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ABSTRACT
This paper introduces a new methodology for extreme spatial dependence structure
selection. It is based on deep learning techniques, specifically Convolutional Neural
Networks - CNNs. Two schemes are considered: in the first scheme, the matching
probability is evaluated through a single CNN while in the second scheme, a hierar-
chical procedure is proposed: a first CNN is used to select a max-stable model, then
another network allows to select the most adapted covariance function, according
to the selected max-stable model. This model selection approach demonstrates per-
forms very well on simulations. In contrast, the Composite Likelihood Information
Criterion CLIC faces issues in selecting the correct model. Both schemes are applied
to a dataset of 2m air temperature over Iraq land, CNNs are trained on dependence
structures summarized by the Concurrence probability.
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1. Introduction

Model selection is an essential task in statistical modelling to provide reliable,
interpretable, and predictable models. We are especially interested in environmental
and climatic phenomena. Statistical approaches for model selection often rely on
full likelihood framework and use information criteria such as Akaike, Takeuchi, and
Bayesian Information Criteria (reps. AIC, TIC, BIC).
In spatial contexts, some investigations on model selection criteria have been
conducted, for instance, in [14] an information criterion constructed on a heuristic
derivation of AIC to be applicable for spatial models, named the corrected Akaike
Information Criterion AICc is proposed. A general methodology is proposed in [15]
for model selection, it is based on an unbiased estimator of mean square prediction
errors. The performances of BIC, AIC, and AICc in spatial context assessed in [18]
and [26] reveal some lack of robustness for AIC and BIC, depending on stationarity,
isotropy and sample size. We are concerned with spatial extremes whose statistical
inference is still challenging, see [5]. In the context of spatial max-stable processes,
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the full likelihood is not computable. The composite likelihood estimation method
and the Composite Likelihood Information Criterion CLIC for model selection are
adapted (see [22] and [27]). In [25] CLIC is shown to be close to AIC, a tuneable
model selection criterion is introduced in [7], driven from the density power of
classical dissimilarity measures. Also, a simulation-based approach using approximate
Bayesian computation was performed as a model-selection for max-stable spatial
processes in [19].

Despite the classical information criteria, especially CLIC extensively used by
statisticians in the model selection of spatial extremes, the complexities in the
statistical inference of these models are obstacles to the performance of these criteria,
e.g, a weak efficiency in selecting the correct model in a simulation study is recorded
in[22]. Moreover, in [9] it is observed that this criterion may not be decisive enough
to select the correct model. These fluctuations in the performance of classical model
selection criteria encouraged us to consider another methodology. Usually, most
environmental phenomena are characterised by their spatial features. Hence, if the
spatial features of a theoretical model match the spatial features of the phenomenon
more than others, this model will be more representative of the phenomenon. This
point of view was the motivation behind proposing a deep learning approach based on
Convolutional Neural Networks - CNN - going one step further than [2]. In [2], CNNs
were used to determine whether an extremal dependence structure is asymptotically
independent or asymptotically dependent or mixed. Now, we aim to propose a
methodology for selecting one max-stable process. There are variations in shapes
and levels for the strength of dependence of spatial dependence structures among
the different max-stable models, e.g, in Figure 1. A spatial dependence measure able
to capture spatial characteristics of the dataset will be used in order to investigate
representative models, rather than using the raw data directly. This allow to achieve
higher performance of neural networks and to shorten the training time for these
networks. The concurrence probability dependence measure is more compatible with
our objective.
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Figure 1. Pairwise concurrence probabilities Con(si, sj), i, j = 1, · · · , 30 for different Extremal-t max-stable

processes. The panels in the figure from left to right are: Extremal-t model with Power covariance function,
Extr-Pwr; Extremal-t model with Cauchy covariance function, Extr-Chy; and Extremal-t model with Whittle-

Martérn covariance function, Extr-Wht. The models are generated randomly on si, i = 1, · · · , 30 fixed locations

in [0, 1]2. In addition, the parameters are fixed: σ = 1.25, k = 1.5 and v = 3 for the three models.
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The paper is organized as follows. In Section 2, we introduce statistical tools for
spatial max-stable processes used in this study, including the spectral representation
of such models, the concurrence probabilities, and the composite likelihood estimation
method. Section 3 is devoted to the statistical framework of the convolutional neural
network. An overview of the 2m air temperature over the Iraq land dataset, fitting
models to this data, visualization of these fitted models, and building the corresponding
CNNs are presented in Section 4. Section 5 is devoted to a complete presentation of
the methodology that we have used in the previous section. Section 6 presents some
for discussions and conclusions. Finally, some additional results are presented in the
Appendix.

2. Statistical tools of max-stable spatial process

We provide a brief overview of the definitions and properties of spatial max-stable
processes and related statistical tools.

2.1. Spatial max-stable processes

Spatial max-stable processes are widely used for studying environmental extremes. The
well-known spectral representation introduced in [12] is crucial to construct spatial
extremes. Let {X ′

k(s)}s∈S ,S ⊂ Rd, d ≥ 1, k = 1, 2, · · · be i.i.d copies of a stochastic
process with continuous sample paths. If there exist sequences an(s) > 0 and bn(s),
n ∈ N, such that {

max
k=1,··· ,n

(
X ′
k(s)− bn(s)

an(s)

)}
s∈S

d→ {X(s)}s∈S (2.1)

as n→ ∞ with non-degenerate limiting distribution, then X := {X(s)}s∈S is a spatial
max-stable process whose marginal laws are Generalized Extreme Value distributions
GEV, i.e, for any s ∈ S,

GX(s)(x) = exp

{
−
[
1 + ξ(s)

(
x− µ(s)

σ(s)

)]−1/ξ(s)}
, (2.2)

where µ, σ, and ξ respectively are location, scale, and shape parameters (see [11]).
The process {X(s)}s∈S is a simple spatial max-stable process if its margins are unite
Fréchet, i.e, GX(s)(x) = exp{−1/x}, ∀s ∈ S, the parameters µ(s) = σ(s) = ξ(s) = 1.
Any simple spatial max-stable process {X(s)}s∈S admits a spectral representation as
presented in [12], in the sense that it exists {ηi, i ≥ 1}, a i.i.d point Poisson process on
[0,∞), with intensity dη/η2, and {Z+

i (s)}s∈S i.i.d copies of the non-negative part of
a stochastic process Z, with E[Z+(s)] = 1, for all s ∈ S, and Z+(s) = max{Z(s), 0},
such that

X(s) = max
i≥1

ηiZ
+
i (s), (2.3)

The multivariate distribution function writes

P
(
X(s1), · · · , X(sd)

)
= exp

{
− V (x1, · · · , sd)

}
, (2.4)
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where V is called the exponent measure and writes

V (x1, · · · , xd) = E
[

max
i=1,··· ,d

Z(si)

xi

]
.

The exponent measure V satisfies the inequalities

max
i=1,··· ,d

{1/xi} ≤ V (1/x1, · · · , 1/xd) ≤
∑

i=1,··· ,d
1/xi,

where the lower and upper bounds are respectively reached for complete dependence
resp. independence [28]. The flexibility of the spectral representation in (2.3) arises
from the ability to consider different models for the stochastic process Z(s). Smith
model ([24]) was the first model introduced by considering Zi(s) = ϕ(s− si; Σ), where
ϕ is the p.d.f of a d dimensional Gaussian process with mean equal to zero and co-
variance matrix Σ. If diag(Σ) = σ2, then X(s) is an isotropic process. Brown-Resnick
model is widely used, it was firstly introduced in [6] and its spectral representation
is described in [17]: X(s) = maxi≥1 ηi exp{ϵ(s) − γ(s)}, where ϵ(s) is a stationary
Gaussian process with E[ϵ(s)] = 1, and Variogram γ(h), where (s, s∗) ∈ S ⊂ R2,
and h = ||s − s∗||2. Schlather model is constructed in [23] via the spectral repre-
sentation: X(s) = maxi≥1 ηi

√
2πmax{0, ϵi(s)}, where ϵ is standard Gaussian process

with correlation function ρ(h). For all the previous models Z(s) is a Gaussian pro-
cess, while extremal-t processes ([21]) are constructed from a student distribution:
X(s) = maxi≥1 ηiβvmax{0, ϵ(s)}v, with

βv =

√
π

2(v−2)
Γ

(
v + 1

2

)−1

, v ≥ 1,

ϵ as for Schlather models, v is the degree of freedom and Γ the a gamma function.
If the variogram of a Brown–Resnick process satisfies: γ(h) ∝ h2, h ≥ 0, then it co-

incides with the isotropic Smith model ([10]). Moreover, an Extremal-t model tends to
a Schlather model when v → 1, while the same model tends to a Brown–Resnick model
as v → ∞ ([21]). Also, a Whittle-Matérn covariance function ρwht(h;λ, k) tends to an
exponential covariance function ρexp(h;λ) when k → 0.5; a power exponential covari-
ance function ρpwr(h;λ, k) tends to an exponential covariance function ρexp(h;λ) (re-
spectively, Gaussian covariance function ρgau(h;λ)) when k → 1(respectively, k → 2)
([1]). These relations between different max-stables models may make the identification
difficult.

2.2. Concurrence probability dependence measure

Our aim is to use CNN for model selection. Using the raw data as inputs for the
CNNs may not serve the goal of this paper for two reasons: the confusion of CNN
in extracting the spatial features and the time consumption in the training process.
Leveraging the advantage of the power of CCNs requires highlighting the spatial pat-
terns and extracting these patterns from the data. Consequently, investigating which
tools are efficient and appropriate to extract these features is fundamental to minimis-
ing the loss of CNN. In addition, the number of tools that will be used also affects
the performance of CNN loss. For example, in [2], CNN outperformed when using

4



two dependence measures to construct the dependence structure of the datasets for
identifying asymptotic dependence and independence models. Our current purpose is
different and requires a dependence measure sensitive to slight differences occurring
in extremes. The ability of the concurrence probability dependence measure to ex-
tract the spatial patterns from the raw datasets motivated the use of this measure in
summarizing the raw datasets. The power of this tool makes it sufficient without any
complementary tools. On another hand, the CNNs will be trained on datasets with
only one tensor.
To define the concurrence probability, let ϕi = maxϕ∈Φ ξiZ

+
i (s), Φ = {ϕi, i ≥ 1} be

a rewritten formula of the spectral representation of {X(s)}s∈S in Equation 2.3. The
extremes are concurrent at s ∈ S, if for the some i.i.d copies Xk(s) have the same
spectral function ϕ, i.e, for some k ≥ 1, we have

X(s) = ϕk(s), s ∈ S (2.5)

with concurrence probability of extremes Con(s1 · · · , sn) = Pr
(
for some k ≥

1, X(s) = ϕk(s)
)
. According the Theorems 2 in [13], Con(s1 · · · , sn) can written as

Con(s1, · · · , sk) =
k∑
r

(−1)r
∑

j⊆{1,··· ,k};|J |=r

E
[
logP{X(sj) ≤ x(sj), j ∈ J}

]
, (2.6)

where x(s) is the independent copy of X(s). For any pairwise (X(si), X(sj)), (si, sj) ∈
S case, by Theorems 3 in [13], the extremal concurrence probability equals the Kendall
correlation coefficient, such that

Con(si, sj) =2 + E
[
logP{X(si) ≤ x(si), X(sj) ≤ x(sj)}

]
={sign(X(si)− x(si))sign(X(sj)− x(sj))} ∈ [0, 1].

(2.7)

Note that X(si), X(sj) are completely independent (resp. dependent), if Con(si, sj) =
0 (resp. Con(si, sj) = 1 ). Equation 2.7 is used to construct the pairwise dependence
structure of X.

2.3. Inference and model selection of max-stable spatial processes

Inference of spatial max-stable processes using the likelihood is not accessible because
of computational complexity. In [22] it is proposed to use the composite likelihood.
The dimension 2 composite likelihood is the most used for inference of max-stable
models. It writes:

L(ψ) =
∑
∀k∈K

∑
∀i∈S

∑
∀(j>i)

log f(xki , x
k
j ;ψ), (i, j) ∈ S,S ⊂ R2, and k = 1, · · · ,K,

where ψ ∈ Θ is the vector of parameters. The corresponding Composite Likelihood
Information Criterion CLIC is given by

CLIC = −2

[
L(ψ̂)− tr(J−1(ψ̂)K(ψ̂))

]
, (2.8)
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where ψ̂F = argmaxψ∈Θ, J(ψ) = E[−∇2L(ψ)], and K(ψ) = V ar(∇L(ψ)) are recep-
tively the sensitivity and variability matrices. This selection criterion used also with
weighted composite Likelihood estimation introduced in [4].

3. Statistical framework of the Convolutional Neural Networks CNNs

The Convolutional Neural Network CNN model is one of the significant artificial
intelligence techniques to construct the features of patterns from neighbours in
many topics, such as image processes, Geographic Information System GIS, and
environmental applications. A review of the statistical framework of neural networks
can be found in [30]. Recently, the availability of spatial or spatiotemporal datasets
and the ability of CNN techniques to extract spatial patterns encouraged the
statistical community to employ these techniques to address questions which are still
hardly treated by classical statistical tools. For example, in [2] a CNN was designed
to discriminate between asymptotic dependence and asymptotic independence by
considering two statistical dependence measures. A hybrid estimation method was
proposed in [29] by training CNNs on the likelihood function to model the extremes.

Mainly the CNN model G : V1 × (W1 × · · · × WL) → VL+1 is a composition of
i ∈ [L], L ∈ R+ layerwise functions gi : Vi ×Wi → Vi+1:

G(z;K) =
(
gL ◦ · · · ◦ g1

)
(z), (3.1)

where zi ∈ Vi and Ki ∈ Wi, respectively are the state and parameters variables such
that {(Ki,Kj) : i ̸= j} are independent. In a CNN, a layer i ∈ [L] may be one of the
three essential types, convolutional, fully connected, and polling. In order to reduce the
dimension of z produced by the convolutional layers, the pooling layers are used. The
convolutional and fully connected layers contain trainable parameters while pooling
layers have no parameters. In the convolutional layers, the features are extracted by
a kernel K: for each layer i ∈ [L], the layerwise function mapping is given by

gi :
(
Rni×mi ⊗ Rℓi

)
×
(
Rpi×qi ⊗ Rℓi+1

)
→

(
Rni+1×mi+1 ⊗ Rℓi+1

)
, (3.2)

and the output of convolutional block action is

zi+1 := fi(zi,Ki) = Ψi

(
Φi

(
Ci(zi,Ki)

))
∈ Rni+1×mi+1 ⊗ Rℓi+1 , (3.3)

where zi ∈ Vi,Vi ∈ Rni×mi ⊗ Rℓi is the input of the convolutional layer i with matrix
size (ni,mi). The kernel Ki ∈ Wi,Wi ∈ Rpi×qi ⊗ Rℓi+1 is a set of parameters which
will be the tuned by the training process.

The convolutional operation between zi and Ki in gi will be done by the operator
Ci. The kernel Ki moves across the feature map positions of zi with stride size ∆ ∈ R+.
This operation aims to extract the features of the dependencies from the neighbour
locations to several feature maps (filters). The number of neighbours is determined by
the kernel size. The hyper-parameter ∆, the size of kernel (pi, qi), and the depth of
the feature map ℓi+1 should be previously fixed. The elementwise function (activation
function) Φi : Rn → Rn will take the decision which the features maps extracted by
Ci will be the output of the layer i. Mostly, the convolutional operation increases the
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dimensionality of the layer output and increases extremely the number of trainable
parameters, which makes CNNs quite complicated to calibrate. For that, for every
disjoint region of size r × r in each feature map in the some or all layers, the pooling
operator Ψi : Rn̂i×m̂i ⊗ Rℓi+1 → Rni+1×mi+1 ⊗ Rℓi+1 will reduce these dimensions to
avoid the increase of the number of parameters, where Rn̂i×m̂i denote to intermediate
inner space.
The main mission of the conventional layers is to extract feature maps, not classify the
categorical data. While the fully connected (dense) layer will classify the features. For
that, the dense layers will be in the architecture of the CNN model. Let z∗i ∈ Rni be
the feature map obtained after converting the output of the previous 2D convolutional
layer into a one-dimensional vector, commonly referred to as the flatten operation. Let
Wi ∈ Rni+1×ni , and bi ∈ Rni+1 be a weight matrix and bias vector, respectively. Then
the layerwise function fi : Rni ×

(
Rni+1×ni × Rni+1

)
→ Rni+1 for the dense layer i ∈ L

is

fi(z
∗
i ,Wi, bi) = Φ(Wi · z∗i + bi). (3.4)

Generally, in the multi-categorial classification tasks, the activation function is chosen
as a softmax function:

Φ(z∗j ) =
exp(z∗j )∑
∀j exp(z

∗
j )
. (3.5)

The weights Ki, Wi, and bi are adjusted in the training phase, it requires a suitable
loss function. The Kullback–Leibler divergence is one of the statistical distances that
can be assumed to be used as a loss function. Let qψ = F (x, ψ), the Kullback–Leibler
divergence loss function is given by

KL = −
∑
∀a∈Ω

P (a) log

(
P (a)

Qψ(a)

)
, (3.6)

where P , and Q respectively are the true and predicted distributions of the class a ∈ Ω.
The training phase will minimize KL by updating the weights set {Ki,Wi, bi}. More
details concerning the mathematical framework of neural networks can be found in
[8]. The accuracy of the prediction model is the number of times the predicted model
matches the true one, i.e, AC = #{ŷk ≡ y}/N with ŷ := maxai∈Ω{Q(ai)}.

4. Two meter air temperature over Iraq dataset

4.1. Data overview

We shall now present a selection model based on CNN for two meters air temperature
in Iraq {Y (si)}s∈S , S ⊂ R2 from 1980 to 2023 in the summer period (June, July, and
August) during the hours between 11:00 and 17:00 were selected from |S| = 45 × 41
grids with size 11km2. This grid is between longitude (38−49)° and latitude (28−38)°
so that covers Iraq land. The dataset is provided by the meteorological reanalysis of
the European Center for Medium-RangeWeather Forecasts ECMWF, called the ERA5
dataset. Fifty grids si, i = 1, · · · , 50, s ⊂ S, (30 for modelling and 20 for validation)
were chosen randomly as shown in Figure 2. The mountains in the north of Iraq are
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Figure 2. presents the average of the 2m air temperature in the period from 1980 to 2023 for June, July, and
August and during the hours between 11:00 and 17:00 inside the coordinates longitude (38− 49)° and latitude

(28−38)° with grid size 11 km2. The dataset in the locations with the black points (30) is used in the modelling

and training, while the dataset in the locations with white points (20) is devoted to verifying the matching of
the selected estimated model with the first one.

excluded from the modelling in order to ensure spatial stationarity. The same dataset
has been used in [2] with some modifications in the years. The same investigation
is considered here: the examination of the temporal stationarity and the isotropy
property. The moving average smoothness of the spatial gradient was applied over 10
days before dealing with the dataset. That is ∀s ∈ S, Ŷk(s) = Yk(x) − µ̂k(s) is the
smoothed stochastic dataset with moving average µ̂(s) over 10 days. Monthly block
maxima are considered for each of the selected points of the grid, so that

{X(x)}s∈S = max
k∈Nm(k)

{Ŷk(s)}, Nm(k) = {k∗ : k −m < k∗ < k +m},

where Nm(k) is a non-overlapping set of temporal neighbours of k with size m. For
more information, see [2] and [16].The size of neighbours in this application has been
chosen as m = 31 for the months of June and August, and m = 30 for July results
k = 132 replicate.

4.2. Modelling the dataset

Modelling 2m air temperature requires transferring monthly block maxima {X(s)}
to max-stable process with unit Frécht margin for each site in the dataset. We have
used empirical transformation i.e. X̂(si) = −1/ log G̃(X(si)). We propose 17 combi-
nations of max-stable models as candidates in order to select the best model among
them. Proposing max-stable models is in accordance by the results in [2]. The dataset
shows asymptotic dependence behaviour. Models are Smith, and Brown-Resnick with

8



variogram γ(h) = ||h/λ||k, and components of max-stable models from Schlather,
Geometric, and Extremal-t with five covariance functions. The covariance functions
proposed are Exponential, ρexp(h) = exp{−h/λ}; Gaussian, ρgau(h) = exp{−(h/λ)2};
Power exponential, ρpwr(h) = exp{−(h/λ)k}; Cauchy, ρchy(h) = {1 + (h/λ)}−k; and
Whittle-Matern ρwht(h) = 21−k

Γk

(
h
λ

)kKk

(
h
λ

)
, where λ and k respectively are the scale

and smooth parameters.

Table 1. This table presents the parameter’s estimation, likelihood amounts L, CLIC, and model ranks.

The notations BR refers to Brown-Resnick; Schl-Exp to Schather with ρexp; Schl-Gau to Schather with ρgau;

Schl-Pwr to Schather with ρpwr; Schl-Chy to Schather with ρchu; Schl-Wht Schather with ρwht; Extr-Exp
to Extremal-t with ρexp; Extr-Gau to Extremal-t with ρgau; Extr-Pwr to Extremal-t with ρpwr; Extr-Chy

to Extremal-t with ρchu; Extr-Wht Extremal-t with ρwht; Geom-Exp to Geometric with ρexp; Geom-Gau to

Geometric with ρgau; Geom-Pwr to Geometric with ρpwr; Geom-Chy to Geometric with ρchu; Geom-Wht
Geometric with ρwht.

Model Scale λ̂ Smooth k̂ Degree of freedom v̂/σ̂ Likelihood L CLIC Rank

Smith 0.3488 ——– ——– 199888.8 399904.2 17
BR 1.4718 1.2208 ——– 197992.3 396242.6 11

Schl-Exp 3.8379 ——– ——– 195123.4 390515.0 9
Schl-Gau 1.2192 ——– ——– 195645.2 391537.5 10
Schl-Pwr 2.2596 1.3053 ——– 194996.1 390279.5 7
Schl-Chy 0.2878 0.1056 ——– 195032.0 390350.5 8
Schl-Wht 1.8796 0.7217 ——– 194995.8 390277.5 6

Geom-Exp 97.594 ——– 49.982 198139.6 396546.4 15
Geom-Gau 0.4382 ——— 0.4267 198334.6 396922.6 16
Geom-Pwr 4.1631 1.2532 3.9639 197993.9 396259.1 13
Geom-Chy 0.2576 0.0445 4.2084 198102.8 396476.2 14
Geom-Wh 14.964 0.6219 17.360 197993.0 396257.1 12

Extr-Exp 8.0366 ——– 2.2513 194061.9 388498.6 4
Extr-Gau 1.7565 ——– 2.2214 194567.6 389448.1 5
Extr-Pwr 3.7931 1.3453 2.3169 193868.4 388124.2 2
Extr-Chy 0.3112 0.0545 2.2976 193920.1 388225.7 3
Extr-Wht 3.3068 0.7281 2.3154 193868.8 388124.0 1

The best-ranked models are the component models of the Extremal-t. The flexibility
of this model leads CLIC to choose it. Regarding the Extremal-t model, Extr-Wht is
the best-fitted model with a slight difference in the CLIC with the Extr-Pwr. As
well as in Schalther, Schl-Wht and Schl-Pwr, and Geometric Geom-Wht and Geom-
Pwr. Recall that ρwht → ρexp as k → 0.5 so that the slight differences in estimated
parameters and the CLIC indicate that these models are close. For this reason, Schl-
Pwr, Geom-Pwr, and Extr-Pwr, have been removed (since they have the worst CLIC)
in the next step of selecting the best representative model.

4.3. Visualization the fitted models

A way to visualize the matching quality is to compare the estimated pairwise concur-
rence probability on the data and the estimated concurrence probability on simulated
data for the fitted models. In each penal in Figure 3, the upper triangle consists of the
estimated concurrence probability of the simulated models, while the lower triangle
for all the panels represents the 2m air temperature.
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Figure 3. presents the dependence structures of the 2m air temperature dataset with the datasets simulated

by the best eight fitted models (Schl-Exp, Schl-Gau, Schl-Chy, Schl-Wht, Extr-Exp, Extr-Gau, Extr-Chy, and

Extr-Wht) with the same coordinates of 30 locations and number of the block maxima. These dependence
structures are constructed by the pairwise Concurrence probability dependence measure Con(xi, xj), i, j =

1, · · · , 30 in Equation 2.7. The upper triangle represents the pairwise Con of the fitted model, while the lower
triangle consists of the pairwise Con of the 2m air temperature dataset.

Firstly, the strength of the dependence is strong. This may increase the difficulty in
selecting a best-fitted model. Generally, despite recognizing the symmetry in patterns
of the 2m air temperature dataset with the models is not easy, it seems that the mod-
els Schl-Exp, Schl-Gau, Extr-Exp, and Extr-Gau are far from the observed dataset.
Meanwhile, the models Schl-Chy, Schl-Wht, Extr-Chy, and Extr-Wht, especially the
latter model (first ranked by CLIC) are closer to the data but is quite hard to rec-
ognize which one is more symmetric with the 2m air temperature dataset. We shall
discriminate between these models using CNN.

4.4. Building and training CNNs

Two schemes are considered for selecting the models. The first scheme is a one-step
selection model by using a single CNN. In other words, a single CNN will be trained
on the set of the 14 models, say Ωs, used in Section 4.2 excluding the three models
Schl-Pwr, Geom-Pwr, and Extr-Pwr as mentioned previously. This trained CNN
will provide the probability strength that the selected model matches the 2m air
temperature dataset, i.e, Φs(z) ∈ [0, 1], z ∈ Ωs, Ωs = {Sm,BR, · · · ,Geom-Wht},
where Φ ∈ [0, 1] is the softmax activation function defined in 3.5. According to this
scheme, the best representative model ẑ is argmax∀z∈Ωs

{Φs(z)}.
The second scheme is a 2-steps selection model. Firstly a max-stable family is selected:
ẑ, i.e. argmaxz∈Ωm

{Φm(z)}, where Ωm = {Sm, BR, Schl, Geom, Extr}. Then another
CNN selects a covariance function in Ωρ = {ρexp, ρgau, ρchy, ρwht}. Each of the models
Schlather, Geometric, and Extram-t has corresponding trained CNN to predict the
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covariance function in Ωρ.

In the two schemes, the CNNs were trained on the concurrence probability depen-
dence measure, Con(X(si), X(sj)), (i, j) = 1, · · · , 30, defined in 2.7 using the same
datasets. Each dataset from the models Ωs is 10, 000 times generated, so that simu-
late the 2m air temperature dataset -same numbers and coordinated of the locations
and same number of block-maxima copies-. For each of these datasets, the estimated
pairwise concurrence probability for each (s, t) = 1, · · · , 30 and the CNNs are trained
on these [30× 30× 140k] . The layerwise function map in Equation 3.2 is

g1 :
(
R30×30 ⊗ R

)
×
(
R3×3 ⊗ R32

)
→

(
R28×28 ⊗ R32

)
. (4.1)

The architectures of the CNNs are the same in the two schemes, except the output
layer. The details of the architectures founded in Table 2 below.

Table 2. Architecture of CNNs in the two schemes. The columns from the left to right indicate (respectively)

(1) the layer order configured in the CNNs; (2) the type of layers 2D conventional layer, 2D max-pooling, fully
connected (dense); (3) Extracted features map to be extracted; (4) the size of the kernel in a convolutional or

pooling in max-pooling layers; (5) stride size in convolutional and max -pooling layers; (6) activation function

for each trainable layer; (7) the output shape of each layer; (8) the number of trainable parameters K and W ,
respectively corresponding to convolutional and dense layers. In the output layer, the number of parameters

is different according to |Ω|. In the first scheme, |Ωs| = 14 leads to parameters equal to 14350. In the second
scheme, the number of parameters in the last layer of the max-stable models CNN |Ωm| = 5 is 5125, while in

CNN for the covariances |Ωc| = 4, the number of parameters is also equal to 4100.

i Ci/ Ψi ℓi (pi × qi) (∆i ×∆∗
i ) Φi Rni+1×mi+1 ⊗ Rℓi+1 Ki/Wi

1 2D Conv. 32 3× 3 1× 1 reLU [28, 28, 32] 320
2 2D Max-P. 2× 2 1× 1 [27, 27, 32] 0
3 2D Conv. 64 3× 3 1× 1 reLU [25, 25, 64] 18496
4 2D Max-P. 2× 2 1× 1 [24, 24, 64] 0

Flatten
5 Dense 256 geLU [265] 9769225
6 Dense 512 geLU [512] 136192
7 Dense 1024 geLU [1024] 525312

Dropout
9 Dense 5 Softmax [5] 5125

Total numbers of trainable parameters 10,454,670

Kullback-Leibler (KL) divergence is often used for model selection purposes, e.g, see
[27]. For that reason, we chose to use KL defined in Equation 3.6. Adam optimizer with
a learning rate tuned at 0.0001 is chosen for optimization parts. In order to make the
training progress more stable, the L2 regularization is implemented in each layer with
a factor equal to 0.001. After shuffling in each epoch, 85% from the 140, 000 datasets
are devoted to training, and 15% for validation. The training stops when there are no
improvements in the loss of the validation dataset. The training of CNNs was executed
on the clusters of the Institute Camille Jordan (ICJ – UMR 5208) at Claude Bernard
Lyon 1 University. In the first scheme, the convolutional neural network denoted by
CNN-C is trained to select one of the models in Ωs. The metrics of the trained network
CNN-C are KLc = 0.294 with accuracy equal to ACc = 0.931. Regarding the second
scheme, four CNNs are trained, the first one denoted by CNN-M is trained to select
one of the models in Ωm. We get KLm = 0.402 and accuracy ACm = 0.905. The
other convolutional neural networks denoted by CNN-S, CNN-G, and CNN-E are
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devoted to selecting one of the covariances functions in Ωρ. These networks were
trained respectively for Schlather, Geomtric and Extremal-t models with metrics: for
CNN-S, KLs = 0.087 ACs = 0.999; CNN-G, KLg = 0.093 ACg = 0.996; CNN-E,
KLe = 0.095 ACe = 0.998.

5. Results of the model selection methodology

This section is devoted to presenting the results obtained by implementing the CNN
approach as an alternative model selection method to select the most representative
spatial max-stable process that matches the 2m air temperature dataset. The perfor-
mance of the trained CNNs in the two schemes is verified by their accuracy in selecting
the correct models, compared with the model selection criterion CLIC defined in Equa-
tion 2.8. For each fitted model in Section 4, additional of 1, 000 datasets simulated 2m
air temperature were generated. These datasets were not used for the CNNs training
and validation. The composite likelihood estimation method was applied to each of
the generated datasets. We evaluated the contributions of the composite likelihood for
the 14 max-stable spatial models proposed in Section 4.2. The same as the training
process, the selection model by CNNs will be according to the concurrence probability
dependence measure. Tables 3 and 4 present the summary of the accuracies of CLIC
and CNNs for the two different schemes.

Scheme 1

Table 3 presents the accuracy AC for the selection of the correct max-stable model in
Ωs using CLIC and CNN-C for 1000 datasets. Table 1 in the Appendix provides more
details for the miss-identify.

Table 3. Accuracy of selecting the models in Ωs by CNN-C and CLIC, evaluated using AC on 1,000 datasets
generated from the fitted models in and simulated 2m air temperature dataset.

Models Smith BR Schl-Exp Schl-Gau Schl-Chy Schl-Wht Geom-Exp

CLIC 0.881 0.877 0.692 0.755 0.813 0.826 0.000
CNN-C 0.968 0.827 0.905 0.945 0.935 0.925 0.982

Models Geom-Gau Geom-Chy Geom-Wht Extr-Exp Extr-Gau Extr-Cht Extr-Wht

CLIC 0.904 0.424 0.360 0.850 0.808 0.899 0.807
CNN-C 0.998 0.992 0.805 0.890 0.910 0.970 0.921

Generally, CNN-C has outperformance in selecting the correct model with non-
significant errors than CLIC. This approach can be relied upon in the model selection.
Table 1 in the Appendix indicates that there are significant miss-selections by
CLIC for the covariance functions or even models. The CLIC Criterion mis-specifies
several models, for example, confused between Schl-Exp (Geom-Exp) and Schl-Wht
(Geom-Wht). This could be due to the similarity between ρexp and ρwht when the
smooth parameter of the second correlation function is close to 0.5. It is also confused
between Geom-Wht with BR since the corresponding stochastic processes in their
spectral representations is Gaussian with variogram covariance function. We don’t
have an explanation for the mis-specification between Geom-Chy and Geom-Wht.
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Concerning the 2m air temperature dataset, the predicted probability strength for
selecting the models in Ωs to z by CNN-C are Φs(z ∈ Schl-Chy) = 0.611, Φs(z ∈
Schl-Gau) = 0.387, Φs(z ∈ Schl-Wht) = 0.001, and zero for rest models. The best
model selected by CNN-C is far from the selected one by CLIC ranked by Table 1 as
the eighth.

Scheme 2

The accuracies of a model selected by the hierarchical scheme are presented in this
part. The same datasets used to train CNN-C were also used in training CNN-M,
CNN-S, CNN-G, and CNN-E separately. CNN-M is dedicated to predicting the de-
pendence strength of matching the models in Ωm to the 2m air temperature dataset.
CNN-S, CNN-G, and CNN-E are trained to select the covariance functions in Ωρ corre-
sponding to Schlather, Geometric, and Extremal-t max-stable processes, respectively.
Since CNN-M and CNN-C are trained on the same datasets, their performances are
more or less equal, similar to CLIC as shown in Table 4.

Table 4. Accuracy of selecting the models in Ωm by CNN-M and CLIC, evaluated using AC on 1,000 datasets

generated from the fitted models and simulated 2m air temperature dataset.

Models Smith BR Schlather Geometric Extremal-t

Smith
CLIC 0.881 0.019 0.000 0.052 0.049
CNN-M 0.961 0.000 0.004 0.035 0.000

BR
CLIC 0.000 0.877 0.000 0.074 0.049
CNN-M 0.000 0.780 0.005 0.003 0.212

Schlather
CLIC 0.000 0.000 0.830 0.000 0.170
CNN-M 0.006 0.001 0.898 0.089 0.006

Geometric
CLIC 0.000 0.150 0.007 0.582 0.261
CNN-M 0.012 0.001 0.071 0.889 0.027

Extremal-t
CLIC 0.000 0.000 0.005 0.000 0.995
CNN-M 0.000 0.053 0.001 0.022 0.925

The main advantage of proposing this scheme is the excellent performance of the
CNNs corresponding to the selection of the covariance functions. This high perfor-
mance makes these CNNs a reliable tool with high confidence that can relied upon in
the covariance selection problem. To be fairer in assessing the performance of CLIC
in covariance function selection, the accuracies in Table 5 related to each model were
executed on the CLICs corresponding to the covariances set Ωρ while excluding the
rest of the models from this competition.

As in the first scheme, CLIC faced the same difficulty even when the selection
was limited according to each model separately. In this scheme, we will predict the
probability strength of matching the covariance in Ωρ. Identifying the model that
matches the dependence structure z, firstly requires identifying the max-stable model
in Ωm by CNN-M. If the maximum probability strength is one of the models Smith
and BR, then the selected model will be one of them. If none of these two models,
identifying the covariance function in Ωρ will be done by one of CNN-S, CNN-G, and
CNN-E according to the model selected previously, i.e. for 2m air temperature dataset,
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Table 5. Accuracies of selecting the covariances in Ωρ by CLIC, CNN-S, CNN-G, and CNN-E corresponding to

the models Schlather, Geometric, and Extremal-t, respectively evaluated using AC on 1,000 datasets generated

from the fitted models simulated 2m air temperature dataset.

Schlather, CNN-S Geometric, CNN-G Extremal-t, CNN-E
ρ Exp Gau Chy Wht Exp Gau Chy Wht Exp Gau Chy Wht

Exp
CLIC 0.828 0.000 0.009 0.163 0.098 0.000 0.000 0.902 0.851 0.000 0.005 0.144
CNN 0.998 0.000 0.000 0.002 1.000 0.000 0.000 0.000 0.999 0.000 0.000 0.001

Gau
CLIC 0.000 0.910 0.032 0.058 0.000 0.918 0.010 0.072 0.000 0.817 0.108 0.075
CNN 0.000 1.000 0.000 0.000 0.000 0.999 0.001 0.000 0.000 1.000 0.000 0.000

Chy
CLIC 0.000 0.000 0.977 0.023 0.000 0.001 0.431 0.568 0.017 0.000 0.903 0.080
CNN 0.000 0.000 1.000 0.000 0.000 0.004 0.996 0.000 0.000 0.000 1.000 0.000

Wht
CLIC 0.000 0.000 0.013 0.987 0.005 0.000 0.039 0.956 0.025 0.000 0.165 0.810
CNN 0.001 0.000 0.000 0.999 0.005 0.000 0.000 0.995 0.000 0.000 0.001 0.999

we have

max
z∈Ωm

{Φm(z)}=max
{
Φm(z ∈ Sm),Φm(z ∈ BR),Φm(z ∈ Schl),Φm(z ∈ Geom),Φm(z ∈ Extr)

}
=max{0.000, 0.000, 1.000, 0.000, 0.000}.

That means the max-stable model selected by CNN-M is Schlather with covariance function is
maxz∈Ωρ{ΦSchl(z)}. As in the first scheme, the ranked models are ΦSchl(z ∈ Shcl-Chy) = 0.461,
ΦSchl(z ∈ Schl-Gau) = 0.300, and ΦSchl(z ∈ Schl-Wht) = 0.239.

The two schemes are selected a model different from those selected by CLIC. In order to
verify which model selected by CNNs or CLIC best match the 2m air temperature dataset than
the ones, we adapt the tools used in [3] and [20]. The verification is made of the top three models
ranked by CLIC, which are Extr-Exp, Extr-Chy, and Extr-Wht, compared with the models
selected by CNNs: Schl-Gau, Schl-Chy, and Schl-Wht. This validation is performed using
pairwise extremal coefficients θ(si, sj), i, j = · · · , 20 of the verifying datasets with, coordinates
in white plots in Figure 2. In Figure 4, the theoretical extremal coefficients θ(||si − sj ||, ψ)
corresponding to each of the top three selected models by CLIC and CNN are scattered against
their empirical counterparts θ̃(si, sj). The 95% confidence interval of these pairwise extremal
coefficients has been constructed from parametric bootstrap extremal coefficients driven from
simulated datasets from these six models with θK , k = 1, · · · , 10, 000.

First of all, the strength of the extremal coefficients indicates that the dataset demonstrates
high spatial dependence, and assesses the nature of the 2m air temperature phenomenon which
has a high strength of spatial dependence. Both the Schl-Gau model and Extr-Exp exhibit
differences between estimated and empirical extremal coefficients for high and low (resp.) values
of the extremal coefficient. The scatterplot for Schl-Wht, Ext-Wht and Extr-Chy models, are
almost identical and more consistent than the first two models but still present a difference
between empirical and theoretical extremal coefficients. Finally, the most representative model
of the dataset seems to be Schl-Chy since most of the pairwise along the dependence strength
is inside the uncertainty region.

6. Discussion and Conclusion

In some cases, the classical model criterion does not exist explicitly or even numerically due
to the complexity of the high dimensionality of most environmental problems, especially
when dealing with it in a spatial context. The simulation results demonstrated that the deep
learning approach outperforms the most common information criterion CLIC in terms of
model selection, especially for the selection of the covariance function.
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Figure 4. Scatter plots of the theoretical extremal coefficient against the empirical ones. The first row is

devoted to models selected by the CNN approach while the second row represents the three best models
selected using the CLIC criterion. The grey region is the 95% confidence based on computed by simulation.

For the first scheme, CNN-C is trained by z to predict the probability strength of matching
the models in Ωs in one-step. In the second scheme, the prediction is hierarchical. Firstly,
the CNN-M is trained to predict the probability strength of the max-stable models in Ωm

matching the dataset regardless of the covariance functions. Then, each of CNN-S, CNN-G,
and CNN-E are trained to predict the covariances in Ωρ matching z. The two schemes
agreed that the best representative model for the 2m air temperature dataset is Schl-Chy
with probability 0.611 and 0.461, respectively. While CLIC identified Extr-Wht as the
more representative model among the models in Ωs. Verifying the best-selected model is
implemented by the scatter plots of theoretical extremal coefficients across the empirical ones.
Six models are proposed for this purpose: three form the best matching models selected by
deep learning and three form the best ranked by CLIC. The confidence interval with 95% of
the extremal coefficients θ corresponding to each selected model is computed by corresponding
simulated datasets. The result was in favour of Sch-Chy because most of the plots of pairwise
empirical and theoretical extremal coefficients were within the confidence interval.
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