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Abstract 

On-demand mobility services have transformed urban mobility. Their optimal management can benefit at 
individual and collective levels, and their efficient integration within transportation systems could enhance their 
performance. Conversely, poor fleet management result in high pick-up waiting times, abandonment rates or 
extra traffic. One challenge for operators is proactively rebalancing their fleets to ensure the supply matches the 
demand. This paper addresses this issue with an auctioning approach. We design a multi-agent architecture in 
which local controllers encourage vehicles to relocate nearby. We conduct simulation studies on the city of Lyon 
in France. Our results evidence a significant increase in the number of passengers served compared to a no-
rebalancing scenario.  
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Introduction 

Over the last decades, novel mobility services have appeared in cities, such as ride-sourcing (including e-hailing 
and ride-splitting) and vehicle sharing. In particular, ride-sourcing companies have multiplied, competing with 
traditional taxi companies and providing travelers with a vast range of services. This new offer can meet an 
increasingly dynamic and non-regular mobility demand, unsatisfied by public transportation or personal car 
constraints. On one side, ride-sourcing services offer more flexible services than public transit, on-spot and on-
demand pick-up, and no connections. On the other side, they can be less costly than private car ownership and 
provide satisfying solutions to parking issues. At a collective scale, the services can contribute to limiting car 
ownership and its externalities, such as land occupancy, soil sealing, or congestion.  

However, efficiently managing this type of service requires handling several operational issues. Fleet rebalancing 
is one of them. It consists of reorganizing a vehicle fleet in space and time by dispatching idle vehicles towards 
high-demand areas to limit vehicle accumulation in attractive zones and ensure continuous and prompt service 
to passengers.  

Rebalancing must preferably be proactive, i.e., anticipate the future demand and reorganize the fleet accordingly. 
Numerous literature studies have looked at this management issue. Yet, most offer centralized management 
methods, raising questions regarding their robustness to scaling or communication failures (Alonso-Mora et al., 
2017; Miao et al., 2017, 2015; Ramezani and Nourinejad, 2018). In this respect, distributed approaches are 
interesting alternatives. Recent works have looked into fleet rebalancing through the lens of passengers and 
drivers-intended incentives, with pricing and information-sharing strategies or coverage control (Zhu et al., 2022). 
In this work, we explore this subject through the angle of auctioning. While auctioning theory has been applied 
for developing (reactive) matching strategies (Manjunath et al., 2021; Nourinejad and Roorda, 2016; Wu et al., 
2008), this is, to our knowledge the first attempt to extend its application to fleet large scale repositioning.  

Methodology 

The method we develop relies on a mesh of controllers that divide the urban network into an equal number of 
service areas. These controllers, which can be associated with physical infrastructures such as taxi stations and 
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deposits, are considered at the service of a public authority. Their goal is to ensure that ride requests occurring 
within the boundaries of their service area are served with the minimum waiting time. For this purpose, they aim 
to attract idle vehicles within their perimeter by negotiating with them at regular intervals (e.g., every 10 minutes) 
within a two-sided matching market. 

With this frequency, the controllers are first in charge of forecasting the future demand (i.e., the number of 
requests). The specific topic of demand forecasting is out of the scope of this paper, and we will assume that 
historical data allow modeling the future number of requests as a random variable 𝑋	 = 	𝑁(𝜇!" , (𝜎!")#). This 
assumption is supported by recent research in demand prediction (Khalesian et al., 2022). To attract the required 
number of vehicles, local controllers publish within the matching market as many relocating offers as expected 
ride requests. These offers will allow vehicles to which they are assigned to relocate within the corresponding 
service area. Each relocation offer is characterized by: 

1. The likelihood of the expected ride request. We define the likelihood 𝑝$ of the kth expected ride request 
as the probability that at least k ride request occur during t. Therefore, we have: 

∀𝑘 ∈ ℕ, 𝑝$ =	𝑆%(𝑘) = 	𝑃(𝑋 ≥ 𝑘) 

with 𝑆% the survival function of X. 

2. The expected revenue 𝑔3! for picking up a passenger in service area i, which can be estimated based on 
historical data.  

Then, the matching of vehicles with a relocation offer follows a distributed Gale-Shapley algorithm (Brito and 
Meseguer, 2006, 2005). First, the features of relocating offers allow drivers to estimate their utility in applying to 
one or another relocation option. This utility is estimated as the expected net revenue, computed as the 
difference between expected incomes (expected revenue weighted by request likelihood) and rebalancing costs:  

𝑈&(𝑖, 𝑘) 	= 	𝑝$	𝑔3! 	−	𝑐&(𝑖) 

Then, drivers bid on the most useful relocating option and share their expected arrival time within the region with 
the local controller. Then, local controllers rank the received offer according to their utility. For each relocation 
offer, the controller accepts its preferred application and rejects the others. Rejected vehicles update their 
preference list and apply to their second most-preferred option. If a controller previously now receives a better 
application, it can reject the previously-matched vehicle and accept the new one. The rejected vehicle updates its 
preference list and applies to another relocation offer. This process goes on until all cars run out of interesting 
relocation offers. In the end, vehicles matched relocate to their destination region, and unassigned vehicles 
remain idle at their current position. Although iterative, this process can be close to instantaneous, as drivers 
actually do not interfere in the process. We illustrate this communication protocol in Figure 1. 

Figure 1: Communication protocol supporting the fleet rebalancing 

 
Source: own elaborations 

Note that controllers can use several methods to evaluate the utility of the application of a vehicle. In the present 
paper, we use the following approach. A fictive occurrence time within the rebalancing period is assigned to each 
expected ride request. Then, the utility of a vehicle application is determined according to the delay the travel 
time the vehicle needs to join the service area would inflict on this expected passenger, given this fictive 
occurrence time. The utility function is triangular, maximal when the car arrives right on time, and decreases 
faster when the vehicle comes later than when it arrives in advance. 
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Case-study 

We choose the city of Lyon, France, as a case study. The network we model covers 121 km2 and includes both 
the city of Lyon and the city of Villeurbanne, located within a circular ring road. To conduct rapid simulations, we 
model the traffic on a simplified network of the city. The network only includes the primary and secondary urban 
roads and highways, as illustrated by Figure 2.a). The supply calibration and the demand scenarios used here have 
been calculated within the ERC Magnum Project (Mariotte et al., 2020). 15% of the inner flows are assigned to 
ride-hailing, while the remaining users are assumed to take their personal cars. The city is partitioned into 50 
service areas, as illustrated in Figure 2.b). The simulations are conducted on the MnMS multi-agent simulation 
platform developed at Univ. Gustave Eiffel. This paper presents the results of simulations performed with a 4000-
vehicle-large vehicle fleet and 10-minute-long passenger waiting time tolerance. 

Figure 2. Simulation network. a) Road network. b) Service areas. 

a) b)  

Source: own elaborations 

Key results 

We compare our strategy to a no-rebalancing scenario and evaluate performance based on several KPIs regarding 
service, users, drivers, and traffic. First, our analyses show that implementing our strategy over the city of Lyon 
allows increasing the number of passengers served by 9.88% (+1975 passengers) compared to the base scenario. 
This service increase is especially significant between 8:00 a.m. and 9:00 a.m., during the peak demand hour, as 
illustrated in Figure 3. Figure 4 shows the level of service improvement in space. Applying our rebalancing strategy 
especially allows for increasing the service in the western suburban and less connected areas of the city (+32% of 
demand served in some areas) while being slightly detrimental to the service in the city center and eastern 
neighborhoods. We observed that this overall service improvement comes with an increase in waiting time before 
pick-up of 1.39 minutes on average. This increase is explained by the decrease in the number of available vehicles, 
due, on the one hand, to the rise in the number of passengers served, on the other hand, to rebalancing vehicles 
being considered unavailable for matching. Exploring variants of this rebalancing strategy that allow rebalancing 
vehicles to pick up passengers should allow limiting this waiting time increase. 

 

 

 

 

 

Figure 3: Number of users being served throughout simulation time. 
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Source: own elaborations 

Figure 4: Spatial analysis of service improvement. 

 
Source: own elaborations 

Key results 

In this paper, we propose an original fleet rebalancing strategy based on outsourcing rebalancing management 
to local controllers and implementing a negotiation process between them and the vehicles. Our method 
significantly impacts the number of passengers served, especially in suburban areas less connected to the city 
center. As a continuation of this work, future works will focus on conducting advanced sensitivity analyses to fleet 
size, uncertainty levels, or riding fares. We will also explore different utility functions for local controllers and 
assess their impact on waiting time, amount of passengers served, or empty mileage.  

In the mid-term, we will use this approach to develop local incentive strategies to encourage vehicles to relocate 
to service areas with lower accessibility or uncertain demand. We will also look at enriching the method to foster 
cooperation between local controllers rather than competition. Finally, this approach based on controllers 
external to the service could be relevant in managing the competition between different mobility services. 
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