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Partial Reconfiguration for Energy-Efficient
Inference on FPGA: A Case Study with ResNet-18

ZHUOER LI1 AND SÉBASTIEN BILAVARN1

1LEAT, Université Côte d’Azur, Sophia Antipolis, France

Efficient acceleration of deep convolutional neural networks

is currently a major focus in Edge Computing research. This

paper presents a realistic case study on ResNet-18, exploring

Partial Reconfiguration (PR) as an alternative to the standard

static reconfigurable approach. The PR strategy is based on

sequencing the layers of the DNN on a single reconfigurable

region to significantly reduce the amount of Programmable

Logic (PL) resources required. Results demonstrate that PR-

based acceleration can reduce FPGA resource usage by over 6

times, power consumption by 3.2 times, and the correspond-

ing global energy cost by 2.7 times, with only a 17.5% increase

in execution time. This approach shows great potential for

further reductions in area and power consumption.

1. INTRODUCTION

With the increasing prevalence and popularity of edge Artifi-
cial Intelligence (AI) applications, there is a clear move towards
enabling deep learning models on edge devices. In this con-
text, Convolutional Neural Networks (CNNs), at the origin of a
lot of applications ranging from image recognition to real-time
video analysis, have started to be widely used. Training deep
CNNs (DNNs) used to come with inherent challenges such as
the vanishing gradient problem. Residual Networks (ResNets),
originally introduced by Microsoft Research, have emerged as a
possible solution and won the ImageNet competition in 2015 [1].
They introduce the concept of residual block (Fig. 1) to address
the gradient problem arising when stacking a large number
of layers. The basic principle is based on adding the residual
of a function F(x) = H(x) - x in the learning process. Residual
blocks are therefore present in the original topology and stacked
together to form a full ResNet model (Fig. 3).

ResNet enables deep learning models with tens or hundreds
of layers to be easily trained and reach better accuracy. However,
the inherent size and complexity behind this create challenges
for their actual implementation, especially to allow practical em-
bedded applications for mobile devices. Works quickly started
to address hardware acceleration and especially implementa-
tion on Field-Programmable Gate Arrays (FPGAs), to greatly
improve energy and processing efficiency. FPGAs offer a unique
combination of high performance, low power consumption, and

Fig. 1. Residual Block in a deep Residual Network, with skip
connections that perform identity mappings merged with the
layer outputs by addition.

adaptability, making them well-suited for deploying complex
CNNs like ResNets on edge devices. The consideration of Par-
tial Reconfiguration (PR) further extends the usual flexibility
and efficiency of FPGAs, allowing for the dynamic modifica-
tion of configuration bitstreams at runtime. This feature can
be extremely beneficial for edge applications, enabling the opti-
mization of processing capabilities without interrupting ongoing
operations, thus significantly improving area and efficiency.

However, deploying ResNets on FPGAs for edge applications,
particularly when considering Partial Reconfiguration (PR),
presents unique challenges that demand advanced methodolo-
gies for efficient system-level exploration and mapping. Proper
utilization of PR has the potential to yield significant benefits
beyond those achievable with traditional static FPGA alloca-
tion. However, PR also brings a very high level of a design
challenge to identify relevant mappings in a much larger design
space, which escalates rapidly with the complexity of the neural
network and the number of hardware functions involved.

In this work, we address this with the help of a previously
defined methodology for the efficient mapping of large and com-
plex application graphs on manycore reconfigurable accelerated
systems supporting PR [15]. The distinctive contribution of this
paper is to address an evaluation of such PR methodology on
ResNet-18 and assess the corresponding impact of PR on pro-
cessing and energy efficiency. The paper is organized as follows.
Section 2 first reviews various state-of-the-art contributions on
ResNet implementation on FPGA pointing out the issue of area
and size of programmable logic. Section 3 addresses the global
hardware software investigation methodology including the
central Design Space Exploration (DSE) approach dealing with
PR. Section 4 reports experiment studies of ResNet-18 with a
comparison of PR and static solutions. Section 5 finally draws
the main conclusions of the results with future direction for
research.
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Table 1. ResNet implementation on FPGA platforms

Work Platform Frequency Network T1frame (ms)

[2] (2017)
FPGA

Intel Arria 10 GX115 200 MHz ResNet-9 3.17

[3] (2018)
FPGA

Xilinx PYNQ 100 MHz
ResNet-18

(Converted, 8 bits) -

[4] (2018)
FPGA

Intel Stratix V -
ResNet-50

31.82

FPGA
Intel Arria 10 - 12.7

[5] (2019)
FPGA

Intel Arria 10 - ResNet-20 0.22

[6] (2020) FPGA
Xilinx ZC706 166 MHz

ResNet-32 0.60

ResNet-152 -

[7] (2022)
FPGA

Xilinx XC7VX980T 100 MHz ResNet-101 -

2. RELATED WORKS

[2] (2017) is one of the first approaches describing inference accel-
eration on FPGA with a solution to accelerate any construction of
ResNet based on using OpenCL. Implementation of a relatively
small ResNet-4 topology (9 layers) for the CIFAR-10 dataset
(32x32 images) on Intel Arria 10 GX115 device reports 315.3
fps. [3] (2018) proposed an approach based on the Apache TVM
compiler for Deep Learning and the Versatile Tensor Accelera-
tor (VTA), a generic, modular, and customizable architecture for
TPU-like accelerators. 8-bit ResNet-18 inference implemented on
a low-cost Xilinx Zynq FPGA (PYNQ board, 100MHz) achieves
51 GOPS. [4] (2018) is another contribution addressing more
specifically convolution-level loop optimizations to improve the
global efficiency and performance of CNN accelerators. Their
mapping study of ResNet-50 reports 31.82 ms/image (31.4 fps,
243.3 GOPS) on Intel Stratix V GXA7, and 12.7 ms/image (78.7
fps, 611.4 GOPS) on Intel Arria 10 GX 1150.

[5] (2019) is another study investigating several deep learning
FPGA deployment inference examples, more especially in the
field of autonomous driving with traffic sign classification and
detection. Implementation of ResNet-20 (32x32) and ResNet-32
(64x64) reports respectively 4637.72 and 1673.56 fps on an Intel
Arria 10 FPGA platform. To overcome the computational com-
plexity and implementation cost on FPGA, the authors in [6]
(2020) use fast 2-D Winograd and FFT algorithms to reduce the
number of multiplications in the convolutional layers. With this
approach, combined with a specific accelerator architecture and
design space exploration stage to achieve an optimal level of
parallelism, a ResNet-152 model can reach 130.4 GOPS on the
Xilinx ZC706 platform at 166 MHz. In more recent works [7]
(2022), a multi-Computing Engine architecture based on an ar-
ray of Processing Elements is proposed along with its associated
mapping methodology, in a way to improve also on the convolu-
tion performance. Based on this design, a ResNet-101 accelerator
is implemented achieving 600 GOPS on a Xilinx XC7VX980T
device at 100 MHZ.

It is notable from these works that convolution layers are
a major concern, but also that size is a very typical feature of
ResNets which implies most of the time the use of rather large
FPGA devices. Some works have therefore further investigated
the use of multi-FPGA platforms. [9] (2018) for example is an

early approach dealing with processing and memory capacity
using highly quantized neural networks and supporting imple-
mentation on multiple FPGAs. Deployment of ResNet-18 on
a platform using three Intel Stratix V 5SGSD8 reports 16.1 ms
per frame (65.2 fps). [8] (2021) is another approach targeting
a multi-FPGA system made of small low-cost ZYNQ boards
(PYNQ cluster). Implementation of a ResNet-50 inference ac-
celerator is achieved by dividing layers into multiple boards so
that the execution can be efficiently pipelined. With this deploy-
ment, stream processing on ResNet-50 using four PYNQ boards
achieves 292 GOPS performance and 75.1 fps throughput.

As it can be seen in [9], advanced quantization is also being
widely used to reduce on-chip storage and improve computation
throughput. Indeed, in many cases, a low-precision representa-
tion (1-2 bits per parameter) of weights and other parameters can
achieve similar accuracy while requiring fewer resources. Since
FPGAs provide efficient support for bitwise operations and can
handle arbitrary-precision representations of numbers, using
quantized values with lower precision can ease the pressure on
resources. An application study is described for example in [10]
where quantization techniques that use lower than 8-bit preci-
sion are investigated. Evaluation of ResNet-18 and ResNet-50
reports respectively 27.8 fps, 13.3 fps on PYNQ-Z2 and 214.8 fps,
109.1 fps on ZCU102 Xilinx platforms.

Binary Neural Networks (BNN) have also been investigated
in order to save storage and computation resources on FPGA
with Xilinx FINN HLS library [11] (2018). BNNs extend the con-
cept to extremely low bit quantization (binary weights), leading
to very compact implementations. A mapping study of ResNet-
50 is reported for example in [12] achieving up to 50 fps on an
Alveo U280 device.

Compression is another effective technique for resource op-
timization of DNNs. In [13] for example (2019), the authors
introduce an approach to significantly reduce the size of parame-
ters and memory footprint of the models, based on compressing
the DNN parameters down to two bits with little accuracy drop.
Implementation study of ResNet-18 reports 20.48 fps on a Zed-
Board platform.

Finally, a last attractive option is to exploit Partial Reconfig-
uration (PR). The ability of PR to reduce area has been widely
investigated in previous research with successful results in many
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Fig. 2. Overview of the global PR workflow. First, training the ResNet-18 model using Keras produces weights and bias values. Then, full ResNet-
18 C code is derived and used to generate RTL IPs with HLS, which subsequently allows to derive inference time, FPGA logic resources and power.
This characterization process is then used for DSE with a specific PR methodology (FoRTReSS).

application domains. However, PR has hardly been applied to
the field of ANNs despite the evident potential to drastically
save hardware area, especially for large DNNs. The only exist-
ing contribution in the field of large Neural Networks, up to
our knowledge, is given by fpgaConvNet [14] (2019) which is
an approach originally developed to support automated design
and mapping of CNNs on FPGA. Here, due to limited FPGA’s
computational and memory resources, straightforward reconfig-
uration of the whole FPGA at run time is additionally used to
make large DNNs practically fit in actual existing devices. Ap-
plication on a ResNet-152 topology achieves 156,40 ms/image
(188.18 GOPS) on Zynq 7045 (125 MHz).

Table 1 summarizes the different contributions of ResNet
FPGA acceleration based on techniques such as advanced quan-
tization and multi-FPGA systems discussed above, emphasizing
their respective contributions in terms of implementation and
performance. Aside from inference time and accuracy, size and
resource requirements are also major constraints for energy-
efficient mapping neural networks, especially on FPGA. Espe-
cially for deep Neural Networks such as ResNets, large devices
or multi-FPGA approaches combined with existing size reduc-
tion techniques are unavoidable to let their practical implemen-
tation on FPGAs and more generally on embedded systems.
Despite the overall effectiveness of existing techniques, an even
greater potential resides in the relevant exploitation of PR. By
sequentially reconfiguring layers on a rightly partitioned FPGA
device, the potential for size reduction is theoretically propor-
tional to the number of layers. We address therefore in the
following the use of such an advanced FPGA mapping method-
ology capable of exploiting PR, and its application to a large
DNN topology (ResNet-18).

3. PARTIAL RECONFIGURATION FLOW

To identify easily a solution in the large and complex PR de-
sign space, we use High-Level Synthesis (HLS) in addition to
a methodic Design Space Exploration (DSE) approach for the
system-level exploration of heterogeneous architectures with re-
configurable hardware acceleration and PR defined in previous
work [19]. The entire ResNet-18 specification is developed in
pure synthesizable C code derived from the iSoC open-source
project [20] and the underlying global PR workflow is illustrated
in Fig. 2. Development and modeling of ResNet-18 with this
framework is thus presented in detail in the following.

A. Development of a quantized model

Deployment of ResNet-18 involves first training the model us-
ing Keras. C code is thus manually developed to allow fast
RTL synthesis with HLS. The original C model is further im-
proved on quantization to reduce the global size of the model,
allow faster inference, less power, and target embedded devices
without the need of any hardware floating-point operators. The
development of the C reference code focuses primarily on the
convolutional and Batch Normalization (BN) layers, but also
includes fully-connected, global average pooling and addition
layers. The entire ResNet-18 topology is illustrated in Fig. 3. Op-
erations such as addition, subtraction, multiplication, division,
and square root are all processed using 16-bit fixed-point arith-
metic (Q6.9). Weights and bias values of convolutional layers are
stored using 8-bit fixed-point values (Q2.5). Weights for the BN
layers (gamma, beta, mean and variance) use a 16-bit fixed-point
format. This aims at reducing memory usage while keeping
the same inference accuracy. Less than 1% deviation is reported
compared to the original float-point specification (86.3% for the
floating-point vs 85.9% for the fixed-point).

The notion of ResNet is based on basic residual blocks. There
are primarily two types of residual blocks in this topology: con-
volutional residual blocks (green in Fig. 3) and identity residual
blocks (orange in Fig. 3). The identity residual blocks consist
of two convolutional layers with 3x3 kernels, associated with
a skip connection (adding the input and output of these two
convolutional layers). Convolutional residual blocks are com-
posed of two convolutional layers with 3x3 kernels, adding a
skip connection that includes a 1x1 convolution. This is neces-
sary because the number of input and output channels of the
convolutional residual blocks differ. Hence a 1x1 convolutional
layer is required to equalize the channel dimensions without
altering the size of feature maps, thus enabling the addition of
skip connections. For HLS function decomposition, we partition
the network topology in such a way that each convolution layer
and its subsequent BN layer define a single block, and synthe-
size each block as distinct hardware functions. This block-based
approach allows therefore the creation of a wide range of ResNet
network topologies with various numbers of layers.

In terms of accelerator design and HLS, we explore loop-level
parallelism which remains a manual process. 2D convolutional
layers are the most computationally demanding tasks for the
global accelerator architecture. As shown in Algorithm 1, the
convolutional layer is based on six nested loops that process
output channels, output feature maps (rows and columns), in-
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Fig. 3. ResNet-18 topology

Algorithm 1. 2D convolution pseudo-code

1: for k← 0 to output_channel_size do
2: for posy ← 0 to output_height_size do
3: for posx ← 0 to output_width_size do
4: #pragma HLS pipeline
5: for z← 0 to input_channel_size do
6: if z == 0 then
7: kernel_mac← 0
8: for y← 0 to kernel_size do
9: for x ← 0 to kernel_size do

10: kernel_mac = kernel_mac +
input(z, posy, posx) ∗ kernel(k, z, y, x)

put channels, and K*K convolution kernels. Pipeline directives
are primarily applied at the input channel level to achieve an
optimal trade-off between performance and the utilization of
on-chip resources. However, the specific placement of these
pipeline directives can vary depending on the memory demands
and the computational complexity of different convolutional
layers. Similarly, pipeline parallelism is also considered for the
BN layers, as shown in the pseudocode of Algorithm 2.

Algorithm 2. Batch Normalization pseudo-code

for c← 0 to output_channel_size do
for h← 0 to output_height_size do

for w← 0 to output_width_size do
#pragma HLS pipeline

r_sqrt← fp_sqrt(variance(c) + ε)
r_sub← fp_sub(input(c, h, w), mean(c))
r_norm← fp_div(sub, sqrt)
r_mul← fp_mul(gamma(c), norm)
result← fp_add(tmp, beta(c))

B. Design Space Exploration of PR mappings

Identifying optimal deployment solutions is based on an ex-
isting methodology called FoRTReSS [15] [16] [17]. This DSE
framework allows the analysis of different application deploy-
ments with fully implementable real-time and energy-efficient
solutions. It automatically defines an extensive set of possible
Reconfigurable Regions (RR) from the RTL descriptions of hard-
ware tasks (resulting from HLS). It also generates mappings on

different cores and RRs, enabling relevant assessments of perfor-
mance, area, power, and energy for both software and hardware
functions, as well as the full system implementation.

Full hardware task implementation, modeling, and execution
on FPGA rely on HLS and lower-level FPGA synthesis tools (Vi-
vado, Vivado HLS, SDSoC). The set of hardware and software
functions can then be realistically characterized by synthesis
reports and/or execution on real FPGA and CPU cores. The
following section provides a detailed breakdown of this charac-
terization process for the ResNet-18 specification.

C. Modeling ResNet-18 mapping on ZCU102

A collection of eight residual blocks (four convolutional resid-
ual blocks and four identity residual blocks) with a total of 18
layers constitutes a full ResNet-18 topology (Fig. 3). As a large
combination of layers that are processed one after the other, a
seemingly attractive option for PR is to schedule each layer exe-
cution only using a few RRs to greatly reduce the total resource
occupation.

It should be noted here that ResNet needs tremendous FPGA
resources which significantly restricts the neural network from
fitting in existing FPGAs. This is the case for the considered
ResNet-18 topology exceeding CLB and BRAM capacity of
ZCU102 respectively of 307% and 282%. In the following, we
therefore consider a serial reconfiguration of each layer on a
smaller fraction of FPGA logic instead of implementing the en-
tire topology statically. Each layer (convolution, pooling, fully
connected) is treated as an individual task that can be potentially
mapped on a single RR.

The target platform is a ZCU102 device from the Zynq
Ultrascale+ family (quad-core Arm Cortex-A53, XCZU9EG-
FFVB1156-1). The corresponding platform model is composed
of the Programmable System (PS), the Programmable Logic (PL),
and the reconfigurable controller. Details of PS and PL model
compositions are provided in [17] and [16]. Power characteri-
zation is derived from logic synthesis tools. As PR efficiency
is strongly dependent on reconfiguration speed, we consider a
very fast optimized reconfiguration controller (UPaRC, Ultra-
fast Power-aware Reconfiguration Controller [18]) in place of
the original Xilinx PCAP controller.

Table 2 reports all values of latency, power, and FPGA re-
sources for each convolutional block of Fig. 3, considering a
ZCU102 device for mapping. For this ResNet-18 model, used
as input for DSE, values of execution times and the correspond-
ing FPGA resources come from direct HLS. The C code of each
convolution block is used to generate the corresponding RTL
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Table 2. Characterization of hardware tasks for ResNet-18 on ZCU102 (1 RR: 8880 CLBs, 648 BRAMs, 432 DSPs)

Task (i) Execution unit (j) Ti,j (ms) Pidle
i,j /Prun

i,j (mW) Nclb/Nbram/Ndsp

BlockConv01(3x3, 64) RR1 3.935 51 / 215 1874 / 60 / 28

BlockConv1_SC (1x1, 64) RR1 1.314 51 / 294 2194 / 60 / 65

BlockConv1_2 (3x3, 64) RR1 3.937 55 / 960 8639 / 64 / 410

BlockConv1_3 (3x3, 64) RR1 3.937 55 / 972 8485 / 64 / 425

BlockIdenti1_1 (3x3, 64) RR1 3.937 55 / 973 8792 / 60 / 402

BlockIdenti1_2 (3x3, 64) RR1 3.937 55 / 947 8322 / 60 / 387

BlockConv2_SC (1x1, 128) RR1 0.658 51 / 294 2348 / 65 / 34

BlockConv2_2 (3x3, 128) RR1 1.972 53 / 745 8775 / 34 / 117

BlockConv2_3 (3x3, 128) RR1 64.643 52 / 288 4075 / 238 / 19

BlockIdenti2_1 (3x3, 128) RR1 64.479 52 / 408 4498 / 263 / 20

BlockIdenti2_2 (3x3, 128) RR1 64.643 52 / 344 3963 / 259 / 19

BlockConv3_SC (1x1, 256) RR1 0.331 53 / 518 3217 / 132 / 129

BlockConv3_2 (3x3, 256) RR1 12.381 52 / 444 3447 / 213 / 19

BlockConv3_3 (3x3, 256) RR1 63.829 53 / 430 6446 / 390 / 19

BlockIdenti3_1 (3x3, 256) RR1 43.677 51 / 628 4546 / 421 / 19

BlockIdenti3_2 (3x3, 256) RR1 43.677 51 / 547 4209 / 421 / 19

BlockConv4_SC (1x1, 512) RR1 3.707 53 / 641 3497 / 92 / 257

BlockConv4_2 (3x3, 512) RR1 42.617 52 / 371 4197 / 256 / 10

BlockConv4_3 (3x3, 512) RR1 63.430 53 / 340 3628 / 632 / 19

BlockIdenti4_1 (3x3, 512) RR1 63.429 53 / 351 3400 / 516 / 19

BlockIdenti4_2 (3x3, 512) RR1 63.430 53 / 325 3242 / 488 / 19
1 Each block contains a convolutional layer followed by a batch normalization layer.

hardware task and the associated power values (Pidle, Prun) are
derived from Vivado post-synthesis power estimations. From
this characterization, DSE defines an exhaustive set of candidate
RRs that can host the different hardware tasks. Then full schedul-
ing and mapping of potential PR solutions are determined for
deployments ranging from 0 to multiple RRs (0 RR meaning full
software execution). As layers are processed sequentially one
after another, it can be noted here that only the PR solution based
on one RR is relevant and provides the best performance/en-
ergy trade-off. Therefore the mapping solution considered in
the following is based on this specific RR illustrated in Fig. 4,
encompassing 8880 CLBs, 648 BRAMs, and 432 DSPs (around
30% of the original ZCU102 logic resources).

4. VALIDATION STUDY

A. Power, performance, area

The previous ResNet model is fed into the PR-based exploration
tool and the generated different hardware/software solutions
are compared in the following. Table 4 reports the global charac-

teristics of PR (dynamically reconfigurable accelerator, 100MHz),
Static (statically reconfigurable accelerator, 100MHz), and Soft-
ware execution (using one Arm Cortex-A53 CPU core, 1200 MHz)
in terms of performance, power, and energy. Table 3 details the
resource occupation of the two types of hardware solutions, PR
and static. For the PR solution, the solution with 1 RR is cho-
sen for comparison, as among the solutions with 0 to 5 RRs, it
demonstrates the minimal area and the lowest energy consump-
tion.

First, compared to the software implementation, PR is 20
times faster (731 vs. 14742 ms) but consumes 3.3 times more
power (728 vs. 220 mW). Consequently, PR solution is 6.1 times
more energy efficient than software (532 vs. 3246 mJ).

In comparison to static acceleration, PR is 17.5% slower (731
vs. 622 ms). This difference represents the total PR reconfig-
uration overhead, as the additional latencies are entirely due
to the consecutive reconfigurations of the single RR used. The
parallelism of all hardware tasks is identical for both static and
PR solutions. In terms of programmable logic resources, PR
requires 12 times fewer CLBs (8880 vs. 105300), 8 times fewer
BRAMs (648 vs. 5136), and 6.2 times fewer DSP blocks (432 vs.
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Table 3. FPGA resource occupation of static and PR hardware implementations for ResNet-18 on ZCU102

Implementation NCLB NBRAM_18k NDSP

Static HW 105300 (307%) / 34260 5136 (282%) / 1824 2664 (106%) /2520

PR HW (1 RR) 8880 (26%) /34260 648 (35.5%) / 1824 432 (17%) / 2520

Table 4. Efficiency comparison of software, static and PR hardware implementations for ResNet-18 on ZCU102

Implementation Execution Time (ms) Average Power (mW) Energy Consumption (mJ)

SW 14742 220.2 3246.1

Static HW 622.47 2337.5 1455.05

PR HW (1 RR) 731.64 728.4 532.95

Fig. 4. Layout view of the RR selected for PR implementation
of ResNet-18 on ZCU102 (8880 CLBs, 648 BRAMs, 432 DSPs)

2664). As a result, global power consumption is reduced by a
factor of 3.2 against static implementation (728 vs. 2337 mW),
resulting in a 2.7 times improvement in energy efficiency (533 mJ
vs. 1,455 mJ), which corresponds to a 63.4% reduction in energy
consumption.

B. PR implementation analysis

Results confirm a real potential for PR improvement on ResNet-
18 (63.4% energy savings), and more generally for large ANNs
[21]. However, the actual numbers are below expectations, as
sharing many network layers with significantly fewer PL re-

sources would ideally result in greater area reduction. Because
of the large memory requirements of ResNet-18, and in general
of deep neural networks, the RR selected by the exploration tool
is still quite large. This limits the potential of FPGA resource
savings. At the same time, since the reconfiguration time is pro-
portional to the size of the RR, this also has a negative impact
on the overall reconfiguration time.

Therefore, the reconfiguration times associated with this large
RR end up representing around 17.5% of the total ResNet-18 in-
ference time. Reconfiguration control plays a critical role and
has to be highly optimized to permit extremely fast reconfigu-
ration times. Despite the use of an optimized reconfiguration
controller (UPaRC [18]), future works will also address specific
scheduling heuristics, such as those described in [22], to further
improve reconfiguration latencies.

Finally, it can be concluded that optimal PR efficiency is sig-
nificantly limited by the very large memory requirements in-
duced mainly by network parameters (weights). An interesting
perspective would be to exploit the PR technique differently,
by more progressively loading network parameters into local
memory on the fly, thereby drastically reducing on-chip storage
requirements on the FPGA. This is the main work envisaged in
the perspectives.

5. CONCLUSION

This work presents a mapping study of a ResNet-18 DNN model
on a ZCU102 FPGA platform with partial reconfiguration. The
results indicate notable improvements of PR over static recon-
figuration, with more than 6 times reduction in programmable
logic resources, 3.2 times reduction in power consumption, and
2.7 times energy savings, accompanied by a 17.5% execution
time increase, totally incurred by the reconfiguration overheads.
Previous work already introduced the improvement potential
of PR with energy savings up to 1.67 times for smaller CNN
network benchmarks (MNIST, GTSRB, CIFAR-10) compared to
their equivalent static implementations [21]. Additionally, PR
also showed increasing energy gains for larger networks, as
further confirmed on ResNet-18 in this paper.

These results are therefore encouraging enough to consider
PR as a promising technique to significantly improve the en-
ergy efficiency of DNNs on FPGA. One essential condition is to
achieve fast reconfiguration control and/or scheduling, which
can be based on approaches such as [22]. In addition, this study
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allows us to envisage even more effective PR usage in perspec-
tives by exploiting reconfiguration differently, specifically at the
memory level of DNNs, to drastically reduce this way FPGA size
and memory requirements for large embedded neural networks.
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