x)

(
2F1

[
1/2 − 1/2a

1− 1/2a
;−C(x)2

])−a

= x,

which can be inverted by the Lagrange formula and we retrieve B(x) = x+ a+1
2(2a−1)x

3+· · · . Observe
that (28) also gives a direct proof of the identity

ρ1/aa =
1

a

∫ ∞

0

(
1− 1√

1 + u2

)
du

u1+1/a
= lim

x↓0

(
x−1/a − F (x)

)
,

which was used at the end of Lemma 3.3.

3.3. Elementary properties of the exponential growth. We have the following property of
the exponential rate of growth of the sequence {mn}. See Figure 2.

Proposition 3.5. The function a 7→ ρa is decreasing and convex on (1/2, 1) from ∞ to 1 with

ρa ∼ 1

2
√
a− 1/2

as a→ 1/2 and ρa − 1 ∼ (1− a) log 2 as a→ 1.

Proof. We start with the decreasing property. Setting b = 1/2a ∈ (1/2, 1), we need to show that
function

f(b) =

(
Γ(1/2 + b)Γ(1− b)

Γ(1/2)Γ(1)

) 1
2b

=

(∏
n⩾0

(1/2 + n)(1 + n)

(1/2 + b+ n)(1− b+ n)

) 1
2b

increases on (1/2, 1), where in the second equality we have used the classical product representation
of the Gamma function – see e.g. Theorem 1.1.2 in [1]. Taking the logarithm, we are reduced to
show that the function b 7→ b−1gn(b) increases on (1/2, 1) for each n ⩾ 0, with

gn(b) = log(1/2 + n) + log(1 + n) − log(1/2 + b+ n) − log(1− b+ n).

The function gn is strictly convex on [1/2, 1) with gn(1/2) = 0 and

g′n(b) =
2b− 1/2

(1/2 + b+ n)(1− b+ n)
> 0 for all b ∈ [1/2, 1).

Therefore, the function
gn(b)

b
=

(
b− 1/2

b

)
×
(
gn(b)− gn(1/2)

b− 1/2

)



SUPERDIFFUSIVE LIMIT OF THE ELEPHANT RANDOM WALK 17

increases on (1/2, 1) as the product of two positive increasing functions. Moreover, the function
a 7→ 2agn(1/2a) has second derivative (1/2a3)g′′n(1/a) > 0 on (1/2, 1] and is hence convex. This
implies that the mapping a 7→ ρa is log-convex and hence convex on (1/2, 1). Last, we compute

(a− 1/2)aρa =

(
a√
π
Γ

(
1

2
+

1

2a

)
Γ

(
2− 1

2a

))a

→ 1

2
as a→ 1/2,

whence the first asymptotics. Setting ψ(z) = Γ′(z)
Γ(z) for the usual digamma function, we have

(log ρa)
′ =

1

2a

(
log ρa + ψ(1− 1/2a) − ψ(1/2 + 1/2a)

)
→ ψ(1/2)− ψ(1)

2
= − log 2 as a→ 1

whence the second asymptotics.
□

Remark 3.6. The decreasing character of a 7→ ρa on (1/2,∞) also follows from Hölder’s inequality
and the following representation:

ρa = E

[(
Γ1/2

Γ1

) 1
2a

]a
where Γt stands for the standard Gamma random variable with parameter t and the quotient inside
the expectation is independent.

As a second note, applying Theorem 1.6.2 (ii) in [1] it is possible to show that

log ρa = − log 2 +

∫ ∞

0
e−ax f(x) dx

for all a ∈ (1/2,∞), where

f(x) =
1

x2

∑
n⩾0

(
2− e−

x
2n+1

(
1 +

x

2n+ 1

)
+ e

x
2n+2

(
x

2n+ 2
− 1

))
is easily shown to be positive on (0,∞). This implies that the mapping a 7→ ρa is logarithmically
completely monotone and hence completely monotone on (1/2,∞), with limit 1/e2 at infinity.

3.4. Density asymptotics at the logarithmic scale. We end this section with a logarithmic
estimate of φ(x) as x → ±∞. This less precise version of Theorems 1.2 and 1.3 can be quickly
derived from Theorem 3.1 and Kasahara’s Tauberian theorem for densities.

Proposition 3.7. As x→ ∞, one has

logφ(x) ∼ logφ(−x) ∼ −(1− a)

(
aax

ρa

) 1
1−a

.

Proof. Along the proof we will use the classical Mittag-Leffler function Ea defined by

Ea(z) =
∑
n⩾0

zn

Γ(1 + an)
,

and Mittag-Leffler random variables Ma with moment generating function E[erMa ] = Ea(r).
We begin the proof of Proposition 3.7 with the estimate on the positive axis. Introduce the

moment generating function Ψ(r) = E[erL1 ] =
∑

n⩾0

(E[Ln
1 ]

n!

)
rn as in (5), which is analytic on C by
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Stirling’s formula combined with the equivalence
E[Ln

1 ]

n!
∼ 2a ρna

(a+ 1)Γ(1 + an)

given by Theorem 3.1. The latter estimate also implies

Ψ(r) ∼ 2a

a+ 1

∑
n⩾0

(ρar)
n

Γ(1 + an)
=

2aEa(ρar)

a+ 1
∼ 2 e(ρar)

1/a

a+ 1
as r → ∞,

where in the second equivalence we have used the well-known estimate for the Mittag-Leffler function
Ea on the positive half-line, to be found e.g. in Formula (3.4.14) of [19]. Combining this estimate
on Ψ(r) with Kasahara’s theorem for densities – see Theorem 4.12.11 in [6] – yields after some easy
algebra the required estimate

logφ(x) ∼ −(1− a)

(
aax

ρa

) 1
1−a

as x→ ∞.

We now proceed to the estimate on the negative axis. Let Ma be a Mittag-Leffler random variable
and let Ba be an independent Bernoulli random variable with parameter 2a

a+1 · The random variable
Ya = (ρaBa)×Ma has positive integer moments

E[Y n
a ] =

2a ρna n!

(1 + a) Γ(1 + an)
·

Consider the function
Ψ̃(r) = Ψ(−r) − E[e−rYa ] =

∑
n⩾0

µn
n!
rn

with

µn = (−1)n
(
E[Ln

1 ]−
2a ρna n!

(1 + a) Γ(1 + an)

)
=

2aκa ρ
n
a (δa)n

(a+ 1)Γ(1 + an)

(
1 + (−1)n

a− 1

3a+ 1
+ O

(
n−δa

))
≍ ρna (δa)n

Γ(1 + an)
(29)

by Theorem 3.1 and (9). Here and throughout, for two real sequences {un} and {vn}, the notation
un ≍ vn means that there exist an index n0 ⩾ 1 and two constants c, C > 0 such that cvn ⩽ un ⩽

Cun for all n ⩾ n0. The upper and lower bounds in (29) follow from 0 < 1−a
3a+1 < 1.

Introduce the following two-parameter generalization of the Mittag-Leffler function, called the
Prabhakar function

Eγ
α,β(z) =

∑
n⩾0

(γ)n z
n

n! Γ(β + αn)
, (30)

which is analytic on C for all α, β, γ > 0. Using (29), we deduce that

logE
[
er|L1|1{L1⩽0}

]
∼ log Ψ̃(r) ∼ logEδa

a,1(ρar) ∼ (ρar)
1/a → ∞ as r → ∞,

where the first equivalence is clear by the positivity of Ya and for the third equivalence, we have
used the global estimate presented in Theorem 3 of [17] – see also [29]. As in the case of the positive
axis, the conclusion follows from Kasahara’s Tauberian theorem for densities. □

Remark 3.8. If the sequence {mn} were a Hamburger moment sequence, then we would have an
independent factorization

L1
d
= X ×Ma
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where X is the real random variable having integer moments mn, whose asymptotic behaviour would
show that the right end of the support of X equals ρa and the left end equals −ρa. The statement
of Proposition 3.7 would then follow in a more elementary way by convolution from the known
asymptotics

fMa(x) ∼ κax
2a−1
2(1−a) e−(1−a)(aax)

1
1−a as x→ ∞,

where fMa is the density function of Ma – combine e.g. Formula (14.35) and Exercise 29.18 in [24]
for the latter estimate – and κa > 0 some constant. Unfortunately, simulations show that {mn} is
not a Hamburger moment sequence.

4. Proof of Theorem 1.2

Strategy of the proof. In this section we prove Theorem 1.2, with the following explicit value of
the prefactor ca:

ca =

√
2

π(1− a2)(1 + a)

(
a

ρa

) 1
2(1−a)

. (31)

Introducing the random variable X = −L1/ρa with density function φ̃(x) = ρa φ(−ρax) on R, the
required estimate amounts to

φ̃(−x) ∼

√
2

π(1− a2)(1 + a)
a

1
2(1−a) x

2a−1
2(1−a) e−(1−a)(aax)

1
1−a

, x→ ∞. (32)

To prove (32), we will use the strong Tauberian theorem given in [15, Thm 3]. This result allows
us to derive the asymptotics of the density of a random variable X, after checking three technical
conditions involving the following functionals of the distribution of X:

ω(r) = E[e−rX ], ξ(r) = −ω
′(r)

ω(r)
and η2(r) = −ξ′(r) =

ω′′(r)

ω(r)
− ξ2(r). (33)

We divide the proof into two steps: first, we will derive the asymptotic behaviour of the functions
introduced in (33). In the second step, we will use these estimates to verify the three conditions of
[15, Thm 3].

Detailed proof of Theorem 1.2.

First step: asymptotics of the functions (33). Let us first note that the functions defined in (33) are
all smooth real functions, since ω(r) is smooth and never vanishes on R as a moment generating
function with infinite radius of convergence. As a consequence of (11) in Theorem 3.1 and the
estimate anΓ(1 + an) ∼ Γ(2 + an), we have the expansion

E[Xn]

n!
=

2a (−1)n

(a+ 1)

(
1

Γ(1 + an)
+ κa

(δa)n((−1)n − 1−a
3a+1)

n! Γ(1 + an)
+ O

(
(2δa)n

n! Γ(2 + an)

))
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as n→ ∞. Recalling the above notation (30) of the Prabhakar function Eγ
α,β(z), we deduce

ω(r) =
∑
n⩾0

(
(−1)n E[Xn]

n!

)
rn

=
2a

a+ 1

(
Ea(r) + κa

(
Eδa

a,1(−r) +
a− 1

3a+ 1
Eδa

a,1(r)

))
+O

(
E2δa

a,2 (r)
)

=
2 er

1/a

a+ 1

(
1 − κ̃ar

−2/(a+1) + O
(
r−4/(a+1)

))
, (34)

with the notation

κ̃a =
κaa

1−δa(1− a)

3a+ 1
and where for the equality (34) we have used the estimates

Eγ
α,β(r) =

r
γ−β
α

αγ
er

1/α
(
1 + O(r−1/α)

)
and Eγ

α,β(−r) = O(r−γ) as r → ∞,

which are valid for every α, β, γ > 0 – see Theorem 3 in [17]. A similar argument yields

E[Xn+1]

n!
=

2 (−1)n+1

(a+ 1)

(
1

Γ(a+ an)
+ κa

(δa)n
(
(−1)n+1 − 1−a

3a+1

)
n! Γ(a+ an)

+ O

(
(2δa)n

n! Γ(1 + a+ an)

))
which implies, by the same estimates on the Prabhakar function,

ω′(r) =
∑
n⩾0

(
(−1)n+1 E[Xn+1]

n!

)
rn

=
2a

a+ 1

(
E1

a,a(r) + κa

(
Eδa

a,a(−r) +
a− 1

3a+ 1
Eδa

a,a(r)

))
+O

(
E2δa

a,1+a(r)
)

=
2 r1/a−1 er

1/a

a(a+ 1)

(
1 − κ̃ar

−2/(a+1) + O
(
r−4/(a+1)

))
. (35)

Combining (34) and (35) gives the first estimate

ξ(r) = −r
1/a−1

a

(
1 + O

(
r−4/(a+1)

))
. (36)

Then, after some simplifications, the details of which are left to the reader, we obtain the estimate

E[Xn+2]

n!
=

2 (−1)n

a(a+ 1)

(
1

Γ(2a− 1 + an)
+ κa

(δa)n
(
(−1)n − 1−a

3a+1

)
n! Γ(2a− 1 + an)

+ O

(
(2δa)n

n! Γ(2a+ an)

))
,

which yields similarly

ω′′(r) =
∑
n⩾0

(
(−1)n E[Xn+2]

n!

)
rn =

2 r2/a−2 er
1/a

a2(a+ 1)

(
1 − κ̃ar

−2/(a+1) + O
(
r−4/(a+1)

))
.

Putting this estimate together with (34) and (36) implies

η2(r) =
r2/a−2

a2

(
3a r−1/a

2
+ O

(
r−4/(a+1)

))
,

whence our final estimate

η(r) =

√
1− a r1/2a−1

a

(
1 + O

(
r−4/(a+1)

))
,

concluding the first part of the proof. □
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Second step: checking the assumptions of [15]. We are now in position to apply the strong Taube-
rian theorem of [15]. Specifically, with the notation of [15], if F stands for the distribution function
of the above random variable X = −L1/ρa, one has R = −∞ and S = ∞ so that ω(r) satisfies (2)
therein. The above asymptotics of η(r) clearly implies the slow variation condition B in [15], and
some algebra combined with the two above equivalents for ω(r) and η(r) shows that our required
(32) amounts to (14) therein. Hence, by Theorem 3 in [15], our proof will be complete if the domi-
nation condition (11) therein is fulfilled, and we need to establish the existence of some g ∈ L1(R)
such that (

rη(r)√
r2η2(r) + s2

)∣∣∣∣ω(r + is/η(r))

ω(r)

∣∣∣∣ ⩽ g(s)

for all s ∈ R and r large enough.
The estimate (34) remains valid in the half-plane {ℜ(z) ⩾ 0}, and applying Theorem 3 in [17] to

the functions Ea(r+is/η(r)), Eδa
a,1(r+is/η(r)), Eδa

a,1(−r− is/η(r)) and E2δa
a,1 (r+is/η(r)), we obtain

|ω(r + is/η(r))| ⩽

2
∣∣∣e(r+is/η(r))1/a

∣∣∣
a+ 1

+
1

Γ(1− aδa)

(
η(r)√

r2η2(r) + s2

)δa
(1 + O(r−2a/(a+1))

)
where the Landau symbol O does not depend on s since |r + is/η(r)| ⩾ r for all r ⩾ 0 and s ∈ R.
We hence need to show that there exists g ∈ L1(R) such that(

rη(r)√
r2η2(r) + s2

)∣∣∣e(r+is/η(r))1/a− r1/a
∣∣∣ + e−r1/a

(
η(r)√

r2η2(r) + s2

)δa
 ⩽ g(s)

uniformly in s ∈ R for all r large enough. Since rη(r) → ∞ and re−r1/aη(r)1+δa → 0 as r → ∞,

one has

re−r1/a

(
η(r)√

r2η2(r) + s2

)1+δa

⩽
(
1 + s2

)−(1+δa)/2 ∈ L1(R)

uniformly in s ∈ R for all r large enough, and we are reduced to show that there exists r0 > 0 and
h ∈ L1(R) such that ∣∣∣e(r+is/η(r))1/a− r1/a

∣∣∣ ⩽ h(s) (37)

for all s ∈ R and r ⩾ r0. Setting z = z(s, r) = s2/r2η2(r) ⩾ 0 for concision, the binomial theorem
implies

log
∣∣∣e(r+is/η(r))1/a− r1/a

∣∣∣ = r1/a
∑
n⩾1

(−1/a)2n
(2n)!

(−z)n

= −

(
(1− a)z r1/a

a2

)∑
n⩾0

(2− 1/a)2n
(2n+ 2)!

(−z)n

= −

(
(1− a)z r1/a

2a2

)∑
n⩾0

(1− 1/2a)n(3/2− 1/2a)n
(3/2)n(n+ 1)!

(−z)n

with the usual notation for the Pochhammer symbol (x)n and where in the last equality we have
used the Gauss multiplication formula given e.g. at the beginning of Chapter 1.5 in [1]. Introducing
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the hypergeometric function

Fa(u) = 2F1

[
1− 1/2a 3/2− 1/2a

3/2
;u

]
=
∑
n⩾0

(1− 1/2a)n(3/2− 1/2a)n
(3/2)nn!

un,

this function is analytic in C cut along the real axis from 1 to ∞ since 3/2 > 3/2 − 1/2a > 0, see
e.g. Theorem 2.2.1 in [1], and we have∑

n⩾0

(1− 1/2a)n(3/2− 1/2a)n
(3/2)n(n+ 1)!

(−z)n =
1

z

∫ z

0
Fa(−u) du.

Moreover, Pfaff’s formula – see e.g. Theorem 2.2.5 in [1] – and the fact that 1− 1/2a > 0 imply

Fa(−u) = (1 + u)1/2a−1
2F1

[
1− 1/2a 1/2a

3/2
;

u

u+ 1

]
> 0

and

−F ′
a(−u) = −

(
(2a− 1)(3a− 1)

3a2

)
2F1

[
2− 1/2a 5/2− 1/2a

5/2
;−u

]
= −

(
(2a− 1)(3a− 1)(1 + u)1/2a−2

3a2

)
2F1

[
2− 1/2a 1/2a

5/2
;

u

u+ 1

]
< 0

for all u ∈ R. Since 1/r2η2(r) = O(r−1/a), there exists r1 > 0 such that z = z(s, r) < s2 for all
s ∈ R and r ⩾ r1, and by concavity we then obtain

1

z

∫ z

0
Fa(−u) du ⩾

1

s2

∫ s2

0
Fa(−u) du.

Putting everything together, we see that there exists r0 ⩾ r1 such that

log
∣∣∣e(r+is/η(r))1/a− r1/a

∣∣∣ ⩽ −

(
(1− a) r1/a−2

2a2 η2(r)

)∫ s2

0
Fa(−u) du ⩽ −1

4

∫ s2

0
Fa(−u) du

for every s ∈ R and r ⩾ r0, where the second inequality follows from the above equivalent for
η(r). The aforementioned Pfaff formula combined with the Gauss summation formula given e.g. in
Theorem 2.2.2 of [1] show that

Fa(−u) ∼
(

π

2Γ(1 + 1/2a)Γ(3/2− 1/2a)

)
u1/2a−1

as u→ ∞, and integrating this equivalent finally shows that there exists c > 0 such that

log
∣∣∣e(r+is/η(r))1/a− r1/a

∣∣∣ ⩽ −c|s|1/a

for all s ∈ R and r ⩾ r0, which gives (37) and completes the proof. □

Remark 4.1. In the case a ∈ (1/2, a0], a shorter proof of Theorem 1.2 can be provided using
Corollary 2.4 and Theorem 2 in [15].



SUPERDIFFUSIVE LIMIT OF THE ELEPHANT RANDOM WALK 23

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3, with the following explicit value of the prefactor ĉa:

ĉa =
1√

2π(1− a)

(ρa
a

) 3a−1

2(1−a2) ρ
2

a+1
a

2 (a+ 1)
1−a
1+a Γ

(
1−a
1+a

) · (38)

The proof is analogous to Theorem 1.2 except that here we need an estimate of ξ(−r) and η(−r)
as r → ∞, with the previous notation (33). Using (11) up to the fifth order and reasoning as in the
above proof, we first obtain

ω(−r) =
2a

a+ 1

(
κaE

δa
a,1(r) + aκ−1 E

2δa
a,2 (r) + aκ−2 E

δa
a,2(r) + O

(
E1

a,3(r)
))

=
2 a

2a
a+1κa r

−2/(a+1) er
1/a

a+ 1

(
1 + κ̄1r

−2/(a+1) + κ̄2r
−1/a + O

(
r−2/a(a+1)

))
with

κ̄1 =
a

2a
a+1κ−1
κa

and κ̄2 =
aκ−2
κa

·

Similarly, using the expansion

E[Xn+1]

n!
=

2 (−1)n+1

(a+ 1)

(
1

Γ(a+ an)
+ κa

(δa)n
(
(−1)n+1 − 1−a

3a+1

)
n! Γ(a+ an)

+
a (2δa)n

(
(−1)n+1κ−1 + κ+1

)
n! Γ(1 + a+ an)

+
a (δa)n

(
(−1)n+1κ−2 + κ+2 −

)
n! Γ(1 + a+ an)

−
2a2 κa (δa)n

(
(−1)n+1 − 1−a

3a+1

)
(a+ 1)n! Γ(1 + a+ an)

+ O

(
1

Γ(2 + a+ an)

))
,

we obtain

ω′(−r) =
2

a+ 1

(
κaE

δa
a,a(r) + aκ−1 E

2δa
a,1+a(r) + a

(
κ−2 − 2a κa

a+ 1

)
Eδa

a,1+a(r) + O
(
E1

a,2+a(r)
))

=
2κa r

1/a−1−2/(a+1) er
1/a

aδa(a+ 1)

(
1 + κ̄1r

−2/(a+1) + κ̄3r
−1/a + O

(
r−2/a(a+1)

))
with

κ̄3 = κ̄2 − 2a2

a+ 1
·

This leads to

ξ(−r) = −r
1/a−1

a

(
1 − 2a2 r−1/a

a+ 1
+ O

(
r−2/a(a+1)

))
. (39)

We next compute

E[Xn+2]

n!
= =

2 (−1)n

a(a+ 1)

(
1

Γ(2a− 1 + an)
+ κa

(δa)n
(
(−1)n − 1−a

3a+1

)
n! Γ(2a− 1 + an)

+
a (2δa)n

(
(−1)nκ−1 + κ+1

)
n! Γ(2a+ an)

+
a (δa)n

(
(−1)nκ−2 + κ+2 −

)
n! Γ(2a+ an)

+
(1− 5a2)κa (δa)n(

(
−1)n − 1−a

3a+1

)
(a+ 1)n! Γ(2a+ an)

+ O

(
1

Γ(1 + 2a+ an)

))
,
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which implies

ω′′(−r) =
2

a(a+ 1)

(
κaE

δa
a,2a−1(r) + aκ−1 E

2δa
a,2a(r)

+

(
aκ−2 +

(1− 5a2)κa
a+ 1

)
Eδa

a,2a(r) + O
(
E1

a,1+2a(r)
))

=
2κa r

2/a−2−2/(a+1) er
1/a

a1+δa(a+ 1)

(
1 + κ̄1r

−2/(a+1) + κ̄4r
−1/a + O

(
r−2/a(a+1)

))
with

κ̄4 = κ̄2 +
1− 5a2

a+ 1
·

This leads to
ω′′(−r)
ω(−r)

=
r2/a−2

a2

(
1 +

(1− 5a2) r−1/a

a+ 1
+ O

(
r−2/a(a+1)

))
and finally, combining this estimate with (39), to

η(−r) =

√
ω′′(−r)
ω(−r)

− ξ2(−r) =

√
1− a r1/2a−1

a

(
1 + O

(
r−(1−a)/a(a+1)

))
. (40)

Similarly as on the positive axis, we can then apply Theorem 3 in [15] and obtain, with the previous
notation for the function φ̃, the estimate

φ̃(x) ∼

 a
1−3a

2(1−a2) ρ
2

a+1
a√

8π(1− a)(a+ 1)δaΓ
(
1−a
1+a

)
x

2a2−3a−1

2(1−a2) e−(1−a)(aax)
1

1−a
, x→ ∞,

which completes the proof. □
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