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ABSTRACT1
As shared mobility solutions are developing, the next generation of e-ride-hailing systems are an-2
nounced to be based on self-driving vehicles. Autonomous Mobility on Demand (AMoD) could3
enhance the level of service experienced by travelers thanks to lower repositioning costs and cen-4
tralized control of compliant vehicles. The dispatching strategy determines system performance5
from AMoD and travelers’ points of view. Rule-based heuristics do not exploit the full potential6
of the fleet because they are myopic to future requests. The rolling horizon approach allows to7
anticipate and make better dispatch decisions. In this study, we question the benefits for AMoD8
and travelers to include a short/mid-term demand prediction in an assignment-based heuristic. We9
define four variants of the assignment-based approach, with order matching only or joint order10
matching + fleet management, with impatient or productivist AVs. In a theoretical agglomeration,11
we test the sensitivity of horizon length on AMoD’s profit, order response rate and, travelers’ wait-12
ing times under the four strategies. We carefully study the outcomes of the profit-oriented heuristic13
in terms of equity.14

15
Keywords: rolling horizon, dispatching, heuristic, autonomous mobility on demand, morning com-16
mute, equity17
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INTRODUCTION1
Recently, shared mobility solutions are booming and take several forms: carsharing, bikesharing,2
scooter sharing, ridesharing, ridesourcing, and e-ride-hailing (1). The latter service type uses3
smartphone apps to connect drivers with passengers (e.g., Uber). It involves three stakeholders:4
the transportation network company (TNC), drivers, and travelers.5

The next generation of e-ride-hailing systems may remove drivers from the equation. Au-6
tonomous Mobility-on-Demand (AMoD, (2)) systems, based on autonomous vehicles (AVs), at-7
tract investments from car manufacturers, mobility companies and, digital corporations (3). Com-8
pared to traditional e-ride-hailing, AMoD operational cost is awaited to be reduced thanks to sav-9
ings on wages (4). Repositioning is facilitated, and surge-pricing, traditionally operated by TNC10
to balance supply and demand, is no more relevant with compliant vehicles. Static fares and a11
sufficient level of service encourage adoption by users for recurrent trips. It is an opportunity to in-12
crease the vehicle utilization rate and reduce car ownership in urban areas. The centralized control13
of vehicles allows to adopt fleet-wide strategies and make more optimal dispatch decisions.14

Dispatching 
Optimal use of the fleet to earn the maximum profit 

Order matching
Assign requests to vehicles 

Available
vehicles 

Emitted
requests 

match

Fleet management
Rebalance AVs from oversupplied  

zones to undersupplied ones 

relocate 5
10

5
5

10

FIGURE 1: AMoD dispatching.

Dispatching encompasses fleet management for rebalancing AVs from oversupplied to un-15
dersupplied areas and order matching for assigning customers to AVs, as shown in figure 1. The16
dispatcher module is the cornerstone of a system composed of AMoD and demand. It is under17
the management of the private AMoD operator. In practice, operators’ first interest may not be to18
deliver the highest quality of service equally over its coverage area but to maximize its profit. Trav-19
elers’ objective is to minimize their travel costs. The dispatcher determines AMoD and travelers’20
outcomes by receiving AVs’ positions, service plannings, capacities, travelers’ requests, timing21
constraints, and connecting their respective objectives. Understanding the impact of the dispatch-22
ing strategy chosen on these metrics is worthwhile.23

Real-time dispatching is the only option when the environment is highly dynamic and24
AMoD has no knowledge about future requests. Rule-based heuristics are used in this case. The25
most largely used heuristics are presented in (5). The nearest-idle-vehicle assigns the nearest cur-26
rently idle vehicle to the request that has just been emitted in the oversupply regime and assigns the27
oldest request to the vehicle that has just turned available in the undersupply regime. The nearest-28
vehicle matches the nearest vehicle for which future availability time is known, to the oldest open29
request. The nearest-idle-vehicle/nearest-open-request matches the nearest open request with the30
vehicle that has just turned available in the undersupply regime approaches (6). The first heuristic31
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is nearly random in the undersupply regime, the second sticks to FIFO rule for requests, the third1
relaxes FIFO rule but remains myopic. They all proceed to local optimization by considering a2
single request or vehicle. They try to maximize the number of customers served by chasing each3
new request without considering the profitability associated with a match.4

To improve dispatching decisions, we need an estimation of future requests via enabling5
reservation, predicting coming requests with historical data, or both. (7) has highlighted the gap6
between exact offline optimization methods, with full knowledge of demand on the studied period,7
and rule-based heuristics. In practice for AMoD, the horizon of prediction cannot be so long. Given8
the uncertainties inherent to on-demand systems, a short/mid-term horizon is more reasonable. The9
rolling horizon, introduced by (8), is the state-of-the-art approach to deal with sequentially growing10
knowledge about future requests. Exact optimization methods have employed it.11

The most popular formulation enabling exact optimization of dispatch decisions is the Dial-12
a-Ride Problem (DARP) (9). This formulation builds a set of routes to maximize a certain objective13
function. They are at least two decision variables: binary variables indicating if a vehicle travels14
between two pick-up/drop-off nodes and the times at which each vehicle starts to serve a node15
(10). The sophisticated algorithms required to solve DARPs lack scalability. They hardly adapt to16
large-scale and real-time applications in highly dynamic scenarios. Indeed, the more uncertain the17
prediction on the horizon is, the more often routes should be re-optimized. Notably, (11) review18
refers to (12) (300 customers) and (13) (900 customers).19

We propose a new assignment-based heuristic using the rolling horizon principle in this20
study. It is far less myopic than the rule-based heuristics presented above while remaining much21
simpler and scalable compared to routes optimization addressed by the DARP. Figure 2 summa-22
rizes our positioning. Inspired by (14), our approach stands out due to the anticipation of future23
requests. In the latter reference, the dispatcher remains reactive. It reacts to the receipt of newly24
emitted requests. The availability of vehicles is the only element shortly anticipated. Our approach25
cyclically recalculates the best assignment of current and future open requests with vehicles that26
are or will be soon available. At each call, it solves a maximization problem where the objective27
function reflects its total expected profit on the coming horizon.28

Long-sightedDemand
forecast

Short/Mid-term
horizon Myopic

AMoD
policy

Routes builder
(DARP for small instances) 

Dispatching
strategy

Mandatory reservation  
ahead of the simulated period

No reservation possible
No demand forecast module 

Possible reservation
Demand forecast module 

Route builder 
(DARP for small instances) Rule-based heuristics

Assignment-based
heuristics

FIGURE 2: Positioning.

Primarily, we question the gains emerging from the knowledge of future requests in a the-29
oretical scenario where consequent repositioning efforts are required from AVs. Gains are in-30
vestigated from the AMoD side (profit) and travelers side (availability of service, pick-up time),31
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considering that the dispatching process favors only the former. On travelers’ side, the experi-1
enced level of service is weighted against traveler’s dependency on AMoD, which is approached2
thanks to the modeling of the whole multimodal network in our simulation platform. Two profit3
estimation strategies are investigated: one where early arrival of AV at a pick-up point is penalized,4
and another where the profit earned per elapsed time is preferred. We also explore two types of5
matching: one with permanent matches on the whole horizon (order matching only), another with6
permanent matches on the first part of the horizon, and temporary matches for repositioning vehi-7
cles on pick-up points awaited for the second part of the horizon (joint order matching and fleet8
management). A sensitivity analysis of the horizon length on these gains under the different dis-9
patching strategies allows to define the best configuration for each stakeholder. Finally, a pricing10
scheme to conciliate AMoD and travelers’ interests is inspected.11

Briefly, our contributions are: (i) the implementation of a simple and scalable assignment-12
based heuristic configured with four strategies to render AMoD’s profit-oriented dispatcher; (ii)13
the development of a platform to simulate customers and AMoD interactions, where alternative14
itineraries are modeled to assess for travelers willingness to wait for being picked-up; (iii) in a15
Manhattan-like network, the sensitivity analysis of horizon length, fleet size and planning length16
on travelers-side service efficiency and AMoD-side profits.17
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AN ASSIGNMENT-BASED HEURISTIC ANTICIPATING FUTURE REQUESTS1
Hypotheses on AMoD2
First, AMoD manages every single AV composing the fleet. The dispatching decisions are made3
in a centralized manner. Considering a centralized dispatcher allows better decisions than a de-4
centralized system where each AV would be responsible for its routing, relocating, and pick-up5
actions.6

As announced, we assume AMoD has access to an estimation of future requests. Demand7
forecast can be achieved by allowing reservation and analyzing historical data (15–17). The fore-8
caster module is out of the scope of this study. We suppose that it provides a perfect knowledge9
of demand within the coming horizon. As our main focus is the benefits that can emerge from the10
introduction of a horizon, this hypothesis allows us to draw the upper bound of what each proposed11
heuristic strategy can achieve.12

Another assumption is that AMoD has no long-term economic strategy. It has a unique13
fixed fare scheme over the greater urban area. This fare scheme is made to be competitive while14
ensuring lucrative rides for AVs. It is expected to be more attractive economically for travelers than15
today’s (e-)ride-hailing services. One of the most popular fare scheme in literature (18–21) is used16
here. Values for base, distance-based, and time-based fares are chosen to overcome the production17
cost (22) of any ride an AV performs. Money is effectively earned for a ride.18

Algorithm19

New knowledge
Candidates for permanent match
Candidates for temporary relocation

temporary
permanent

permanent
temporary

FIGURE 3: Rolling horizon principle for permanent and temporary modes.

Let t be the current time. At t, AMoD is aware of all requests already emitted and requests that20
will be emitted between t and t+H. The set of known open requests is noted RH . A request is said21
open when it has not been permanently matched and has not been canceled by traveler yet. Each22
open request j ∈ RH is characterized by an earliest pick-up time e j (which is equal to the request23
time in our case) and a latest pick-up time l j. A maximum waiting time w j is defined for each24
traveler (l j = e j +w j). As we focus on ride-hailing, the capacity of all AVs is set to one. We call A25
the set of available AVs. An AV is said to be available when it has no more than K ≥ 0 requests in26
its service list. The service list corresponds to an activity planning for the AV. It comprises service27
missions only. The rolling horizon principle is represented on figure 3.28

We implement two modes in the algorithm: a permanent matching mode (permanent) and,29
a short-term permanent matching / long-term temporary repositioning mode (temporary). In per-30
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manent mode, all matches identified by the optimal assignment resolution method are made per-1
manent. In temporary mode, only matches implying a request j satisfying e j ≤ t +αH (α ∈ [0,1])2
are made permanent. Other matches (i, j) identified are so that e j > t +αH. They lead to the ini-3
tiation of repositioning movements by concerned AVs. A repositioning movement is not a service4
mission. The match is not registered in AV’s service list. At the next optimal assignment resolu-5
tion method call, relocating AVs are thus considered available. Note that repositioning movements6
are only accessible to idle AVs (having no mission in their service list). The temporary mode in-7
creases AMoD flexibility by putting back into play a part of the decisions taken. In this mode, the8
dispatcher does achieve order matching jointly with fleet management. In both modes, the horizon9
is rolling, i.e., the optimal assignment algorithm is called each αH. Since demand prediction is10
perfect, it is unnecessary to call it more often. The dispatch algorithm is detailed below.11

Algorithm 1: Dispatch algorithm
1 Initialize A with all AVs, RH to an empty list, t = 0
2 Set horizon to [t, t +H], gather requests j emitted within the horizon and append them

to RH , gather AVs i with at most K requests in their service list to form A
3 Calculate utilities ui j for each (i, j) pair
4 Form a bipartite graph with ui j as cost on arcs and compute the matching maximizing

the sum of utilities
5 permanent: Make permanent all assignments decided in step 4. temporary: Make

permanent all assignments decided in step 4 for which e j ∈ [t, t +αH], and initiate
temporary repositioning movements for the other matches decided. Both: Remove
permanently matched j from RH

6 Set t = t +αH and go to step 2.

12

Impatient and productivist utilities13
A request j ∈ RH is characterized by a brut revenue p j, which is the price traveler pays to the AV.14
The AMoD fare scheme is defined as:15

p j = f a
0 + f a

d d j + f a
t t j (1)

16
where f a

0 is the base fare, f a
d is the distance-based fare f a

t is the time-based fare, d j is the travel17
distance of the path traveler wants to ride onboard AV, t j the travel time on this path.18

The pair (i, j) designates a potential match between i and j. It is characterized by di j, the19
distance on the shortest path between i and j’s pick-up point, ti j, the travel time on this path, and ui j20
the utility of match computed in step 3 of the algorithm. We define two strategies AMoD can adopt21
to maximize its profit. The impatient strategy (equation 2) takes into account the repositioning cost22
of i toward j’s pick-up point, the expected revenue for serving j, the eventual time lost by i while23
waiting for traveler departure e j. The waiting time AV experience by arriving early at a pick-up24
point is penalized. The productivist strategy (equation 3) takes into account the repositioning cost25
and the expected revenue into a profit per time unit. Earning more profit in less time is favored.26

uimpatient
i j =−Ca

ddi j +(p j −Ca
dd j)ξi j − f a

t max(0,e j − (ti + ti j)) (2)
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uproductivist
i j =

−Ca
ddi j +(p j −Ca

dd j)ξi j

ti j +max(0,e j − (ti + ti j))+ t j
(3)

1
where Ca

d designates the distance-based operation cost of an AV, ti is the time at which i will drop-2
off the last traveler currently appearing in its service list (ti = t if there is no mission in i’s service3
list), ξi j equals 1 if ti + ti j ≤ l j, 0 otherwise (no profit can be earned if AV arrives too late). Note4
that AMoD is assumed to know l j and e j.5

Optimal assignment6
In step 4 of the algorithm, the following optimization problem is solved:7

max
xi j

∑
i∈A

∑
j∈RH

ui jxi j (4a)

subject to xi j ∈ {0,1},∀i ∈ A,∀ j ∈ RH (4b)

∑
i∈A

xi j ≤ 1,∀ j ∈ RH (4c)

∑
j∈RH

xi j ≤ 1,∀i ∈ A (4d)
8

where xi j are the binary decision variables, equal to 1 if (i, j) match is decided, 0 otherwise.9
To prevent unfavorable interactions between two assignments for one AV decided during the same10
dispatch round, constraint 4c imposes that an AV can be assigned to at most one request per optimal11
assignment resolution call. Indeed, when several matches are allowed for one AV i, utility ui j, j ∈12
RH , is directly dependent on the assignment of other requests to the same AV. Separately, matches13
(i,1) and (i, 2) can have high utilities, but it does not mean that utility of a route including customers14
1 and 2 has a good utility. Here is the main difference between routes building and assignment15
approaches. The former computes routes utilities, the latter computes assignment utilities. Due to16
constraint 4c, there is a risk for under-exploited AVs. Some AVs may finish their mission before17
the next call of the optimal assignment problem and remain idle for a few minutes. To prevent18
this phenomenon, we properly set α to and enable AVs to have more than one service mission in19
their planning (at most K, where missions are appended in different calls of the optimal assignment20
resolution). The value of α should not be too small to keep the scalability of the method and not21
too big to limit the number of lost resources between two calls. It should be consistent with the22
average riding time of a service mission. Finally, constraint 4d ensures that a request is matched23
with at most one AV.24

A benchmark heuristic25
To evaluate the benefits of including a demand prediction, we want to compare our assignment-26
based anticipative dispatch with a rule-based myopic heuristic. We implement a nearest-vehicle/nearest-27
open-request dispatcher. Contrary to our algorithm, which regularly calls the optimal assignment28
resolution, this is an event-based approach. Dispatcher is triggered whenever a new request is29
received in the oversupply regime and whenever an AV turns available (it has just dropped off a30
traveler so that its service list has strictly less than K requests) in the undersupply regime. The31
dispatcher is completely myopic to future requests. It does not completely stick to FIFO rule con-32
trary to nearest-idle-vehicle and nearest-vehicle strategies and, shortly anticipates AVs availability33
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contrary to nearest-idle-vehicle/nearest-open-request heuristic. The selection is done according to1
the following equations:2

i∗ = argmin
i∈A

(ti + ti j) (5)

where j has just been received.
j∗ = argmin

j∈RH

(ti + ti j) (6)

where i has just turned available.3

SIMULATING AMOD-TRAVELERS INTERACTIONS4
AMoD and travelers interact within an environment representing a theoretical agglomeration. We5
developed a simple simulation platform that focuses on the elementary bricks required to study the6
impact of the horizon on supplier and customers’ benefits.7

Realistic distances and travel times8
Since distances and travel times determine indicators we want to assess, consistent parameters9
should be provided to the optimal assignment problem. The simulator takes a road network as an10
input. In our theoretical agglomeration, we chose a Manhattan road network with three mesh sizes11
to account for topology differences over the greater urban area. The smaller mesh size stands in the12
center of the city (U1), the medium one in the suburbs (U2), the biggest one in the extended suburbs13
and the close rural area surrounding the city (U3, figures 4a and 4). Two ring roads are added on14
the boundaries between U1-U2 (U12) and U2-U3 (U23). A fixed mean speed (vUk) for cars and AVs15
is defined in each urban zone. Vehicles travel arcs of the network node by node at mean speed.16
Traffic dynamics are not modeled here. In addition, since the number of AVs circulating remains17
limited compared to background traffic, we assume they have no impact on the known mean speed.18
Adding a macroscopic traffic model such as MFD (23) to account for traffic dynamics and AVs’19
contribution to congestion will be studied in future research.20

A consistent demand addressed to AMoD21
Applying an itinerary choice on a global demand pattern allows to better render the distribution22
of pick-up and drop-off points over the agglomeration compared to a random generation. We thus23
model the entire multimodal network.24

Multimodal network25
To represent the different transportation modes including walk (w), car (c), AV (a), train (r), sub-26
way (s) and bus (b), a digraph G = (V,A), as the one shown in figure 5, is used. V and A are,27
respectively, the sets of vertices and arcs. Each mode has an associated layer in this graph. Thus,28
Gw = (Vw,Aw) is the walking layer, Gc = (Vc,Ac) is the personal car layer, Ga = (Va,Aa) is the AV29
layer, Gr = (Vr,Ar) is the train layer, Gs = (Vs,As) is the subway layer and Gb = (Vb,Ab) is the30
bus layer. The walk layer is based on walkable streets. The car and AV layers are based on the31
road network: vertices and arcs correspond to road intersections and links. The train, subway, and32
bus layers are based on the public transportation network: vertices and arcs correspond to transit33
stations and itineraries between two stations. A set of transfer arcs connect the walk layer to the34
other layers. Transfer arcs types are: starter (walk → car), park (car → walk), pick-up (walk →35
Av), drop-off (AV → walk), board (walk → train, walk → subway, walk → bus), alight (train →36
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FIGURE 4: A theoretical urban area.

walk, subway → walk, bus → walk). Another set of transfer arcs of type alighboard are internal1
to the urban public transportation network and connect the subway and bus layers.2

Travel times3
Intra-layer arcs belonging to Ac and Aa are parameterized with a mean speed. A fixed walking4
speed vw applies on all walking arcs. Travel times on all arcs in Ac ∪Aa ∪Aw are deduced from5
speed and distance. Each transit line is characterized by a cruising speed (vr, vs, vb), a headway6
(hr, hs, hb) and a time lost per station (τr, τs, τb). The travel time between two stations of the7
same transit line is the sum of time lost per stop and travel time at cruising speed. The travel time8
between two stations of different transit lines located at the same coordinates is approximated to9
be half the headway, such as the travel time between a walk node and a transit station with the10
same coordinates. The travel times on starter, park, drop-off, alight arcs are considered null and,11
travel times on pick-up arcs depend on the behavior of the AMoD but a reference pick-up time (τa)12
is used for travelers itinerary choice.13

Travel costs14
Itinerary choice is considered deterministic and based on generalized travel costs. Travel cost15
includes a monetary cost term, a travel time cost term, and a transfer penalty term. The monetary16
cost associated with a car itinerary includes a distance-based cost (Cc

d), carried by the car arcs, and17
a parking cost carried by the park arcs. On each park arcs, a certain parking capacity (Kc) and a18
price (pc) are defined.19

The train pricing scheme comprises a base fare ( f r
0) and a distance-based fare ( f r

d). The20

urban public transport network pricing scheme only includes a base fare ( f s,b
0 ) that should be paid21

once at the network’s entrance. The AMoD pricing scheme has been presented in section 3.1.22
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To homogenize time and money, we use several values of time depending on the activity1
(βride, βdrive, βwait). In such an intermodal network, the transfer cost cannot be ignored (24).2
The disutility associated with transferring from one mode to another has largely been studied,3
particularly in transit systems (25, 26). This is taken into account through a monetized transfer4
penalty γtrans f er. An adapted version of the Dijkstra algorithm is used to account for transfer5
penalties while exploring the graph.6

Relevant willingness to wait7
Resulting from the itinerary choices, a set of requests is addressed to AMoD where each request8
has an origin, a destination (∈ Vw), and timing constraints. A critical parameter is the maximum9
waiting time w j. Here, w j is computed following equation 7.10

w j =
ca

j − ca
j

βwait
(7)

where ca
j is the travel cost of j on the currently followed itinerary starting from the arrival node of11

pick-up edge, ca
j is the travel cost of j from the origin node of pick-up edge to his destination on the12

best itinerary that does not rely on AMoD. This equation corresponds to a simple behavior: when13
traveler’s waiting cost reaches the extra cost of not using AV during his trip, he cancels his request14
and diverts to this alternative itinerary. We assume that after having canceled once, a traveler will15
not try to use AV later in his journey: he follows the alternative path until his destination.16

An unfavorable scenario to challenge heuristics17
Finally, as we are looking to evaluate the benefits of introducing a horizon to an assignment-based18
heuristic, we stick to an unfavorable scenario for AMoD. By unfavorable, we mean: (i) operating19
within a large coverage zone, (ii) with a limited number of vehicles, (iii) during morning commute20
in a monocentric city. Due to (i) and (iii), more repositioning efforts are required by vehicles,21
especially for distant requests from the center. Due to (ii), the dispatcher has effectively choices to22
make between requests. Some will be prioritize to the detriment of others, and we investigate the23
impact of dispatching strategy on this prioritization.24

An ideal hybrid transit system, as the one proposed by (27, 28), is chosen for this mono-25
centric city. It comprises two train lines, two subway lines, twelve bus lines (figure 4b).26

The morning commute demand pattern is a many-to-one: all travelers’ destinations are in27
the center. Regarding network topology and travel costs, most of them prefer to request AV for a28
door-to-door ride. A marginal part of them requests AV for the first-mile, to join a transit station.29
To analyse AMoD’s level of service, the area is split into 25 service zones called from #0-0 to30
#4-4 (figure 4a). Figure 6 shows the demand-supply imbalance. In total, 4000 requests are emitted31
during 3 hours.32

All parameters can be found in appendix 8.33

AMoD-travelers interactions34
AMoD and travelers interact within this environment following figure 7. A traveler j who chooses35
an itinerary including an AV ride sends his request to AMoD. It contains timing constraints com-36
puted with w j, obtained from other transportation alternatives. The dispatcher receives requests H37
in advance and, in real-time, AVs states, positions, and service plannings. It resolves the optimal38
assignment problem and decides to match j with i. For permanent strategy, j is immediately added39
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FIGURE 6: Number of pick-ups minus number of drop-offs requested per zone. A many-to-
one demand pattern is considered in the theoretical instance to provoke tough imbalance between
supply and demand.

to i’s service list. For temporary, if e j belongs to the second part of the horizon, i only receives1
the order to reposition toward j’s pick-up point till the next assignment round. For a permanent2
match, j is picked-up by i as soon as i arrives, except if e j is not yet reached. In this case, i waits3
for j. Then, i picks j up, carries him to his destination, and drops him off. For non-AV legs of4
the itinerary, customer travels node by node on the other graph layers. Travelers who have cho-5
sen car mode book parking in advance to prevent overcoming capacity. Behaviors are detailed in6
appendices 9 and 10.7

Benefits for AMoD and travelers8
Seven specific indicators are tracked.9

• AMoD-side:10
– P, total profit earned during the whole studied period11
– TDTS, total distance traveled by serving AVs12
– TDTE, total distance traveled by empty AVs, including AVs that are permanently13

matched and AVs that are temporarily matched14
• Travelers-side:15

– ORR,the order response rate, defined as the ratio between the number of matched16
requests and the total number of requests emitted17

– TWT, total waiting time for AVs, including the total realized pick-up time, the total18
waiting time of travelers that have canceled and, the total waiting time of travelers that19
are still waiting at the end of the studied period20

– G, the gini coefficient of zones’ ORRs, it reflects the inequality of ORR among zones21
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FIGURE 7: AMoD-travelers interactions.

RESULTS1
We present the results obtained on the instance described above.2

Sensitivity of H on supplier and customer3
To better highlight differences between the proposed strategies, we let more freedom to the dis-4
patcher by focusing on patient requesters. In this section, all travelers have a large willingness5
to wait W = 20min. The maximum planning length K is set to 2 by default. As discussed in sec-6
tion 3.4, a proper value of α should be chosen. We preliminary compare αH =5,10min, H ∈ [0,60]7
under the four strategies. We choose to set αH =10min if H ≤ 10, and H otherwise because the8
variation range of simulation time is smaller with a similar number of idle AVs o, average. Our9
four assignment strategies are compared on their sensitivity to the horizon parameter H. Results10
are represented on figure 8.11

Introduction of a horizon enables AMoD to serve more requests whatever the strategy12
ORR starts by increasing with H. The fleet is underused at H = 0, with at least a hundred AVs13
being idle at any time. The lack of anticipation prevents AVs from being dispatched to distant14
requests. The repositioning time required to join pick-up points of corner zones (#0-0, #0-4, #4-0,15
#4-4) from #2-2 (where most AVs finish their service mission), is higher than W . Consequently,16
inequalities in ORR among zones are significant, as shown in figure 9a and confirmed by G, above17
0.2 for all strategies.18
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FIGURE 9: ORR per zone.

The productivist strategies are better to maximize ORR, to the detriment of G1
A horizon of 15-25min maximizes the number of matches. The maximal value of ORR reached2
depends on the strategy. The productivist are better than impatient. In parallel, G decreases but not3
to the same extent for the four strategies. The impatient utilities erase more ORR disparities than4
productivist ones. Figures 9b and 9c represent the ORR per zone at H = 20 for the two extreme5
strategies in terms of G. With the same knowledge of future requests, the improvement of ORR in6
U3 corner zones is better for permanent-impatient.7

Two distinct behaviors emerge from the two utilities8
For permanent-impatient, distant requests for which AVs can arrive just in time are more attrac-9
tive than closer requests for which AVs would have to wait for the customer. For temporary-10
productivist, distant requests prior notices are not convincing, and AMoD prefers to dispatch AVs11
to closer customers. Similarly, for permanent-productivist, AVs are matched in priority with closer12
requests even if they must wait for the customer. AV waiting time is included in uproductivist

i j defi-13
nition, contributing to the time required to earn a certain profit. But it does not have as much im-14
portance as in the impatient utility. The average number of waiting AVs for H = 20 in permanent-15
productivist has a higher score (50 AVs) than in the other three (around 20 AVs). For temporary-16
productivist, we do not find a consequent number since only AVs waiting for a customer involved17
in a permanent match are counted.18

Extending knowledge even more has no effect for temporary strategies19
The decreasing phase with H higher than 15-25min does not affect the four strategies similarly. The20
temporary ones are less impacted, with a slight decrease in the number of matches and early stabi-21
lization of metrics. Providing more information to the dispatcher does not change fleet’s behavior.22
The dispatcher has exploited the maximum amount of information possible. The additional notices23
included within the horizon are candidates for repositioning in the temporary strategies. Yet, only24
idle AVs are likely to be temporarily matched with a candidate for repositioning. Since fleet is not25
oversized, most AVs are occupied with a service mission at each instant. No supplementary idle26
AV is available for being matched with the additional prior notices. The value of H from which27
stabilization happens depends mainly on fleet size (oversupply allows to keep more AVs available28
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for repositioning missions) and K (longer planning may free some AVs by loading AVs’ schedules1
more).2

3
For permanent strategies, we do not observe the same stabilization when H increases over4

H = 25. From H = 25, permanent-impatient looses 200 matches and permanent-productivist5
looses 280 matches.6

With permanent-productivist, extending H too much favours AMoD and puts customers at a disad-7
vantage8
We find that for H ≥ 25, TDTS and TDTE decrease at the same pace. AVs serve fewer travelers,9
provide less repositioning effort and serve fewer kilometers. In parallel, G reaches its minimum at10
H = 25 and then increases. AMoD is more focused on central zones and serve shorter and closer11
requests. Extending the horizon makes more of these requests visible to the AMoD, and AVs that12
were sent in U3 are kept in U1 instead. As more and more AVs desert U3 to wait for new customers13
in U1 and U2, the number of matches decreases. The average number of waiting AVs doubles14
between H = 20 and H = 60.15

Meanwhile, P increases until H = 40, when the maximum profit score is reached (1111216
EUR). By focusing more on shorter and closer requests while ignoring more distant and longer17
requests, AMoD’s profit increases until the time lost due to AVs arriving ahead of time becomes18
disadvantageous.19

Anticipating too much is negative for ORR but dummy for G and P with permanent-impatient20
Both TDTS and TDTE grow at the same pace. AVs serve fewer customers but make more reposi-21
tioning efforts for longer rides. The time to achieve a mission, from repositioning to drop-off, is22
greater, and AVs are monopolized longer for a given mission. Moreover, the number of requests23
candidates for a match increases with a wider horizon. Match being permanent, more AVs are nec-24
essary to answer a batch of requests. The average number of idle AVs decreases from 40 at H = 2525
to 20 at H = 60. By over-anticipating, permanent-impatient AMoD behaves too impatiently to26
be able to maintain global ORR. It assigns AVs with distant requests that have an earliest pick-up27
time in far future but requiring enough repositioning effort to allow the just-in-time arrival of AV28
at the pick-up point. These far requests, being associated with longer rides, are profitable enough29
to be prioritized by the optimal assignment method. Increasing K jointly with H may absorb, to30
some extent, the reduction of global ORR by making AVs currently monopolized by long rides,31
available to receive more service mission orders. In figures 10, we effectively have more matches32
when K = 3 but, within the same simulated duration, it does not mean higher TDTS. At the end33
of the studied period, we have more AVs that have not finished their service missions. At H = 60,34
TDTS of both scenarios join. This confirms that within a 0-60min range for the horizon, 2 is a35
proper value for the planning length.36

A wider horizon does not negatively impact P nor G. P variation range is quite narrow37
(9856-10215 EUR) since TDTS and TDTE increase jointly: repositioning efforts and service dis-38
tance benefits are balanced. G maintains from H = 30.39
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FIGURE 10: Comparison of sensibilities to H for K = 2 and K = 3 for the permanent-impatient
strategy.

The temporary-impatient strategy is the worse for profit due to unproductive repositioning1
For temporary-impatient, we notice that TDTE keeps increasing while TDTS follows ORR from2
H = 15. AVs are making more repositioning efforts without any reward in terms of TDTS. More-3
over, counting the average number of idle AVs shows that more AVs are running (serving or repo-4
sitioning) during the simulation. Consequently, the profit curve is the worst among all strategies,5
reaching a minimum of 8395 EUR. A temporary match with a distant request requires more than6
αH (10min) to be achieved. Then, it is put back into play and is exposed to interruption. Around7
70-80% of repositioning missions are interrupted. The repositioning AV is either permanently8
matched with another request than its previous target or assigned another repositioning target. The9
temporary strategy is at the origin of unproductive repositioning and, sub-optimality in dispatching10
decisions here. When demand prediction is not exact, it may improve system’s flexibility.11

Repositioning in temporary-productivist is more flourishing and leads to a satisfying and stable P12
for supplier but higher spatial disparities in ORR13
For temporary-productivist, TDTS, TDTE and P are similar to permanent-productivist until H =14
15. From then, the three indicators and G stabilize, letting this strategy below permanent-productivist15
in terms of P. The maximal profit reached is the second best (10622 EUR). We note that using the16
productivist utility rather than the impatient one, allows to reach a higher ratio of repositioning17
missions achieved (70-80%). Indeed, the repositioning missions are shorter so have less occasions18
to be interrupted.19

The permanent strategies are better for improving TWT and mean realized pick-up time as H20
increases21
The permanent strategies have similar monotonically decreasing TWT profiles. Regarding the total22
realized pick-up time, it reduces as H increases. The mean realized pick-up time starts around23
12min for H = 0 and reaches 2min at H = 60 for both strategies. If the number of matches24
decreases, the quality of service for matched travelers largely increases.25

The temporary strategies also have similar TWT profiles: it starts by decreasing, then sta-26
bilizes just as other indicators. The mean realized pick-up time variation range is narrow, reaching27
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9min for H = 15 and remaining around 12min for shorter and wider horizon.1
2

The advantage of productivist utility for the supplier is evident here: waiting passively in3
the center is a more profitable strategy for AMoD compared to actively looking for more distant4
rides. This behavior is the origin of deeper disparities in terms of ORR (G).5

Extension to traveler-specific willingness to wait6
In this section, we wonder how strategies adapt to more impatient travelers. We also go further in7
the analysis of travelers-side indicators.8
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FIGURE 11: Mean maximum waiting time per zone.

When the maximum waiting time is not constant but based on available alternatives on9
the transportation network, it becomes traveler-specific. Figure 11 represents the mean maximum10
waiting time per zone. It shows smaller values in zones better supplied by transit. Travelers who11
emit a request from a corner zone of U3 are more willing to wait (16min) than travelers who emit a12
request from the central zone (7min). The more traveler is willing to wait, the more he depends on13
AVs. Here, we investigate the inequalities in terms of quality of service, represented by the realized14
pick-up time. We wonder if inequalities in quality of service are related to AV-dependency and to15
what extent. As permanent strategies have performed better than temporary strategies for both16
utilities (in terms of P, ORR, TWT), we select them for this analysis.17
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FIGURE 12: Sensitivity of H with constant (W ) and traveler-specific (w j) maximum waiting time.

Figure 12b shows that mean realized pick-up time is always lower in the traveler-specific1
maximum waiting time scenario (w j). It is consistent since travelers are more demanding (w j ≤W ).2
The difference in mean realized pick-up time with W scenario reduces as H increases. Figure 12a3
shows that with a short horizon, AMoD does not succeed in answering as many requests as in the4
W . When anticipation is sufficient, all indicators of w j scenario (except TWT) join those of W5
scenario. It demonstrates the resilience of the permanent anticipative heuristics proposed under6
tougher timing constraints.7

Figure 13 presents the concentration curves (29) for quality of service. To obtain it, we8
have defined five classes of AV-dependency from the less dependent to the most:9

1. w j ≤ 710
2. 8 ≤ w j ≤ 1011
3. 11 ≤ w j ≤ 1312
4. 14 ≤ w j ≤ 1613
5. 17 ≤ w j14

On the x-axis, it plots the cumulative proportion of travelers (all on 13a, only those that have been15
matched on 13b), beginning with the less AV-dependent, ending with the most AV-dependent.16
On the y-axis of figure 13a (resp. figure 13b), it plots the cumulative share of travelers being17
matched (resp. of total waiting time). If matches (resp. waiting times) are equally undergone18
across classes, the concentration curve would coincide with the diagonal. The degree of inequality19
can be represented by the concentration index Ci, which equals 0 for perfect equality. It is worth -120
(resp. 1) for a perfect inequality to the disadvantage of the less AV-dependent, i.e., all matches are21
attributed to the less AV-dependent (resp. the most AV-dependent travelers undergo all the waiting22
time imposed by AMoD). Here, computing ci and looking at the curves indicates that:23

• Ci(matches, impatient) =−0.01524
• Ci(waitingtimes, impatient) = 0.09325
• Ci(matches, productivist) =−0.08826
• Ci(waitingtimes, productivist) = 0.18027
• productivist favors the less AV-dependent travelers in terms of matches and pick-up time28

more than impatient29
• with productivist, the 50% of travelers the less AV-dependent attract 60% of the matches30
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FIGURE 13: Concentration curves for quality of service related to AV-dependency.

• with productivist, the 20% of matched travelers the most AV-dependent undergo 1/3 of1
the total realized pick-up time while the 20% of matched travelers the less AV-dependent2
undergo 12% of this quantity3

Comparison with heuristic4
We have shown that a horizon helps improve AMoD-side and travelers-side benefits. Yet, we have5
stuck to a slightly undersized fleet. In this section, we compare our anticipative assignment-based6
approach with the rule-based heuristic presented in section 3.5 for undersized and oversized fleets.7
We still focus on permanent strategies and, set H to 25min (where ORR is maximal for both8
permanent strategies). Figure 14 present the results for a traveler-specific maximum waiting time.9

The (rule-based) heuristic strategy is less sensible to fleet size than permanent in terms of10
ORR and P. There are more and more idle AVs that do not succeed in answering the remaining11
unmatched requests. In our unfavorable instance, the lack of anticipation prevents idle vehicles,12
mostly located in the central zone, from satisfying timing constraints of corner zones’ requests.13
The horizon allows the other two strategies to take advantage of supplementary resources: ORR14
keeps increasing till the maximum fleet size. On average, for 600 AVs, there are 380 idle AVs with15
the heuristic strategy, 80 with the permanent-impatient and, 75 with the permanent-productivist.16
The ORR (resp. P) gap is around 0.45 (resp. 4000 EUR). Note also that as fleet size increases, the17
gap between impatient and productivist strategies narrows.18

Regarding G, heuristic remains around 0.2-0.3 which is better than permanent-productivist19
for a fleet containing less than 350 AVs, but worse for greater fleets. The tendency to focus on less20
distant and shorter rides highlighted for permanent-productivist is close to what heuristic emulates.21
For assignment-based heuristics, when more AVs are available, ORRs of corner zones increase, and22
G is almost null, as shown in figure 15.23

Regarding mean realized pick-up time, heuristic and permanent-impatient have similar24
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FIGURE 14: Sensitivity of fleet size for permanent and heuristic strategies with traveler-specific
(w j) maximum waiting time (H = 25)
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FIGURE 16: PSC1 where prices are positive and subsidies are negative (EUR).

decreasing profiles. In the case of heuristic, it decreases from 8min for 150 AVs to 6min for 6001
Avs, but this is at the price of numerous idle AVs. The permanent-productivist strategy is better2
than the other two, with a variation range extending from 3min to 5.5min.3

Inclusion of a regulator4
As highlighted above, permanent-productivist is the strategy maximizing the profit of AMoD, but5
it does to the detriment of equity among travelers under a limited fleet size. In this section, we add6
a regulator stakeholder in the system. It aims at restoring equity under this strategy by setting up a7
pick-up pricing scheme. We test two intuitive pricing schemes:8

• PSC1: Subsidies are attributed to AVs for picking up a traveler in an AV-dependent9
zone, and prices are imposed on AVs for picking up a traveler in a non-AV-dependent10
zone. Subsidies and prices are proportional to: (i) the AV-dependency of the zone, (ii)11
the distance of this zone from the center of the city. Figure 16 shows prices per zone.12

• PSC2: Subsidies are the same as in PSC1, but there are no prices.13
Figure 17 shows that compared to no pick-up price scenario, PSC2 reaches equality in14

terms of matches while PSC1 brings equity. In the latter scenario, the 40% travelers more AV-15
dependent get 50% of the matches. Due to the definition of schemes providing more subsidies16
than collecting prices, P increases by 2715 EUR with PSC1 and by 3757 EUR with PSC2. As17
expected, ORR slightly decreases.18

CONCLUSION19
In this study, we have investigated the effect of demand prediction horizon on AMoD-side and20
travelers-side indicators for an assignment-based dispatching heuristic. We have tested four strate-21
gies and analyzed the sensitivity of each to horizon length in an unfavorable theoretical environ-22
ment. Introducing a short/mid-term horizon (5-25min) allows AMoD to increase its profit by23
serving more requests, improves the mean realized pick-up time for travelers and reduces spatial24
disparities in terms of ORR. For temporary mode, extending more the horizon does not change25
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travelers’ outcomes but degrades AMoD’s profit in case of unproductive repositioning, as it hap-1
pens in temporary-impatient strategy. For permanent mode, anticipating long-term requests de-2
grades ORR. Two distinct behaviors emerge depending on the strategy. With an impatient utility,3
AVs are rewarded for making more repositioning efforts and maintain a good profit level for higher4
horizon lengths. With a productivist utility, AVs succeed in earning more profit by waiting for fu-5
ture customers in the center. Comparison with a non-anticipative heuristic has shown the ability6
of our dispatching to exploit supplementary vehicles. Even when fleet is oversized, a severe im-7
balance between supply and demand prevents the rule-based heuristic from performing similarly.8
The permanent-productivist maximizes AMoD’s profit but worsen spatial inequalities. Especially,9
the most AV-dependent travelers are less matched. Those who are matched undergo a bigger part10
of the total waiting time compared to the least AV-dependent. One pricing scheme for restoring11
equality and another for advantaging the most AV-dependent have been proposed.12

Our study can be extended in several ways. A real-world instance would be a more nuanced13
scenario to test our dispatching strategies. Removing the monocentric hypothesis, the many-to-one14
filter would lead to a lighter imbalance between supply and demand and may highlight new behav-15
iors. Considering the entire demand on a real agglomeration would enable us to perform a simu-16
lation time analysis and check the scalability of the approach. Finally, we could go further on de-17
signing pricing schemes that benefit AMoD, travelers and regulator. For example, prices/subsidies18
could be passed on AVs and travelers jointly to change AMoD usage from a majority of door-to-19
door rides to more first/last-mile rides.20
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THEORETICAL INSTANCE PARAMETERS1
Road network2

vU1 0.55 (m/s) Mean speed in U1
vU2 0.67 (m/s) Mean speed in U2
vU3 1.17 (m/s) Mean speed in U3
vU12 1.09 (m/s) Mean speed on U12 ring road
vU23 1.34 (m/s) Mean speed on U23 ring road
Cc

d 0.6 (EUR/km) Operation cost of personal car
ρU1 50 % Probability of free private parking in U1
pc

U1
6 (EUR) Parking price in U1

Kc
U1

10 (parking spots) Number of parking spots per park edge in U1

Transit3

vr 1.34 (m/s) Cruising speed of train
τr 2 (min) Time lost per station for train
hr 15 (min) Headway of train lines
f r
0 0.5 (EUR) Base fare for train

f r
d 0.2 (EUR/km) Distance-based fare for train

vs 0.9 (m/s) Cruising speed of subway
τs 1 (min) Time lost per station for subway
hs 4 (min) Headway of subway lines
vb 0.55 (m/s) Cruising speed of bus
τs 1.5 (min) Time lost per station for bus
hs 6 (min) Headway of bus lines
f b,s
0 1.5 (EUR) Fare for entering transit network

vw 0.11 (m/s) Walking speed

AMoD4

f a
0 1.3 (EUR) Base fare for AMoD

f a
d 0.3 (EUR/km) Distance-based fare for AMoD

f a
t 0.3 (EUR/min) Time-based fare for AMoD

Ca
d 0.27 (EUR/km) Operation cost of AV

τa 5 (min) Reference pick-up time

Travelers5

βwait 0.425 (EUR/min) Value of time when waiting
βride 0.17 (EUR/min) Value of time when riding transit of AV
βdrive 0.255 (EUR/min) Value of time when driving
γtrans f er 0.85 (EUR) Transfer penalty
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FIGURE 18: Flow chart of traveler.
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AV BEHAVIOR1
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FIGURE 19: Flow chart of AV.


