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Properties of periodic Dirac—Fock functional and minimizers

Isabelle Catto* Long Meng'

Abstract

Existence of minimizers for the Dirac—Fock model for crystals was recently proved by
Paturel and Séré and the authors [9]. In this paper, inspired by Ghimenti and Lewin’s
result [12] for the periodic Hartree—-Fock model, we prove that the Fermi level of any
periodic Dirac-Fock minimizer is either empty or totally filled when ¢ < C¢j and a > 0.
Here ¢ is the speed of light, « is the fine structure constant, and C¢; is a constant
only depending on the number of electrons and on the charge of nuclei per cell. More
importantly, we provide an explicit upper bound for C.,;.

Our result implies that any minimizer of the periodic Dirac—Fock model is a projector
when ¢ < O and o > 0. In particular, the non-relativistic regime (i.e., ¢ » 1) and the
weak coupling regime (i.e., 0 < a « 1) are covered.

The proof is based on a delicate study of a second-order expansion of the periodic
Dirac-Fock functional composed with a retraction that was introduced by Séré in [23] for
atoms and molecules and later extended to the case of crystals in [9].

1 Introduction

The Hartree—Fock (HF) model is commonly used in non-relativistic chemistry and quantum
physics to calculate ground- or bound state energies of atoms and molecules. In this model, the
state of the electrons is represented by a so-called density matrix « which is a self-adjoint trace-
class operator 0 < v < 1 acting on the space L?(R3;C). Its finite trace represents the number
N of electrons (N € N*:= N\{0}). When the nuclear charge Z > N — 1, existence of a ground
state for the HF model expressed in terms of N-particle wave-functions goes back to Lieb and
Simon [18]. This existence result has been extended later to excited states by Lions [19] (see
also the recent review paper by Bach |2] and the references therein). Existence of minimizers for
the HF functional involving one-particle density matrices is due to Lieb [16] (see also Bach [1]).
Additionally, it is shown in [16] that any HF minimizer ~ is automatically a projector of the
form v = 22[21 |tn) (1| with the 1;’s being the eigenfunctions corresponding to the smallest
eigenvalues (counted with multiplicity) of the mean-field self-adjoint HF operator H.,

H’ywn = €ntn,

with spectrum o(H,) = {1 < e < --- <exy < ---} U [0,+0) where ¢; < 0 for any j € N*.
Furthermore, Bach, Lieb, Loss, and Solovej proved that shells are always completely filled
in the HF model [3]. Mathematically, this property writes ey < ey41. In particular, any
minimizer of the HF functional solves the following self-consistent equation

Y = L—o,en](Hy),
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where 17(H) denotes the spectral projection of the self-adjoint operator H on the set I — R.
Efficient numerical methods in the HF theory rely on these properties (see e.g., [7]).

This result has been later extended by Ghimenti and Lewin in [12] to the periodic HF
model for neutral crystals introduced and studied by Catto, Le Bris and Lions in [8]. They
proved that any minimizer 7 of the periodic HF energy is always a projector (of infinite rank),
that solves the self-consistent equation

v = L(oou)(ry) T €l (Hy) (1.1)

with € € {0,1}, and v € R may be an eigenvalue of the periodic mean-field HF operator
H., (with infinite multiplicity due to the invariance by translations of the lattice). In [6], a
similar result was proved by Canceés, Deleurence, and Lewin for the reduced HF model for
crystals where the exchange term is neglected. Relying on [24], they show that the spectrum
of the corresponding self-adjoint operator is purely absolutely continuous. Hence v cannot be
an eigenvalue and one can take e = 0 in (1.1). In particular, there are no unfilled shells in
the reduced HF theory either. Unfortunately, we do not know whether the spectrum of the
periodic HF operator is also purely absolutely continuous because of the non-local feature of
the exchange term. Therefore, the proof of Ghimenti and Marco rely on different arguments
based on a careful analysis of the exchange term.

When heavy nuclei are involved (that is, Z is large), it is expected that the electrons
closest to the nucleus move at very high velocities, thus requiring a relativistic treatment. It is
widely believed that Quantum Electrodynamics (QED) is an adequate framework to deal with
relativistic effects. It is shown that the shells are always completely filled for the Bogoliubov—
Dirac—Fock model in QED [13]. The proof relies on the fact that the corresponding functional
is bounded from below and on the positive definiteness of the nonlinear term. However,
this theory leads to divergence problems: it is not easy to give meaning to different physical
quantities appearing in QED, such as the energy and the charge density of the vacuum.

Alternatively, the Dirac-Fock model (DF) for atoms and molecules is one of the most
attractive models in relativistic computational chemistry. It is a variant of the HF model in
which the Laplace operator —%A entering the kinetic energy term is replaced by the free Dirac
operator D¢ where the superscript ¢ stands for the speed of light. Unlike the QED models, the
DF functional is not bounded from below. It is therefore difficult to give a rigorous definition
of the ground state energy. However, results on existence of critical points — that is, solutions
to the DF equations — can be found in [10, 21]. These solutions provide an infinite number of
finite rank projectors as critical points of the DF functional. It is also proved in [11] that, up
to subsequences, the projector with the smallest energy among these critical points converges
to a minimizer of the Hartree—Fock energy in the non-relativistic limit; that is, when the speed
of light goes to infinity.

Recently, in the spirit of Lieb’s variational principle (see, e.g., [1, 16]), Séré redefined the
DF ground state energy for atoms and molecules by using the density matrix formalism [23].
Using a retraction technique, he proved that the DF ground state energy admits a minimizer
~ on a suitable subset of density matrix, and that v satisfies the self-consistent equation

v = 1(07V) ('DE/) +4, with0<d< ]l{l,} ('Di),

for some Lagrange multiplier v associated with the charge constraint. Later on, by using
Séré’s retraction technique, Meng [20] mathematically justifies Mittleman’s approach to the
DF model: the DF model is an approximation of a max-min problem coming from the electron-
positron field (see, e.g., [4, 5, 14]). As a byproduct, he shows that the shells in the DF theory
of atoms and molecules are completely filled when the fine structure constant « is small enough
or the speed of light ¢ is large enough under some conditions on Z and N. This is an immediate
consequence of a second-order expansion of a new DF functional, which is the composition of
the DF functional with the retraction introduced by Séré in [23].



Finally, one can construct the periodic DF model for crystals by replacing the Schrédinger
operator in the periodic HF model by the Dirac operator. Recently, together with Paturel and
Séré, we have studied this new model in [9]. We have shown that the energy of the periodic
DF model admits a minimizer that solves the self-consistent equation

¥ =T (D5) +6,  with 0.< 8 < 11,y(D5).

Here v and D are a periodic density matrix and the periodic mean-field DF operator re-
spectively. In the present paper, inspired by the results of one of us [20], we investigate the
properties of the DF functional and minimizers in crystals. We mimic the proof of Ghimenti
and Lewin for the periodic HF model [12] and obtain a similar result. More precisely, we show
that when o > 0 and % < Cgi (with Coyi given in Lemma 4.6), any minimizer v of the periodic
DF ground state energy is always a projector that solves a self-consistent equation of the form

Y= IL(0,1/) (D'Cy) + e]l{u}(p'cy)

with € € {0,1}. The proof of Ghimenti and Lewin is based on the local convexity of the periodic
HF functional. Since this property does not hold any longer here, we rather rely on a careful
study of the second-order expansion of the periodic DF functional due to one of us [20].

2 Description of the periodic DF model and main results

The paragraph below is copied from [9] for the reader’s convenience. For the sake of simplicity,
we only consider the case of a cubic crystal with a single point-like nucleus per unit cell;
that is, located at the center of the cell. The reader should however keep in mind that the
general case could be handled as well. Let ¢ > 0 denote the length of the elementary cell
Qp = (—%, %]3. The nuclei with positive charge z € R are treated as classical particles with
infinite mass that are located at each point of the lattice £Z3. The electrons are treated
quantum mechanically through a periodic density matrix. The electronic density is modeled
by a @Qg-periodic function whose L'-norm over the elementary cell equals the “number of
electrons” per cell g € R* := (0, +0) (the electronic charge per cell is equal to —q).

In this periodic setting, the Q-periodic Coulomb potential Gy resulting from a distribution
of point particles of charge 1 that are periodically located at the centers of the cubic cells of

the lattice is defined, up to a constant, by
1
— AGy = 4n [_83 + Z (5%] , (2.1)
keZ3

where §, is the Dirac measure at « € R?. By convention, we choose Gy such that

Gydx = 0. (2.2)
Qe

With this convention, Gy changes sign, but is bounded from below. With

1
Co := 1 sup |Ge(z) — —|, (2.3)
IEQg ‘$|
we have
Co
Go(z) = — Vo € Qq,

where Cp is a positive constant that is independent of ¢ (see [9, Lemma A1, Appendix A]).



The Fourier series of GGy writes

1 e TP 3
Gi(x) = — 2 ——5—, for every zeR". (2.4)
peimoy 7
The free Dirac operator is defined by
3
D¢ = —ic Z o 0r + 3, (2.5)
r=1

1
with 4 x 4 complex matrices a1, a9, a3 and (3, whose standard forms are 5 = < 02 C])l ),
-1

a, = ((S UOT) where 19 is the 2 x 2 identity matrix and the o,’s, for r € {1,2,3}, are the
T

well-known 2 x 2 Pauli matrices o1 = (0 1) , 09 = (0 _Z> and o3 = (1 0 ) .Herec >0
10 i 0 0 —1

denotes the speed of light.

The operator D¢ acts on 4—spinors; that is, on functions from R? to C*. It is self-adjoint
on L%(R3;C*), with domain H'(R3;C*) and form-domain H'Y?(R3;C*) (denoted by L? H'
and H'Y? in the following, when there is no ambiguity). Its spectrum is o(D°) = (=0, —c?] U
[+c2, +00). Following the notation in [10, 21|, we denote by A* and A~ = 1,2 — A" the two
orthogonal projectors on L?(R3; C*) corresponding to the positive and negative eigenspaces of
D¢, respectively; that is

DAt = ATDC = ATVt — 2A =Vt — 2AAT,

DA~ =A"D = —A"Vet —2A = -/t —2AAN.
According to the Floquet theory [22], the underlying Hilbert space L?(R3;C%) is unitarily
equivalent to L?(Q}) ® L*(Qg; C1), where Qf = (-7, %)3 is the reciprocal cell of the lattice,

whose volume is |QF| = (27)3/¢3. (In the Physics literature Q} is known as the first Brillouin
zone.) The Floquet unitary transform 4 : L?(R3;CY) — L?(Q}) ® L*(Qs; C*) is given by

>
i g f (Ho)ede, (2.6)
QF
with the shorthand f,, standing for ﬁ Jq, and

(L) := D e " Eg(- + k) (2.7)

keZ3
for every ¢ € QF and ¢ in L?*(R3;C*). For every £ € Qj, the function (U¢)¢ belongs to the
space
LAQiCY) i= {6 € LR CY) | 779 is Q-periodic},
which will simply be denoted by Lg in the sequel. We write L?(R3;C*) = fQ®* Lg d§ =~
L

L2(Q}) ® L*(Qu; CY) to refer to this direct integral decomposition of L? w.r.t. the Floquet
transform 4. Functions v in Lg are called Bloch waves or Q,-quasi-periodic functions with
quasi-momentum & € Q7. They satisfy

V(- + Lk) = e * (1), for every k € Z3.



In particular, when £ = 0, ¢ is Qg-periodic, and we denote

Lger(Qf) = L%(QK)
The free Dirac operator can be rewritten accordingly as

@D
D¢ = . Dy dg, (2.8)
Qr
where the D¢’s are self-adjoint operators on Lg(Qg;C4) with domains Hél(Qg; C*) and form-
domains H, 51/ 2 (Qg; C*) respectively. Note that

(Dg)2 =t — AA,

where —A = JESD* —Agdg.
)
For every £ € @}, the positive spectrum of Dg is composed of a non-decreasing sequence of

real eigenvalues (d;(ﬁ)) j=1 counted with multiplicity. Each function £ — d:j (£) is continuous
and Qj-periodic, and one has d;(QZ‘) = [de«(j),d}(j)] with

N — min dT N +
de(3) 1= min dZ,(6) and () = masd(©). (2.9)

Note that

dex(j) = 2, lim di(j) = +oo.

Jj—+0

In the same manner, the negative spectrum of Dg is composed of the non-increasing sequence
of real eigenvalues d_;(£) = —de(f ). Finally, one has

a(D) = ] o(D§) = | [=dE(5), —de(i)] U [des (), 43 ()] = (=00, =] U [+, +00).
€eQy =1
] (2.10)

2.1 Functional framework

As in [9], we now introduce various functional spaces for linear operators on L2(Qg;C*)
and for operators on L?(R3;C*) that commute with periodic translations. Let B(E) be
the set of bounded operators on a Banach space E to itself. We use the shorthand B(Lg)

for B(Lg(Qg; (C4)). The space of bounded operators on f(% Lg d¢ which commute with the
translations of ¢Z3 is denoted by Y. It is isomorphic to L® (Q;‘;B(Lg)), and, for every
h = sze hed§ e,

[2lly = ess sup [ hellpr2) = IRl B2 @sict)
£eQy

(see |22, Theorem XIII.83]). In this paper, we also use another norm on Y which is defined by

Ihlly = sup [y, (2.11)
€eQy
with
" HhE’HB(Lg,) e 519
e = 8 fo o Temere 1
Ko<t © 0 f



where |kl := max{|k1|; |ka|;|k3|}. This convolution-type norm plays a critical role in this
paper (see for example the proof of Lemma 4.6). Let

d¢’ d¢
= ez = ] T 2.13
g 686%% ]é;k € —¢'J? ]é;; £]2 (2.13)

It is easy to see that for every he Y,
[hlly < Cylihlly, (2.14)

since |€]72 lies in L (R3). In addition, we shall use the rescaled c-dependent norms |hly. :=
loc p c

c[hly and |hlly, := ¢|n]y.
For s € [1,00) and & € Q}, we now define

&,(€) i= {he € BLE) | Trpz(|hel*) < o0}

endowed with the norm y
Ihels.e = (Trzz(ihel)) -

We denote by G4 (&) the subspace of compact operators in B(Lg), endowed with the operator
norm || - ”B(Lg)- Analogously, for t € [1, +00], we define

@
Ssii=+h 2][ he d§
Q7

endowed with the usual norm of L® (Q;‘; G] 3(5)) when t = 400 and with the following norm

when ¢t < +00:
1/t
me=<fj%%&ﬂ§ -
Q;

X7(¢) = {he € BUY) | (1= A he(1 - Ag) T e &1(9)}

he € 64(€) ae. € Q7 |hels, e € Lt(Q?)}

We also define

endowed with the norm

el x=e) = H(l =8¢ he(1 - A5)T/4‘

61()

and

@
X7 = h:f he d¢
Qf

endowed with the norm

he € G1(€) ae. €€ QF, (1—A)*h(1—A) e GM}

Iallx; = 11 = A)*h(1 = 2) s, .

The space X := X{ plays an important role in the definition of periodic density matrices (see
Definition 2.1 below). For convenience, we use the notation X (¢) for X!(¢). On X, we will
also use the norm (dependent on c)

Ilx. == |ID1>1D° s, -



It is easy to see that

clylx < Ivlx. < ¢vlx

since for ¢ > 1,
c(1—A)2 <D< (1—A)2 (2.15)

The norm on the intersection of any two functional spaces A and B will be defined by
IMan == max{|v|a;|vlB}, VyeAnB.

We are now in the position to set the DF model for crystals.

2.2 The periodic DF model
We start with the following.

Definition 2.1 (Periodic one-particle density matrices [9]). We denote by T the set of Q-
periodic one-particle density matrices

Di={yeXnY|y* =1, 0<’7<1L2(R3)}-

We are particularly interested in the following subsets

]2* Trpz(ve) d€ = q}

ry:= {’yeF

and

0< ][ Trpz(ve) d§ < Q}7
Q* 3

L

ng = {76F

for any g € [0, +00). When ¢ is an integer, I'; (resp. I'<,) is the set of all periodic DF states
of a system of exactly ¢ (resp. at most ¢) electrons per unit cell. The density of v € &1 is
defined as follows

Pre () 1= Tra[ve(z, )] and py () = ]é* Pre (2)dE, (2.16)

for every = € R3, where the notation Try stands for the usual trace of 4 x 4 matrices.
For v € I'<q, the periodic DF energy is defined by

£0)i= f TrplDered e - = [ Gy @)de+ G ([ o @Guta — oy ) dady
Q¥ Qe QexQq

-5 e [ tubeeone W€~ € -y dody. (27

Q¥ xQ¥ QexQy

In the above definition of the energy, the so-called fine structure constant « is a dimensionless
positive constant. Throughout the paper, we make the abuse of notation Tr L2 [Dg’yg] for the
quantity TrL%[|D§\1/27§|Dg|1/2sign(D§)].

The potential W;° that enters the definition of the last term, the so-called “exchange term”,
is defined on R? x R3 by

il kn 4 1 on
o0 _ € _ T - i(FPEe)a 2.1
7 PEL




It is Qj-periodic w.r.t. 1 and quasi-periodic with quasi-momentum n w.r.t. z.
For every v € I'<4, we now define the mean-field periodic Dirac operator

®
£
where
V’y,g = Py * Gg — W,y,g (2.19)
with
py * Go(x) = o Ge(z —y) py(y) dy = Trp2[Ge(z — ) 7] (2.20)
4
and, for every ¢ in Lg,
Wogtele) = f de! | WEE — &0 =)o) vew) o (221)
¢ 4

In (2.20) we keep the notation - = - for the convolution of periodic functions on Qy, and we
define the trace per unit cell as follows

Toobl = f Tl dc

4

where the ™ reminds us that 7 is not trace-class on L?(IR?).
Then, the periodic DF functional may be rewritten as follows

~ o~
E() = Trpa[DEn] — ST pa[V3], (2.22)

with V, = fc,% V,ed&. In the standard DF theory, the system of units is chosen such that
m = ¢ = h = 1, where m is the mass of the electron, ¢ the speed of light and & the Planck
constant, and z in (2.17) should be replaced by « z. Consequently, with this choice, the fine
structure constant a ~ %7

In this paper, we rather consider the non-relativistic regime and the weak electron-electron
interaction regime when ¢ and z are kept fixed. The non-relativistic regime corresponds to the
case ¢ » 1, whereas the weak coupling regime means o « 1. In both cases, we assume in the
following, without loss of generality, that c > 1 and 0 < a < 1.

2.3 Preliminary estimates

In the two following lemmas, we recall some useful results proved in [9] that we adapt to the
new norm .

Lemma 2.2 (Some Hardy-type inequalities |9, Lemmas 4.1, 4.5 and 4.7]). Let y € X nY
with v* = ~. There exist positive constants Cq := Cq(f) = 1, Cw := Cw(¥) = 1, Cgg =
Cep(l) = 1' and Clp = Clp({) that only depend on ¢ and such that for any & € QF and
¢§ € H£17

Cw

HW%E”B(Lg) < CW H'YHme(g) < ? ||/7||Xcmyc(£)7 (2.23)

"Lemma 4.7 in [9] involves other constants Cr and Cg. Since Cy < Gg, Cu can be replaced by Cg in
the bounds without loss of generality. Additionally, since Crr < Cf thanks to Egs. (C5) and (C7) in [9], we
may replace Crgr by Cgp everywhere. For the sake of simplicity of notation, we next set Cpg := Crg.



C
IGeelss < Co (1= Ae) e 15 < = [ IDele (2:24)

Ceg
VAily < Ceellvlxay < — IYlx.~ye, (2.25)

CgE CgE
Villy < —EE _lnlxny < —EE . 2.26
V4 lly (1_%(2y)H7HX’37 03 0y)c 1Y) Xy (2.26)
Vo (1= A2y < Cre |v]ey,ny (2.27)

and

EE H’YHel,mYWéH%g < (v, Vw,gwg)Lg : (2.28)

Proof. Most estimates can be found in [9, Lemmas 4.5 and 4.7]. The estimate (2.23) is slightly
different from its analog in [9] because of the change of the functional space () instead of V).
As in [9], we introduce

4 1 1@, .
Whna) = 5 3] (¥

|p|m<2 ’7 - 77‘
peZ?

(see also Eq. (4.1) below). According to [9, Egs. (B.18) and (B.19)|, we know that, for any
£eQy,

f ae’ / W€ — &, — y)yer (e y)be(y) dy
QF Qe

2
L

3 47TH¢§HL§ ][ H’YS/HB(L?) ¢ < 1087r 108 I e
< veleg 8¢ < ALY eirg
03 pezs QI & =& ¢

[plo<1

since |ver| (1) = [7er 2mp s 2, p2me ) for every p € Z3. Repeating the proof of [9, Eq. (4.8)],

that is given in |9, Appendix B] the estimate (2.23) follows. Then, (2.26) is a slight modifica-
tion of (2.25) where we have replaced the estimates on the exchange term W, by (2.23). O

Let now
@

P;i = ][ P,;fé d¢  with P,;f5 = 1r. (DS )

*

denote the projection onto the positive and negative spectrum of D, respectively. Note that
.. +
by deﬁmtlon. Poe = 1. (Dg — 2Go).
We now introduce 1
k(a,c) == (Cgz+ Crgaqh), (2.29)
c

with C¢ and Cgp being given by Lemma 2.2 and ¢ = max{q; 1}.
Then, we have the following.



Lemma 2.3. [9, Lemma 4.10, Lemma 4.11 and Eq. (5.16)] Let v € T'<q and k(a,c) < 1.
Then,

(1 — w0, )PP < DS < (1+ m(a, €)) D9, (2.30)
in the sense of operators. Consequently,
(1 - k(e 0) D < DS| < (1 + k() |DY. (2.31)
Moreover,
1/2
1+ ,
H|Dc‘1/2p$’DC|—1/2HY < ( r(a C))1/2 (2.32)
(1 — k(a, c))
and
infa(\Dﬂ) > *Mo(a, c) > 02(1 — k(a,c)), (2.33)
where .
Mo(a,¢) := 1 — ¢ ' max {C’Gz +Chpaqt; 702 + CEgE aq+} , (2.34)

with Cy being defined by Eq. (2.3) and Cgg and C%p in Lemma 2.2.

In addition, we obtain new estimates on the positive eigenvalues of the family of operators
Df,,g for any v € I'¢, that are uniform in ¢, o, v and § € Q7.

Lemma 2.4 (Properties of the positive eigenvalues of Df,,g)' Assume 0 < a < 1,c>=1 and
k(a,c) < % Let yeT'<,. Forn =1, we denote by XS(€) the n-th positive eigenvalue (counted
with multiplicity) of the mean-field operator Di ¢ Then, there exist positive constants Ap(c, c)

and Ay (a, ¢) independent of v and € € QF and a positive constant ¥, that is independent of
v, &, a and c such that

0 < Ap(a,c) S A(E) < Apla,0) <P+ 8, YEeQi, Vn =1, (2.35)

with Ap(a,c) = ¢(1 = k(a,c)) = § and Ay(a,c) — 400 when n — +o. The interval
[An(a,c), An(a, c)] is independent of v in I'<y. In particular, for any n € N*, there exists a
positive integer N, with MM, = n that is independent of v, £, a and ¢ such that the operators

Dy ¢ have at most Ny, positive eigenvalues in (0, An(a,c)].

The proof of Lemma 2.4 is postponed until Apppendix A. We provide in this proof explicit
values for the constants A, (o, ¢) and A, (a, ¢) appearing in (2.35) (see Eqs. (A.1) and (A.2)).
In addition, ¥,, and 0,, are given by Egs. (A.5) and (A.9).

We now define the positive constant

K= (1+3%) \/2 <1+4(C’Gz+CEEq+)2>, (2.36)

with X, being defined by Egs. (2.35) and (A.5). Here we have used the standard notation
[¢] := min{m € N | m > ¢} for any q € R

Then, we have the following a priori estimates on the H' norms of normalized eigenfunc-
tions of the Df%’s.

Lemma 2.5. We assume 0 < a <1, ¢ =1 and k(a,c) < % Let £ € Q), yeT'<q and ¢ be a
normalized eigenfunction of the operator nyé with eigenvalue A\(§) € (O, A+ E[q]]. Then,

[¥eli @ < Ko

Furthermore, if v' € T'<, satisfies 0 < ' < 1(0,c2+2m](D3)7 then

IV x < Kqq. (2.37)

10



Proof. As DS b = M(§)¢e, we have
[Devel 2 = [(ME) + 2Ge — Vi) e -
According to the Hardy inequalities (2.24) and (2.27) in Lemma 2.2 and since |[A(§)| < 42,
e |2
[Devel Lz = e lvelliz + IVevels
< (4288 + 57 ngHLQ
+2(Cez+aCprq’ )(C + 3 ) H 1—A) 1/21/’EHL2”¢€HL2
+ C2Ii(a, 6)2 H(l — Ag)l/%’EHLg’

where we used the definition (2.29) of x(a, ¢) in the last inequality. As |¢| 2= 1,¢>1, and

k(ayc) < 5 and by using the Cauchy—Schwarz and the Young’s inequalities, we obtain
[Vewel s < 259 + 3 Zh + ol - )P 1o
2(Caz +aCppg*) (1 + LIS — ) e 12
S22 + Z]?q] + i J(1- AE)I/%/’&HL?
4(Caz + aCppqt)* (1 + % ) *” — A¢) 1/271}5‘@2
<5+ 2%+ 5 +4(Caz + Cppa P(1+ 5)° + 5 [Vevel e,
since a < 1. Thus, with the definition (2.36) of K,
el ni@o < Ko ;

For the second estimate, we express 7/ as

Ve = ' wi(§) [i(€)) (i (6)]

where 0 < p;(€) < 1, 7% fQ* 1i(§) d€ < g and 9;(€) is a normalized eigenfunction of D
4 )
with eigenvalue \;(€) € (0,2 + Yigl- Thus, by interpolation,

+o0 +o
Pix =3, ]2 NZGIEGIAEDY ]2 OO WOl de < Ko
This concludes the proof. ]

2.4 The periodic DF ground state

We recall that ®
. ][ PE d¢ with PX :=1lg,(D5,)

*

denote the projection onto the positive and negative spectrum of DY, respectively. We define
Ly ={vely[y=PiaPl} Toi={yelg|r=PyP}
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and the ground state energy

I, ;= inf &(v). (2.38)
VEF;

Existence of a ground state has been proved in [9] under the following assumption.

Assumption 2.6. Let q, z € RT. We recall that k(a,c) := ¢ (Cgz + Crpaq®) with Cg
and Cgg being given by Lemma 2.2. We assume that o and ¢ are chosen in such a way that

1. n(a,c) <1-— %CEEQ+;

2. %\/max{(l —k(a,c) — %C’EEq+)*1c*2A[q](a, ) q; 1} qt < (1 — ﬁ(a,c))l/Q)\o(oz, 6)1/2
where Xo(a,¢) = 1—k(a, ¢) > 0 is given by Lemma 2.3, and Apg)(«, ¢) is defined by Eq. (2.35)
in Lemma 2.4.

In the statement of Assumption 2.6, Condition 1 is necessary to ensure that minimizers
of the corresponding relaxed minimization problem Je, on T'Z, (see (3.1) below) are not 0.
Condition 2 is a rather technical assumption that arises from the retraction method that is
used in [9] to prove the existence of minimizers of I,.

Theorem 2.7 (Existence of minimizers |9, Theorem 2.6|). Under Assumption 2.6, the min-
imization problem I, admits a minimizer vy € F;r. Furthermore, v, solves the following
nonlinear self-consistent equation:

Y = ]1[0,11) (D,CY*) +6 (239)

where 0 < § < H{V}(Dg*) and v is the Lagrange multiplier due to the charge constraint
szk TrLg (ve) d€ = q satisfying v € [*Xo(c, c); Mg (e, o).

2.5 Main result

We now introduce further assumptions on « and ¢ that imply that « is small or ¢ is large.

Assumption 2.8. Let z, g € RT be fized. We assume that 0 < o < 1 and ¢ = 1 are chosen
such that

1. Assumption 2.6 is satisfied ;
2. c=2 (CGZ + CEE(]+),'

Lo < % where Cei(q, 2) is a large enough positive constant that is independent of o

and ¢ and that is given explicitly in the statement of Lemma 4.6 below.

Remark 2.9. Assumption 2.6 is not empty. According to [9, Remark 2.8/, forc =1, a = ﬁ
and ¢ ~ 1000, Assumption 2.6 is satisfied for ¢ = z < 17. It is necessary to guarantee the
existence of minimizers of I, that satisfy (2.39). Condition 2 in Assumption 2.8 is used to
guarantee that 1 —k(a, ¢) stays away from 0 uniformly; actually, it ensures that 1 —k(«,c) = %
As we consider the case ¢ » 1, we can choose ¢ = 2 (Cgz+ Cpp q™) without loss of generality.
Note that In the non-relativistic limit ¢ — +00, we have k(a,c) — 0. In the same manner, in

the weak coupling limit o — 07, we have k(«a,c) — Coz.

The purpose of this paper is to show that, under above conditions on « and ¢, we have the
following.

12



Theorem 2.10 (Properties of the last shell). Under Assumption 2.8, for any minimizer v, of
(2.38), the density matriz § given in the Euler—Lagrange equation (2.39) satisfies either § = 0
or 6 = 14,)(D5,). As a result, v« is a projector.

Remark 2.11. We point out the fact that this is the first time that an explicit upper bound on
& is given which ensures that any DF minimizer is a projector. (In the DF model for atoms
and molecules [20], the same result is not available.)

As in the HF model, the molecular and the crystal cases rely on totally different arguments:
for atoms and molecules, the positive definiteness of the nonlinear term is used, whereas for
crystals, the proof is based on a careful analysis of the singularity w.r.t. £ € Qf of the nonlinear
term which provides a quantitative estimate that is independent of a and c. This estimate gives

the upper bound Cei(q, z).

Remark 2.12. When « = 0, the nonlinear term V., disappears. In the non-relativistic case,
the proof that any minimizer is a projector relies on the absolute continuity of the spectrum
of the linear periodic operator —%A — 2Gy: by [15, Theorem 1.9, Chapter 7.1] Go(=A)~1 is
compact. On the contrary, the operator Gy (D)~! is not compact, and we do not know whether
the spectrum of the periodic Dirac—Coulomb operator D¢ — z Gy is absolutely continuous.

The proof of Theorem 2.10 adapts the ideas of Ghimenti and Lewin [12] for the periodic
HF model. Their proof is based on the local convexity and the second-order expansion of
the periodic HF functional on the constraint set. In the DF case, we are convinced that
the constraint set F; is not convex and we are not able to prove that it is closed for the
weak-* topology. Both observations lead to the failure of the direct study of the second-order
expansion of the periodic DF model on I';".

Following our previous work [9], instead of studying directly the DF model on I'ff, we

consider a penalized DF model ; namely, () — epTrys [v] for ep € RT, on I'Z,. Then, using
a retraction technique developed by Séré [23] (see also Catto-Meng-Paturel-Séré [9] for the
adaptation to the periodic setting), we construct a retraction mapping 6 onto an open subset
Ur < I‘zq, such that any minimizer of I, is situated in Ug, and such that we have () € qu
for any v € Ug. As shown in [9, Lemma 3.2 and Theorem 3.3|, we have

Iy—epq= vgll‘fgq (5(7) —epTrpe [’Y]) = yeriﬁ]{qu <5(’Y) —epTrpe [’Y])
= inf (£(6) = epTrra[o(]) -

Therefore, we investigate in this paper the second-order expansion of the new DF functional
v E0(7)) — epTrpo [0(7)] on Ugr. This latter property can be obtained by mimicking the
proof of Meng [20].

With these results in hand, Theorem 2.10 is obtained by following the lines of the proof in
[12].

Organisation of this paper: In Section 3, we first study the penalized DF model on I’ zlp
the retraction 6 and the second-order expansion for the new DF functional. In Section 4, we
adapt the ideas of [12] to prove our main result Theorem 2.10. In Section 5, we adapt the
proof of the existence of the retraction (Lemma 3.2) to our new functional framework. In
Section 6, we give the details about the proof of the second-order expansion for the new DF
functional in our new functional space ).. Finally, Appendix A is devoted to the proof of
Lemma 2.4.
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3 New DF functional and its second-order expansion

It is shown in [9] that, under Assumption 2.6, existence of minimizers for problem I, is equiv-
alent to the following penalized minimization problem

J<g:= inf (E(y) - epTry» [7]) + epq, (3.1)

vel 2(1
for some real number ep large enough. More precisely, the following holds.

Theorem 3.1 (Minimizers of the penalized problem [9, Theorem 3.3]). We assume that As-
sumption 2.6 holds. Then there is a positive constant €y small enough independent of o, ¢ such

that for ep := Apg(a, ¢) + €0 with Ajg)(a,c) given in Lemma 2.4, the penalized minimization
problem J<, admits a minimizer 7y € F;’q with szk TrLg (Vs,e) dE = q. As a result, Iy = J<q4.
Moreover, any minimizer vy of J<q s a minimizer of 1, and vice versa.

In addition, v« solves the following nonlinear self-consistent equation:

Ve = Lo (D5,) +6 (3.2)

where 0 < 0 < 1,)(D5,) and v € [2Xo(e, ¢), Apgy(a, ¢)] is the Lagrange multiplier due to the
charge constraint szk TrLg (Vs,6) d€ < q.

The proof of existence of minimizers of (3.1) relies on the construction of a regular retrac-
tion 6 defined on an open subset Upr of I'<, such that

0 : URHUROF;FQ, and G(URﬁrzq) =Z/{le“§q. (3.3)
For v € 'y, the retraction is defined by

O(v) := lim T"(v), (3.4)

with
T(y) = PfyPf, T(y) =T(T"7'(7)), T°(7) =1
According to the Floquet decomposition, we have
® ©
1) = f Te)ds = f PlewePds
oy Q;

With 6 in hand, if a minimizer 7, of J<, is in U, the penalized minimization problem J¢,
reduces to a simpler one, where the nonlinear constraint Pj fij = « is incorporated in the
new functional; namely,

Jeq = min E(7) + epg, (3.5)
vEUR

where the new DF functional E(-) is defined by
E(7) = £(0()) — epTr2[0(7)], for any v € U. (3.6)

Note that () € Ur NI’ by construction (see Eq.(3.3)).The following lemma guarantees the
existence of the retraction 6 in our setting where the norm Y in [9, Proposition 5.3] is replaced
by V..
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Lemma 3.2. Assume r(a,c) < 1 and define A(o,c) := £Cpp(1 — Ii(Oé,C))_l. Given 1 <
R <5 let M (v, c) := max <1+A(3’C) a, L ), and let

( c)’ » 1-2A(a,c)R

+ MET6) sl < ). (3)

1
U e {7 e Tay | tmas {102, :ll) +

Then, Ug is a open subset in I'<q, T maps continuously Ug into Ur, and, for any v € Ug, the

sequence (T”(y))n>0 converges to a limit 0(y) € TL,. Moreover, for all vy € U,

[T () = T () | xemye < Lo, o) [T () = T ()| xerye (3.8)

and

L™(a,¢)

16Cy) =T"Nxery. < 7= (o, 0) IT(Y) = Ylxernye: (3.9)

with 0 < Lo, ¢) := 2A(a,c)R < 1.

This result is collected in |9, Proposition 5.4] and can be proved by adapting [9, Proposition
5.8] and [23, Proposition 2.1] to our new functional space ). For the reader’s convenience, the
proof of Lemma 3.2 in this context is provided in Section 5.

The main ingredient of the proof of Theorem 2.10 is the following.

Theorem 3.3 (Second-order expansion for the new DF energy). Let k(a,c) <1 and A(a,c)

be given as in Lemma 3.2. Let 1 < R < 2A(a o be fized, and let L(a,c) :== 2A(a, )R < 1.

Given any v € Ug N qu and he X n'Y such that lD;th,;r = h, and given any t € R such that
v+ th e Ur, we have

~ 12~
E(y+th) = E(y) + t Trp2[(DS — ep)h] + %TI'LQ [Vih] + t2 Err(t v, h) (3.10)

where |Err(t,v,h)| < (2 + %) Nysn(h) with

Crg*
N (h) o= £, Ihleyoloe
g 2 (1 _ /1(0470)) )\0(0& C) Q Xovie T 61(5
2 2 1 4
" (qag + R + a) 2 2 (3.1
c c ¢/ (1-k(a,e)) Ao(a,c)%?(1 = L(e, ¢))
2
1][ ” Pl x~yery
< | =1 hlxayege IDEY d¢ +*S“P b 7[ Te—ep ©
¢ Jor X y(ﬁ)“f 13 H61(£ geQ* |I!f|EZ3 QF+ 27rk ’5_51‘2

The proof of Theorem 3.3 is postponed until Section 6.
Remark 3.4. For g € R", it is not difficult to see that
Ny(h) < (R + q)|hlx~y

by using v € Ur as in [20]. As a result, Err(t,~,h) is uniformly bounded with respect to t if
v + th € Ug. However, in this paper, we can not simplify (3.11). This complicated formula
will be used in Lemma 4.6 to control the singular behavior with respect to the & variable.

We now embark on the proof of Theorem 2.10.
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4 Properties of the last shell

In this section, we are going to mimic the proof in [12] to prove Theorem 2.10 with the help
of Theorem 3.3. Throughout the section, we assume that 7, is a minimizer of J¢, with J,
being given by (3.1).

4.1 Continuity of the eigenfunctions of D . w.r.t. §

We recall that W;° is defined by (2.18). We may separate the singularities of W° w.r.t.
n € 2Q; and x € 2Q as follows

Wéoo(nvx) = W;é,e(ml') + W?Q,f(nu .T), (41)
with 4 1
7 i(27P ).
Whna) - 2 5 L
|ploo =2 27er - 77‘
peZ3
and 4 1
7 (272 ).
W;.OQI(T/,.T) = 673 Z 7261( l )CE
|ploo<2 ‘QLZP - 77’
peZ3

Here we recall that |p|o := max{|p1]; |p2|; |ps|}-
It is convenient to study D5, on the fixed Hilbert space L2..(Q¢). Thus we introduce the
unitary operator defined in each Bloch fiber by

Uf . LIQ)er(Qf) - Lg(@f); U — e’f‘xu(-).

When A¢ is an operator on Lg(QZ), we shall use the notation ﬁg = UE*AgUg for the unitarily
equivalent operator on L2,.(Q,). For the operator W,, ¢ defined by (2.21), we get the operator

per
~

W, ¢ defined by its kernel

~

W’Y* "3 (.T, y) = [Uﬁ* W’Y* 7£U£] (x7 y)

= ][Q* [Wg)u(ﬁ —&x—y)+ wa(f ¢ x— y)]fNy*é/(a}, y) d¢’, (4.2)

4

where, for every = and € € R?, Wg)”(n,w) = ei”':”W;O”(n,m), T/TN/EO”(n,x) = em'fo”(n,a:)

and ’?*,5’(x7 y) = e_igl.xfy*,ﬁ' ($7 y)€i§’~y'

Lemma 4.1 (Holder continuity of W) Let 0 < a < 1. The family (WN/W*@)&Q; is bounded
and a-Hélder continuous in B(L2..(Qq)) w.r.t. £ € Qf. Moreover, for every &1 and & in Q,

”W%h& - W’Y*,§2HB(L12)CY(Q5)) < Ca ’51 - §2|aa
with Cg, being a positive constant which is independent of &1 and &s.
Proof. The boundedness of I/IN/’W «,¢ follows from (2.23). Indeed,

©85 Sup HWV*éHB(Lger(Qe)) = esgs S:}P I\UEWw*gUsHB(LgH(QZ)) = [Wayly < Clvalxny-
&y

£eQy

Tt is claimed in [8, Page 745] and [12, Lemma 1] that the function f(n,z) := W°(n,2) — e " "Ge(x) —
dm eTINT

E is harmonic which is not true.
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Using (4.1) and (4.2), for any u,v € L2, (Qy), we have

<u7 (W’V*7§1 - W’Y*’£2) >L2

per

~f ] (P —€o-0) - W - €0 - 0) Fuelow) uly) v(e) dudyde’

QF QuxQe
] (Poue - €o ) - Wh (e~ €0 - 1) Buelm)uly)o(o)ddyde.
QF QexQq

Since W§27e(n, z) = ei”’ng)Q’e(n, z), we have
Wg)u("h, z) — Wgz,é(n% z)

1 .
= / 7/(771 — 772) . Z67»(7']2+t(771_772))’zW2027£(n2 + t(171 _ ,’72)’2) dt
0

1 .
+ /0 61(772+t(771—772))'zvnwgo27£ (m2 + t(n —m2), 2) - (1 — m2) dt,

by the Taylor formula. Therefore, using (4.1), we have, for any u,v € Lger(Qg),

(U7 (W%hﬁl - WW*{Q) )L2

per

< Cles &l s, //Q Q]é W2 (6 — € — 9)| P (2 )] fuly)|[o(a) | e dedy

+ &1 — &2 (][ sup [|[VeW3 Fuerl22(0ixqp) df) lullzz,, o lvllz2,. o)

QF €e2QF
47 1 1
+ = E ][dg’ - (V.6 Uzmps, Uarpv)
3 2 2 ) P pY)r2
O d le-a- g -e- v
[plon<2%¢

It is shown in |9, Corollary B.2 and Lemma B.3| that

sup |[[W: u!l/?(&?-)ID§!’1/2HB(L@<C, sup |VeWZy ol (g < C-
56262Z e2QZ

Then as |v|y < 1, and arguing as for |9, Eq. (B.9)] for the first term on the right-hand side,
we get, from (2.23),

’((W"/*afl - WW*{Q)U’ U) 12

per

1/2
+C & — & (][ // T (5 9) 2 d§/d$dy> lulzz,, @olvllzz.,. @0
QF JQexQq

1 1

—a-2f jr-e-2f

< Olé = &l Inlxlulez,@olvlez., @0

+C| D]

peZ3
|pleo<2 ¢

¢’ | lullzz,,@plvlzz,. @0

Observe that

Lo Bestwricady = f T q)Belde < f Ty goBeel e =
[ enie [

£
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since 0 < 74 < 1. Then

~

HW’Y*,& - Wv*fz

S| e’

<Cla-&+C )] / -
PeZd o & =& -
|ploo<2¢

The Hoélder continuity follows since the function & — fQ* e is locally a-Holder continuous

l&— 5/
w.r.t. € for any 0 < a < 1. O

We also need the following, which adapts [12 Lemma 4| to the periodic Dirac operator.
We recall that for any operator A¢, we have Ag = U AcUg with Ugu(z) = e 2y(z) for any
x € R3 and u Qg-periodic.

Lemma 4.2. Let 0 < s(ar,c) < 1. Consider an open subset ) of Q. Let € > 0 and let K be

a compact set in C such that infeeq d<K; O'(D,CY g) N ]R+) > €. Then,

1. DC(Df/* ¢ — )71 is bounded on L2 (Qq), uniformly w.r.t. £ € Q and z € K;

2. The map & — DC(Df/ P — 2)71 ds Holder continuous w.r.t. & € Q with values in
B(L per(Q(g)), uniformly in z € K.

Proof. As D¢ = D¢ + 023:1 a,&, thanks to (2.5) and (2.8), we have, for every £ € 2 < QF
and z € K,

[D(D5, 6 — 2) | g Lger(Qm
||D£ ,Y*’g 1||B(L29r(QZ)) +c |||£|(D’CY*,§ lHB Lger(Qe))
C
<[ DEDS, ¢ — =) g2 2Q0) T ¢

Thanks to (2.30) in Lemma 2.3, we have, for all { € Q and z € K,
I loszian < Tagargy 1Piwe e =) s
%hf B(L Q[)) 1 — k(o) Y, E Ny, € T B(LE(Qr))
1 2|
< + :
1—k(a,c) €1 —k(a,0))

| DE(

which implies

HDC( N,CY*’g 1”8 (120.(Q0) S < C, uniformly wrt. £€Q, z€ K.

The Holder continuity follows from the fact that

c c —1 c —1
DY(Df, e =2 = (DS e —2) ]
= DHDS, = 2) D ¢~ DS, 1D =)

c p—
'7*)5 ’7*75

3 ~ ~—
= [P — 2] e Y o (6 — )~ Wope 4 Wy |(DS, 0 — )7

Here D(D5,  — z)~!and (D¢ el T z)~! are bounded on L2_.(Q), and £ — N%k ¢ is Holder
continuous as shown in Lemma 4.1. O
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We denote by ()\n(f ))n21 the positive eigenvalues of ﬁg* £ counted with multiplicity, which
are the same ones as the eigenvalues of the D .’s since Uy is unitary. We may assume that
the A\, (§)’s are counted in nondecreasing order: ’/\1(§ ) < A2(é) < ---.

Arguing as in [12, Lemmas 5 and 6| and using Cauchy’s formula [15], we immediately
obtain the following lemma.

Lemma 4.3. Let 0 < k(a,¢) < 1. For any n € N*, the positive eigenvalues ()\n(ﬁ))n of D5, ¢
are Holder continuous with respect to £ € Q. Moreover, let ) be an open subset of Q) and
I = (a,b) a bounded interval of R such that U(ﬁfy*,g) n{a,b} = & for all £ € Q. Then, the
map N

03¢ DUY(DS, () € B(Lie, (Qr))

18 Hélder continuous. In particular, there exists ]y € N independent of £ € Q) and an orthonor-
mal basis (u1(£), -+ ,un(§)) of the range of 11(D5_ ) such that 25§ — uy(§) € H . (Qy) is
Hélder continuous w.r.t. £ € Q for every ne {1,--- ,N}.

Indeed, as in [12]|, the existence of € > 0 and of the compact K in the statement of
Lemma 4.2 is ensured by the fact that the positive eigenvalues of D7, ¢ 80 to infinity uniformly
with respect to £ € @} in virtue of Lemma 2.4.

4.2 The Fermi level is either empty or totally filled.

Recall that v, is a minimizer of J<, satisfying the Euler-Lagrange equation (2.39) with J¢4
being given by (3.1) (or, equivalently (3.5)).

We argue by contradiction and assume as in [12] that § # 0 and & # 1,,(D5, ), and that
the Lagrange multiplier v defined in Theorem 2.7 is an eigenvalue of DS (otherwise, ¢ = 0
for almost every £ € Q7). Then,

{eeQt 13> 1,00 = v} #0.

As in [12], we have the following lemma which is obtained without difficulty by replacing the
HF operator H., by the DF operator DS_ in the proof of [12, Lemma 7].

Lemma 4.4. Let 0 < (o, ¢) < 1. Assume that v > 0 is an eigenvalue of D5, such that § # 0
and § # 14,y(D5, ). Then, there exists a constant 0 < € < 1, a Borel set w < Q} with |w| # 0
and two continuous functions w 3 & — u(€) € HL (Q¢) and w 3 & — u'(¢) € H. .(Qy) such

that - -
u(©), /(&) e ker (DS, ¢~ v), (a0 = 1020 = 1
and, denoting V¢ := Ugu(€) and 4 := Ugu/ (&) in H}(Qq), we have
0 < de + ¢ |e) (e —#'[) (| < 1 (4.3)

on Lg(Qg) for all§ € w and allt, t' € [0,€), where |1) (| denotes the projector onto the vector
space spanned by the function .

Recall that V, ¢ is defined in (2.19); that is,
Vig =py*Ge— Wy

The desired contradiction is based on the positivity of the second-order term shown in The-
orem 3.3.
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Lemma 4.5. Let 0 < a <1 and c > 1. Assume that v is an eigenvalue of D5, given by (3.2),
that 6 # 0 and § # H{V}(Df/*), and let w, V¢ and 1,[)2 be as in Lemma 4.4. Then, there exists
R > 1 such that if o and ¢ satisfy

« 1
>2(Cez+C d — < =0 4.4
¢ (Cez+ Cggrq) an < IConR (4.4)
we have
Yy Ve + th € Ur,  provided |t| < min{ € / : 1}
max{|n|re; |7}

where the periodic density matriz h = fc% he d§ is defined by

he = (&) [ve) (el — ' (€) [wg) (we)

with n and n' € L®(w,R*Y) satisfying [ n= [ n and ¢|Q;_,"\w = w’\sz\w = 0.

Furthermore, for |t| < min{ , we also have

€ . 1
. / ’
max { ] poos [0’ oo }

o~ o?
5 Trp2[Vih] + — Err(t, v4, h) = 0. (4.5)
c
In above inequality, Err(t,v«, h) is defined in Theorem 3.3 and satisfies

€
Brr(t e, W] < (24 5) Nyysan(h):

Proof. In this proof, we denote by C various positive constants that are independent of o and

c. Let ¢y := min { £ ; 1} where € is defined in Lemma 4.4. Let
max { [ oo ; [/l oo }

R:=1+K?q+Cy +16 Cpgp(1l+ Cy) K ?q" (4.6)

with K, being defined in Lemma 2.5 and Cy in Eq. (2.14). Before going further, we shall
point out that (4.4) implies that

C C 1
K(a,c) < Gz + EEoéq<

\)

C
and
« CEE 1

2(1 —H(Oé,C))R 2’

since « < 1 and ¢ > 1. In particular, the assumptions of Lemma 2.5 are satisfied with

L(a,¢) = 2A(a,¢)R =

v =" = 74, and we have
Ivllx < Kqq. (4.7)

We first check that v, € Ur. Recall that Ug is defined by Eq. (3.7). Thanks to (4.7) and
using the Cauchy—Schwarz inequality in G2 2, we obtain

1 1 1/2 1/2 1/2 1/2
CIID s, < S Il el X < Il &, Ind 3 < Ky (4.8)

and d
|%y<rwwf L <oy
Q* 1€
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Thus, since T'(7«) = Vs,

1 M
- maX{H’Y*‘DCP/QH@,l ) H’Y*H)f} + 2 1T (v4) = Vel xone
1
== max{“’y*\pcyl/QH&’l ; ||’Y*Hy} <K;/2q +Cy < R.

This implies v« € Ug.
We now show that v, + th € Ug. For any t € [—to,to], 7« +th € T'<q and 0 < 74 + th <
Il(o ] (D%,) with v < ¢* + X([g]) thanks to Lemma 2.4. In particular, in virtue of Eq. (2.37)

in Lemma 2.5,
e + thHX Kqq.

By repeating the above estimate for 7., we obtain
1 1/2 1/2
Cls + D2 < KiPq and |+ thly < Cy.

Note that P (v« + th)Py, = v« + th from the definition of h. Applying Lemma 6.5 below
with g = v, and v = v, + th then leads to

1
S [T+ th) =3 — th] < 4Cp ] O;,]g 12l x v e DEM s, ) d€

<4Cppto L R e
< 8Cgg (1 —l—Cy)KS/QCj%

1

since Ao(a,¢) = 1 — k(a,c) = 5, and

1 o
2 1T (s + th) — v — thly, <4CpeCyto 3 |h[x~y < 8CErCy(1 + Cy) Kq —
since, according to Lemma 2.5 and because K, > 1, we have

] x~ye) < (1+Cy) [t R xay <201 + Cy)tomax {|n]z= ; [n'|re } K, < 2(1 + Cy)K,.

According to the definition of M («, ¢) in Lemma 3.2, it is easy to see that M («a,c) < 2. Thus,

M(a,c «
% |T (74 + th) — va — th] x.y. < 16 Cpp(l + Cy)*Kq" = (4.9)
We conclude that
1 M a, c
S ([ + D2, et thly )+ D k) < e,
< K}2q+ Cy +16 Cpp(l + Cy)* K" o <R (4.10)

Thus, v4« + th € Ug.
Next, from Lemma 3.2, the limit () exists for any v € Ur. Hence E(v,) and E(vys + th)
are well-defined. Then, from Eq. (3.5) and Theorem 3.1, we have, for any t € [—to, o],

E(7s + th) /ggg;E( 7) = E(yx).-

By definition of v, and h, we also have

]é Trp2[ (DS, ¢ — ep)he] d€ = 0.

£
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Finally, we deduce from Theorem 3.3 that

o~ a?
5 Trp2[Vih] + —5Err(t,v4,h) = 0
c

with |Err(t, v, h)| < (2 4+ %) Ny, +en(h). This ends the proof. O

Let B(£,\) denote the ball of radius A > 0 centered at & € R?. As |w| # 0, we may find
two points &1 and & in w such that |w N B¢, A | # 0 for j = 1,2. In particular, for A small

enough, we have w N B(&;,\) = B(&;, ). As in [12], we introduce the operator h* = szk h5 d¢
defined by

he = ma(€) Iwe) (el — mA(€) k) (we|

for every £ € Qf, where

1A 1,
wnB(£1,)) and 773\ _ wnB(&2,2) '
lw N B(&1, M) w N B(§2,A)]

As shown in the proof of [12, Lemma 9], for A small enough we have

=

~ 47
TI'LZ [VhAhA] < C — F (411)
On the other hand, we have the following.

Lemma 4.6. Let
Ceri(q, 2) == max {167TCEER;

48 Crp(4+ Siq) (|Qé\ "Ny (1QF Kq + Cy) + 213/2 % 157%(Cpp + 1)CEE> }

with the constants Xq) € R* and Ny € N* being given in Lemma 2.4, K, € RY being given
by (2.36), and R being given as in (4.6).

Then there erists a constant C' > 0 such that for any < < %, ¢c>2(Cgz+ Cgpq) and
any A small enough,

Ccri(Qa Z)

limsup |Err(t, v4, h*)| < (2 + %;) N, (B < C + 2

t—0
where Exr and N are defined by Egs. (3.10) and (3.11) respectively.

Proof. In this proof, C' denotes various positive constants that are independent of «, ¢, and A.
As Cui(q, z) = 161 CppR, we have

47 - 1
wi(q,2)  4CppR’

Thus Lemma 4.5 holds, and k(a,c) < 3 and L(a,¢) < 4. As a result, from Lemma 4.5, we

infer limsup; o |Err(t, 74, )| < (2 + %) Ny, (h?) for any A > 0. In addition, according to
Theorem 3.1 and Lemma 2.4, (2 + %5) < 4 + X[, Hence,

N
)

(4.12)

ole

limsup [Err(t, 74, hY)| < (2 + 60123) N, (BN < (4 + E[q])/\/’y*(h/\).
t—0

We then prove that the three terms appearing in N, (h)‘) satisfy respectively

1 C
- 722‘ Hh)\Hme(ﬁ) H’V*,€|D§‘1/2 HGl(E) 2K m (|Q£‘ 1K + C))) (4'13)

C
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]é I By el 46 < 121QF1 Mgy (IQF1 7Kg + Cy)A2 (4.14)

14

and

h /
sup sup ][ H”)(iﬁyf) de’ < 3m3A\ 71, (4.15)
fEQ* ‘]flezsl Q*+27rk ‘g — § ‘

for A small enough. Once the above estimates are established, using Eq. (4.12) to get
4 RZCgp < 1 and the hypothesis 2Cgpqc —1 <1, a tedious but easy calculation leads to

Ny (BY) < C + 48 Chg (ng| "0 (1QFI T Kq + Cy) +2'%2 x 157%(Cpp + 1)CEE> A2

since 2 <1— L(a,c) <1and 3 <1—k(a,¢) < Ag(a,¢) <1 independently of o and c. We
therefore focus on the proof of Egs. (4.13)- (4.15).

According to Theorem 3.1, 0 < v < 1(g,](D5,). As v < Ajy), we have Rank(ys¢) < 0
by Lemma 2.4. Thus,

q]

Ivxelle ) < Rank(vs¢) < Mg (4.16)

On the other hand, we write v, ¢ = Z? D () |9n (€)Y (¥ (€)] with 0 < pun(€)
1 (€) being a normalized eigenfunction of Ds, ¢ associated to the elgenvalue 0<
By Eq. (2.30) and Lemma 2.5, we finally get

< 1 and &th
An(8) < Apgy.

Nrq)
1 c|1/2 1/4 2
o PP 2, ) < Il = 20 e < X, Wn(©O g < K (417)

n=1
by the interpolation inequality to obtain the H2 norm. It is easy to see that

s <1Q87 el Qi lRads (@
wnB(&1,2) £ wnB(&2,)) 3

By Lemma 2.5 again, this leads to
[WMx < 21QF 7 Ky (4.19)

We now turn to the study of the term Hh)‘Hy(g). First, as w n B(&j,A) = B(&;, A) for A small
enough, and by (2.13) and the rearrangement inequality,

Iher ez, g’
A — sup f SIB) e’ < |QF -1 ][ . S 4.20)
I Hy(f) o e & — &2 Q% o JwnBE; N |€ — ¢'|? (

|Kloo <1 =

d/
=2|szr—1f ,52 61Q71 'A% (421)

Thus by (2.13), (4.17), (4.19) and (4.20), we know that

1 C
: ]{2 eyt e P

1
< 2|QF T KNy, + KMy ][ ][ ——=déde’
‘ Z’ q — wnB(EWN) Qz ‘g 5/‘2

k
= 2K Ny (1QF| 7 Ky + Cy).
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This gives (4.13) for A\ small enough.
Analogously, arguing as above and using Eq.(4.16) instead of Eq.(4.17),

f 1M ey e
QF

To prove (4.14), we observe that, for A small enough, by (4.19) and (4.21),

1P xnpe) < 1P xny < 61QF1TIAT2, (4.22)

lo1(6) € < 20 (1QF1 7 Ky + Cy).

for A small enough and for all { € Q;. Therefore,

1225

We now turn to the last estimate, i.e., Eq. (4.15). From (4.19), we have

PMx x-1
sup ][ d¢ < 2|Q CyK,.
gEQ* Q* 27rk |£ g/‘Q | £| Yiq

< waﬁy]é I ey e losuce)
¥4

< 12(QF 7y (1QF | Ky + Cy) A2

On the other hand, according to [17, Chapter 5.10, Formula (3)],

/ g’ B 3
re [ = &Pl =& 1E=¢"
Hence, for A small enough,

hA 2
sup sup ][ I Hy(/g2 i
ey per Jar+ it €= ¢

|kleo<1

g’
< sup ][ df”
j=21:,2 ¢eQf JwnB(g; ) Qr €¢I —¢"?

de” d
<7r32 sup][ £”<27T3][ ¢ < 3maL
15T e JwnB(g; ) € —¢"| B(0,\) 161~

Thus for A small enough, we deduce

1P lx vy o sy
sup e dE < 3mAT.
Q¥ JQF 1€ —¢|

This ends the proof of Lemma 4.6. O
We turn now to the proof of Theorem 2.10.

Proof of Theorem 2.10. Indeed, by using Eq. (4.11) and Lemma 4.6, under Assumption 2.8
we get

. Q~ a? Ceuil(q, 2) 0272 — 21ar
lim sup <2TrL2 [Vinh ] + gErr(t,'y*, h’\)> <C+ = (9,2) 2 .
t—0
Thus, for a > 0 and ¢ small enough satisfying
o} 2
R L — 4.23
c CCri(Qv Z) ( )
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we have

. Q~ a? ) Cai(q,2) & —27) a
)1\11)%%2% <2TrLz [Viah?] + §Err(t77*,hA)> <C+ /l\l_r)% ( 2 ) = —0.

We reach a contradiction with (4.5) whenever Assumption 2.8 is satisfied. The proof of The-
orem 2.10 is now complete. O

5 Existence of the retraction

In this section, we argue as in |9, Proposition 5.8] and [23| to give a sketch of the proof of
Lemma 3.2. It is based on the following result.

Lemma 5.1. Let 0 < s(a,c) < 1. Recall that A(a,c) := $£Cpp(1 — f@(a,c))_l/z)\g(a,c)_lﬂ.
Then for any v, € T'<q and £ € Q}, we have

A(a,c) A(a,c)
c 1/2 + + ) — A
el (Ple = PY sy < [y ey 17 =7 lxove < sy gyy = Ve (6:1)

and

1
||T2(7)—T(’Y)\|mec<2A(aac)(cmaX{HT D12, 5 I}

Ao, c)

+ ST ) = ey ) Iy =V ey (5:2)

Proof. By Taylor’s formula, we have
pr_ty 1 /+OO(DC iz)"ld (5.3)
-+ — —iz z. :
Y T2 o ) VT
Thus,
+ + o i c - \—1 c - \—1
Py — P = iﬂ » (DS —iz)" V(DS —iz) ™ dz.

Now, according to Egs. (2.26), (2.31) and (2.33) and by using the formula

+00 B

———dz = hen B > 0 5.4

—ooBQ+22z m, when B >0, (5.4)

we obtain, for any ¢, ¢¢ € Lg,
1/2
](wf, DR - Prooe),,
o i 1/2(p 1 . \—1
=5 / <¢§ |D£] ( —zz) Vv_%g(Dﬁ,é —iz) ¢5>L2 dz
—o 3
1/2

o o c - N—1 C 1/2 2
S o IVy—y ’B(Lg) </ |(DS,e —iz)~"[D¢| 1/1§||L§dz>
—00

+00 - 1/2
([ 15— ol e
—00
< SV I D205 2] DS 2] el 22

C
< 5oy Hn ) Aol )2 Ty gl
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CrE -1/2 12 @ /
<2 (1 - s(a, )T Sy =y | xen .
1 oy (1= w0,0) o) 2 G = o izl

Then Eq. (5.1) follows. We now turn to the proof of (5.2). We have

T2(7)_T():(P;()_P+)T( )P;(,y)
+T(7)(P’_I—r('y) Pf) + (sz(»y)_P;)T()(P;(y)_P;r)'

Hence,

IT2() = T() e
<2(Ff,) — P T ey + I(PF, — PHTO) (P = P)lxeoy

Since ¢ < |D¢|, we have
)

|T(7) T(w) PWJF)| XenVe S H|DC 2 P'If(q/) - PﬁHymaX {HT(V”DCII/ZH&J T () Hy}
and
H(P;(,y) - P;_) T(v) (P’]—'i‘_(»y) - Py—k)| XonY, S H‘,DC 1/2 P;(,y) - P+ Hy |17 (y H61 1nY-

Observe from (2.14) that [T(1)]e.., < [1ler, < and [T()]y < [1ly < Cy, from which we
deduce that |T'(v)|e,,~y < (1 + Cy)q¢". Then, using (5.1), we obtain

IT°(3) = T() |x.r, < 2A(asc) (1 max {[TID2]g, 5 1Ty

A, c) q*

We turn now to the following.

Proof of Lemma 5.2. First of all, we observe that T'(7) < v < 1r2msy, [T(V)ls,, < [V]e1, <
g and |T(1)]y < [1ly- Then, from (2.32)

Therefore, T'(y) € I'<,. We are going to prove that 7" maps Ug into Ug. For v € U, we have
1
|T()|D 1/2H61 < H7|DC!1/2||6171 + [y —=T()]x.- (5.5)

As M(a, c) =A@ (59 implies

2
IT2(7) = T(9)llx. < L(ev, o) [T(7) =7, (5.6)

with L(a,c) = 2A(a, ¢)R and

%HT(V)Hy “hly+ 5 2 17() = Al (5.7)

Moreover, as M(a, c) = m, we have 1 + M (a, ¢) L(e,¢) < M. Then, from Egs. (5.5)-

(5.7) and the fact that v € Ug,

M(a,c
2

L {JTODT g, 1T} + %D 1720 ~ 7)o,
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1 1+ M(a,¢) L(a, c)
< =max {|[1D2g, 5 v} + 62 Iv =T x.ny. < R.

Therefore, T'(y) € Ur. Thus, T maps Ug into Ur, and so does T™ for any n € N.
Next, we prove the existence of §. From (5.2), we know

IT"(y) = T" ' (V)| xenye < Lla, o) [T Hy) = T (9) ] .m0 (5.8)
and

1

n
IT™ () xemye < DTN =T (N | xenme + I7lx < =Ll 1T(v) =l xenve + 17 xenve-

i=1
This implies that |7 (y)|x.~y. is uniformly bounded with respect to n € N, and (T"(7))y, is
a Cauchy sequence in X. n V.. Thus, for any v € Ug, the retraction () := lim,— 1o T™(7)
exists in X. N Y,.. Furthermore, we have

L(a, )™
O(v)—T" Ay, < ————|IT(v) — AYe-
16(~) ()| xere 1= L{a, o) IT(v) = Ylxeny.

It can be deduced directly from (5.1) that 7" is continuous on Ug. Finally, the fact that
0(v) € qu for any v € Ug follows from the fact that

I70()) = 0Nl xeny. = Jim [T () = T ()] xenp. = 0.

This ends the proof. O

6 Second-order expansion of E(7)

This section is devoted to the proof of Theorem 3.3. We fix a and ¢. To simplify the notation,
we denote L := L(a,c¢), k := k(a,c) and \g := Ag(a, ¢) throughout this section. The main
ingredient is the following proposition, which is essentially the same as in [20], but with a more
delicate study.

Proposition 6.1. Let R > 1 be fized, and let k < 1 and L < 1 be given as in Lemma 3.2.
For any v € Ur and any g € Ty, if PyP =, we have

ep, a?

B() = () = erTrnl])| < 2+ 5) S N (1 —g). (6.1)
where Ny (h) is given in Eq. (3.11).

Remark 6.2. Actually, for atoms and molecules, using a finer version of this estimate, it is
shown in [20] that the DF model is an approzimation of the electron-positron Hartree—Fock
model (see, e.g., [5] for this model).

We first use Proposition 6.1 to prove Theorem 3.3.

Proof of Theorem 3.3. Let
2

C ~
Err(t,v,h) := pers] (E(’y +th) — (E(y + th) — epTrLg['y])> .
Since v € I‘;’q, we have
N 2
E(y+th) = E(y) + E(y + th) — (E(7) — epTr2(7)) + tQ% Err(t, v, h).

This is precisely Eq. (3.10). Then, by replacing g by v and v by 7 + th in Proposition 6.1, we
finally get

[Exr(t, 3, )] < (24 ) 72N, pan(th) = (24 5 ) Noaan(h). (6.2)
OJ
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6.1 Proof of Proposition 6.1
We first consider the error bound between E(v) and £(v) for any v € Ug.
Lemma 6.3. Let R > 1 be fized. Assume that k < 1 and L < 1 as in Lemma 3.2. Let

5C?2
CIQ,L = h

w2y [hen, for any v € Ur,

‘E(’Y) — (E() — epTrpa [7])‘

2¢2 +ep o o Q o
<L O (RE+a2 +1) SITG) =Wy, + IRy x| (63)

This is an immediate result of the following.

Lemma 6.4. Let k <1 and L < 1. For any v € Ug,

2
«
I[P (0(y) = T(7) P I x.ny. < Cn,LRCT;HT(’y) —71%. . (6.4)
and
_ _ o? 2
1P 0Py [ x.ny. < CrLq lelT(v) =X~y (6.5)

We first use it to prove Lemma 6.3 and we postpone the proof of 6.4 until Section 6.2.
Proof of Lemma 6.3. Notice that

E(y) — (E() — epTr2[])
= Trp2[DE(O(y) — )] + %ﬁm Vo)~ (0(7) = 7)] — epTrr2[0(7) —~]- (6.6)

We calculate each term on the right-hand side of Eq. (6.6) separately.
Estimate on Tr;: [D@(O(fy) —7)]. We consider the first term on the right-hand side of
(6.6). Notice that T'(y) = Py yP;. We have
Trpa2[DE(0(7) — 7)] = Tr2 [DE(PS + PY)(0(Y) — (P + Py)]
= Trp2[|DS|P (0(v) = T(7) Py ] = Trpe[|DS| P (0(7) — )Py ]

Thanks to (2.31), (6.4) and since xk < 1, we have

T2 [ID5I B (00) — TP | < IDS V2P (007) = () Py DS 2]

a? 2
<2 P70 = TP |, <2CeR1|T() =k, .
On the other hand, from (2.31) and (6.5), we infer
[Ta[1D51P; (67) — )Py ]| < |ID51 2Py 6y Py )

<2(|Proem) Py

+ 12512 Py PP,

x.)

HGl,l

v, TPy vPy

2
<205 [TO) =23y, +2 1Py vE7 [,
Then we conclude that
N 2
T2 [D5(00) = ]| < 2Cun(B+ )55 [TO) =3y + 2P VP |y
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Estimate on EPﬁLz [0(7) —«]. This term can be treated analogously. Actually, as
¢ < |D¢|, we have

ep [Trpa[0(7) = 7| < ep [Trpa [P (6(y) = )P ]+ TPy (0() = )Py ]

<5 (Ipf 6 - 1)) P

x, TP 0P|

x By

_XC)‘

Then proceeding as for the term Tr [Dg(@(fy) — )], we obtain

er [Fua 060 21| < L0 ST =y, + LAPTAPS

Estimate on %TN‘rLQ [Vg(v)_y(ﬁ(fy) —v)]. Using (2.26) and (3.9), we infer

o ﬁ;LQ [Vt (0(7) - v)]\

T2 100) =13, 100) s,
< (1(4;%3;)@ 16C¥) = 7 x, iz [0 =,
<ot a0 s, <05 IT0) =l
Conclusion. We then deduce the following estimate :
B() — (£() = epTrpa[r])|
< QCZCJQFGP [Cu (RS + a5 +1) SITG) =3y, + PP ]

We now consider the term 7'(y) — v and P, yP,” under the condition v = P;“yPg_.
Lemma 6.5. Let 0 < x <1 and g,y € T'<y. If PSP, =, we have

V2Cgg a

IT() =, < m c

]2 I =lxnto eI DE 2 g, e

IT(y) —~

%8, — gl e
L < ;/C EE asup][ Iy QHX/ ;}(g)dg,
© N1 - k) CeeqrJor €€

and

- Cip o 2
X S 3y @ Lo 19 esig helenco a6

|2y

Proof. Indeed, we have
T(y) =~ = (Py = P))yPS + P/~v(P) - P).
Then, according to (5.1) and (2.32) and as 0 < k < 1,

2(1+ k)Y

1/2 +
X© S =i H|Ds|/ Ple—

| Te(v) — 7| 3 1/2H61( )

P+§)”B(L§)H7€|D£’
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V2CgE .
= (1+ Cy)N?(1 — k) c Iv- gHXW(&)H%‘Ddl/Q
0

HGl(E)
Thus,

< g5 ——— 1 7= 9lxnye el DE dg
X )\é/z(l — k) ¢ Jor (5)” gl Hel(g)
Analogously for the second estimate, the bounds |ve| g2y <

|T(v) =]

¢ < |D¢| together with (2.14)
yield
2
IT(y) =ly. < sup sup ][ D2 (Pl = Prro) e e sz, 4’
"o e Jopa - EPITED e Pl e loug

V2Cgr «

S T2, o sup sup ][ H’y_gH—X;g}(f/)dgl
Ay (1 —K) € e k|eZ3 QF+%k € =&

|kloo<

We now turn to the last estimate. Obviously,

Py AP = Po (P — P )y(

+ +y p—
P —PHP
Then using Eqgs. (5.1) and (2.32) twice, we get

Y v

|7 e _,g‘xc(g) = H|DE‘P_ (P+ _P+ ) (P+

< 1+ k(o c) H‘D§|1/2 P+ B
1 — k(a,
02 2
ﬁcg lg — ’Ymey H’Y&H&

P+ ) ’Y§|,D£’H61

2
) B els, e

Thus,

_Chp 0 R helesede
X, X 2(1_5)2/\0 2 o 9~ Vxn~ye)l7ells1(8)

1Py

This ends the proof.

O
Inserting Lemma 6.5 into Eq. (6.3), we get immediately

— 2
B = (€0 = erTini)| < 2+ 5) 5N, (- 9,
where A (h) is given by (3.11); namely,

Ctr 2
M) = g 8 . Ileosng el e

a? a2« IOC’%E
+<q2+R2+> L )
) T

1

2
1 Al x Ay
< | = Il lel DE 2l e + - sup sup ][ IIX0Y(E) jeo
C]éz" XY ITEI e 1(&) £EQ*‘]€EZ3 QF+ 2ﬂk |§ €/|2

ko<
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6.2 Proof of Lemma 6.4

To complete the proof of Proposition 6.1, Lemma 6.4 remains to be proved. Before going
further, we need the following.

Proposition 6.6. Let k < 1. For any v,y € '<q and he X,
PHAPFR)PF =0 (6.7)

where dP;rh is the Gateauzx derivative of P;r at v € I'<q in the direction h. In addition, we
have

02
< EFE

D[Pt — pt Pt (y — A
H’ V=[P ¥ (0 7)]HY 2(1 — k)Y2(1 + Cy)

2
[0
=B 69
0

Proof. The proof is essentially the same as in [20]. As P (P

_ 2
vtn = (Pyyy)” for any h e X, we
have

dP*h = PY(dPFh) + (dPFh) P

Thus,
P;TdP,jh)P,Y+ = 2P7+(dP7+h)P7+,

hence (6.7). Recall that

+ Lo [T c -1
Py —P, = e (D —iz)” V(D5 —iz)” dz

and

+ ! @ e c - \—1 C - N\ —1

dPJ (v —7') = 9 /_OO (D —iz)” V(D5 —iz) ™ dx.
Thus,
+ + + / a® [+  N—1 c =1 =1
Pr—P, —dPj(y—7) = i (DS —i2) " V(D5 —iz) " Vo (D5 —iz) ™ dz.

Analogously to (5.1), using (2.26), (2.31), (5.4) and (2.33) again, for any ¢¢, ¢ € Lg,
(e, IDEIV2LPS = P — (AP (= 7))l )|
Oé2 2 c |—1
< gVl 12517y

+o0 1/2 +oo 1/2
([ None—iatog o) ([ 105 =i vl )
—0 ¢ —o0 3

2
C(E E

< 3/2
2(1— k)V2(1 + Cy)2AY

a2 2
@ H’Y - 7/’ XV, H¢£HL§ W&HL?-

This gives (6.8). Hence the proposition. O

Proof of Lemma 6.4. We first prove (6.4). Indeed, it suffices to prove

| P5 (T (y) = T () Py |

XenYe

T Hv) = T"*(y)]

2
< Crp(1— LR |T(7)

ch\yc Xcﬁyc'
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Then, by Lemma 3.2,

[P (00) = TP |« < Z |PH(T™(3) = T YO B | o,

2
< Crr(1 = DR |T(7) =

XcnYe Z HT" 1 -1 2( )‘Xcﬁyc

2
(07
< CurR 57 [T(0) =1,

Let v, := T"(y) and 7y := 7. Then forn > 2, ~, = P;;fl*yn,lP;Ll and y,_1 = P;;%’yn 1P7J; -
Hence, for n = 2
P’;r(fyn _7"_1)13 P (P’;Z 1 —P,;; 2>PJr 2 In— 1P’Y+n 1P’Y+
+ + + + +
+ Py Py (P = Py )BT (6.9)
We only need to consider the first term on the right-hand side ; the second term can be treated
in the same manner. According to (6.7), we have

Pf(Pf_ —P: PY ~, o PF PF

Yn—1 Yn—2 Yn—1"7
= P“jv_mfz (P';/";Lfl - P+ —2 dP ('7”*1 - 7"*2))P7-;727”*1PW—;71P;
+ (P =Py (P, Pjn P m P P (6.10)

Thus, according to (6.8) and (2.32), for the first term on the right-hand side

|2 (P PfytL , — AP (Y1 —m-2))PS a1 P P

Xene

(14 x)!
= (71/2 H|DC 1/2 P+ -1 P;; 2 = dPJn,Q(%A - %—2))HY

x max {|v,—1 P | P D2, 1y}

C% (1 + k)32 a?
S Ui s oy & Nt~ tnalny max {07
B 0

l&1.3 n-1ly}-

As v € Ugr and according to Lemma 3.2, we get, for any n > 2,

e Ivnlly} < R

1
[yt = m2lxcnye < IV =TNlxeryes - max{[ya-1[D°]
Then, as k < 1 and Cy > 0, we have

HP+ P’; 1 P’;; 2 _dp’;;—2(7”_1 _7"—2))P’;;—27” 1P’Yn 1ty ‘

XenVe

/ o?
< CI{,LRF |IT(v) — |

XonVe Tn—1 — 7n—2‘ XAV’

. 2C%
with C;,,L = ﬁ

We now consider the second term in the right-hand side of (6.10). By (3.8) we have
I = Yxerye < TZ2IT() = Ylxeny.. Thus, by (5.1),

H(P — Pl )Py = Pf )P P PF

Tn—2 Tn i Tn—1" 7 1 XenYe
1+ k)
< T Iy = Pl D2l i ey, = Pl
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1/2

2 maX{H’Vn—1|DC| HGI; H’Yn—l”y}

C%E(l + K)

2
(6%
S — Im—2—"7 Vn—1 = Yn—2
4(1— w21+ Op2N* ¢ b L.y, b n=2x,n,
" a?
< CH,LRCT |T(v) =1 —
ith " = Cip Thus by (6.10
w1 LT S A2 (1-1) us by (6.10),
HP;_( _P';:. 2)P+ zfyn lp'yn 1Pf;_ Xcmyc
<(Chp+ C;Z,L)RCT;HT(’V) — 7| Xon Y. T () - T"’Q(V)\ PR

The second term in the right-hand side of (6.9) can be treated analogously, thus

2
[P (G = 01 P |y, < Crn(L = DRZ|T() =]

T (y) = T" ()]

Xene XenYe Xende?
5C2 -
where Cy, 1, := (1—“)2)\3% >2(1-1) 1(0,;7L + CY ). Hence (6.4).
Finally, we consider the term P"0(y) P . As 0(y) = Pé?v)e(’y)P;Ew, we have
PLO()Py = P(P, — PY0() (P}, — PY)PL,
from which we deduce
- _ 1+K e
1P 60)P; Ly, < D28, — PR max (106l s 18}
C% (1 + k) o? 2
x — T —
0 =0+ CyPag(d — LU T g IT0) =l

2
< Curq %HT(W) — 1| iccmyc‘

In the last inequality, we use (1+Cy) 2(¢+ Cy) < q(1+Cy)~! < 1. This ends the proof.

A  Proof of Lemma 2.4

Before going further, we introduce the following technical lemma which will be used in the

proof of Lemma 2.4

Lemma A. 1 Let ¢ = 1 and A > 0 such that max{1;2A} < c. Let f : [0,+00) — R be defined

by f(x) := 1+ c 222 — AV1+ 22. Then
1. We define xg . € [0, +0) by

A2 - 1;0
oo i \/max{ ; }

1—c2A2

Then, the function f is decreasing for x € [0,z0.) and is increasing for x € [z ., 0) with

In addition, f(x) — +© as x — +00.

2. For any x1,x9 =0, if 1 > \/18142 + 3 + 1022, then

c2q/l+c*2x%+Aq/1+x%.
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Proof. Claim 1 follows directly from an easy calculation. Then we focus on Claim 2.
We first assume that 21 > z5. Then it suffices to show that

& <\/1+c_2x%—\/1+c_2:1:§> >A<\/1+x%+\/l+x§>.

Note that

2 2
Ty — T3

1+ c 222 — \/1 + 232 =2 .
\/ ! 2 \/1+c*2x%+\/1+c*233%

Thus, it suffices to show that

x%m%>A<\/l+c2x%+\/l+02x§> <\/1+x%+\/1+x%>
=A Z \/1+C_2$j2\/1+.%'z.

J.k=1,2

Before going further, we first estimate A\/l + C_2$?\/1 + azi Note that if j = k,

A\/l—i—x \/1—1-0_% \/l—i—x A[A2 + 2

if j =1 and k = 2, by the Young inequality

A2
1
A\/l +c‘2x1\/1 + 22 < 7 1 +C_21'%) + 5(1 +x%) < 5 + FRl + 5%2;

and if 7 = 2 and k£ = 1, by the Young inequality

1
A\/1+c*2x%\/1 + ot <24%(1+c7ag) + (14 a]) < —— + gai +

Thus,

36A4% +21 3 3
A <\/1+c—?z%+\/1+c—2x§> (\/1+x§+\/1+:c§> < TJFJer%Jr%x%.

Now it suffices to show that

73

Y

xQ_x2>36A2+21+3 2+3
L2 8 4 2

from which we get

21
x> \/18142 + 5 + 1023.

This also implies that x1 > z2. This proves Claim 2.

We are now able to prove Lemma 2.4.
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Proof of Lemma 2.4. The proof is in the very same spirit as in [9, Lemma 4.12]. Additionally,
we show here that there exists ¥, independent of a, ¢, £ and v such that (2.35) holds. We
also establish the existence of M,,. We adapt the proof of Lemma 4.12 in [9] by using the
Hardy-type inequalities involving the operator (1 — Af)l/ 2 in Lemma 2.2. We split the proof
into three steps.

Step 1. Construction of A,(a,c) and A, («,c). By monotonicity, from Egs. (2.24) and
(2.27), we have

Gel < Ca(1-A) and |V, < Cprq®(1-4)"2
Then, by the Courant-Fisher formulas, for every & € Q7,

X (&) = o (IDE] — (Caz+ aCppat)(1— Ag)'?),

where o7 (A) is the n-th positive eigenvalue (counted with multiplicity) of the operator A.

Hence, by the Courant—Fisher formulas, we have

Ap(a,c) = Si%f* o (1Dl — (Co 2+ aCrpqt) (1 — A¢)Y?)
€Ly

= min o,} (|D§| — (Caz + aCppqt)(1— A¢)'?) (A1)
eQy

> ¢ (1 - k(a,c)),

thanks to (2.15). Obviously, A,(a,¢) — 400 when n — +00, since a;f((l — A¢)'/?) goes to
infinity with 5. We recall that dzn(ﬁ ) is the n-th positive value of Dy introduced in Section 2.
A similar argument yields to

Xe(€) < of (D + (Caz+ aCrpq)(1— Ag)'?)
<dl, (&) + (Coz+aCrpq) ol ((1—Ag)'?),

where the second inequality holds by using the Courant—Fisher formula. We may then set

An(aa C) = ?1% (d:n(é) + (CG z+aCgg q+) (7;1_((1 — Aé)l/z)) (AQ)

Step 2. Independence of ¥, in (2.35). Let 9,(£) be the n-th eigenvalue of the
operator (—A¢)"/? (counted with multiplicity) with 9t (€) < M2(€) < -+ for every € € QF.
Since (D) 2=t — 2A¢, we have

+ 2 L oo 2 2
dc,n(g) =cC 1+ gmn(g) sc + 79ﬁn(£)7 (A3>
whereas
o (1= Ag)"?) = /1T +M2(€). (A.4)

Therefore, since o < 1, (2.35) holds with

¥, := max (;im%(f) +(Caz+Cgrqt)\/1+ 97(%(5)) . (A.5)

€eQ¥

Step 3. Estimates on 91,. Now we set A := ck(1l,¢) = Cgz + Cppq’. According to
(2.35) and since Ap(a, ¢) — 400 when n — 400, Ju(a, ¢) 1= min{j € N*|A;(a, ¢) > An(a,0)}
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exists, and D¢ . has at most J,, (o, ¢) positive eigenvalues in (0, A,,(«, ¢)]. To end the proof, it
suffices to find a bound on Jn(a, ¢) that is independent on «, ¢, v and €.

According to (A.1) and (A.2), it suffices to find some integer 9,, > n independent of «, ¢,y
and & such that for any 7 = 9, and any &;,& € CTZ‘,

min o (1D, | = A1 = Ag)"?) > max (df,(€) + Ay (1= Ag)'?))

£1€Q¥ £2€Q¥
— max (c2 1+ c 202 (&) + A1 + smg(@)) . (A6)
£2€Q¥

where the last identity follows from (A.3)-(A.4). Indeed, for any j = M, and o < 1, Eq.(A.6)
implies

Aj(a,e) = Aj(1,¢) = min of (IDE | — Al - Ag)"?)
- - §1EQy

> max (df,,(&) + Aoy (1 Ag)"2) ) = Ka(1,¢) = Anlac).
£2€Q¥

This shows that J, (o, ¢) <M, is independent of «, ¢, v and &.
Let £ € QF. We first study the eigenvalues a;-r(|D§| — A(1 — A¢)Y/2). By definition of the
function f defined in Lemma A.1,

ot (IDgl = A(L = A¢)'?) = {F((€))]j € N*}.

According to Lemma A.1, f is a not monotone function. So there may exist j € N* such that
U;f(|Dg| —A(1 - Ag)l/Q) + f(M;(€)). Nevertheless, we claim that there exists j. € N* large
enough such that for any j > 7., af (]D§| —A(l- Ag)l/Q) = f(O;(&)). We first apply Claim 2

in Lemma A.1 with 29 = 0. We define
. 21
min M;(€) >4/ = + 18A2} .
€eQF 2

The integer j, is well-defined because min

js 1= min {] e N*

M;(€) is increasing and goes to infinity with

_ seQf
respect to j. For any § € @7, from Lemma A.1, we have
FORL () >+ A>c—A=f(0) = r[rgax ]f(x) (A.7)
z€|U,Z0,c

with zg . being defined in Lemma A.1. This also implies that

mﬁmj* (g) € [zo,ca OO)
£eQy

As f(z) is non-decreasing in [zq, o), for any £ € QF, we have, using also (A.7) and the fact
that j — 91;(-) is non-decreasing,

PO (E) > max (@) > e SON(6).

Next, according to the monotonicity of f in [z, 00), we know that for any j > j.,

ol (IDg] = A(1 = Ae)'?) = F(IM5(€)).
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Let £ € Q7. With Claim 2 in Lemma A.1 again, applied this time with z = max,, cox M, (E2),

we know that if j > j, satisfies

21
min 90;(&1) > maX\/ 21842 + 1092 (6), (A.8)
€16QF £eQF V 2

then Eq. (A.6) holds. In other words, Eq. (A.6) holds for any j > M,,, with N,, being defined
by

N, = inf{j > s

21
inf 9;(&1) > sup \/ + 18(Cgz + Cppqt)? + 100M2(&) p. (AL9)
£1€Q¥ £26Q¥F 2

Obviously 91, = n and is independent of «, ¢,y and £. The proof is complete.
O
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