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On maximal order type of the lexicographic product

Mirna Džamonja and Isa Vialard

September 17, 2024

Abstract

We give a self-contained proof of Isa Vialard’s formula for o(P · Q) where P
and Q are wpos. The proof introduces the notion of a cut of partial order, which
might be of independent interest.

1 Introduction

A well quasi order is a quasi order that has no infinite antichains or infinite decreasing
sequences. For the purposes of this note, it is sufficient to work with well quasi orders
that are actually partial orders, which we call well partial orders (wpo). A linearisation
of a wpo is a linear order that extends the wpo but has the same underlying set. It
follows that every linearisation of a wpo P is a well order and has an ordinal order type.
By a theorem of De Jongh and Parikh [1] for every wpo P there is the maximal ordinal
which can be obtained as the order type of a linearisation of P , denoted o(P ) and called
the maximal order type of P . In this note we are interested in the maximal order type
of the orders obtained as the lexicographic product P ·Q for some wpos P and Q.

Džamonja, Schmitz and Schnoebelen incorrectly claimed in Lemma 4.4(1) of [2] that
o(P · Q) = o(P ) · o(Q). Moreover, in [2] the statement was incorrectly attributed to
Abraham and Bonnet. It turns out that while o(P · Q) = o(P ) · o(Q) is true if o(Q) is
a limit ordinal, the statement is not true in general. The mistake was found by Harry
Altman (private correspondance, March 2024), who provided a counter-example. Isa
Vialard (March 2024, upcoming Ph.D. thesis) gave a correct formula for o(P ·Q). This
note presents his formula and a proof. Mirna Džamonja reformulated the original proof
by Vialard into the more easily read terms used here, which we then jointly polished to
obtain the final presentation.

The note contains Section 2 with the background, Section 3 with some new notions
and Section 4 with the actual proof.
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2 Background

2.1 Definition of o(P )

A partial order is FAC if it has no infinite antichains. It is well founded if it has no
infinite decreasing sequence. It is a well partial order (wpo) if it is both FAC and well
founded.

Claim 2.1 A FAC partial order has a finite (possibly 0) number of maximal elements.

Proof. Any two distinct maximal elements in a partial order are incompatible, hence
the set of all maximal elements forms an antichain. Therefore, in a FAC poset the set
of all maximal elements is finite. ⋆2.1

Claim 2.2 If P is a wpo, then every one of its linearisations is a well order, so isomor-
phic to an ordinal.

Proof. Suppose for a contradiction that L is a linearisation of P but that L has an
infinite strictly decreasing sequence ⟨xi : i < ω⟩. Then we note that for any i < j, either
xi⊥Pxj or xi >P xj. Define a colouring of [ω]2 into the colours {0, 1} by

c(i, j) =

{
0 if xi⊥Pxj

1 if xi >P xj.

Ramsey theorem gives an infinite mono-chromatic set for c. However, any 0-chromatic
set for c is an antichain and a 1-chromatic set a decreasing sequence, so none can be
infinite in a wpo. Contradiction. ⋆2.2

For a wpo P we define

O(P ) = {α : there is a linearisation of P of order type α}.

Theorem 2.3 (de Jongh-Parikh [1]) For any wpo P , the set O(P ) has a maximal ele-
ment.

Notation 2.4 If P is a wpo, we denote o(P ) = maxO(P ).

Claim 2.5 If P is a wpo with k maximal elements, then o(P ) = δ +m for some limit
ordinal δ (possibly 0) and some natural number m ≥ k. In addition, k = 0 iff m = 0.

Proof. We start with a couple of useful lemmas. For clarity in notation, in this proof
we use +l to denote the lexicographic sum of two linear orders

Lemma 2.6 If P is a wpo with no maximal elements, then every linearisation of P has
a limit order type.
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Proof. Suppose that L is a linearisation of P which has a successor order type, say
β + 1. In particular, P is not empty. Without loss of generality, the elements of L and
hence of P are ordinals ≤ β, and hence β is maximal in L. Since P has no maximal
elements, β is not maximal in P and hence there is α < β with β <P α. But then
β <L α, in contradiction with β being maximal in L. ⋆2.6

Lemma 2.7 If P is a wpo with at least one maximal element, o(P ) is not a limit ordinal.

Proof. Suppose that L is a linearisation of P with order type δ, a limit ordinal. Hence
δ > 0 since P ̸= ∅. Without loss of generality, the elements of P and L are the ordinals
< δ. Let β < δ be a maximal element of P . Then for every γ ∈ (β, δ) we have β <L γ,
which can only happen if β⊥Pγ. It follows that L \ {β}+l {β} is a linearisation of P of
order type δ + 1, hence δ is not the maximal order type of a linearisation of P . ⋆2.7

Now we prove the statement of the claim by induction on k. The case of k = 0 follows
directly from Lemma 2.6.

Suppose that we have proven the statement for k ≥ 0 and let us prove it for k + 1.
Let a be any maximal element of P and let Q = P \ {a}. Any maximal element of
P which is not equal to a is necessarily a maximal element of Q, so Q has at least k
maximal elements. By the induction hypothesis, Q has a linearisation L′ of the type
o(Q′) = δ + m for some m ≥ k. Let L = L′ +l {a}, hence L is a linearisation of P of
order type δ+ (m+ 1) and therefore o(P ) ≥ δ+ (m+ 1). We cannot have o(P ) ≥ δ+ ω
since then we would also have o(Q) ≥ δ + ω. Therefore, we have o(P ) = δ + p for some
p ≥ m+ 1 ≥ k + 1. ⋆2.5

2.2 Products

Suppose that P and Q are two partial orders. Then P · Q, the lexicographic product of
P along Q, also called direct product as in [2], is defined on the underlying set P ×Q by
letting

(p0, q0) < (p1, q1) iff q0 <Q q1 ∨ (q0 = q1 ∧ p0 <P p1).

Claim 2.8 If P and Q are FAC (wpo) posets, then so is P ·Q.

Proof. Suppose that P and Q are FAC (wpo), but that ⟨(pi, qi) : i < ω⟩ is an infinite
antichain (decreasing sequence) in P · Q. If there is q ∈ Q such that for an infinite set
A of indices i in ω we have qi = q, then the sequence ⟨pi : i ∈ A⟩ is an infinite antichain
(decreasing sequence) in P , a contradiction. Hence there is an infinite set B ⊆ ω such
that for any i ̸= j ∈ B we have qi ̸= qj.

In the case of FAC, since Q is FAC, there are i < j such that either qi <Q qj, so
(pi, qi) <P ·Q (pj, qj), or qi >Q qj, so (pi, qi) >P ·Q (pj, qj). In any case, ⟨(pi, qi) : i < ω⟩
is not an antichain. In the case of wpo, we have that there must be i < j such that
qi <Q qj and therefore ⟨(pi, qi) : i < ω⟩ cannot be strictly decreasing. ⋆2.8
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Cantor Normal Formal for ordinals states that any ordinal can be represented uniquely
as a sum of the form

ωα0m0 + ωα1m1 + . . .+ ωαnmn,

where α0 > α1 > . . . αn ≥ 0 are ordinals and m0,m1, . . .mn are positive integers. The
Hessenberg sum of two ordinals α and β is the ordinal α⊕ β whose Cantor normal form
is the sum of Cantor normal forms of α and β, obtained by adding them as if they
were polynomials. We also define the Hessenberg product of two ordinals α and β as the
ordinal α⊗β whose Cantor normal form is the product of Cantor normal forms of α and
β, obtained by multiplying them as if they were polynomials.

The following easily checked observation will be helpful in the main proof.

Observation 2.9 Suppose that α is an ordinal with the Cantor normal form ωα0m0 +
ωα1m1 + . . .+ ωαnmn and β is an ordinal with the Cantor normal form ωβ0o0 + ωβ1o1 +
. . .+ ωβlol. Further suppose that, αn ≥ β0. Then

α + β = α⊕ β.

3 Cuts and isomorphic copies

Notation 3.1 If P is a wpo and L its linearisation of order type some ordinal α, by
renaming the elements of P if necessary, we can assume that the elements of P and L as
objects are ordinals in α and that the order on L is the natural order on α. This implies
that the order on P satisfies

β <P γ =⇒ β < γ,

since L is a linearisation of P . We shall refer to this process of taking an isomorphic
copy of P as without loss of generality, the elements of P are ordinals in α and P is a
suborder of the ordinal order on α. Of course, neither L nor α are unique, but once we
fix L, they are, and this is the only type of the situation when we shall use this procedure.

Suppose that P is a wpo and P ′, P ′′ ⊆ P are such that:

• P ′ and P ′′ are disjoint,

• the orders on P ′ and P ′′ are inherited from P ,

• the underlying set of P is the union of the underlying sets of P ′ and P ′′ and

• for all p′ ∈ P ′ and p′′ ∈ P ′′ either p′⊥P p′′ or p′ <P p′′.

We say that (P ′, P ′′) is a cut of P .

Claim 3.2 Suppose that (P ′, P ′′) is a cut of a wpo P . Then:

1. P ′ and P ′′ are wpos.

4



2. P is an augmentation of the disjoint union P ′ ⊔ P ′′ and is augmented by the lexi-
cographic sum P ′ +l P

′′.

3. o(P ′) + o(P ′′) ≤ o(P ) ≤ o(P ′)⊕ o(P ′′).

4. Suppose that there is a linearisation L of P of maximal order type such that

(∀p′ ∈ P ′)(∀p′′ ∈ P ′′)p′ <L p′′.

Then o(P ) = o(P ′) + o(P ′′).

Proof. (1) Follows as every infinite decreasing sequence (antichain) in P ′ or P ′′ would
give the rise to the same in P , since the order on P ′ and P ′′ is induced by that of P .
(2) Follows since we cannot have p′ >P p′′ for p′ ∈ P ′ and p′′ ∈ P ′′.
(3) It is easily seen and proven in Lemma 4.1 of [2] that o(P ′+lP

′′) = o(P ′)+o(P ′′). Since
every linearisation of P ′ +l P

′′ is a linearisation of P , we obtain o(P ′) + o(P ′′) ≤ o(P ).
On the other hand, since P is an augmentation of the disjoint union P ′ ⊔ P ′′, every
linearisation of P is also a linearisation of P ′ ⊔ P ′′ and hence o(P ) ≤ o(P ′ ⊔ P ′′). By
Theorem 3.4 of [1] we have o(P ′ ⊔ P ′′) = o(P ′) ⊕ o(P ′′), so proving the upper bound
claimed.
(4) The equation is clearly true if either P ′ or P ′′ is empty. Let us suppose that this is
not the case. Suppose that we have a linearisation L of P of maximal order type, say β
such that (∀p′ ∈ P ′)(∀p′′ ∈ P ′′)p′ <L p′′. Without loss of generality, the elements of P
are the ordinals < β and the order <P is a suborder of the ordinal order on β.

We claim that this implies that there is an ordinal α < β such that the elements of
P ′ are the ordinals < α and the elements of P ′′ are those in [α, β). Let α = min{γ <
β : γ ∈ P ′′}, which is well defined since P ′′ ̸= ∅. Then clearly [0, α) ⊆ P ′. If γ > α and
γ ∈ P ′, then we have α <L γ, in contradiction with α ∈ P ′′ and γ ∈ P ′.

Having established the above, we remark that α is a linearisation of P ′, so o(P ′) ≥ α
and that [α, β) is a linearisation of P ′′, so o(P ′′) ≥ otp([α, β)). Hence

o(P ′) + o(P ′′) ≥ α + otp([α, β)) = β = o(P ).⋆3.2

The other side of the inequality is already proved in (3).

4 o(P ·Q)

In the light of §2, one can legitimately ask the following question:
Suppose that P and Q are wpos, what is o(P · Q) in terms of o(P ) and o(Q)? As

explained in the Introduction, an incorrect formula was claimed in Lemma 4.4(1) of [2]
and the correct formula was given by Isa Vialard in March 2024. We now present that
formula and its proof.
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Theorem 1 (Vialard) Let P and Q be wpos and suppose that Q has k maximal
elements. Hence o(Q) = δ +m for some limit ordinal δ and m ≥ k. Then

o(P ·Q) = o(P ) · [δ + (m− k)] + o(P )⊗ k.

In particular, if k = 0 (equivalently, o(Q) is a limit) then o(P ·Q) = o(P ) · o(Q).

Proof. If P = ∅ then o(P ) = 0, while P · Q = ∅ and o(P · Q) = 0, which verifies the
formula. Similarly, if Q = ∅ then o(Q) = δ = m = 0 and P · Q = ∅, so the formula is
verified. Let us therefore assume that P ̸= ∅ and Q ̸= ∅.

Let us start by a general remark about the proposed formula. Suppose that the
Cantor normal form of o(P ) is ωβ0k0 + . . . + ωβlkl and denote σ = ωβ1k1 + . . . + ωβlkl.
Therefore we have o(P ) = ωβ0k0 + σ, where σ < ωβ0 . Observe that for any m ≥ k

o(P ) · (m− k) =

(ωβ0k0 + σ) + (ωβ0k0 + σ) + . . . (ωβ0k0 + σ) =

ωβ0k0 + (σ + ωβ0k0) + (σ + ωβ0k0) + . . . (σ + ωβ0k0) + σ =

ωβ0k0 + ωβ0k0 + . . . ωβ0k0 + σ =

ωβ0k0 · (m− k) + σ,

hence

o(P ) · [δ + (m− k)] + o(P )⊗ k =

o(P ) · δ + o(P ) · (m− k) + o(P )⊗ k =

o(P ) · δ + ωβ0k0 · (m− k) + σ + ωβ0k0 · k + σ ⊗ k =

o(P ) · δ + ωβ0k0 · (m− k) + (σ + ωβ0k0 · k) + σ ⊗ k =

o(P ) · δ + ωβ0k0 ·m+ σ ⊗ k.

The induction. Let un now prove the formula. The proof is by induction on
o(Q) = δ +m.

The case of Q finite, so δ = 0 and m > 0. In this case Q is a wpo of size m with
1 ≤ k ≤ m maximal elements (k ≥ 1 since Q is finite).

Let Q⊤ be the restriction of Q to the set of all maximal elements q1, . . . , qk of Q, and
let Q⊥ = Q \Q⊤. Since Q⊤ is an antichain, we have that P ·Q⊤ is the disjoint union of⊔

i≤k P × {qi} and by Theorem 3.4 of [1], also cited as Theorem 4.2.(1) of [2], we have
that

o(P ·Q⊤) = ⊕i≤ko(P ) = o(P )⊗ k. (1)

We now obtain a lower bound on o(P · Q) using an induction on m. Therefore
o(P · Q⊥) ≥ o(P ) · o(Q⊥) by the induction hypothesis. Furthermore, (Q⊥, Q⊤) is a cut
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of Q, thus (P ·Q⊥, P ·Q⊤) is a cut of P ·Q. Hence, according to Claim 3.2(3), and using
that o(Q⊥) = m− k, we obtain the lower bound

o(P ·Q) ≥ o(P ·Q⊥) + o(P ·Q⊤)

≥ o(P ) · o(Q⊥) + o(P )⊗ k

= (ωβ0k0 · (m− k) + σ) + (ωβ0k0 · k + σ ⊗ k)

= ωβ0k0 · (m− k) + (σ + ωβ0k0 · k) + σ ⊗ k

= ωβ0k0 ·m+ σ ⊗ k = o(P ) · [δ + (m− k)] + o(P )⊗ k.

The proof of the upper bound is by induction on k, for all m simultaneously. If k = 1,
then for any linearisation L of P ·Q, every element of P ·Q⊥ is below every element of
P ·Q⊤, thus applying Claim 3.2(4), we obtain

o(P ·Q) = o(P ·Q⊥) + o(P ·Q⊤)

≤ o(P )⊗ (m− 1) + o(P )⊗ 1 (by the induction hypothesis)

= (ωβ0k0 · (m− 1) + σ ⊗ (m− 1)) + ωβ0k0 + σ

= ωβ0k0 ·m+ σ,

which matches the previous lower bound and so finishes the claim in this case.
If k > 1 then let Q′′ be the restriction of Q to the subset containing q1 and all the

elements below q1 that are not ≤Q any other maximal element of Q, and let Q′ = Q\Q′′.
By definition, Q′ has k − 1 maximal elements and Q′′ has 1 maximal element. Let
m′ = o(Q′) and m′′ = o(Q′′), which by finiteness are in both cases the size of Q′ and Q′′

respectively. Then m′ ≥ k − 1 and m′′ ≥ 1, while m = m′ +m′′. We know that (Q′, Q′′)
is a cut of Q, and therefore (P ·Q′, P ·Q′′) is a cut of P ·Q. Hence applying Claim 3.2(3),

o(P ·Q) ≤ o(P ·Q′)⊕ o(P ·Q′′)

IH

≤ [o(P ) · (m′ − k + 1)⊕ o(P )⊗ (k − 1)]⊕ [o(P ) · (m′′ − 1)⊕ o(P )]

= (ωβ0k0 ·m′ + σ ⊗ (k − 1))⊕ ωβ0k0 ·m′′ ⊕ σ

= ωβ0k0 ·m+ σ ⊗ k,

which matches the previous lower bound and so finishes the claim in this case.
The case of o(Q) limit. Suppose now that m = 0, thus Q has no maximal elements.

First observe that o(P ) and o(Q) are augmentations of P and Q, respectively, and
therefore the linear order o(P ) · o(Q) is a linearisation of P ·Q. It follows that

o(P ·Q) ≥ o(o(P ) · o(Q)) = o(P ) · o(Q). (2)
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For the upper bound, we fix a linearisation of maximal order type L of P · Q. By
renaming we can assume that the elements of P · Q and L are ordinals, so L itself is
an ordinal. For any fixed γ < o(P · Q), let us define Rγ as the restriction of P · Q to
γ. Without loss of generality, we may assume that L maximises o(Rγ), i.e., o(Rγ) = γ.
Let Qγ be the smallest subset of Q such that Rγ ⊆ P ·Qγ. Note that Rγ is downward-
closed in P · Q, and thus Qγ is downward-closed in Q. Since o(Q) is limit, Q has no
maximal elements. Hence Qγ ̸= Q, because Rγ is a strict downward-closed subset of
P · Q. Thus there is x ∈ Q \ Qγ such that Qγ ⊆ Q̸≥x since Qγ is downward-closed.
Therefore o(Qγ) < o(Q).

Hence we can apply the induction hypothesis to obtain γ = o(Rγ) < o(P ) · o(Q)
because the formula in Theorem 1 is strictly increasing in o(Q), independently on the
number of maximal elements of Q. Since this is true for any γ < o(P · Q), we have
proven that

o(P ·Q) ≤ o(P ) · o(Q). (3)

We obtain the desired equality by putting together the inequalities (2) and (3).
The case of o(Q) infinite and successor, so δ > 0 and m > 0. Let o(Q) =

ωα0m0 + ωα1m1 + . . . + ωαnmn. Hence α0 > 0, αn = 0 and mn = m > 0. Without loss
of generality, δ +m is a maximal linearisation of Q and elements of Q are the ordinals
in δ +m.

Let Q′ be the restriction of Q to δ and Q′′ the restriction of Q to [δ, δ +m). Then:

1. (Q′, Q′′) is a cut of Q satisfying the requirement of Claim 3.2(4), hence o(Q) =
o(Q′) + o(Q′′).

2. As Q′′ is finite of size m, clearly o(Q′′) = m.

3. δ is a linearisation ofQ′ of order type δ and replacing δ by any longer linearisation of
Q′, say σ > δ, would give a linearisation of Q of order type ≥ σ+m ≥ (δ+1)+m >
δ +m, a contradiction. Hence o(Q′) = δ.

4. Q′ has no maximal element, as it has a linearisation L′ with no maximal element
(see Lemma 2.6).

5. Q′′ has k maximal elements. This is so since any maximal element of Q which is
in Q′′ is also maximal in Q′′, but by (4) above, all maximal elements of Q are in
Q′′. Hence Q′′ has at least k maximal elements. But if it had a maximal element
q which is not a maximal element in Q, then there would be p ∈ Q′ with p >P q,
which is a contradiction with (Q′, Q′′) being a cut.

Now notice that (P ·Q′, P ·Q′′) is a cut of P ·Q, since if (p′, q′) ∈ P ·Q′ and (p′′, q′′) ∈ P ·Q′′

were to be such that (p′, q′) ≥P ·Q (p′′, q′′), then, since Q′ ∩ Q′′ = ∅, we would have that
q′ >Q q′′, which is a contradiction with (Q′, Q′′) being a cut of Q. Then:

(a) (P ·Q′, P ·Q′′) is a cut of P ·Q so by Claim 3.2(3) we have

o(P ·Q′) + o(P ·Q′′) ≤ o(P ·Q) ≤ o(P ·Q′)⊕ o(P ·Q′′).
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(b) o(P ·Q′) = o(P ) · δ by the induction hypothesis, since o(Q′) is a limit δ < δ +m.

(c) o(P ·Q′′) = o(P ) · (m− k) + o(P )⊗ k, by the induction hypothesis that we proved
in the case of Q finite.

(d) o(P ·Q′)+o(P ·Q′′) = o(P )·δ+o(P )·(m−k)+o(P )⊗k = o(P )·[δ+(m−k)])+o(P )⊗k.

(e) o(P ·Q′)⊕ o(P ·Q′′) = o(P ) · δ ⊕ [o(P ) · (m− k) + o(P )⊗ k].

Let the Cantor normal form of o(P ) be ωβ0o0+ωβ1o1+. . .+ωβlol. By inspection, we
have that the smallest exponent in the Cantor normal form of o(P ) · δ is at least β0

and that the greatest exponent in the Cantor normal form of o(P )·(m−k)+o(P )⊗k
is β0. Hence, By Observation 2.9, we have o(P ) · δ⊕ [o(P ) · (m− k) + o(P )⊗ k] =
o(P ) · δ ⊕ [o(P ) · (m− k) + o(P )⊗ k].

By Claim 3.2(3) we have

o(P ·Q) = o(P ) · [δ + (m− k)] + o(P )⊗ k,

as required. ⋆1
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