

Transportation Research Board 102nd Annual Meeting, January 2023

A DECENTRALISED AUCTION-BASED FRAMEWORK FOR REBALANCING RIDE-HAILING FLEETS WITH UNCERTAIN REQUEST **PROBABILITIES**

Manon Seppecher and Ludovic Leclercq

Univ. Gustave Eiffel, Univ. Lyon, ENTPE, LICIT-ECO7 UMR T9401, F-69675, Lyon (France)

INTRODUCTION

- Multi-agent model model populated with travellers, vehicles and regional controllers.
- Regional controllers gather pre-booked requests and predict the overall local future demand.
- Regional controllers and vehicles interact in a two-sided matching market wich assigns rebalancing decisions to vacant vehicles.

CASE STUDY

- Manhattan network.
- 4 service areas controlled by a regional controller.
- A polarised demand peak from 3 regions towards the 4th one.
- Simulations conducted on MnMS (trip-based simulator) platform.

NEGOTIATION SCHEME

Temporal scheme

Assumption on demand prediction

Definition of rebalancing offers

► The total demand of one region is modelled as:

$$X_i^T \sim N(\mu_i^T, (\sigma_i^T)^2) \tag{1}$$

 \triangleright $p_{i,k}$ the probability that at least k ride requests occur in *i*;

$$p_{i,k} = S_{X_i^T}(k) = P(X_i^T \ge k)$$
 (2)

 \bar{g}_i the expected income from serving a passenger in region i.

Distributed Gale-Shapley algorithm

Agents utiliy functions

Vehicles aim at maximising their net income:

$$U_{V}(i,k) = p_{i,k} \cdot g_i - c_{V}^{km} \cdot d_{SP}(p,i)$$
 (3)

Controllers aim at maximising the probability that the vehicles is in the area upon a request reception:

$$U_{i,k}(v) = P(Y_{V} < X_{k} < Y_{V} + \tau_{V})$$
 (4)

RESULTS

as well

✓ Passengers waiting time decreases

√ Equity between drivers increases

x Overall travel distances increases

DISCUSSION AND FUTURE WORK

Current work

- Exploration of specific features: travelled distance, sensitivity to uncertainty and distance.
- Implementation on Lyon, France.

Short term perspectives

- Adaptation to ride-sharing operations.
- Development of local incentives to reduce demand uncertainties and ensure profitability.

Long term perspectives

- Foster inter-regional cooperation with limited information sharing.
- Evaluate performances with multiple operating services.

