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Abstract

Transfer learning addresses the challenge of transfering knowledge from one domain to
another. Traditional transfer learning focuses on adapting models trained on a source
domain (with a lot of observations) to improve performance on a target domain (with few
observations). In this work we consider the case of a model shift and we focus on the
transfer learning applied to a causal forest namely HTERF. This causal forest aims to
estimate the Conditional Average Treatment Effect (CATE).
The approach considered is the offset method presented by Wang (2016) adapted to a
causal context. This method relies on the use of intermediate models in order to estimate
the offset between source and target distributions. Our main result is a bound on the CATE
error of HTERF on target depending on the error of the intermediate models. Simulation
studies show the good performances of this approach in different settings on simulations
and on a real-world dataset.

Keywords: causal inference, causal forest, HTERF, transfer learning, domain adaptation,
offset method

1 Introduction

Estimates of causal effects are needed to answer what-if questions about shifts in policies,
such as new treatments in pharmacology or new pricing strategies for business owners.
This section presents the main required notions: the potential outcome framework, the
Heterogneous Treatment Effect based Random Forest - HTERF - method for Conditional
Average Treatment Effect - CATE - estimation and transfer learning, with a focus on domain
adaptation. The paper is organised as follows. In Section 2, we give details on the offset
method. Section 3 contains our adaptation of the offset method to CATE estimation and
our L1 consistency result, a generalisation bound is also obtained. A simulations study is
presented in Section 4. A short discussion can be found in Section 5. Most technical proofs
are postponed to the final Appendix.
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1.1 The causal framework

Following the framework outlined in Imbens and Rubin (2015), the potential outcomes de-
noted Y (1) and Y (0) are defined as the outcome that would have been observed if treatment
or control had been assigned to the quantity of interest Y , respectively. Let Y = Y (W ) be
the observed outcome, where W represents a binary treatment. Additionally, we incorpo-
rate a set of covariates X ∈ Rd. The conditional average treatment effect (CATE) at x is
defined as follows:

τ(x) = E [Y (1)− Y (0)|X = x] (1)

The average treatment effect (ATE) is:

τ = E [Y (1)− Y (0)] (2)

A standard assumption for identifiability of CATE is unconfoundedness (Rosenbaum and
Rubin (1983)), meaning that conditionally on X the treatment assignment W is independent
of the potential outcomes for Y :

{Y (1), Y (0)} ⊥⊥W |X. (3)

Many algorithms in the literature allow to evaluate CATE: causal forests, metalearn-
ers, causal neural networks as examples. In what follows we focus on HTERF, a short
presentation of this algorithm is given in the next section.

1.2 HTERF

The presented transfer algorithms are based on HTERF, a special case of random for-
est introduced by Jocteur et al. (2024), it differs from the GRF model of Athey et al.
(2019) by a new splitting criterion used to construct the trees. Given a sample Dn =
(Wi,Xi, Yi)i=1,...,n ∈ {0, 1} ×Rd ×R, it provides an estimator τ̂B,n(x) of the quantity τ(x).
Given assumptions on the distribution of Dn and the construction of the forest, an almost
sure convergence result of τ̂B,n to τ is obtained, as well as an interpretability result. This
algorithm has been implemented in Julia, in the package CausalForest1. For further
background knowledge on the HTERF algorithm and the associated theoretical results, we
refer the readers to Jocteur et al. (2024). Let us remark that HTERF outperforms GRF
and metalearners on most of the tested settings.

1.3 Transfer learning

Transfer learning is a machine learning technique that leverages knowledge gained from solv-
ing one problem and applies it to a different but related problem. In traditional machine
learning approaches, models are trained from scratch for each task, requiring substantial
amounts of labeled data and computational resources. However, in real-world scenarios,
labeled data might be scarce or expensive to acquire, hindering the effectiveness of such
methods. Transfer learning addresses these limitations by transferring knowledge from a
source domain where labeled data is abundant to a target domain where labeled data is

1. https://github.com/BereniceAlexiaJocteur/CausalForest.jl
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Transfer learning for causal forest

scarce. This approach allows models to generalize better and achieve improved perfor-
mances, particularly in situations where limited labeled data is available for training.

Domain adaptation is a special case of transfer learning. In domain adaptation, the
source and target domains all have the same feature space (but different distributions),
while transfer learning includes cases where the target domain’s feature space is different
from the source feature space or spaces. In what follows, the problem of supervised domain
adaptation is considered, where both source and target dataset are labeled.

According to Huyen (2022), in a supervised machine learning problem, the training
dataset can be viewed as a set of samples from a joint distribution of P (X, Y ), where X is
the input and Y is the output. We are interested in modelling P (Y |X). Of course, P (X, Y )
can be decomposed as P (X|Y )×P (Y ) or P (Y |X)×P (X). Different problems are treated in
transfer learning. The most common is the covariate shift where the marginal distribution
P (X) differs between source and target domains but the conditional distribution P (Y |X)
stays the same across the domains. Similarly label shift can be defined as the case where
P (Y ) differs between source and target domains but the conditional distribution P (X|Y )
stays the same across the domains. Finally the model shift or concept drift concerns the
cases where P (Y |X) changes but P (X) remains the same.

Different strategies are presented in Huyen (2022) to address these data distribution
shifts. The first strategy and the simplest is to train models on large and rich datasets
hoping that points following both source and target distribution will be present in this
large dataset. This method requires to have access to large external datasets susceptible
to contain both source and target distributions. Furthermore it can be costly to train
models on very large datasets. A second approach is to use algorithms dedicated to take
into account a certain type of shift, for example the kernel mean matching (KMM) method
(Huang et al. (2006), Gretton et al. (2006)) allows to deal with covariate shift. Zhang et al.
(2013) proposes an approach to correct both covariate shift and label shift without using
labels from target distribution (unsupervised domain adaptation problem), in a similar
fashion Zhao et al. (2019) proposed domain-invariant representation learning. Wang et al.
(2014) introduces two methods to deal with covariate shift in real regression cases, they
use labeled source data. Finally a third kind of approach to deal with data distribution
shift is to retrain the model with labeled target data, either the model is retrained from
scratch with both source and target data or the existing model trained on source resumes
its training on target data. This second option named fine tuning is easily applicable on
neural networks by using technics such as freezing layers or warm starting.

Transfer strategies can be extended to the causal context. We consider the source
domain (Xs, Y s,W s) and the target domain (Xt, Y t,W t). We focus on the model shift
case, that is P (Y t(1)|Xt) 6= P (Y s(1)|Xs) and P (Y t(0)|Xt) 6= P (Y s(0)|Xs). We assume
that the distributions for Xs and Xt (respectively W s and W t) are the same. If it were
not the case, the distributions of Xs and Xt could be matched by various methods dealing
with covariate shift (e.g. KMM) without the use of Y . The goal is then to estimate the
CATE function on the target population. A recent work has been done to estimate ATE
in a supervised domain adaptation setup in Wei et al. (2024), the nuisance parameters
(such as the propensity score) are estimated using `1 regularised transfer learning, and then
plugged in an ATE estimator. We can also mention Künzel et al. (2018), who proposed to
transfer knowledge by using several strategies such as: using neural network (NN) weights
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estimated from the source domain as the warm start of the subsequent target domain NN
training, using NN weights estimated from the source domain and freezing some of its layers
before backpropagating through the unfrozen ones when training on target dataset. Neural
networks with an architecture dedicated to causal transfer learning have also been proposed
by Bica and van der Schaar (2022). The method we propose is innovative, since it allows
transfer learning on CATE estimation without using a neural network.

2 The offset approach

In what follows, we will be concerned with the offset approach that we describe now.

2.1 Presentation

Let X ∈ Rd and Y ∈ R the input and output spaces for a regression task for both source
and target domains. Let (Zsi )i∈{1,...,n} = ((Xs

i , Y
s
i ))i∈{1,...,n} be the source data set of size

n, we also consider (ZtLi )i∈{1,...,nl} = ((XtL
i , y

tL
i ))i∈{1,...,nl} the labeled target data set of size

nl. There is also an unlabeled target dataset on which we want to test the performance of
transfer learning we denote it (XtU

i )i∈{1,...,nu} of size nu.

Algorithm 1 Offset algorithm

Input: A source data set {Xs
i , Y

s
i }i∈{1,...,n}, a labeled target data set {XtL

i , Y
tL
i }i∈{1,...,nl}

and an unlabeled target data set {XtU
i }i∈{1,...,nu}.

Estimate a model f̂s that regresses {Y s
i } against {Xs

i}.
Estimate a model f̂o that regresses {Ŷ o

i } = {Y tL
i − f̂s(XtL

i )} against {Xt
i}.

{Y new
i } ← {Y s

i + f̂o(Xs
i )}

Train a model M on {Xs
i , Y

new
i } ∪ {XtL

i , Y
tL
i }.

Output: {Ŷ tU
i } ← {M(XtU

i )}

The offset algorithm (Algorithm 1) introduced by Wang et al. (2014) can be used with
any regression machine learning algorithm for each estimator (namely f̂s, f̂o,M).

2.2 Using Kernel Ridge Regression

A generalisation bound is proposed in Wang and Schneider (2015) when Kernel Ridge
Regression (KRR) is used in the offset algorithm.

KRR and its associated notations are defined the following way.

Definition 1 (Bousquet and Elisseeff (2002)) Let ST = {Z1 = (X1, Y1), . . . ,Zn =
(Xn, Yn)} be a training sample sample for a regression task in a reproducing kernel Hilbert
space (see Wahba (2003)) H with kernel K, scalar product k and associated norm ||.||k. Let
` be the l2 loss function, then the KRR estimator is:

arg min
h∈H

1

n

n∑
i=1

`(h,Zi) + λ||h||2k (4)

Two errors are defined:
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• R = E[`(ST ,Z)], the generalisation error,

• Remp = 1
n

∑n
i=1 `(ST ,Zi) the empirical error.

Theorem 2 (Wang and Schneider (2015)) If KRR is used to estimate the three func-
tions in the offset method, let Rt be the generalisation error on the target dataset of the final
model M , Rsemps the empirical error on the source model and R̄oemp is the empirical error

of the estimator f̂o against {XtL, Ŷ o}, then

Rt − 2
(
Rsemps − R̄oemp

)
= O

(
1√
λonl

)
, (5)

where λo is the hyperparameter of KRR.

This result relies on Theorem 12 in Bousquet and Elisseeff (2002) which gives a property
of uniform stability for the KRR algorithm. However this property is not known for many
other algorithms than KRR (or only a weaker version of stability is obtained) which makes
difficult extensions of this result to the causal case presented in the following section.

3 Causal adaptation

We propose an offset method adapted to the causal framework.

3.1 Overview

Two causal adaptation to the offset method are proposed, in Algorithm 2 the treated and the
control populations are processed separately in order to estimate source and offset functions
(one estimator for each group). In Algorithm 3 the treatment variable is considered as an
additional covariate for the source and offset functions.

Algorithm 2 Offset causal algorithm separate models

Input: A source data set {W s
i ,X

s
i , Y

s
i }i∈{1,...,n}, a labeled target data set

{W tL
i ,XtL

i , Y
tL
i }i∈{1,...,nl} and an unlabeled target data set {XtU

i }i∈{1,...,nu}.
Estimate a model f̂s0 that regresses {Y s

i }W s
i =0 against {Xs

i}W s
i =0 and a model f̂s1 that

regresses {Y s
i }W s

i =1 against {Xs
i}W s

i =1.

Estimate a model f̂o0 that regresses {Y tL
i − f̂ s0 (XtL

i )}W tL
i =0 against {XtL

i }W tL
i =0 and a

model f̂o1 that regresses {Y tL
i − f̂s1 (XtL

i )}W tL
i =1 against {XtL

i }W tL
i =1.

{Y new
i } ← {Y s

i + f̂oW s
i
(Xs

i )}
Train an HTERF model M on {W s

i ,X
s
i , Y

new
i } ∪ {W tL

i ,XtL
i , Y

tL
i }.

Output: {τ̂ t(XtU
i )} ← {M(XtU

i )}

Any regression algorithm could be used to estimate the source and offset functions, in
practice we obtained good results by using regression random forests.
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Algorithm 3 Offset causal algorithm unique models

Input: A source data set {W s
i ,X

s
i , Y

s
i }i∈{1,...,n}, a labeled target data set

{W tL
i ,XtL

i , Y
tL
i }i∈{1,...,nl} and an unlabeled target data set {XtU

i }i∈{1,...,nu}.
Estimate a model f̂s that regresses {Y s

i } against {Xs
i ,W

s
i }.

Estimate a model f̂o that regresses {Y tL
i − f̂s(XtL

i ,W
tL
i )} against {XtL

i }.
{Y new

i } ← {Y s
i + f̂o(Xs

i ,W
s
i )}

Train an HTERF model M on {W s
i ,X

s
i , Y

new
i } ∪ {W tL

i ,XtL
i , Y

tL
i }.

Output: {τ̂ t(XtU
i )} ← {M(XtU

i )}

3.2 Convergence result

Since the size of the source dataset is assumed to be large compared to the target data set,
we write a convergence theorem and a generalisation bound on the causal offset algorithm
if the HTERF model in the last step is only fit on the set {W s,Xs, Y new} = Dn.

We use the following notations, as in Jocteur et al. (2024):

• Θ`, ` = 1, . . . , B are independent random vectors, distributed as a generic random
vector Θ =

(
Θ1,Θ2,Θ3

)
and independent of Dn, and

(
Θ1,Θ2

)
is independent of Θ3.

Θ1 contains indices of observations that are used to build each tree. That is, the
subsample I1, Θ2 contains indices of observations that are used for estimations in
each tree; namely, the subsample I2 and Θ3 contains indices of splitting candidate
variables in each node. We assume that Θ3 gives a positive probability to each co-
variate. We must consider both Θ1 and Θ2 because I2 is the complementary of I1 in
I (the subsample drawn before constructing a given tree) which is random itself.

• D?n,1 (Θ`) and D?n,2 (Θ`) are the disjoint subsamples selected prior to tree construction;
the first is used to build the tree, and the second allows the building of weights used
during the estimation step.

• An (x; Θ`,Dn) is the tree cell (subspace of X ) containing x.

• Nn,1 (x; Θ`,Dn) (resp. Nn,0 (x; Θ`,Dn)) is the number of elements of D?n,2 (Θ`) that
fall into An (x; Θ`,Dn), such that Wi = 1 (resp. Wi = 0).

Let us consider τ t1(x) = E
[
Y t(1)|Xt = x

]
, τ t0(x) = E

[
Y t(0)|Xt = x

]
, τ̂new1 (x) =

∑
i:Wi=1 αi(x)Y new

i

and τ̂new0 (x) =
∑

i:Wi=0 α
′
i(x)Y new

i , where

αi(x) =
1

B

B∑
l=1

1Xi∈An(x;Θl,Dn)∧Wi=1∧i∈D?n,2(Θ`)

Nn,1 (x; Θ`,Dn)
, (6)

α′i(x) =
1

B

B∑
l=1

1Xi∈An(x;Θl,Dn)∧Wi=0∧i∈D?n,2(Θ`)

Nn,0 (x; Θ`,Dn)
. (7)

We shall make the following assumptions.

Assumption 1
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• Y t = τ t(Xt)g(Wt) + γt(Xt) + εt and Y s = τ s(Xs)g(Ws) + γs(Xs) + εs.

• ∀i such as Wi = 1, Y s
i = fs1 (Xs

i ) + εs1,i, ε
s
1 ⊥⊥ Xs and Y t

i − fs1 (Xt
i) = fo1 (Xt

i) + εt1,i, ε
t
1 ⊥⊥

Xs,Xt. εs1 and εt1 are continuous centered random variables.

• ∀i such as Wi = 0, Y s
i = fs0 (Xs

i ) + εs0,i, ε
s
0 ⊥⊥ Xs and Y t

i − fs0 (Xt
i) = fo0 (Xt

i) + εt0,i, ε
t
0 ⊥⊥

Xs,Xt. εs0 and εt0 are continuous centered random variables.

• Xs and Xt are distributed as X = (X1, . . . , Xd), which is a continuous random vector
with independent coordinates. The density of X is positive and bounded from above
and below by positive constants.

• W s and W t are distributed as W , a binary variable.

• X takes its values in X which is assumed to be a positive compact hyper-rectangle of

Rd: X =
d∏
i=1

[ui, vi], 0 ≤ ui ≤ vi <∞.

• x 7→ γt(x), x 7→ τ s1 (x), x 7→ τ s0 (x), x 7→ τ t1(x) and x 7→ τ t0(x) are continuous. So in
particular x 7→ τ t(x) and x 7→ τ s(x) are continuous.

Assumption 2 The following assumptions are made on B (number of trees in HTERF),
Nn,1 (x; Θ,Dn) resp. Nn,0 (x; Θ,Dn) (number of observations in a leaf node such as W = 1,
resp. W = 0) and on the construction of the trees:

1. B = O (
√
n) and ∃C > 0 such as B > C

√
n

(ln (n))β
, with β > 1.

2. ∀x ∈ X , E [Nn,1 (x; Θ,Dn)] = Ω
(√

n (ln (n))β
)

.

3. ∀x ∈ X , E [Nn,0 (x; Θ,Dn)] = Ω
(√

n (ln (n))β
)

.

4. maxx,ΘNn,1 (x; Θ,Dn) = o(n).

5. maxx,ΘNn,0 (x; Θ,Dn) = o(n).

6. At every step of the tree building procedure, the probability that the next split is done
along the j−th feature is bounded below by π/d for some 0 < π ≤ 1 for all j = 1, . . . , d.

7. HTERF as described in Jocteur et al. (2024) uses an honest framework, the training
sample is splitted in two parts, I1 used to construct the splits of the trees and I2 is
used to calculate the weights α and α′. I2 verifies that each split leaves at least a
fraction α of the available training sample such as W = 1 (resp. W = 0) on each side
of the split, for some 0 < α ≤ 0.5.
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The function f̂s1 is an estimator of f s1 in the first step:

∀i such as Wi = 1, Y s
i = f̂s1 (Xs

i ) + εs1,i + Es1,i(Ds,Xs
i ) (8)

The function f̂o1 is an estimator of fo1 in the second step:

∀i such as Wi = 1, Y t
i − f̂ s1 (Xt

i)− Es1(Ds,Xt
i) = fo1 (Xt

i) + εt1,i (9)

So:

∀i such as Wi = 1, Y t
i − f̂s1 (Xt

i)− Es1(Ds,Xt
i) = f̂o1 (Xt

i) + Eo1(D,Xt
i) + εt1,i (10)

Finally the third step leads to:

∀i such as Wi = 1, Y new
i = Y s

i + f̂o1 (Xs
i )

= Y s
i + Y t

i − f̂s1 (Xs
i )− Es1(Ds,Xs

i )− Eo1(D,Xt
i)− εt1,i

= Y t
i + (Y s

i − f̂s1 (Xs
i ))− Es1(Ds,Xs

i )− Eo1(D,Xt
i)− εt1,i

= Y t
i + εs1,i + Es1(Ds,Xs

i )− Es1(Ds,Xs
i )− Eo1(D,Xt

i)− εt1,i
Y new
i = Y t

i + εs1,i − εt1,i − Eo1(D,Xt
i)

In a similar fashion we have:

∀i such as Wi = 0, Y new
i = Y t

i + εs0,i − εt0,i − Eo0(D,Xt
i) (11)

Then HTERF is trained on {W s
i ,X

s
i , Y

new
i }, which gives the following estimator τ̂newB,n (X) =

τ̂new1 (x)− τ̂new0 (x), where τ̂new1 (x) =
∑

i:Wi=1 αi(x)Y new
i and τ̂new0 (x) =

∑
i:Wi=0 α

′
i(x)Y new

i .

Theorem 3 Let Assumptions 1 and 2 be verified, assume that for a fixed β > 5
2 , C > 0,

each HTERF tree of the model M is the highest such that C
√
n(lnn)β ≤ Nn,0 (x; Θ`,Dn) , Nn,1 (x; Θ`,Dn).

Assume that E
[
max

(
εs1,i

)2
]
,E
[
max

(
εt1,i

)2
]
,E
[
max

(
εs0,i

)2
]
,E
[
max

(
εt0,i

)2
]
≤ K(lnn)u

with β − u > 1
2 and K is a positive constant. Also assume that Y and Eo error term are

bounded and that Eo converges to 0 in L2 as nl tends to ∞. Then

E
[∣∣τ̂newB,n (X)− τ t(X)

∣∣] −→
n,nl→∞

0.

The more technical parts of the proof are postponed in Appendix A.

Remark 4 With an estimator f̂s of the form
∑
ωiY

s
i , since Y is assumed to be bounded, so

are f̂ s and Es. With f̂o of the form
∑
ωi(Y

t
i − f̂s(Xt

i)), the error term Eo is also bounded.
Most of the classical regression algorithm provide estimators of this form: random forest,
linear regression, neural network...

Remark 5 Following what is done in the proof of Theorem 3, the error on the estimation
of τ1 can be bounded this way (same rationale applies for τ0), let x ∈ X :∣∣τ̂new1 (x)− τ t1 (x)

∣∣ ≤ Boundoffset +BoundHTERF . (12)

Overall this bound tends to 0 as n, nl → +∞, the second term is the bound of HTERF on a
sample of size n and the first term is introduced by the offset method, the rate of convergence
of this quantity only depends on the rate of convergence of f̂o. More details of this bound
are présented in Appendix B.
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Proof [Proof of Theorem 3]
This proof is partially inspired from the proof of Theorem 4.1 in Jocteur et al. (2024).

Let us define a diamond dataset D� = (Y �i ,X
�
i ,W

�
i )i=1,...,n that is a sample of (Y t,X,W ),

being independent of Dt and Ds. This new sample is used to build (Y new,�
i )i=1,...,n using

the estimators f̂s and f̂o previously build:

∀i such as W �i = 1, Y s,�
i = f̂s1 (X�i ) + εs,�1,i + Es,�1 (Ds,X�i ) (13)

Y �i − f̂s1 (X�i )− E
s,�
1 (Ds,X�i ) = f̂o1 (X�i ) + Eo,�1 (D,X�i ) + εt,�1,i (14)

Y new,�
i = Y �i + εs,�1,i − ε

t,�
1 − E

o,�
1 (D,X�i ) (15)

As in the HTERF consistency proof, the trees are grown using Dn = Ds ∪ Dt, but the
sample D�n (independent of Dn and Θ) is used to define a dummy estimator

τnew,�B,n (x; Θ1, . . . ,Θk,D�n,Dn)

=
n∑
j=1

α�n,j (x; Θ1, . . . ,Θk,X
�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn)Y �,newj

−
n∑
j=1

α
′�
n,j (x; Θ1, . . . ,Θk,X

�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn)Y �,newj ,

where the weights are

α�n,j (x; Θ1, . . . ,Θk,X
�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn)

=
1

B

B∑
`=1

1{X�j∈An(x;Θ`,Dn)}∩W �j =1

N�n,1 (x; Θ`,X
�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn)

, j = 1, . . . , n.

with N�n,1 (x; Θ`,X
�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn), the number of elements of D�n that fall into

An (x; Θ`,Dn) such as W � = 1. Throughout this section, we shall use the convention 0
0 = 0

in case N�n,1 (x; Θ`,X
�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn) = 0 and thus 1{X�j∈An(x;Θ`,Dn)}∩W �j =1 = 0

for j = 1, . . . n.
Similarly we have:

α
′�
n,j (x; Θ1, . . . ,Θk,X

�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn)

=
1

B

B∑
`=1

1{X�j∈An(x;Θ`,Dn)}∩W �j =0

N�n,0 (x; Θ`,X
�
1, . . . ,X

�
n,W

�
1 , . . . ,W

�
n ,Dn)

, j = 1, . . . , n.

To lighten the notation in the sequel, we will simply write τnew,�B,n (x) =
n∑
j=1

α�j (x)Y �,newj −
n∑
j=1

α
′�
j (x)Y �,newj = τnew,�1 (x)− τnew,�0 (x).

Let x ∈ X , we have: ∣∣τ̂new (x)− τ t (x)
∣∣ ≤ |τ̂new (x)− τnew,� (x)|

+
∣∣τnew,� (x)− τ t (x)

∣∣ .
9
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Let x in X :
∣∣τnew,�(x)− τ t(x)

∣∣ ≤ ∣∣τnew,�1 (x)− τ t1(x)
∣∣+ ∣∣τnew,�0 (x)− τ t0(x)

∣∣ . Each of the two
terms will be treated the same way.

∣∣τnew,�1 (x)− τ t1(x)
∣∣ ≤
∣∣∣∣∣∣∣∣

n∑
i=1
W �i =1

α�i (x)
[(
Y new,�
i

)
− E

[
Y t(1)|X�i

]]∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x)
[
E
[
Y t(1)|X�i

]
− E

[
Y t(1)|X = x

]]∣∣∣∣∣∣∣∣
=: Un + Vn.

The convergence of Un and Vn towards 0 are treated in Appendix A.

4 Simulation results

In the following examples causal offset with unique and distinct models are compared to the
baseline case where HTERF is simply trained on the available target data. Two choices of
algorithms are considered to estimate functions fs and fo, namely Kernel Ridge Regression
and Regression Random Forest.

4.1 One dimensional example

Firstly, the source domain is defined, let Xs
i ∼ U([0, 1]), W s

i ∼ Bern(0.5) and Y s
i =

τ s(Xs
i )W

s
i + γs(Xs

i ). Where τ s(x) = sin(x) and γs(x) = cos(x). A source sample of 10000
units in considered. The target domain is defined as Xt

i ∼ U([0, 1]), W t
i ∼ Bern(0.5) and

Y t
i = τ t(Xi)Wi + γt(Xi). Where τ t(x) = cos(x) and γt(x) = cos(x). The unlabeled target

dataset and the labeled target dataset are both of size 500.
In Table 1, the performance of HTERF on source model is presented in the first line. Then
we present the results of the offset method with KRR used to estimate the functions fs and
fo. Two cases have been considered in the first one, separate models are trained respectively
for treated and control groups, in the second case the treatment variable T is considered
as a covariate for fs and fo. Finally a no transfer strategy is considered where HTERF is
trained only on the target data set. Figure 1 offers a graphical illustration of this example.

Both causal offset methods have better performances than the baseline method. In this
example using a single model for treated and untreated individuals is the most efficient.

4.2 Multi-dimensional example

A multi-dimensional example inspired by the previous one is proposed, for the source
domain let Xs

i ∼ U([0, 1]10), W s
i ∼ Bern(0.5) and Y s

i = τ s(Xs
i )W

s
i + γs(Xs

i ). Where
τ s(x) = sin(x(1)) and γs(x) = cos(x(1)). A source sample of 10000 units in considered. The
target domain is defined as Xt

i ∼ U([0, 1]10), W t
i ∼ Bern(0.5) and Y t

i = τ t(Xi)Wi+γt(Xi).
Where τ t(x) = cos(x(1)) and γt(x) = cos(x(2)). The unlabeled target dataset and the la-

10
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Method RMSE

HTERF on source 0.003

Offset KRR separate models 0.015
Offset KRR unique model 0.009

No transfer (HETRF on target only) 0.205

Table 1: Dimension one example. Root mean squared errors of CATE on source and on
target with three different methods namely, offset causal with separate KRR models, offset
causal with unique KRR model and HTERF only trained on target data (baseline method).
HTERF causal forests have 500 trees, the forest of the first step in HTERF have 500 trees.
The results are aggregated over 50 simulation replications with 500 test points each (the
source dataset stay unchanged only the target training and test dataset are modified).

Figure 1: Graphical illustration for one dimensional example
Top left: HTERF CATE estimation on source
Top right: HTERF CATE estimation on target using only target data
Bottom left: HTERF CATE estimation on target using offset causal with separate KRR
models
Bottom left: HTERF CATE estimation on target using offset causal with unique KRR
model

11
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beled target dataset are both of size 500.

Method RMSE

Source 0.004

Offset separate KRR models 0.957
Offset unique KRR model 0.960

Offset separate RF models 0.120
Offset unique RF model 0.135

No transfer 0.348

Table 2: Multi-dimensional example. Root mean squared errors of CATE on source and on
target with five different methods namely, offset causal with separate KRR models, offset
causal with unique KRR model, offset causal with separate random forest (RF) models,
offset causal with unique RF model and HTERF only trained on target data (baseline
method). HTERF causal forests have 500 trees, the forest of the first step in HTERF
have 500 trees. The results are aggregated over 50 simulation replications with 500 test
points each (the source dataset stay unchanged only the target training and test datasets
are modified).

Figure 2 illustrate the poor performance of KKR as the algorithm for f s and fo. In the
top right image, the KRR estimator of the function fs fails to capture the variations of Y s

0

against Xs,(2). however using random forest to estimate fs and fo, causal offset algorithms
are more efficient than the baseline method (see Table 2). This time using separate models
for treated and control units is the best strategy.

4.3 Semi-synthetic dataset

A last example is presented, using the IHDP dataset already introduced in the HTERF
article Jocteur et al. (2024). This dataset has been studied in Wei et al. (2024) to compare
accuracy of various ATE estimators in a transfer learning context. In addition to RMSE
two additional indicators of performances for ATE estimation are added, namely:

• ATE1: 1
nu

∣∣∣∑nu
i=1 τ̂

new
B,n (XtU

i )− τ t(XtU
i )
∣∣∣

• ATE2: 1
nu

∑nu
i=1

∣∣∣τ̂newB,n (XtU
i )− τ t(XtU

i )
∣∣∣

To create the source and target domains, the binary variable ”The mother drank alcohol
during pregnancy” has been used: the source domain consists of all children whom mothers
did not drink and the target domain consists of the children whom mothers drank alcohol.

In this example, causal offset with a unique random forest model is the most efficient for
CATE and ATE estimation, followed by causal offset with two separate models (see Table
3). Both algorithms outperform the baseline method without transfer.

12
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Figure 2: Graphical illustration for multi-dimensional example
Top left: KRR estimation on source of the function fs0
Top right: HTERF CATE estimation on target using only target data
Bottom left: HTERF CATE estimation on target using offset causal with separate KRR
models
Bottom left: HTERF CATE estimation on target using offset causal with unique KRR
model

Method CATE ATE1 ATE2

Offset separate models 0.808 0.292 0.561
Offset unique model 0.734 0.180 0.491

No transfer 1.016 0.351 0.732

Table 3: RMSE on CATE and two different errors on ATE with three different methods
namely, offset causal with separate RF models, offset causal with unique RF model and
HTERF only trained on target data (baseline method). HTERF causal forests have 500
trees, the forest of the first step in HTERF have 500 trees. The results are aggregated over
50 simulation replications, the source dataset stays unchanged but for each replication the
labeled target and unlabeled target are modified.
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5 Discussion

We have presented in this work an algorithm to perform transfer learning on the causal
inference problem. This approach combines the offset algorithm already used on regression
problems and the HTERF causal forest. The combination of these two methods allows to
have a consistency result on the CATE estimation in the target domain. A generalisation
bound is also shown, these results rely on stronger assumptions than the classical HTERF
consistency, especially regarding the number of trees in the forest which needs to be large

(> C
√
n

(lnn)β
).

Additional work could be done on the proof on consistency to lighten the assumptions. An
almost sure convergence might also be obtained instead of a L1 convergence.
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Appendix A. Proof of results

Proof [Sequel of the proof of Theorem 3]
The Un term writes:

Un =

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i

(
ε�,s1,i − ε

�,t
1,i − E

o,�
1 (D,X�i )

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i ε
�,s
1,i

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i ε
�,t
1,i

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�iE
o,�
1 (D,X�i )

∣∣∣∣∣∣∣∣ .
Since Y is assumed to be bounded, in addition to the fact that τ1 and γ are continuous
and X lives in a compact space, necessarily εs1 and εt1 are bounded. Following the HTERF
consistency proof we have:

E


∣∣∣∣∣∣∣∣

n∑
i=1
W �i =1

α�i ε
�,s
1,i

∣∣∣∣∣∣∣∣
2 ≤ E

[
max ε�2j

]( 4

K
√
n(lnn)β

+
4CM2

n(lnn)γ
+ 16C

√
n(n+ 1)2de−K

2(lnn)2β/2048

)

≤ 4C

K
√
n(lnn)β

+
4CM2

n(lnn)γ
+ 16C

√
n(n+ 1)2de−K

2(lnn)2β/2048

→ 0

For the last term since the assumption is made that Eo1(D,Xs) is L2 consistent, then it is
also L1 consistent, it can be bounded the following way

E


∣∣∣∣∣∣∣∣

n∑
i=1
W �i =1

α�iE
o,�
1 (D,X�i )

∣∣∣∣∣∣∣∣
 ≤ E

[
α�1
∣∣Eo,�1 (D,X�1)

∣∣] . (16)

We use the following decomposition:

E
[
α�1
∣∣Eo,�1 (D,X�1)

∣∣] ≤ E
[∣∣∣∣α�i − 1

n

∣∣∣∣ ∣∣Eo,�1 (D,X�i )
∣∣]+

1

n
E
[∣∣Eo,�1 (D,X�i )

∣∣] (17)

Since
∑n

j=1 α
�
j = 1 and the α�j s are identically distributed, we have E[α�i ] = 1

n and E[α�i |D] =
1
n . Cauchy-Schwartz inequality gives:

E
[∣∣∣∣α�i − 1

n

∣∣∣∣ ∣∣Eo,�1 (D,X�i )
∣∣] ≤√V ar(α�i )√E

[∣∣Eo,�1 (D,X�i )
∣∣2]. (18)

Using the total variance formula:

V ar(α�i ) = E [V ar(α�i |D)] . (19)
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We can rewrite:

α�i =
1

B

B∑
l=1

1X�i∈An(l)

N�n,1(x; Θl,Dn)
=:

1

B

B∑
l=1

Zl, (20)

where conditionally on D the (Zl)l∈1,...,n are independent and identically distributed, this
leads to

V ar(α�i |D) =
1

B
V ar(Z1)

≤ 1

B
E[Z2

1 |D]

≤ 1

B
E

[
1X�i∈An(1)

(N�n,1(x; Θ1,Dn))2

∣∣∣D]

≤ 1

B
E

[
1X�i∈An(1)1{N�n,1(x;Θ1,Dn)≥λ}

(N�n,1(x; Θ1,Dn))2

∣∣∣D]+
1

B
E

[
1X�i∈An(1)1{N�n,1(x;Θ1,Dn)<λ}

(N�n,1(x; Θ1,Dn))2

∣∣∣D] .
Let λ =

√
n(lnn)β

2 ,

V ar(α�1|D) ≤ 1

Bλ
E

[
1X�i∈An(1)

N�n,1(x; Θ1,Dn)

∣∣∣D]+
1

B
P
(
N�n,1 (x; Θ1,Dn) < λ|D

)
≤ 1

Bλ
E [α�i |D] +

1

B
P
(
N�n,1 (x; Θ1,Dn) < λ|D

)
≤ 1

Bλn
+ P

(
N�n,1 (x; Θ1,Dn) < λ|D

)
.

Remark that{
N�n,1 (x; Θ1,Dn) <

√
n (lnn)β

2

}
⊂

{∣∣Nn,1 (x; Θ1,Dn)−N�n,1 (x; Θ1,Dn)
∣∣ > √n (lnn)β

2

}
,

thus we have

P
(
N�n,1 (x; Θ1,Dn) < λ|D

)
≤ P

(∣∣Nn,1 (x; Θ1,Dn)−N�n,1 (x; Θ1,Dn)
∣∣ > λ|D

)
.

The following lemma has been stated in Jocteur et al. (2024), it is based on Vapnik-
Chervonenkis theory.

Lemma 6 Consider u ∈ {0, 1}, as before, Nn,u (An (Θ)) = Nn,u (x; Θ,Dn) is the num-
ber of observations of Dn such as W = u that fall into in An (Θ) = An (x; Θ,Dn) and
N�n,u (An (Θ)) = N�n,u

(
x; Θ,X�1, . . . ,X�n,Dn

)
, the number of observations of D�n such as

W = u that fall into An (Θ). Then,

∀ε > 0, P
(∣∣Nn,u (An (Θ))−N�n,u (An (Θ))

∣∣ > ε
)
6 16(n+ 1)2de−ε

2/128n .
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Using Assumption 2 and Lemma 6, there exists C and M positive constants such that:

V ar(α�) ≤ 1

Bλn
+ E

[
P

(∣∣Nn,1 (x; Θ1,Dn)−N�n,1 (x; Θ1,Dn)
∣∣ > √n (lnn)β

2

∣∣∣D)]

≤ 2

Bn3/2 (lnn)β
+ P

(∣∣Nn,1 (x; Θ1,Dn)−N�n,1 (x; Θ1,Dn)
∣∣ > √n (lnn)β

2

)

≤ 2

Mn2
+ 4C(n+ 1)2de−(lnn)2β/512 = O

(
1

n2

)
.

Thus since Eo1 converges to 0 in L2 which implies that it also converges in L1:

E


∣∣∣∣∣∣∣∣

n∑
i=1
W �i =1

α�iE
o,�
1 (D,X�i )

∣∣∣∣∣∣∣∣
 ≤ n∑

i=1
W �i =1

√
V ar(α�i )

√
E
[∣∣Eo,�1 (D,X�i )

∣∣2]+ E
[∣∣Eo,�1 (D,X�i )

∣∣]

≤ n
√
V ar(α�i )

√
E
[∣∣Eo,�1 (D,X�i )

∣∣2]+ E
[∣∣Eo,�1 (D,X�i )

∣∣]
−→ 0.

The term Vn can now be treated:

Vn =

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x)
[
E
[
Y t(1)|X�i

]
− E

[
Y t(1)|X = x

]]∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x) [E [Y new(1)|X�i ]− E [Y new(1)|X = x]]

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x) [Eo1(D,X�i )− Eo1(D,x)]

∣∣∣∣∣∣∣∣ .
We can state the following lemma from Lemma 2 in Meinshausen and Ridgeway (2006)

and similar to Lemma 5 in Bénard et al. (2022).

Lemma 7 Let Assumptions 1 and 2 be verified, let x ∈ X and ` ∈ [1, B]. Denote
An(x,Θ`,Dn) =

⊗d
j=1 I(x,Θ`,Dn), where I(x,Θ`,Dn) are intervals, then

max
j=1,...,d

|I(x,Θ`,Dn)| = o(1).

Combining the Lemma 7 with the continuity of τ1, we get

∀` ∈ [1, B],∀x ∈ X , sup
z∈An(x,Θ`,Dn)

|τ1(z)− τ1(x)| a.s.−→
n→∞

0. (21)
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Using this result we get that the first term tends to 0 almost surely:

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x) [E [Y new(1)|X�i ]− E [Y new(1)|X = x]]

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

∃l|X�i∈An(x,Θl)

α�i (x) [E [Y new(1)|X�i ]− E [Y new(1)|X = x]]

∣∣∣∣∣∣∣∣∣∣∣
≤

n∑
i=1
W �i =1

∃l|X�i∈An(x,Θl)

|α�i (x) [E [Y new(1)|X�i ]− E [Y new(1)|X = x]]|

≤ sup
z∈An(x)

|τ1(z)− τ1(x)| −−−−−→
n→+∞

0.

Since each τ term is bounded, by dominated convergence theorem we have the L1 conver-
gence of this quantity.

The second term can be shown to be L1 convergent to 0 using the same rationale than
for Un.

The quantity |τ̂new (x)− τnew,� (x)| is now treated. We use the same decomposition and
consider separately but in similar fashion

∣∣τ̂new1 (x)− τnew,�1 (x)
∣∣ and

∣∣τ̂new0 (x)− τnew,�0 (x)
∣∣:

∣∣τ̂new1 (x)− τnew,�1 (x)
∣∣ =

∣∣∣∣∣∣ 1

B

B∑
l=1

n∑
j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Y new
j −

1X�j∈An(l)1W �j =1

N�n,1(x; Θl,Dn)
Y new,�
j

∣∣∣∣∣∣ .

Following the HTERF consistency proof, this term converges to 0 almost surely. Since
all the Y terms are bounded, with dominated convergence theorem this term tends to 0 in
L1.

Appendix B. Generalisation bound

Using the proof in Section A, we get the following decomposition:
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∣∣τ̂new1 (x)− τ t1 (x)
∣∣ ≤ ∣∣τ̂new1 (x)− τnew,�1 (x)

∣∣+
∣∣τnew,�1 (x)− τ t1 (x)

∣∣
≤

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�iE
o,�
1 (D,X�i )

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x) [Eo1(D,X�i )− Eo1(D,x)]

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x) [E [Y new(1)|X�i ]− E [Y new(1)|X = x]]

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i ε
�,s
1,i

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i ε
�,t
1,i

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

B

B∑
l=1

n∑
j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Y new
j −

1X�j∈An(l)1W �j =1

N�n,1(x; Θl,Dn)
Y new,�
j

∣∣∣∣∣∣
≤Boundoffset +BoundHTERF ,

where

Boundoffset =

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�iE
o,�
1 (D,X�i )

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x) [Eo1(D,X�i )− Eo1(D,x)]

∣∣∣∣∣∣∣∣
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and

BoundHTERF = +

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i (x) [E [Y new(1)|X�i ]− E [Y new(1)|X = x]]

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i ε
�,s
1,i

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
n∑
i=1
W �i =1

α�i ε
�,t
1,i

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

B

B∑
l=1

n∑
j=1

1Xj∈An(l)1Wj=1

Nn,1(x; Θl,Dn)
Y new
j −
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Bérénice-Alexia Jocteur, Véronique Maume-Deschamps, and Pierre Ribereau. Heteroge-
neous treatment effect-based random forest: Hterf. Computational Statistics & Data
Analysis, page 107970, 2024.

20



Transfer learning for causal forest
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