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A B S T R A C T

Physiological recordings contain a great deal of information about the underlying dynamics of
Life. The practical statistical treatment of these single-trial measurements is often hampered
by the inadequacy of overly strong assumptions. Heisenberg’s uncertainty principle allows for
more parsimony, trading off statistical significance for localization. By decomposing signals
into time–frequency atoms and recomposing them into local quadratic estimates, we propose a
concise and expressive implementation of these fundamental concepts based on the choice of a
geometric paradigm and two physical parameters. Starting from the spectrogram based on two
fixed timescales and Gabor’s normal window, we then build its scale-invariant analogue, the
scalogram based on two quality factors and Grossmann’s log-normal wavelet. These canonical
estimators provide a minimal and flexible framework for single trial time–frequency statistics,
which we apply to polysomnographic signals: EEG representations, HRV extraction from ECG,
coherence and mutual information between heart rate and respiration.

1. Introduction

Physiological signals have been extensively studied over the last two decades [1,2], for their complex behaviours, ranging
from periodic to stochastic and spanning a wide range of timescales. The formal identification and quantification of distant organ
interactions (e.g. between respiration, heart and brain) has since been integrated into the field of ‘‘Network Physiology’’ [3–6].
Pairwise interactions have been approached from different angles [7], such as synchronization, coherence, time delay, mutual
information or transfer entropy, and then extended to higher-dimensional structures [6,8]. Such developments require dedicated
analytic tools to deal with simultaneous signals from different sources, with non-stationary dynamics spanning a broad range of
timescales. The probabilistic approach is a key element to model the variability of these signals, considered as a realization of a
stochastic process. The considerable difficulty of conditioning living systems into well-controlled and reproducible initial states limits
their repeatability, so that in practice we are often forced to consider a physiological recording as a single trial experiment. The
assumption of stationarity, at least locally within well-chosen timescales, is a common simplification for the statistical treatment of
such unique signals. However, their study is complicated by the multiple uncertainties associated with the variety of recorded events,
in particular their timescales (of relaxation, correlation, evolution) and their possible separation. Time–frequency representation is
another key component to investigate complex dynamics [9]. Many types of kernels, windows, filters, wavelets and other atomic
shapes have been developed over the years to decipher rich signals. Dynamical information unfolds in the time and frequency
domains as more or less local features. Again, several uncertainty relations are available to characterize localization properties [10].
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The diversity of these techniques and their lack of integration with the statistical approach requires expert choices that we intend
to simplify in this paper. With this article, we pay tribute to Alain Arneodo for his pioneering work on the intersection between
wavelet theory and physics [11,12]. His late interest in biomedical images [13] has been a great stimulus in initiating the research
developed here.

How can we make statistical estimates from individual non-stationary signals without knowing the underlying timescales? Is it
ossible to manage our uncertainty in terms of statistical significance and localization in time and scales? In this article, we present
n elegant framework that succinctly answers these questions. It embeds statistical estimators in a time–frequency or time-scale
nalysis, to jointly handle the mix of dynamical and statistical information contained in biophysical signals. In particular, we design
flexible and versatile scalogram estimator based on log-normal wavelets, which we apply to a variety of signals. Our uncertainty

nd assumptions are given a precise shape by the choice of two quality factors, that control both the time–frequency resolution and
he statistical significance of the analysis. The classical idea of the uncertainty principle or scale separation, between correlation and
volution timescales, is here revisited in a scale-invariant formalism constructed from time–frequency uncertainty atoms, available
s statistical samples in a time–frequency analysis. Exact in the proposed formalism, this straightforward uncertainty relation unlocks
he practical management of probabilistic and dynamical uncertainty (or information) in the vicinity of Heisenberg’s uncertainty
ound.

This article is divided into seven sections. Section 2 introduces concepts arising from a joint statistical and time–frequency
nalysis. We discuss, illustrate and formalize the relationships between the assumption of timescale (or quality factor) separation,
eisenberg’s uncertainty principle and the statistical approach to unique signals. The continuous numbering of effective statistical
egrees of freedom or time–frequency uncertainty atoms is given an information-theoretic interpretation. Section 3 summarizes these
oncepts in an explicit parametric framework. Two paradigmatic time–frequency estimators are introduced, one for the spectrogram
nd the other for the scalogram, called canonical for their elementary expressions in terms of a pair of physical parameters,
espectively timescales or quality factors. In particular, their ratio gives the number of uncertainty atoms. The first paradigm is based
n the Gabor transform and the normal window, and the second on the wavelet transform and the (Altes–Grossmann) log-normal
avelet. Sections 4, 5 and 6 contain the application of this analytical framework to human physiological recordings of the neural,

ardiac and respiratory activity. These non-stationary and multiscale signals are part of the same polysomnography (shhs2-200901),
downloaded from the National Sleep Research Resource (Sleep Heart Health Study) [14,15] and used after ethics review board
approval. In Section 4, the intermittent and noisy neural dynamics captured by an EEG signal illustrates the comparison of the two
time–frequency paradigms. Their limiting cases and their physical parameters are discussed. In contrast, the ECG signal introduced
in Section 5 contains the highly rhythmic activity of the heart. The extraction of its fluctuating rate is devised within the log-normal
wavelet framework; a quadratic estimation of the heart rate signal is formulated and its three parameters are optimized against
the standard estimation. In Section 6, we analyse the time–frequency coherence between the resulting heart rate signal and the
respiratory oscillations. Its spurious statistics are characterized in terms of the number of atoms and its significance is interpreted
in terms of a time–frequency mutual information density. This completes the picture of the trade-off between statistical significance
and time–frequency localization in the analysis of single trial recordings. We conclude in Section 7.

2. Single trial statistics in an uncertain dynamical context

In order to obtain valuable statistical information from single trial (unique) measurements of biophysical dynamics, it is often
necessary to make assumption about their stationarity and ergodicity. The first moments of their distribution can be estimated
at different times if the living system is assumed to be stationary in the short term. However, in the absence of prior dynamical
information, the distinction between short and long term processes is uncertain. In discussing this practical issue, we consider two
types of temporal scale that appear in the Heisenberg uncertainty relation, between duration and frequency, and the need to separate
them in order to create local statistical degrees of freedom. We then present the possibility of designing statistical estimators based on
such temporal scale separation, which do not fix any arbitrary timescale parameter. Such a scale-free statistical approach is proposed
as a parsimonious way to handle dynamical assumptions in biophysical contexts. Finally, we introduce the formalism associated with
non-negative quadratic operators and their time–frequency and statistical interpretations, upon which the framework proposed in
the next section is built.

2.1. Statistics and timescales of evolution and correlation

In a statistical approach, the data is divided into samples assumed to have the same probability distribution. Statistical moments
can then be estimated from an empirical mean over these samples. For a signal of duration 𝑇 sampled at the frequency 𝑓𝑠, we
can access at most 𝑁 = 𝑇𝑓𝑠 samples at the cost of the strongest dynamical assumption of stationarity. The ratio of the macro and

icro timescales 𝑇 and d𝑡 = 𝑓−1
𝑠 represents the number of data points 𝑁 and the maximum possible number of degrees of freedom

available for a statistical estimation.
In order to reveal a possible time evolution of the statistics, the system can be assumed to be stationary in the short term, i.e.

for durations shorter than a meso-timescale 𝜏0, and non-stationary for longer durations. This weaker dynamical assumption comes
at the cost of a smaller number of statistical samples. Correlated dynamics can also be demonstrated by taking signal blocks of
duration 𝜏0 as samples if the process is stationary. A time delay 𝜏 < 𝜏0 is introduced into the estimator of the correlation (second
order moment), or equivalently, a power spectrum with frequency 𝑓 > 𝜏−10 is estimated (e.g. Welch’s method). The spectral domain

also facilitates the identification of periodic oscillations in the data.
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Fig. 1. Schematic representation of information quanta (A) as atoms of time–frequency uncertainty, (B) their even dispositions in the time–frequency plane for
Gabor (left) and wavelet (right) transforms, and (C) equivalent ways to compose them to produce a single-trial time–frequency statistical estimate.

The analysis of both the temporal evolution on periods longer than 𝜏0 and the correlation on intervals shorter than 𝜏0 have
incompatible dynamical requirements. Statistical estimation is indeed performed either within or across these intervals, based
respectively on 𝑛 = 𝜏0∕d𝑡 or on 𝑛 = 𝑇 ∕𝜏0 statistical samples. Fortunately, the probabilistic treatment of a signal interpreted as
a single realization of an evolving and correlated stochastic process is still possible. This is achieved by further restricting the range
of dynamical timescales and reducing the number of statistical degrees of freedom: 𝑛 = 𝜏+∕𝜏− ≥ 1 samples are obtained as signal
blocks of duration 𝜏−, assumed to evolve on timescales longer than 𝜏+. Statistical estimates on unique signals with complex dynamics
are only possible by separating evolution and correlation timescales.

2.2. Time and frequency uncertainty versus statistics

The smallest distinguishable evolution timescale 𝜏+ represents a time resolution or uncertainty 𝛥𝑡 = 𝜏+ in the analysis, and the
longest correlation timescale 𝜏− corresponds to a spectral bandwidth or frequency resolution 𝛥𝑓 = 𝜏−1− . Here, the lower bound of
Heisenberg’s uncertainty principle, 𝛥𝑡𝛥𝑓 ≥ 1, appears as the condition for a statistical time–frequency analysis of the signal. The case
of a unique timescale 𝜏+ = 𝜏−, thus 𝛥𝑡𝛥𝑓 = 1, has been described by Gabor as a decomposition of the signal into information quanta
called ‘‘logons’’ [16]. These atoms of time–frequency uncertainty are sketched in Fig. 1. As shown in (A), different aspect-ratios of
the atoms correspond to the resolution trade-off between time and frequency. Shapes of order zero (blue) are more compact than
shapes of higher orthogonal order (other colours). The even sampling of the time–frequency plane with Gabor’s oscillating atoms
(based on a normal window), as sketched in Fig. 1(B, left), endows it with the Euclidean or flat geometry, in contrast with the
wavelet approach (B, right).

Fig. 1(C) represents a single-trial statistical estimate in time and frequency based on a local average over several atoms, here
𝑛 = 5, corresponding to both to the number of statistical samples and the area of the resulting time–frequency uncertainty (black
circle). Equivalent estimates can be obtained from different compositions and shapes of atoms, from left to right: contiguous along
time or frequency, or superimposed orthogonal shapes.

The notion of statistical degrees of freedom has been introduced into the spectral or time–frequency analysis with orthogonal
atoms called ‘‘tapers’’, yielding multi-taper estimators [17–19]. Single-taper spectrograms play the role of statistical samples for
the multi-taper estimation of the spectrogram. Schematized in Fig. 1(C, right), the multi-taper approach is implicitly related to the
uncertainty relation, since the number of tapers is optimally chosen from the uncertainty product 𝑛 = 𝛥𝑡𝛥𝑓 . The zeroth order taper
(a simple window) gives the best time–frequency resolution, but a single sample is insufficient for a statistical estimation.

The probabilistic approach to evolution and correlation in single complex biophysical recordings relies on the decomposition of
the signals into time–frequency atoms. The separation of timescales to collect enough samples, 𝑛 = 𝛥𝑡𝛥𝑓 = 𝜏+ , is a sine qua non.
𝜏−
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These uncertainty atoms can be further recomposed into a statistical estimator. The existence of such a range of scale separation
cannot be checked a priori in living systems, but it appears to be a necessary trade-off between statistical information and dynamical
uncertainty. The choice of relevant timescales in the analysis is therefore an important practical issue if we want to measure them.
We then discuss how to avoid an arbitrary choice of timescales as control parameters.

2.3. Scale-free time–frequency statistics with constant quality factors

By choosing arbitrarily two timescales for a spectrogram estimation, the information about long-term correlation and short-term
volution may be lost. The analysis of the complex biological systems would benefit from adapting the crucial assumption of local
tationarity to any selected timescale.

This goal can be achieved with a scale-independent approach, using an affine time–frequency (or time-scale) representation, also
alled constant-𝑄 representation such as the wavelet transform and the scalogram. The timescale is treated as a variable (inverse

frequency) whose relative precision increases with a parameter 𝑄: the quality factor. A constant 𝑄 determines the time–frequency
resolution as a fixed relative bandwidth 𝛥𝑓∕𝑓 ∝ 𝑄−1 and dimensionless duration 𝑓𝛥𝑡 ∝ 𝑄 (number of oscillations). Therefore, the
resulting analysis has no arbitrary reference timescale. A hyperbolic geometry is known to be associated with the resulting time–
frequency representation [20,21], see Fig. 1(B, right). The logarithmic frequency axis improves the flat visualization of wavelets at
multiple scales, although their apparent area is no more representative of their atomic (unit) resolution.

Analogous to the multi-taper spectrogram, a multi-wavelet scalogram has been formulated from orthogonal analytic wavelets [18]
to control the degrees of freedom for a statistical estimation. In practice, the simpler smoothing approach is performed as an empirical
statistical mean [22–24]. This local average in time or frequency provides a clearer control of the time–frequency uncertainty of
the analysis.

In this article, we demonstrate that a full statistical interpretation of the scalogram is based on the distinction of two quality
factors, 𝑄+ = 𝑓𝛥𝑡 controlling durations, and 𝑄− = 𝛥 log 𝑓 controlling bandwidths. Most importantly, we also identify their ratio
𝑄+
𝑄−

≥ 1 as the number 𝑛 of uncertainty atoms or statistical degrees of freedom, playing the role of a scale separation in a scale-free
analytic framework.

2.4. Continuous numbering of orthogonal atoms

The consistency of the probabilistic perspective on individual trajectories of complex dynamics derives from the assumption of an
incompressible separation between correlation and evolutionary timescales. This scale separation leaves room for degrees of freedom
for a statistical estimation, also interpreted as atoms of time–frequency uncertainty. We reformulate these concepts by relying on a
result in [19] that relates quadratic Hermitian (bilinear) operators on signals to the spectral multi-taper approach.

Let 𝑥 denote a signal or a spectrum. The global energy of the data 𝑥, possibly divergent for infinite signals, can be written as
a scalar product along time or frequency: 𝑥∗𝑥 = ∫ 𝑥(𝑡)𝑥∗(𝑡)d𝑡 = ∫ �̂�(𝑓 )�̂�∗(𝑓 )d𝑓 , see the definition Eq. (B.1) of the Fourier transform
�̂�(𝑓 ). The following development is written for one-dimensional data 𝑥 in order to focus on time and frequency. It also applies to
multidimensional data 𝑥 = [𝑥1 𝑥2 …] such as a multichannel simultaneous recording (a set of time series). The complex conjugate
𝑥∗ is thus interpreted as the conjugate transpose, turning the scalar product 𝑥∗𝑥 into an energy matrix.

A time–frequency statistical estimator operates on the data 𝑥. In particular, quadratic estimators are defined from an operator
𝐾 that can take the form of a bivariate temporal kernel �̌� or spectral kernel �̂�:

𝑥∗𝐾∗𝑥 = ∬ 𝑥(𝑡1)𝑥∗(𝑡2)�̌�∗(𝑡1, 𝑡2)d𝑡1d𝑡2 = ∬ �̂�(𝑓1)�̂�∗(𝑓2)�̂�∗(𝑓1, 𝑓2)d𝑓1d𝑓2 . (1)

The first notation refers to the matrix product, which applies to a discrete time or frequency variable. The following expressions are
explicit integrals over the temporal or spectral continuum. If the operator 𝐾 is non-negative, the estimate can be interpreted as a
𝐾-localized energy.

In the discrete and finite context of multi-taper estimators, the kernel is a Hermitian symmetric matrix (chosen to be positive-
definite), whose eigenvectors are the multiple orthogonal tapers. They take the statistical interpretation of complex degrees of
freedom in the estimation operator 𝐾, and their effective number, 𝑛, is readily computed from the corresponding (positive)
eigenvalues. This computation is equivalently expressed, directly from the kernel, as an effective number of eigenstates (orthogonal
atoms), given by a beautiful trace formula [19]:

𝑛 =
(Tr𝐾)2

Tr𝐾∗𝐾
=

(

∫ �̌�(𝑡, 𝑡)d𝑡
)2

∬ |�̌�(𝑡1, 𝑡2)|
2d𝑡1d𝑡2

=

(

∫ �̂�(𝑓, 𝑓 )d𝑓
)2

∬ |�̂�(𝑓1, 𝑓2)|
2d𝑓1d𝑓2

. (2)

Again, the second and third equal signs clarify the correspondence between the linear algebra notation and integration. The
Hermitian symmetry writes �̌�∗(𝑡2, 𝑡1) = �̌�(𝑡1, 𝑡2) in time, and similarly in frequency. The matrix product and the linear algebraic
trace Tr each correspond to an integral.

In a continuous context, the analytical computation of the number of atoms 𝑛 can be intractable (especially the integrals Tr𝐾∗𝐾),
favouring the discrete approach. An important contribution of this work is the continuous formulation of spectrogram and scalogram
estimators for which the effective number of statistical degrees of freedom is not only tractable analytically, but also intuitive and
simple. Beyond these solvable cases, an accurate and analytical approximation of 𝑛 can be obtained using Laplace’s method, as
showcased in Appendix E.
4 
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2.5. Localization uncertainty as time–frequency entropy

The time–frequency interpretation of Eq. (1) is introduced with the Wigner–Ville representation:

𝑊𝑥𝑥(𝑡, 𝑓 ) = ∫ 𝑥(𝑡 + 𝜏
2 )𝑥

∗(𝑡 − 𝜏
2

)

𝑒−𝑖2𝜋𝑓𝜏d𝜏 = ∫ �̂�
(

𝑓 + 𝜂
2

)

�̂�∗
(

𝑓 − 𝜂
2

)

𝑒𝑖2𝜋𝜂𝑡d𝜂 (3)

𝑥∗𝐾∗𝑥 = ∬ 𝑊𝑥𝑥(𝑡, 𝑓 )𝐾∗(𝑡, 𝑓 )d𝑡d𝑓 . (4)

A Hermitian operator 𝐾 translates into a real kernel 𝐾(𝑡, 𝑓 ) = 𝐾∗(𝑡, 𝑓 ), which we choose to be non-negative. Relations to temporal
and spectral representations �̌� and �̂� are given in Eqs. (C.1), (C.2), clarifying the choice of these notations. The spectrogram and
the scalogram of 𝑥 can be estimated from the Wigner–Ville representation in terms of certain convolution operators 𝐾. In the case
of the square of the Gabor or wavelet transform (introduced in the next section), the kernel covers a single uncertainty atom, 𝑛 = 1,

hich is insufficient for a statistical interpretation. The Wigner–Ville representation itself corresponds to the degenerate case 𝑛 = 0:
o smoothing or atom of uncertainty can yield infinite variance and negative values [25,26].

In Wigner–Ville’s quadratic time–frequency representation, the logarithm of the number of atoms:

log 𝑛 = − log
∬ 𝐾(𝑡, 𝑓 )2d𝑡d𝑓

(

∬ 𝐾(𝑡, 𝑓 )d𝑡d𝑓
)2

= 𝐻2[𝐾] , (5)

turns out to be the order 2 Rényi entropy 𝐻2[𝐾] of the non-negative time–frequency kernel. Since an exponential entropy counts an
effective number of ‘‘states’’ in the distribution 𝐾(𝑡, 𝑓 ) [27], we arrive at the following interpretation: to gain statistical significance,
𝑛 quanta of information (Gabor’s logon) are averaged in the smoothing operation, but the distinct time–frequency localization of
these 𝑛 atoms of uncertainty is lost.

The Rényi entropy has previously been applied to time–frequency representations of a signal [28–32], as a way of quantifying
their concentration. Interestingly, the case of the Rényi entropy of order 2 was rejected because of its unsuitable handling of cross
terms. This is irrelevant here since the kernel 𝐾(𝑡, 𝑓 ) is non-negative; 𝑛 can be interpreted as the time–frequency area effectively
covered by the kernel.

Although the continuous time–frequency integral expression for statistical degrees of freedom has already appeared in the
literature [26], its interpretation and practical usefulness remained unrecognized so that explicit eigendecompositions seemed
inevitable. In the following section, we present two time–frequency statistical estimators, whose number of atoms is exactly derived
from resolution parameters, shedding a new light on the formulation and the application of the uncertainty principle.

3. Canonical quadratic time–frequency estimators

In this section, we present a concise perspective on the prolific and mature field of continuous time–frequency representations
by focusing on their single trial statistics. In what follows, two quadratic estimators in the Cohen and the affine classes of time–
frequency representations [33] are revisited: the spectrogram and the scalogram. They are built from a decomposition of the
signal into paradigmatic time–frequency atoms, Gabor’s normal oscillatory windows 𝑤 and Grossmann’s log-normal wavelets 𝜓 .
The recomposition of these atoms into the estimator’s kernel is denoted 𝐾𝑤 and 𝐾𝜓 respectively. These quadratic estimators are
referred to as canonical, each in its own paradigm, for their elementary and exact parameterization of the statistical and time–
frequency properties discussed in Section 2 in terms of two essential physical quantities. The time–frequency resolution is controlled
by either a pair of timescales (𝜏+, 𝜏−) or a pair of quality factors (𝑄+, 𝑄−), and their scale separation (ratio) corresponds exactly to
the effective number 𝑛 of statistical degrees of freedom, Eqs. (2), (5). Heisenberg’s uncertainty principle is strikingly reformulated
as the requirement 𝑛 ≥ 1 for a statistical description of single-trial signals, in both the fixed-scale and scale-free approaches.

3.1. Normal window paradigm

We start with the Gaussian or normal window of width (duration) 𝜏:

𝑤𝜏 (𝑡′ − 𝑡) = 𝑒−𝜋
(

𝑡′−𝑡
𝜏

)2

, (6)

whose spectrum �̂�𝜏 = 𝜏𝑤 1
𝜏

has bandwidth 1
𝜏 . The short-time Fourier transform (STFT) of a signal 𝑥 under this normal window

decomposes the spectrum �̂� in the time domain, by shifting the window to any time 𝑡. This STFT is also known as the Gabor
transform:

𝐺𝑥(𝑡, 𝑓 ; 𝜏) = ∫ 𝑥(𝑡′)𝑤𝜏 (𝑡′ − 𝑡)𝑒−𝑖2𝜋𝑓𝑡
′d𝑡′ = ∫ �̂�(𝑓 ′)𝑤 1

𝜏
(𝑓 ′ − 𝑓 )𝜏𝑒𝑖2𝜋(𝑓

′−𝑓 )𝑡d𝑓 ′ . (7)

The pure wave multiplied by the normal window constitutes Gabor’s oscillating atom of uncertainty, or logon [16], shifted at any
time–frequency location (𝑡, 𝑓 ). From this decomposition, schematized in Fig. 1(B, left), the spectrogram of a stochastic process 𝑥 can
be defined as a second order moment:

√

2 E
[

𝐺 𝐺∗] , (8)
𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏) = 𝜏 𝑥 𝑥

5 



A. Guillet and F. Argoul

e
T
t

3

n
a
c
(

s
i
d
s

A
f
d

Journal of the Franklin Institute 361 (2024) 107201 
normalized by 𝜏
√

2
, the energy of the atomic window 𝑤𝜏 . It is interpreted as a time-dependent power spectral density, in other words

the time–frequency density of energy in 𝑥.
A statistical estimate of the spectrogram is obtained by smoothing the product 𝐺𝑥𝐺∗

𝑥, either along time or along frequency,
assuming its probability distribution locally invariant. This recomposition of atoms from a local averaging operation again involves
a normal window of different duration. The choice of a Gaussian smoothing leads to two equivalent definitions of the canonical
spectrogram estimator:

𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏+, 𝜏−) =
2

𝜏↑𝜏− ∫ 𝐺𝑥(𝑡′, 𝑓 ; 𝜏−)𝐺∗
𝑥(𝑡

′, 𝑓 ; 𝜏−)𝑤2
𝜏↑
(𝑡′ − 𝑡)d𝑡′ , 𝜏2↑ = 𝜏2+ − 𝜏2− (9)

= 2𝜏↓
𝜏+ ∫ 𝐺𝑥(𝑡, 𝑓 ′; 𝜏+)𝐺∗

𝑥(𝑡, 𝑓
′; 𝜏+)𝑤2

1
𝜏↓

(𝑓 ′ − 𝑓 )d𝑓 ′ , 𝜏−2↓ = 𝜏−2− − 𝜏−2+ . (10)

The corresponding compositions of atoms are schematized in Fig. 1(C), the left and middle ones respectively. A time-smoothing
xtent 𝜏↑ is required to obtain a composition of duration 𝜏+ from atoms of duration 𝜏− (similarly for 1

𝜏↓
in the frequency domain).

wo different timescales 𝜏+ ≥ 𝜏− are thus introduced in these decomposition and recomposition operations, as summarized in the
ime–frequency kernel (Wigner–Ville representation) of this estimator 𝑥∗𝐾∗

𝑤𝑥:

𝐾𝑤(𝑡′, 𝑓 ′; 𝑡, 𝑓 ) = 2𝜏−
𝜏+

(

𝑤𝜏+(𝑡
′ − 𝑡)𝑤 1

𝜏−
(𝑓 ′ − 𝑓 )

)2 . (11)

This density function provides the exact shape of the composition of atoms in Gabor’s normal window paradigm. See Appendix C.2
for purely temporal or spectral explicit expressions. This averaging operator covers a time–frequency box located at (𝑡, 𝑓 ) with widths
𝛥𝑡 = 𝜏+ and 𝛥𝑓 = 𝜏−1− , which contains:

𝑛 =
𝜏+
𝜏−

(12)

uncertainty atoms, or equivalently 𝑛 statistical degrees of freedom. The scale ordering 𝜏+ ≥ 𝜏− is thus equivalent to Heisenberg’s
uncertainty relation, here 𝑛 = 𝛥𝑡𝛥𝑓 ≥ 1.

.2. Log-normal wavelet paradigm

To change of paradigm, it could be sufficient to let the duration of the atom adapt to the frequency, 𝜏 = 𝑄|𝑓 |−1, and instead fix a
umber of oscillations or a quality factor 𝑄. The resulting time–frequency decomposition, proportional to 𝐺𝑥(𝑡, 𝑓 ;𝑄|𝑓 |−1), is known
s the wavelet transform with Morlet’s Gabor-like atom [34] or the closely related S-transform [35]. The relationships between these
onventions are discussed further in Appendix B. However, the previous development would fail at Eq. (10). Moreover, this normal
Gabor-Morlet) wavelet would lack important properties, useful in a constant-𝑄 signal analysis and synthesis: it is neither analytic

(only approximately so for 𝑄 ≫ 1), nor admissible (without adjustment).
Instead, like others before us, we propose to use a ‘‘particularly good’’ wavelet in this respect [36], already anticipated in [37]:

�̂�𝑄
( 𝑓 ′

𝑓

)

= 𝑒−𝜋
(

𝑄 log 𝑓 ′
𝑓

)2

𝛩
( 𝑓 ′

𝑓

)

, (13)

where the Heaviside step function 𝛩 handles the sign of the frequency domain (relevant for complex-valued signals). This is the
log-normal (Altes–Grossmann) wavelet with quality factor 𝑄, a symmetric limit case in the 2-parameter Morse family of analytic
wavelets [38], also known as the log-Gabor filter (its radial part) in image processing [39–41]. Defined from the frequency domain,
this uncertainty atom is scaled at frequency 𝑓 and shifted at time 𝑡 once multiplied by 𝑒−𝑖2𝜋𝑓 ′𝑡. There is no closed-form temporal
expression for 𝜓𝑄, but an effective number of oscillations 𝑄 = |𝑓 |𝛥𝑡 is expected [42]. The log-normal and the normal shapes are
imilar for 𝑄 ≫ 1: in this regime, the Altes–Grossmann wavelet is indistinguishable from the Gabor-Morlet wavelet, but it retains
ts analyticity and admissibility with a small quality factor. It has other interesting properties, such as invariance with respect to
erivation, orthogonality to any polynomial trend in the signal and a faster than polynomial decay in time and in frequency on both
ides, which makes it particularly regular and localized [42].

The log-normal wavelet has a relative bandwidth 𝛥 log 𝑓 = 𝑄−1 around the peak frequency 𝑓 ′ = 𝑓 , so that we define the
corresponding wavelet transform as a time–frequency decomposition:

𝑋(𝑡, 𝑓 ;𝑄) = ∫ �̂�(𝑓 ′)�̂�∗
𝑄
( 𝑓 ′

𝑓

)

𝑒𝑖2𝜋𝑓
′𝑡d𝑓 ′ = ∫ 𝑥(𝑡′)𝜓∗

𝑄(𝑓 (𝑡
′ − 𝑡))|𝑓 |d𝑡′ . (14)

lternative spectral interpretations of the scale variable differ by a factor 𝜆𝛼 = exp 𝛼
2𝜋𝑄2 [42], for instance 𝛼 = 3

2 for the instantaneous
requency (phase derivative) of 𝜓𝑄. From the atomic decomposition Eq. (14) schematized in Fig. 1(B, right), the scalogram can be
efined as a second order moment:

𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄)|𝑓 | =
√

2𝑄E
[

𝑋𝑋∗] (15)

normalized by
(

√

2𝑄
)−1, the admissibility coefficient of the wavelet 𝜓𝑄. The scalogram is interpreted as a time-dependent power

log-frequency density: the explicit factor |𝑓 | is compensated when integrated with respect to d𝑓
|𝑓 | (equal to d log 𝑓 for 𝑓 > 0). This

notation as a product 𝑆 |𝑓 | conserves the physical unit of the evolutionary spectrum 𝑆 in both paradigms.
𝑥𝑥 𝑥𝑥
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Fig. 2. Log-normal kernels 𝐾𝜓 (𝑡′ , 𝑓 ′; 𝑡, 𝑓 )𝛥𝑡𝛥 log 𝑓 (nondimensionalized): (A, C) composed of a fixed number of atoms 𝑛 = 𝑄+

𝑄−
= 4 with different mean quality

factors 𝑄0 =
√

𝑄+𝑄− = 1
2
, 2, 8, (B, D) with a fixed 𝑄0 = 2 and increasing number of atoms 𝑛 = 1, 4, 16 (from left to right). Each kernel is represented in 3 copies

at distinct time–frequency locations, and both in (A, B) Wigner–Ville’s (𝑡′ , 𝑓 ′) and in (C, D) the wavelet’s (𝑡, 𝑓 ) planes. White boxes, of time–frequency area equal
to 𝑛, materialize the uncertainty 𝛥𝑡 = 𝑄+|𝑓 ′

|

−1 , 𝛥 log 𝑓 = 𝑄−1
− .

A statistical estimate of the scalogram is obtained by smoothing the product 𝑋𝑋∗. The use of the log-normal wavelet with a
different quality factor to compute the local average along log-frequencies (or scales) leads to the canonical scalogram estimator:

𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−)|𝑓 | = 2𝑄↓𝑄+ ∫ 𝑋(𝑡, 𝑓 ′;𝑄+)𝑋∗(𝑡, 𝑓 ′;𝑄+)�̂�2
𝑄↓

( 𝑓 ′

𝑓

) d𝑓 ′
|𝑓 ′| , 𝑄−2

↓ = 𝑄−2
− −𝑄−2

+ . (16)

This smoothing is formally analogous to Eq. (9), where time is replaced by log-frequency, but conceptually similar to Eq. (10)
and Fig. 1(C, middle), where the recomposition step is performed along the vertical (spectral) direction. The change in (relative)
bandwidth 𝑄−1

↓ is the amount of smoothing required to achieve a bandwidth 𝑄−1
− , for a composition of atoms with bandwidth 𝑄−1

+ .
Again, the two different quality factors 𝑄+ ≥ 𝑄− introduced here are visible in the kernel of the canonical scalogram estimator,
when written in the spectral domain:

�̂�𝜓 (𝑓1, 𝑓2; 𝑡, 𝑓 ) =
√

2𝑄−
(

�̂�𝑄+

( 𝑓1
𝑓2

)

�̂�𝑄−

( 𝑓1𝑓2
𝑓2

))
1
2𝛩

( 𝑓1
𝑓

)

𝛩
( 𝑓2
𝑓

)

𝑒−𝑖2𝜋(𝑓1−𝑓2)𝑡 . (17)

The time and time–frequency kernels for this operator are intractable integral forms, see Appendix C.1, as for the log-normal wavelet
𝜓𝑄 in the time domain. Nevertheless, we compute 𝐾𝜓 (𝑡′, 𝑓 ′; 𝑡, 𝑓 ) numerically from Eqs. (17), (C.1) to confirm the extension of the
time–frequency uncertainty, and note its non-negativity (up to numerical precision). The kernels are represented for different quality
factors in Fig. 2 as dimensionless functions 𝐾𝜓 (𝑡′, 𝑓 ′; 𝑡, 𝑓 )𝛥𝑡𝛥 log 𝑓 . In contrast to Gabor’s window paradigm (Eq. (11)), they have
distinct shapes in Wigner–Ville’s time–frequency plane (𝑡′, 𝑓 ′) (A, B) and in the wavelet’s (target) time–frequency plane (𝑡, 𝑓 ) (C,
D). They represent the area of the time–frequency uncertainty, well summarized by the widths 𝛥𝑡 = 𝑄+|𝑓 ′

|

−1 and 𝛥 log 𝑓 = 𝑄−1
−

(white boxes), thus confirming the interpretation of the quality factor, even for small values. The case 𝑄+ = 𝑄− corresponds to the
Wigner–Ville distribution of the log-normal wavelet, which is a quadratic time–frequency representation of the uncertainty atom.

The kernel of the canonical scalogram estimator contains a number of uncertainty atoms:

𝑛 =
𝑄+
𝑄−

, (18)

which corresponds precisely to the time–frequency area of the illustrated uncertainty boxes, fixed in Fig. 2(A, C) or increasing from
𝑛 = 1 (single atoms, left) to 𝑛 = 16 (right) in Fig. 2(B, D). For a uniform visualization of these various time–frequency densities on
linear-logarithmic axes, we have plotted their dimensionless form obtained by multiplying 𝐾𝜓 by 𝛥𝑡𝛥 log 𝑓 = 𝑛|𝑓 ′

|

−1.
As before, there is also a temporal smoothing derived from the log-normal wavelet that corresponds to the horizontal composition

of atoms schematized in Fig. 1(C, left). Instead of acting on a single time variable in the product of wavelet transforms, it acts on
7 
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Fig. 3. Electroencephalogram (EEG) during sleep. (A) Hypnogram: EEG scoring of the sleep stages ‘‘wake’’, ‘‘rapid eye movement’’ (REM) and ‘‘non-REM’’ stages
1, 2 and 3 (light to deep sleep). (B) EEG signal (𝜇V) from electrodes C4-A1. (C) Fourier amplitude spectrum |�̂�(𝑓 )|∕𝑇 . (D) Spectrogram 𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏+ , 𝜏−) with
(𝜏+ , 𝜏−) = (20, 1) s, and (E) power spectral density (blue). (F) Scalogram 𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄+ , 𝑄−)|𝑓 | with (𝑄+ , 𝑄−) = (100, 5), and (G) power log-frequency density
(red). The colour bars for (D, F), between quantiles [0.1, 0.99], are aligned with the corresponding axes in (E, G) and persistence spectra are shown (grey). (H)
Time-dependent power estimated from (D, blue) and (F, red), and mean power (grey line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

two time variables:

𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−)|𝑓 | = 2𝑄↑𝑄− ∬ 𝑋(𝑡1, 𝑓 ;𝑄−)𝑋∗(𝑡2, 𝑓 ;𝑄−)𝜒∗
𝑄↑
(𝑡1 − 𝑡, 𝑡2 − 𝑡)d𝑡1d𝑡2

where 𝜒𝑄↑
(𝑡, 𝑡′) = ∫ 𝜓𝑄↑

(𝑓 ′𝑡)𝜓∗
𝑄↑
(𝑓 ′𝑡′)|𝑓 ′

|d𝑓 ′ , 𝑄2
↑ = 𝑄2

+ −𝑄2
−. (19)

This remarkable expression is specific to the log-normal wavelet paradigm.
Finally, the convenient intuition of the time–frequency statistics in the normal window paradigm is largely preserved in this

log-normal wavelet paradigm. The separation of the correlation scale (frequency) and the evolution scale (duration) is achieved for
each frequency of interest 𝑓 by the distinction 𝑄+ ≥ 𝑄−, which corresponds to an uncertainty relation 𝑛 = |𝑓 |𝛥𝑡𝛥 log 𝑓 ≥ 1, allowing
a statistical interpretation of the scalogram estimate.

4. Visualizing an electroencephalogram

During sleep, the physiological interaction between organs is orchestrated by the autonomic nervous system; the EEG recording of
brain cortex potential fluctuations provides valuable information about these interactions, their regulation or their imbalance [4–6].
Polysomnographic signals (including EEG signals) are now used in routine clinical practice to identify not only sleep disorders but
also their interaction with other metabolic, organic or cognitive functions [43].

An EEG recording provides a rich and natural illustration for our discussion. Time–frequency statistics are particularly well suited
to the analysis of such ‘‘unique’’ (in the sense of strictly non-reproducible) signals, which intermittently switch from highly stochastic
(scale invariant) to more regular dynamics during the night. Canonical estimates of the EEG spectrogram and scalogram are used
to illustrate the brain activity. A fair comparison of these two paradigms of continuous atomic decomposition and recomposition is
given in terms of their resolution, highlighting their strengths and limitations.

The EEG shown in Fig. 3 is part of the polysomnography shhs2-200901 from the Sleep Heart Health Study [14,15] that were
recorded on a 54-year-old sleeping woman. The cardiac (ECG) and respiratory signals from this polysomnography are also presented
in the next figures, in the same selected time interval: from the fourth hour after sleep onset to awakening. Further characteristics

of these electrophysiological signals are detailed in Appendix A.
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4.1. Single trial time–frequency statistics without orthogonal atoms

Time–frequency statistical estimators such as the spectrogram and the scalogram are ideal tools for approaching and deciphering
he complex mixture of ever-changing fluctuations and oscillations that make up the brain activity. A time–frequency statistical
nalysis of the EEG based on the multi-taper spectrogram has already been advocated [44]. We intend to refine this perspective,
tarting with a criticism: the explicit use of orthogonal atoms such as multi-tapers is unnecessary and do not provide an explicit
ontrol of the time–frequency resolution. The continuous numbering of statistical degrees of freedom Eq. (2) is straightforward for
ny (non-negative) quadratic operator, and those we introduce in this article are explicitly parameterized in terms of time and
requency resolutions. Some general considerations are worth mentioning when choosing these analytical tools. As we have already
ointed out in previous sections, this choice builds on compromises.

On the one hand, it is generally accepted that the best quadratic time–frequency representations are those with the highest
esolution. On the other hand, an averaging based on orthogonal windows (tapers) is often pushed forward as optimal for
stimating statistics from these representations. This implies a systematic trade-off between time–frequency resolution and the
umber of statistical degrees of freedom. The discrete orthogonal approach explicitly details the shape of each independent atom,
ut the resulting resolution is implicit. The converse is true for the continuous (smoothing) approach: the resolution is explicitly
arameterized, but the exact shape of each uncertainty atom is implicit. We further argue that these shapes (see Fig. 1C) are
ontingent since the effective number of atoms is known exactly.

Indeed, for the same resulting composition of atoms, alternative continuous decompositions (into windows or wavelets) and
ecompositions (into a statistical estimator) are available: see Eqs. (9), (10) for the spectrogram and Eqs. (16), (19) for the scalogram.
hus, the duration of a window can be thought of as belonging to [𝜏−, 𝜏+], or the number of wavelet oscillations to [𝑄−, 𝑄+], but
nly the final composition of atoms matters (characterized by the bounds of these intervals). Moreover, we have shown that both
he resulting time–frequency resolution and the effective number of statistical degrees of freedom can be parameterized exactly as
wo timescales or quality factors and their ratio respectively.

Therefore, the spectrogram of the EEG 𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏+, 𝜏−) in Fig. 3(D) provides the same quality of time–frequency statistical
stimation as the multi-taper spectrogram [44], without relying on orthogonal windows and with an explicit control of the resolution:
ere 𝜏+ = 20 s = 𝛥𝑡 and 𝜏− = 1 s = 𝛥𝑓−1. The choice between the spectrogram and the scalogram is discussed next.

.2. Resolution in the spectrogram and in the scalogram

The choice of a time–frequency paradigm is another critical aspect of the EEG analysis. In Fig. 3(D, F), we try to compare the
pectrogram (D) and the scalogram (F) as fairly as possible: both estimates are composed of 𝑛 = 20 uncertainty atoms and the
pectral ranges are chosen to have the same apparent resolution (along their respective linear and logarithmic axes). The colour
cale is further bounded by magnitudes chosen at the same quantiles: 10% and 99% of the magnitude distribution in the images. The
se of a perceptual colour coding [45] (on a logarithmic axis) is also an important aspect to prevent visual artefacts from hindering
quantitative assessment of the EEG power densities. The flat representation of the time–frequency plane, adapted to the geometry
f the spectrogram, constitutes a drawback for the scalogram, which can be circumvented by zooming on shorter time ranges to
xamine higher frequencies.

The scalogram 𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−)|𝑓 | in Fig. 3(F) is similar to the spectrogram in Fig. 3(D) once the factor |𝑓 | is omitted:
𝑥𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−) ∼ 𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏+, 𝜏−), up to their different time–frequency resolution. The spectrogram and the scalogram are time–

requency densities of the signal energy, and the factor |𝑓 | appears for the scalogram to keep this interpretation on a log-frequency
xis.

The frequency dependence of the time resolution in the scalogram is well visible for impulsive events. The large upper quality
actor chosen in Fig. 3(F), 𝑄+ = 100, is not the most suitable to visualize single oscillations (as it averages over 100 of them),
specially at low frequencies where single events are spread over several minutes. Nevertheless, the time resolution at high
requencies is greater in the scalogram (F) than in the spectrogram (D): at 𝑓 = 20 s−1, singular events spread over 𝛥𝑡 = 5 s in
he former compared to 𝛥𝑡 = 20 s in the latter. The inversion of the temporal resolution between the scalogram and the spectrogram
ccurs at the frequency 𝑄+∕𝜏+ = 5 s−1, and the same inversion occurs for the spectral resolution, 𝑄−∕𝜏− = 5 s−1.

Focusing now on the spectral resolution, the spectrogram representation appears to be a natural extension of the traditional
iscretization of the EEG into (linearly spaced) frequency bands, approximately every 4 s−1 [44]. But the existence of a neural
ctivity on multiple timescales [46], supported by the similarity between the EEG and a pink noise (self-similar process), clearly
oints to the scale-invariant wavelet paradigm and its scalogram. Indeed, the observation of the EEG fluctuations shows that the
pectral range is only limited by the instrumental characteristics, especially at low frequencies, where the effect of the high-pass
ilter is particularly marked in Fig. 3(F, G). This limitation is hidden in the spectrogram, since the spectral range below its frequency
esolution 𝛥𝑓 = 1 s−1 is not resolved.

The brain waves in the bands 𝛽-𝛾 (fast) and 𝛿 (slow) are particularly irregular compared to the intermediate ones (𝜃 and especially
and 𝜎), which are more rhythmic. The characteristics of bands and their relation to sleep stages are given in Appendix A.1. In

he scalogram, the irregularity of brain waves can be observed independently of their frequency as their relative bandwidth, visible
s their spread in log-frequency. We cannot see this aspect from the spectrogram, which relies heavily on its fixed timescales, in
articular 𝜏− = 𝛥𝑓−1. The difference is striking when comparing the extension of weaker high-frequency activity with the narrowing

f the stronger low-frequency activity in the spectrogram. This picture is more balanced in the scalogram.
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The frequency-localized structures in the intermediate band (between 8 and 16 s−1) are composed of 𝜎 waves (sleep spindles, in
the non-REM stage) and 𝛼 waves (strongest in the wake stage). In Fig. 3, the spectrogram benefits from a better spectral resolution
in this band than the scalogram. The latter can, at best, distinguish between frequencies 9 and 11 s−1 with the quality factor 𝑄− = 5.

Our conclusion is nuanced: the scalogram appears to be the preferred representation for a broad perspective on the diversity of
imescales and on the regularity of the recorded oscillations, whereas the spectrogram is useful for focusing on neural phenomena
ear the reference timescales.

.3. Temporal and spectral densities of the EEG power

We finally comment on the representation of the EEG as simpler temporal, spectral, fully global or local estimates, by following
he description of marginal and limit cases of the canonical spectrogram and scalogram estimators detailed in Appendix C.3.

Spectral estimates are shown in Fig. 3(E, G). The EEG spectrogram (D) is aligned with its power spectral density 𝑆𝑥𝑥(𝑓 ; 𝜏−) (E)
and the EEG scalogram (F, blue) with its power log-frequency density 𝑆𝑥𝑥(𝑓 ;𝑄−)|𝑓 | (G, red). Persistence spectra are also shown
time-sampled spectrogram and scalogram), giving a glimpse of the temporal variability associated with sleep stages and more room
o explore higher order moments, or other statistical quantities such as quantiles (used for colour-coding). The 1∕𝑓 trend of the EEG,
isible in the spectrogram and in the power spectral density, is compensated in the scalogram and in the power log-frequency density.
witching to the wavelet scale-invariant paradigm therefore provides a better contrast to EEG time–frequency representations. For
nstance, the narrowband activity of the 𝛼 − 𝜎 waves is clearer in Fig. 3(G) than in (E), in spite of a lower resolution: 𝛥𝑓 ≈ 2 to

s−1 versus 1 s−1.
Temporal estimates of the local EEG power or variance are compared in Fig. 3(H). Contrary to the Gabor estimate of the time-

ependent power 𝑃𝑥𝑥(𝑡; 𝜏+) (blue), the wavelet estimate 𝑃𝑥𝑥(𝑡;𝑄+) (red) has an unspecified resolution that varies with the timescale
of the fluctuation under consideration; see definition in Eq. (C.6). Both estimates may differ locally, but their trend is very similar.
The switch between NREM and REM (see the hypnogram, A) has a clear effect on the local variance, which can drop from 1000 𝜇V2

during deep sleep (N3 stage) down to 100 𝜇V2 during REM.
At maximal statistics, no time–frequency resolution is left: the mean power (global variance) of the EEG in Fig. 3 is about 500 𝜇V2

(grey line in H), related to the electrical power by an impedance assumed constant or slowly varying.
At maximal time–frequency resolution, no room is left for a statistical estimation. Besides the degenerate case 𝑛 = 0 of the Wigner–

Ville distribution, 𝑛 = 1 leads to the common conception of the spectrogram and the scalogram as squares of the corresponding
time–frequency decomposition. On top of the amplitude, the phase information in linear representations can be of interest for
studying the micro-architecture of sleep and its rhythmic brain waves, such as sleep spindles (𝜎) and slow oscillations (𝛿) in deep
sleep (N3), or 𝛼 waves. A quadratic statistical estimator with a few degrees of freedom can also enhance the analysis of rhythmic
behaviours, as applied to the cardiac activity in the next section.

5. Quadratic decoding of the heart rate fluctuations

As the central conductor of the dual circulatory system, the contractile activity of the heart adapts in real time to the needs
of the entire organ system and is finely regulated by the sympathetic and parasympathetic branches of the autonomic nervous
system. The heart rate variability (HRV) has been proposed as a health resilience marker more than three decades ago [47];
HRV is still the subject of a long-lasting interest [48,49]. The further improvement and comparison of HRV identification methods
remains an important issue. Non-invasive techniques have been developed to monitor the rhythmic activity of the heart, such as
electrocardiography, photoplethysmography, and mechanocardiography.

Here, we focus on the electrocardiogram (ECG) from the same polysomnography as before. The standard discrete estimation
of the heart rate from inter-beat time intervals is reinterpreted within the continuous log-normal wavelet framework. After an
ECG-specific preprocessing step illustrated in Fig. 4, we then take a statistical perspective to propose a stable rate signal estimator
derived from the phase of the cardiac oscillation. This quadratic method is arguably the simplest non-linear estimation of the heart
rate signal. We discuss its advantages and limitations compared to existing non-linear methods.

5.1. Wavelet-based preprocessing of the ECG

The electrical activity of the heart, as recorded by the ECG, is shown in Fig. 4. The sharp and prominent oscillations in this
rhythm, called QRS complexes, are a clear marker of a heartbeat, visible in the time domain, either in the signal (A, zoom in E top)
or in time–frequency representations (wavelet transforms B and C), but not in the spectral domain (D). QRS refers to a sequence of
3 local extrema in the ECG waveform, in the time domain, including the sharpest peak. Its detection (red circles in E, F) is routinely
used to extract the heart rate (black dots in B, C, E, F) from the time intervals between beats, as described in Appendix A.2. Due to
the frequent polarity reversal of the ECG signal (depending on the placement of the electrodes on the chest), a proxy for the QRS
amplitude is often preferred to the actual voltage peak, after band-pass filtering baseline drift and high frequency noise.

This ECG-specific preprocessing is simply the modulus of the wavelet transform:

𝑦(𝑡) = |𝑋(𝑡, 𝑓qrs;𝑄qrs)| (20)

at the characteristic scale of the QRS complex. Aiming at ‘‘softening’’ the cardiac oscillation, this step can be skipped for other

types of cardiac recording. Note that 𝑦(𝑡) is specified by both a frequency location 𝑓qrs and a resolution: the quality factor 𝑄qrs.
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Fig. 4. (A) ECG signal 𝑥(𝑡) (𝜇V). (B) |𝑋(𝑡, 𝑓 ;𝑄)| with 𝑄 = 1. (C) |𝑋(𝑡, 𝑓 ;𝑄qrs)| with 𝑄qrs = 3. The colour scale (𝜇V) is aligned with (D). (D) Amplitude spectra:
|�̂�(𝑓 )|∕𝑇 over one RR interval (black triangles) or the selected time interval (grey line), median (thick lines), and root-mean-square (thin lines) over time of
(B, blue) and (C, red). (E) 𝑥(𝑡) and 𝑋(𝑡, 𝑓 ;𝑄) (zoom in the boxes in A, B), with modulus-angle colour coding near the heart rate. (F) Amplitude of the QRS
complexes 𝑦(𝑡) = |𝑋(𝑡, 𝑓qrs;𝑄qrs)| at 𝑓qrs = 14 s−1 (grey dashed line in C, D) and 𝑌 (𝑡, 𝑓 ;𝑄) with 𝑄 = 1. Heart rate (dots in B, C, E, F) estimated from detected QRS
complexes (red circles in E, F). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The modulus of two wavelet transforms with different quality factors 𝑄 = 1 and 𝑄qrs = 3 are shown in Fig. 4(B and C) in the
time–frequency domain, and a time slice of the latter is shown at the selected frequency 𝑓qrs = 14 s−1(F top). The non-negative
signal 𝑦(𝑡) represents the QRS amplitude, whose local maxima are a key element in the detection of the QRS oscillations and the
estimation of the heart rate (inverse of the RR time intervals). The standard discrete estimation described in Appendix A.2 is shown
on all time–frequency representations in Fig. 4(B, C): it clearly follows the frequency modulations of the fundamental mode of the
ECG.

The angular components of the wavelet transforms 𝑋 (ECG) and 𝑌 (QRS amplitude) are compared in Fig. 4(E and F bottom). It
can be seen that the cardiac cycle, as detected by the discrete reference method, follows the angle at the cardiac frequency. This is
particularly robust in the phase of the QRS amplitude (F) compared to the ECG (E), which can also encode occasional oscillations
of the baseline (motion artefacts). This suggests an alternative and continuous description of the heart rate, as the derivative of this
cycling heart phase.

5.2. Fluctuating rates: from the analytical signal to a time–frequency statistical estimation

Given a single-channel oscillatory signal 𝑥, its amplitude and frequency modulations (AM and FM) can be measured from the
modulus and angle of the analytic version of the signal, 𝑥+, defined in Eq. (B.11). A complex rate can be obtained from it as a time
derivative (𝐷𝑡):

𝐹𝑥(𝑡) =
1
𝑖2𝜋

𝐷𝑡 log 𝑥+(𝑡) , (21)

whose real part estimates the fluctuating frequency of the oscillation (the imaginary part is a magnitude rate).
In practice, the resulting modulated rate signal is corrupted by random noise and non-linearities (non-circular waveforms), which

can be mitigated by band-pass filtering the original signal. This is precisely the purpose of a time–frequency decomposition such
as the wavelet transform: the band is determined by a fixed frequency 𝑓 and its bandwidth, absolute (𝛥𝑓 ) or relative (𝛥 log 𝑓 ). The
log-normal wavelet representation 𝑋(𝑡, 𝑓 ;𝑄) has the advantage of being an analytic signal for any fixed 𝑓 , 𝑥+(𝑡) being its limit 𝑄→ 0
as well as its marginal case, as detailed in Eq. (B.12). For this reason, the complex rate 𝐹𝑥(𝑡) can be considered as the limit 𝑄 → 0
of the more general partial time derivative (𝜕𝑡):

𝐹𝑥(𝑡, 𝑓 ;𝑄) =
1 𝜕𝑡 log𝑋(𝑡, 𝑓 ;𝑄) = 𝜆

1
2 𝑓

𝑋(𝑡, 𝜆𝑓 ;𝑄)
, 𝜆 = exp 1 . (22)
𝑖2𝜋 𝑋(𝑡, 𝑓 ;𝑄) 2𝜋𝑄2
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The second equality highlights the practical way to derive with respect to time, as a slight frequency scaling specific to the log-normal
wavelet framework. Note that the limit 𝑄 → ∞ corresponds to 𝐹𝑥 → 𝑓 as expected. 𝐹𝑥(𝑡) inherits the time–frequency resolution of
he wavelet transform. Here, the quality factor counts the number of oscillations of period |𝑓 |−1 used to estimate 𝐹𝑥(𝑡).

If the oscillatory signal 𝑥 has a modulated frequency 𝐹 (𝑡), then the real part ℜ{𝐹𝑥(𝑡, 𝑓 ;𝑄)} can be used to estimate this varying
frequency as a phase derivative, provided that the frequency band selected with 𝑓 and 𝑄 contains only this mode. The imaginary
part captures the modulation rate of the magnitude of the oscillation.

Considering the scale continuum 𝑓 at a fixed time 𝑡, there exist basins of attraction that yield the same frequency estimate. This
‘‘squeezing’’ phenomenon can be used to reassign time–frequency atoms (or their intensity) in the same basin of attraction to their
estimated frequency: the real part of Eq. (22). This process is known as frequency reassignment for quadratic evolutionary spectra
or as synchrosqueezed transform [50,51] for time–frequency decompositions such as the wavelet and Gabor transforms.

In practice, we intend to use 𝐹𝑥(𝑡, 𝑓 ;𝑄) as a signal, after selecting a convenient band (𝑓,𝑄). For natural recordings 𝑥, however, this
omplex rate both vanishes and diverges at certain locations related to zeros (phase defects) of the time–frequency decomposition.
his singular behaviour has been described in terms of a determinantal point process in the case of the white Gaussian noise [21].
heir perturbation on reassigned or synchrosqueezed representations is mitigated by an additional parameter: these regions with
odulus below a certain threshold are excluded [51,52].

We propose here to average the complex rate Eq. (22) over more than one time–frequency atom, in order to preserve the
ontinuity of the estimator in situations with a noisy oscillator, quite common in natural signals. Instead of applying a local mean
irectly to 𝐹𝑥(𝑡, 𝑓 ;𝑄), we introduce a quadratic weight |𝑋(𝑡, 𝑓 ;𝑄)|2 to favour higher amplitudes, and we normalize it with the

average local intensity, which is the scalogram estimator. This leads to the generalized definition of the complex rate as a statistical
estimator, involving both quality factors (𝑄+, 𝑄−), the signal 𝑥(𝑡) and its derivative �̇�(𝑡) = 𝐷𝑡𝑥(𝑡):

𝐹𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−) =
𝑆�̇�𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−)
𝑖2𝜋𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−)

. (23)

The newly introduced control parameter corresponds to the number of atoms, 𝑄+
𝑄−

≥ 1, taken as statistical samples. The statistical
estimator 𝐹𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−) is free from the poles and zeros of 𝐹𝑥(𝑡, 𝑓 ;𝑄), thus stabilizing the complex rate estimate. A multi-taper
reassignment procedure has been proposed in [53]; the frequency reassignment of the canonical scalogram estimator based on
Eq. (23) is expected to achieve a similar goal of improved concentration and stability.

The broadband limit 𝑄− → 0, which can be denoted 𝐹𝑥(𝑡;𝑄+), was introduced in [54] as a more stable alternative to the 𝐹𝑥(𝑡)
limit (reached for 𝑄+ = 𝑄− → 0). When several distinct modes are contained within a bandwidth, for example with frequencies
𝑓1, 𝑓2 satisfying 𝑄−1

+ < log 𝑓2
𝑓1

< 𝑄−1
− , then Eq. (22) behaves as the intensity-weighted version of the arithmetic mean 𝑓1+𝑓2

2 . For
indistinguishable modes such as log 𝑓2

𝑓1
< 𝑄−1

+ , the rate estimation is affected by the beating phenomenon. Alternative rate estimates
an be developed based on geometric or harmonic averages; they all agree for a sufficiently large 𝑄− (narrow band). Finally, the
egree of squeezing can be expressed in terms of the coherence between the rhythmic signal and its derivative [42]. Such a measure
f the accuracy of rate estimation could take over the role of the signal quality index used in practice.

We believe that the explicit balance between the dynamical uncertainty and the number of statistical degrees of freedom in this
ype of rate estimator makes it quite generic and flexible. It can introduce a statistical perspective into more sophisticated non-linear
ethods of rate estimation [55–58]. In the following, we apply it to the case of the heart rate in the most simple and direct way,
hich consists in fixing the band frequency 𝑓 .

.3. Statistical estimation of the heart rate signal from the QRS amplitude

We now estimate the complex rate Eq. (23) of the selected cardiac signal: the QRS amplitude 𝑦(𝑡) extracted from the ECG, plotted
in Fig. 5(A top). The estimation can be applied to other recordings of the cardiac oscillation such as the photoplethysmogram, or
directly to the raw ECG signal, although with inferior results.

In this statistical estimation of the rate signal, the squeezing phenomenon is also observed at the cardiac frequency in Fig. 5(B).
In a neighbouring range of the order of the bandwidth 𝑄−1, the wavelet transform has a nearly constant angle, as can be observed in
Fig. 4(E, F), so that the real part of the complex rate is also nearly constant in this band. We use this flexibility to fix the frequency
variable in this range at 𝑓1 = 1 s−1 for any time, as the simplest estimate of the heart rate.

The pair of quality factors remains to be determined: we want a stable estimator (non-vanishing, non-diverging, hence 𝑄− < 𝑄+)
as close as possible to achieve a time resolution of one heartbeat (𝑄+ ∼ 1). The bandwidth 𝑄−1

− should be chosen wide enough to
contain the heart rate variations, but narrow enough to separate the fundamental mode from other influences. In particular, the
presence of a second harmonic mode implies the constraint 𝑄−1

− < log 2, or 𝑄− > 1.5 using Eq. (B.13), to avoid its interference
(beating).

Although the choice of the quality factors is already quite limited for this application, we propose to optimize their values by
minimizing the mean squared relative error of the estimated heart rate as compared to the reference discrete estimator. In fact,
there are two ways of doing this: either we interpolate the reference discrete heart rate as a continuous variable, or we discretize
the continuous heart rate signal at discrete times (midpoints of the RR intervals). In both cases, the error is about the same: 3% on
average over the selected time interval in Fig. 5 this signal, or even 1% if we exclude the time intervals for which the reference
estimation is considered unreliable (using NN intervals). A noticeable difference is the observation of a bias (about −0.2%) with the

discrete method as compared to no bias with the continuous method. This is caused by a slight oscillation in the heart rate signal at
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Fig. 5. Estimation of the heart rate from the real part of the complex rate Eq. (23) of the heart signal 𝑦(𝑡) (QRS amplitude, top). (A) Rate signals
𝐹𝑗 (𝑡) = ℜ{𝐹𝑦(𝑡, 𝑓𝑗 ;𝑄+ , 𝑄−)} for fixed frequencies 𝑓𝑗=1,2,…, see colour bar, with (𝑄+ , 𝑄−) = (2.3, 1.6). (B) Continuous heart rate estimate for fixed 𝑓 = 1.0 s−1

(green line) and discrete reference estimation from RR intervals (dots). (C) Heart rate estimates and hypnogram (bottom); the time interval selected in (A, B)
and in Fig. 4 is highlighted in grey. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the cardiac frequency, interpreted as a residual beat from unresolved higher harmonic orders. This phenomenon is amplified when
decreasing 𝑄−, especially for the broadband marginal considered in [54].

The error is minimal for all these different methods near 𝑄+ = 2.3 and 𝑄− = 1.6, which corresponds to a mean quality factor
𝑄0 =

√

𝑄+𝑄− ≈ 1.9 and an effective number of statistical degrees of freedom 𝑛 ≈ 1.4. The frequency variable 𝑓1 and the band
(𝑓qrs, 𝑄qrs) defining the signal 𝑦(𝑡) from the ECG recording 𝑥(𝑡) can also be optimally selected. The error is very sensitive to 𝑓1,
nearly optimal at 1.0 s−1, but less sensitive to the QRS band, fixed to 𝑓qrs = 14 s−1 and 𝑄qrs = 3 as in Fig. 4(C, F).

5.4. Discussion of the resulting heart rate estimation

Fig. 5(C) illustrates the evolution of the heart rate variability (HRV) with sleep stages. Non-REM sleep is characterized by a
noticeably lower rate, with particularly small fluctuations during deep sleep (N3). The heart rate and its variability increase during
REM sleep, with bursts during brief awakenings. Compared to the reference discrete estimation, both the time resolution and the
value of the estimated heart rate prove to be accurate. This HRV signal is therefore used in the next section to compare cardiac and
respiratory activity.

However, the accuracy of the simplest quadratic estimation of the heart rate signal, based on a fixed scale 𝑓 , a mean quality
factor 𝑄0 and an effective number of atoms 𝑛, decreases for large or sudden heart rate modulation events. This limitation suggests
a refinement from fixed 𝑓 to variable 𝑓 (𝑡) as for a ridge detection approach [55,59]. From an iterative procedure based on the
self-consistent relation 𝑓 (𝑡) ≈ ℜ{𝐹𝑦(𝑡, 𝑓 (𝑡))}, the heart rate signal estimate can be refined. The fixed scale 𝑓 = 1 s−1 would thus only
remain as a initial guess. Remarkably, no such extension was necessary to demonstrate the usefulness of the canonical time–frequency
statistical estimator in this context.

The rate estimation over several atoms degrades the time–frequency resolution, but a single atom is not sufficient for stability:
this problem has also been addressed in [58,60], where only 𝑛 = 2 orthogonal tapers were used, and the averaging was performed
over numerous representations, each based on a random linear combination of these two atoms. Our continuous approach allows
to further reduce this number to a non-integer optimum 𝑛 = 𝑄+

𝑄−
≈

√

2. As an extension, the number 𝑛 could be made adaptive,
increasing as the regularity of the rhythm is lost.

The phase of the fundamental mode of the cardiac oscillation is at the core of our quadratic approach. Other non-linear but
non-statistical methods have made use of the specific shape of the waveform [57,61]. A future development in this direction may
13 
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benefit from the comparison with the maximum likelihood approach of smoothly deformed Gaussian stationary processes developed
in [62–64].

6. Coherence and mutual information of cardio-respiratory signals

Cardio-respiratory coupling is one of the most important factors in the complex dynamics of the cardiovascular system and
as aroused great interest of both clinicians and theoreticians. The interaction of the heart with other organs ensures the normal
unctioning of the body [65], while a deterioration of this coordination may indicate health impairment [66]. Some authors
ave even argued that the irregularity of breathing and the nonlinear nature of heart-respiration coupling could be potential
ources of temporal variability in the heart rate [67,68]. This interaction results in a frequency modulation of the heart rate at
he breathing frequency, one of the component of the HRV known as respiratory sinus arrhythmia (RSA) [69]. The distinction
etween cardio-respiratory synchronization and coordination has been the subject of a debate [70]. The complexity of heart rate
ariability and cardio-respiratory coupling has previously been estimated from RR intervals using correlation dimension, Lyapunov
xponents [71,72], spectral coherence [73–75] or information-theoretic measures [76].

We investigate here the time–frequency coherence of cardio-respiratory signals and we relate its statistical significance to the
aussian estimate of the mutual information. We elaborate on the adequate choice of the quality factors for a localized and significant
nalysis of the cardio-respiratory interaction.

.1. Time–frequency coherence: generic definition and single trial estimation

Our aim here is to characterize the common information shared between two distinct and simultaneous signals. Sitting somewhere
etween pairwise correlations and mutual information, we revisit the concept of time–frequency coherence [22,77–79], an approach
hat offers both dynamical and statistical insights.

Given two processes 𝑦, 𝑧, an evolutionary cross-spectrum 𝑆𝑦𝑧(𝑡, 𝑓 ) can be defined as in Eqs. (8) or (15), once a time–frequency
decomposition is specified. This cross-spectrum can be normalized using the auto-spectra, resulting in a dimensionless coefficient
called the time–frequency coherence between the processes [80,81]:

𝛾𝑦𝑧(𝑡, 𝑓 ) =
𝑆𝑦𝑧(𝑡, 𝑓 )

√

𝑆𝑦𝑦(𝑡, 𝑓 )𝑆∗
𝑧𝑧(𝑡, 𝑓 )

. (24)

Like the cross-spectrum, the coherence has a Hermitian symmetry: 𝛾𝑧𝑦 = 𝛾∗𝑦𝑧. It characterizes the similarities between two signals
over time and frequency, in terms of the strength (modulus) and phase difference (angle) of their linear relationship. Coherence
reaches a maximum modulus of 1 in the case of a perfectly linear relationship. In other words, it is a complex correlation coefficient
between the statistics of the oscillating atoms at location (𝑡, 𝑓 ) in each signal.

The above definition of the time–frequency coherence is generic, and applies to various definitions of the evolutionary spectra,
such as the spectrogram or the scalogram as statistical expectations, or as single trial estimators. When applied to the spectral,
temporal or global marginal cases described in Appendix C.3, Eq. (24) reduces to the spectral coherence, the time-dependent or the
global Pearson correlation coefficient, respectively.

The estimation of the time–frequency spectra and coherence should require several statistical samples, such as independent and
identically distributed realizations of the signal pairs. However, single trial experiments provide unique realizations of the processes
(which cannot be identically repeated). In this case, nearby atoms from the time–frequency decomposition of the signals are used
as distinct statistical samples. Such estimation comes at the cost of a loss of time–frequency resolution: around the location (𝑡, 𝑓 ),
the original atomic uncertainty is extended to a continuous composition of 𝑛 atoms, as defined in Eqs. (2) or (5). The case of the
wavelet-based canonical estimator, 𝑛 = 𝑄+

𝑄−
, is represented in Fig. 2.

The number of atoms plays a crucial role in the interpretation of the coherence value: the larger the number 𝑛, the more significant
the statistical estimate, but the lower the time–frequency resolution and the stronger the assumption of local stationarity or self-
similarity. The limit case of the coherence with all statistical degrees of freedom and no resolution is the (global) Pearson correlation
coefficient, or its complex version if restricted to positive frequencies. Conversely, no statistical averaging corresponds to the limit
case 𝑛 = 1 with maximum resolution (first described in [77]): whatever the pair of signals, their atomic decompositions are always
perfectly linearly related (unit modulus of coherence). The case 𝑛 = 0 of an ideal time–frequency localization, directly based on
Wigner–Ville distributions, leads to pathological properties [80,82]. The interference of several oscillating atoms is therefore crucial
to obtain a statistical estimate of the coherence [22].

The trade-off between dynamical uncertainty and statistical significance is a crucial aspect for the single trial estimation of the
time–frequency coherence. The control of the significance of the estimate as 𝑛 is varied is examined next.

6.2. Spurious statistics and significance

To assess the significance of a time–frequency coherence estimate when statistical samples are limited, we propose to compare
the value of the coherence modulus with what would be obtained from completely independent (i.e. incoherent) signals. The null
14 
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Fig. 6. Spurious statistics for the canonical time–frequency coherence estimator, associated with a pair of independent self-similar stationary real Gaussian
processes. (A) Spurious coherence squared |𝛾sp|

2 = |𝛾𝑦𝑧(𝑡, 𝑓 ;𝑄+ , 𝑄−)|
2 with quality factors 𝑄+ = 20 and 𝑄− = 2, computed from pink noises 𝑦, 𝑧 of length 𝑁 = 219

(top). (B) Cumulative distribution of |𝛾sp|
2 (black solid line) compared to the beta distribution B(1, 𝛽) with the same mean (red dashed line), aligned with the

colour bar. Inset: quantile–quantile plot (close agreement). (C) Difference 𝛽(𝑛) − 𝑛 for two estimations (makers) relying on the beta law, fits (lines) and 95%
confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

hypothesis is thus constructed from the residual value of the coherence estimated between two independent stochastic trajectories.
In Fig. 6, the spurious statistics are characterized from extensive simulations of the canonical estimate for the coherence between two
independent stationary self-similar Gaussian processes. In particular, the spurious coherence shown in Fig. 6(A) is a wavelet-based
estimate computed for two pink noises.

In the case of Gaussian stationary processes, the spurious spectral coherence squared |𝛾sp|
2 is known to follow the Goodman

distribution [83–85]. In the independent case, this probability distribution simplifies to a certain beta law with a single parameter,
B(1, 𝛽):

P
[

|𝛾sp|
2 ≤ 𝛾2

]

= 1 −
(

1 − 𝛾2
)𝛽 , (25)

which can be easily transformed into a significant coherence threshold 𝛾2(𝑝) = 1 − 𝑝
1
𝛽 given the complementary probability

𝑝 = P
[

|𝛾sp|
2 > 𝛾2

]

or 𝑝 -value. Fig. 6(B) shows that this distribution accurately matches the empirical distribution of the spurious
coherence squared |𝛾sp|

2 = |𝛾𝑦𝑧(𝑡, 𝑓 ;𝑄+, 𝑄−)|
2 obtained from the simulation (A) for 𝑛 = 10. The value of 𝛽 is close to 𝑛 and can be

read from (C); as explained later, the distinction of the two curves indicates a departure from the beta law for small values of 𝑛.
The number 𝛽 + 1 is interpreted as the number of (effective and complex) degrees of freedom of the statistical distribution, and

it is identified in [85] with Eq. (2), which we call the (effective) number of atoms 𝑛. For the canonical estimations of the coherence,
the number of atoms is known exactly: 𝑛 = 𝑄+

𝑄−
or 𝑛 = 𝜏+

𝜏−
in the wavelet or the window paradigm.

Assuming a beta law for |𝛾sp|
2, we point out in Fig. 6(C) a small difference between the actual number of atoms 𝑛 and the

estimated statistical degrees of freedom 𝛽 + 1. By varying 𝑛 in the spurious coherence simulation, we estimate the parameter
𝛽, either from the mean of the beta-distributed squared spurious coherence ⟨|𝛾sp|

2
⟩ = 1

𝛽+1 , or from the alternative expression
⟨

− log
(

1 − |𝛾sp|
2)⟩ = 1

𝛽 . The average is estimated over the time–frequency domain:

⟨|𝛾𝑦𝑧|
2
⟩ = ‖𝛺‖

−1
∬𝛺

|𝛾𝑦𝑧(𝑡, 𝑓 ;𝑄+, 𝑄−)|
2d𝑡d𝑓 . (26)

Here,𝛺 is the inner region in Fig. 6(A), free of boundary effects, with area ‖𝛺‖ = ∬𝛺 d𝑡d𝑓 = 𝑎−𝑏
(

1+log 𝑎
𝑏

)

, 𝑎 = 𝑁
2 𝑒

− 𝑘
𝑄− , 𝑏 = 𝑘𝑄+𝑒

𝑘
𝑄− ,

where 𝑁 = 𝑇
d𝑡 is the length of the time series, and 𝑘 is the distance from the boundaries (in resolution units). The outer region (faint

colours) that is excluded from the estimation in Fig. 6 corresponds to 𝑘 = 2.
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Even a very long single simulation of the spurious coherence is not sufficient to obtain an accurate estimate of 𝛽, especially for
high value of 𝑛. Therefore, we average Eq. (26) over numerous simulations 𝑗 = 1, 2,…, so that the cumulative averaging area
𝑗 ‖𝛺𝑗‖, exceeds 221 × 𝑛 for each value of 𝑛.

Any location (𝑡, 𝑓 ) in the inner time–frequency region 𝛺 (away from the boundaries) yields the same estimate: the spurious
oherence is homogeneously distributed. A distance of twice the unit resolution, 𝑘 = 2, is sufficient to separate the excluded outer

region from 𝛺. We could decrease the sampling along log-frequency down to two samples per resolution unit without observing
alteration of the estimation.

The difference 𝛽 − 𝑛 is plotted in Fig. 6(C) (markers) and linearly fitted with respect to 𝑛−1 (lines). The parameter 𝛽(𝑛) grows
from zero (for 𝑛 = 1) to an asymptotic value:

𝛽(𝑛) ∼ 𝑛 − 1
3
− 𝑐
𝑛

, (27)

in spite of the growing uncertainty for large 𝑛. The accuracy of assuming a beta law B(1, 𝛽) for |𝛾sp|2 is visible in (C) by comparing the
erm of order (𝑛−1) for both estimators of 𝛽: its coefficient is compatible with 𝑐 = 1

2 for the mean-based estimate (plus markers and
black line), and compatible with 𝑐 = 1

4 for the alternative estimate (circle markers and blue line) exploiting the relationship between
eta and exponential random variables. Small values (𝑛 < 1.5) have been discarded for the latter due to numerical imprecision.

We have tested the robustness of this asymptotic behaviour by varying different choices, such as the Hurst exponent of the
ndependent signals (0 for pink or − 1

2 for white noises), the geometric paradigm for the canonical estimation, the value of
the associated parameters (𝑄+, 𝑄−) or (𝜏+, 𝜏−), and numerical parameters, without observing discrepancies beyond the numerical
uncertainty. Only the number of atoms 𝑛 matters.

In practice, the case 𝑛 = 10 in Fig. 6(A, B) yields 𝛽 = 9.618 ± 0.004 (black) and 9.647 ± 0.005 (blue), or a very small difference in
the significance test. The beta law is not the exact distribution of the spurious coherence squared, but it may be considered as a very
good approximation for a sufficiently large 𝑛. Eqs. (25), (27) provide a simple way to assess the significance of the time–frequency
coherence estimator 𝛾𝑦𝑧, as the 𝑝 -value 𝑝 =

(

1 − |𝛾𝑦𝑧|
2)𝛽 .

6.3. Mutual information and its time–frequency distribution

In the case of two Gaussian processes 𝑦 and 𝑧, the modulus of their coherence gives the time–frequency distribution of their
mutual information in the following form:

𝑖𝑦𝑧(𝑡, 𝑓 ) = − 1
2 log

(

1 − |𝛾𝑦𝑧(𝑡, 𝑓 )|
2) . (28)

The relationship between coherence and rate of mutual information, �̇�𝑦𝑧 = ∫ 𝑖𝑦𝑧(𝑓 )d𝑓 , is indeed proved in the case of Gaussian
stationary processes [86]. In the simplest case (for white noises), the mutual information of two Gaussian random variables is
obtained directly by applying Eq. (28) to the Pearson correlation coefficient (as a global version of the coherence).

This provides a natural non-stationary estimator of the mutual information between two Gaussian processes 𝑦 and 𝑧, here
measured in natural units (nats), and possibly restricted to a time–frequency domain 𝛺:

𝐼𝑦𝑧[𝛺] = ∬𝛺
𝑖𝑦𝑧(𝑡, 𝑓 )d𝑡d𝑓 . (29)

As for the coherence, in situations with limited time–frequency atoms (𝑛 small), it is necessary to assess the significance and
the spurious expected value of this statistical estimator. A beta law B(1, 𝛽) for the spurious coherence squared |𝛾sp|

2 implies an
xponential law Exp(2𝛽) for the spurious density of mutual information, expected for independent Gaussian processes:

⟨𝑖sp⟩ =
1
2𝛽

, ⟨𝐼sp[𝛺]⟩ =
‖𝛺‖

2𝛽
. (30)

This explains the alternative way of estimating the parameter 𝛽 in Fig. 6(C, blue circles). Furthermore, it allows us to interpret
the magnitude of significance of the estimated coherence as the ratio of the estimated and spurious density of mutual information:
− log 𝑝 = 𝑖𝑦𝑧∕⟨𝑖sp⟩. Evenly sampled, this quantity is useful to colour significant values of a coherence estimate (see Fig. 7).

The difference 𝐼𝑦𝑧 − ⟨𝐼sp⟩ can be used as a ‘‘corrected’’ estimator of the mutual information [87], which corresponds to the
‘‘debiased’’ coherence estimator

(

|𝛾𝑦𝑧|
2−⟨|𝛾sp|

2
⟩

)

∕
(

1−⟨|𝛾sp|
2
⟩

)

[88]. Here, ⟨|𝛾sp|2⟩ =
1
𝛽+1 , but the direct use of 1

𝑛 (without correction)
as shown to be accurate for an effective number of atoms as low as 𝑛 = 8 [88].

These time–frequency coherence and mutual information estimators based on Gaussian processes are applied to physiological
ignals in the next section. We assume that they are locally stationary over 𝑄+ oscillations and locally self-similar over a relative

bandwidth 𝑄−1
− . Due to the non-stationarity of these signals, we argue that a time–frequency estimator of the mutual information

based on the Gaussian hypothesis may be more informative than alternative non-parametric estimators based on a stronger
assumption of stationarity.

6.4. Different regimes of cardio-respiratory coherence

To study the modulation of the heart rate at the breathing frequency, called respiratory sinus arrhythmia (RSA), and other forms
f cardio-respiratory coherence, we estimate in Fig. 7 the coherence and mutual information between the heart rate and respiratory
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Fig. 7. Coherence between heart rate and breathing, and associated mutual information estimates. (A) Signals of the heart rate 𝑦 (red) and the respiratory effort
𝑧 (blue), with arbitrary units. (B) Amplitude spectra for 𝑦 and 𝑧, with frequency in beats per minute (min−1). (C) Time–frequency coherence 𝛾𝑦𝑧(𝑡, 𝑓 ;𝑄+ , 𝑄−) for
𝑄+ = 7 and 𝑄− = 1, coloured according to its phase (hue), significance (saturation) and signals’ lack of quality (shades). Hypnogram (black stairs). (A’, C’) Focus
at the end of sleep. Mutual information: (D) spectral density (nat⋅min) and (E) rate (temporal density, nat⋅min−1) with expected spurious value (black dashed
line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

signals. The former is the rate signal previously extracted from the ECG, and the latter is a breathing effort signal defined as the sum
of recordings from thoracic and abdominal belt transducers. The sign of the respiratory oscillation is set to positive for inhalation.

The oscillatory content in the signals Fig. 7(A) –the heart rate is denoted 𝑦(𝑡) (red) for simplicity and the respiratory signal 𝑧(𝑡)
(blue)– is summarized in their respective amplitude spectra (B). Quite regular, the respiratory cycle is concentrated in a relatively
narrow frequency band around 10 min−1. In contrast, the heart rate variability covers a wider band centred around 2–3 min−1. The
spectrum of the respiratory recording is attenuated at frequencies below 1 oscillation per minute, as a result of instrumental filtering.
There is no such high-pass filtering for the heart rate signal, which is extracted from modulations in the ECG recording. Instead, most
of the amplitude at the cardiac (carrier) frequency (60 min−1) has disappeared from the estimated heart rate signal. Note that the
slow modulations of the respiratory frequency and amplitude could also be estimated as a complex rate signal. Cardio-respiratory
coherence with both types of respiratory signals, oscillations or fluctuating rate, have been analysed extensively for all subjects in
the shhs2 dataset in [42]. Breathing rate signals would enhance the study of very slow modulations, at the cost of deteriorating the
observation of RSA at the carrier (respiratory) frequency.

The time–frequency coherence 𝛾𝑦𝑧 between these signals (A) is then estimated in Fig. 7(C, zoom in C’), with quality factors 𝑄+ = 7
and 𝑄− = 1, and colour-coded as follows. The cyclic hue corresponds to the phase, and the 4 levels of saturation are delimited by
3 significance thresholds for the modulus: 𝑝 = 10−𝑎, 𝑎 = 1, 2, 3, thus highlighting only the relevant (density of mutual) information.
Regions affected by boundary effects, recording saturation or higher than average error (3%) in the heart rate estimation are shaded.

We can distinguish three bands (timescales) of coherent cardio-respiratory activity, as summarized in the spectral marginal
density (time integral) of mutual information (D). Overall, the intermediate band close to and above the respiratory frequency is
the most significant: this is the RSA. Patches of coherence are observed in a lower and wider band, associated with slow intermittent
and coordinated cardio-respiratory events. Finally, a cardiac mode (at 60 min−1 and above) indicates that the respiratory recording
can capture slight heart pulses. This coherent mode is absent when the reference (discrete interpolated) estimator of the heart rate
is used, since it does not contain the residual cardiac oscillations present in the continuous estimator.

The coherence of the respiratory (RSA) mode often reaches high levels of significance, 𝑝 < 10−3, as shown in Fig. 7(C, C’). This
is the case not only around the fundamental respiratory frequency (10 min−1) but also beyond 20 min−1, implying that the specific
shape of the respiratory oscillation (carried by higher order partials, here indistinguishable with 𝑄− = 1) is coherent in both signals.
Part of the intermittent loss of RSA coherence coincides with regions potentially affected by a poor heart rate estimation (shaded),
either caused by motion artefacts or by strong heart rate variability. The RSA coherence is otherwise quite persistent.
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The phase difference between the RSA mode in the heart rate and the oscillation of the breathing effort can vary significantly.
ostly in-phase (angle of coherence 0 in green: the heart rate increases when breathing in), the RSA mode can be lagged of − 𝜋

3
(yellow); this tends to happen during deep sleep (N3 stage, see the hypnogram). In contrast, the RSA phase tends to increase during
rapid-eye-movement (REM) stage, occasionally reaching positive phase quadrature (+ 𝜋

2 in blue) or even phase opposition (𝜋 in
magenta). The role of sleep stages in RSA changes would require further statistical confirmation across many subjects. However,
these observations are consistent with a weaker control of the cardio-respiratory inter-regulation during REM, than during non-REM
sleep.

The spectral range is sufficient to observe longer timescales of cardio-respiratory coherence, intermittently reaching high levels
of significance (𝑝 < 10−3) in a broad band below 5 min−1. The angle of coherence facilitate the distinction of two types of coherent
ardio-respiratory events in this band, that were previously hard to separate in a low and a very low-frequency band [75].

Micro-awakenings are easily detected in the respiratory signal, as a deep inhalation, followed by a long exhalation (or more).
he empty lungs then need several breathing cycles to refill, while the heart rate remains high to pump the oxygenated blood, hence
he phase opposition (𝜋 in magenta) in this slow mode. Since the rather singular events that generate it are averaged over 𝑄+ = 7
scillations, they can interfere with (or even dominate) less intense coherent events. Lower quality factors would be better suited
o focus on these broadband time-localized structures.

Coherent events of comparatively lower amplitude, such as hyperpnea and hypopnea, are associated with patches of coherence
lose to negative phase quadrature (− 𝜋

2 to − 2𝜋
3 in orange-red). They disappear during the long episode of deep (N3) sleep, and may

e associated with a decrease in RSA coherence. A strong and persistent occurrence of this coherent mode, as a rhythm near 1 to
min−1, is associated with severe sleep apnea [54], hence called the apneic mode.

This time–frequency map of the cardio-respiratory coherence allows a concise visualization of local and significant statistical
imilarities between physiological fluctuations and oscillations, together with their phase. It should be remembered that the time–
requency plane has a hyperbolic metric in the wavelet paradigm, so that its flat projection as an image should be interpreted
ith caution. In fact, low frequency atoms look more important than their actual spread, and vice versa at high frequencies, as

chematized in Fig. 1(B, right). We may think of it as a perspective view: close-by (low frequency) wavelets look larger than the
nes near the horizon (maximum frequency), as best noticed in the spurious coherence Fig. 6(A).

.5. Quality factors and trade-off between localization and significance of mutual information

The pictures of the significant values of the coherence estimate in Fig. 7(C, C’) combine the angle of coherence to the empirical
ime–frequency distribution of mutual information in the Gaussian approximation 𝑖𝑦𝑧(𝑡, 𝑓 ;𝑄+, 𝑄−). In Fig. 7(D and E), we plot
he spectral and temporal marginal densities of mutual information by integrating it over time or frequency respectively. The
orresponding significance thresholds are shown with grey levels. From the visible region in (D), we can estimate a corrected value
f the total mutual information 𝐼𝑦𝑧[𝛺] − ⟨𝐼sp[𝛺]⟩ = 4.2 knat, within a range ‖𝛺‖ = 2𝑓max𝑇 = 3.9 × 103 (the factor 2 accounts for

negative frequencies), or on average just above 1 nat per unit area.
This mutual information is divided into three visible frequency bands as follows: 2.0 knat in the cardiac band, 2.0 knat in the

respiratory/RSA band, 0.2 knat in the low frequency band. These bands are bounded by the frequencies 44 min−1 and 5.5 min−1

of two minima close to the spurious value (black dashed line) of the spectral density of mutual information Fig. 7(D). Note that (D)
does not represent a log-frequency density: the high-frequency (cardiac) band accumulates much more mutual information than the
low-frequency band.

For this reason, the estimated mutual information rate (temporal marginal) in Fig. 7(E) is dominated by the high-frequency
coherence, even though the corresponding modulations have a very small amplitude in the signals. The expected spurious value
(black dashed line) correctly describes the baseline mutual information rate. However, its value and significance is very sensitive
to the choice of 𝑓max, which includes here the cardiac band.

Again, we try to refine the choice of quality factors. Essentially, we want to maximize the information extracted from the
coherence of the signals in the selected time interval by tuning the parameters of our local stationarity and self-similarity
assumptions. In practice, this is quite difficult to achieve for several reasons. First, we have to deal with the limitations of the
information estimators and the resulting artefacts, namely: boundary effects and the imprecision of the statistical model for small 𝑛.
The significance decreases near the boundary in a way that is not modelled here, and is therefore excluded from the inner region of
integration 𝛺. The upper frequency limit 𝑓max <

1
2𝑓𝑠𝑒

−𝑘∕𝑄− is particularly critical. The corrected estimate of the mutual information
𝐼𝑦𝑧[𝛺] − ⟨𝐼sp[𝛺]⟩ increases rapidly when 𝑛 approaches 1, as a consequence of the imprecision of the beta and exponential models
f significance (Fig. 6 C). We thus consider only situations with at least 𝑛 = 𝑄+

𝑄−
≥ 2 atoms.

The corrected estimate of the mutual information has no clear global maximum in the valid parameter space: for 𝑓max =
100 min−1, the estimate is nearly optimal for 𝑄− ≈ 1, but keeps increasing for 𝑄+ → 𝑄−. Although corrected, the mutual information
has very little significance in the limit of a minimal dynamical (time–frequency) uncertainty. The opposite situation occurs when
maximizing the mean magnitude of significance ⟨− log 𝑝⟩ = 𝐼𝑦𝑧[𝛺]∕⟨𝐼sp[𝛺]⟩: the dynamical uncertainty is also maximized, 𝑛→ +∞.

n optimal bandwidth emerges from these observations, but the number of atoms varies widely depending on our preference for a
igh corrected value or a high significance of the mutual information.

We measure a trend ⟨𝑖𝑦𝑧⟩ = 𝐼𝑦𝑧[𝛺]∕‖𝛺‖ ≈ 𝛼∕ log 𝑛, which holds for an optimal value 𝛼 = 0.36 over a wide range 𝑛 ∈ [3.5, 70],
or 𝑓max = 100 min−1 and 𝑄− ≈ 1. We learn that the mutual information is here inversely proportional to the loss of localization
nformation. As 𝑛 decreases, the spurious contribution increases. In general, 𝛼 varies with the quality factors and 𝑓 ; we believe
max
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that these variations are informative about the statistical and dynamical properties of the different coherent components in the
analysed signals.

The low quality factor 𝑄− = 1 provides an almost optimal bandwidth in the spectral range of Fig. 7, sufficient to distinguish
the cardiac, respiratory and apneic activity bands. The upper quality factor 𝑄+ = 7 represents a compromise between a precise
localization and a high level of significance, highlighting the richness of the interplay between the cardio-respiratory signals.

Thanks to a careful choice of the quality factors, the time–frequency coherence and the mutual information provide local
dynamical insights with a high statistical significance on different forms of cardio-respiratory coherence. The mutual information
and its directed extension, the transfer entropy, have also been estimated on short timescales for physiological point processes [87]:
the control of their spurious statistics is not straightforward and has been managed from surrogate data. We therefore believe that
the detailed discussion of localization and significance in this type of analysis will be a valuable aid for future investigations. Mutual
information between heart rate and respiration is also used in other contexts, such as emotional characterization [89], which could
constitute another immediate application of this work.

7. Conclusion

From the interplay between respiratory oscillations and heart rate fluctuations, to the multiscale stochastic and intermittent waves
of a sleeping brain, a single recording of biophysical observables can contain a wealth of information about the underlying living
system dynamics. However, the practical exploitation of this information is hampered by the inadequacy of standard dynamical
assumptions: a stationary, self-similar or scale-separated approach wastes some of the richness of the recorded information. The
parsimony of our assumptions is only constrained by the uncertainty principle, expressed here in the time–frequency domain.

In the context of a single trial experiment, we have shown how the uncertainty principle binds the localization of the analysis to
the significance of the resulting statistical estimate. On Heisenberg’s uncertainty bound, signals are continuously decomposed into
time–frequency atoms, but the statistical approach is brought to the brink of collapse. However, time–frequency decomposition is a
fertile ground for recomposing uncertainty atoms into flexible quadratic statistical estimates, whose significance can be tested when
their localization lies away from this lower bound.

More specifically, the numbering of uncertainty atoms (eigenstates) composing a quadratic statistical estimator is given a
continuous time–frequency interpretation from the Wigner–Ville representation of the operator. We have proposed a canonical
implementation of these generic concepts in a concise analytical framework, based on the choice of a geometric paradigm and two
essential physical parameters. This versatile approach has also been illustrated in practical situations.

First, a canonical spectrogram estimator built from Gabor’s oscillating normal windows has been defined. The translation
invariance of this atom in the time–frequency plane has been associated with a flat (Euclidean) representation with two fixed
timescales, one for the decomposition, and a different one for the recomposition into a statistical estimate. Their ratio gives the
exact number of statistical degrees of freedom, while matching the classical expression of the uncertainty principle.

We have then constructed the scale-invariant analogue, the canonical scalogram estimator, from the log-normal wavelet of
Altes and Grossmann. The translation and scaling of this atom is associated with a hyperbolic geometry (hence the delicacy of
the representation as a flat time–frequency image). In this paradigm, quality factors are fixed parameters, replacing timescales. This
leads to a scale-free formulation of scale separation and of the uncertainty principle.

Using the electroencephalogram (EEG) of a sleeping subject as an illustration, we have discussed more concretely the two
geometric paradigms and the choice of the localization parameters. The spectrogram approach can be convenient for studying
the brain cortical activity near fixed reference timescales that separate well its correlation time from its evolution, whereas the
scalogram allows a broader and clearer study of narrowband (rhythmic) and broadband (noisy) components across scales.

In the application to the heart rhythm, we have proposed an original continuous and quadratic estimator of the heart rate signal.
Based on our statistical perspective, we have derived this estimator from the phase of the cardiac oscillation. Interestingly, compared
to other estimators, this rate is non-diverging and fine-tuned using three parameters: a timescale, a quality factor and a number
of degrees of freedom. We argue that this quadratic method is among the simplest non-linear ones for a continuous heart rate
extraction.

Finally, we have measured the coherence between heart rate modulations and respiratory oscillations over time and scales,
and we have established the interpretation of its significance as the ratio of the Gaussian estimate of the mutual information
to its spurious value. The spurious statistics that arise in the coherence and mutual information estimations has been precisely
characterized in terms of the number of atoms, and the relation between mutual information and localization information has been
investigated.

This tour of physiological signals completes the picture of the uncertainty trade-off linking the significance of a single trial
estimate and its time–frequency localization. Few physical parameters are thus left to tune our dynamical and statistical assumptions
about the living system, as applied here to the complexity of polysomnographic information. The proposed canonical framework
provides a practical summary of the fundamental concepts at stake in single trial time–frequency statistics, and offers a generic and
explicit way of dealing with rich but uncertain dynamics.
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ppendix A. Characteristics of electrophysiological recordings

.1. Electroencephalogram: bands and sleep stages

Electroencephalography (EEG) is a recording technique that uses electrodes in contact with the scalp to record the potential
ariations produced by neurons in the brain. Each electrode locally integrates a collective and spatial neural activity. The resulting
ignal, shown in Fig. 3(B), exhibits combinations of erratic (scale-free) and rhythmic dynamics over a wide range of frequencies
more than two decades). Unlike cardiac or respiratory signals, no single fundamental mode can be identified in this neural
ignal. This EEG signal measures the electrical potential between the points C4-A1 with a resolution of 1𝜇V, a sampling frequency
𝑓𝑠 = 125 s−1, and instrumental filters (high-pass at 0.15 s−1 and notch at 60 s−1).

The complexity of an EEG can be represented in the time–frequency plane to distinguish both its evolutionary and spectral
aspects, see Fig. 3(D, F). The traditional way of dealing with this complexity is to divide time into discrete stages and frequency
into discrete bands. Wake-sleep stages have been subdivided into wake (W), rapid eye movement (REM) and non-REM (or NREM)
stages, and the NREM stage has been further decomposed into N1 (lightest), N2 and N3 (deep sleep) stages. This classification is
based on a set of criteria about the relative EEG power in each frequency band (possibly supplemented by the EOG and EMG), within
30-second epochs [90]. The sequence of these stages, available in most polysomnographic databases as a clinician annotation every
30 s, is a simplified representation of sleep called a hypnogram, see Fig. 3(A). With the aim of empirically distinguishing neural
waves, the frequency bands are roughly defined in slices of 4 s−1 and denoted by Greek letters: 𝛿 up to 4 s−1, 𝜃 from 4 to 8 s−1,
𝛼 from 8 to 12 s−1, 𝜎 from 12 to 16 s−1, 𝛽 from 16 to 20 s−1, and 𝛾 above 20 s−1. Thus, 𝛾 waves are intense during wakefulness
whereas they disappear during NREM sleep, which is characterized by intense 𝛿 waves (especially during the N3 stage). In contrast,
during REM sleep, the EEG power is low in all bands.

A.2. Electrocardiogram: identification of QRS complexes

The electrocardiogram (ECG) is the most common clinical technique to record the cardiac oscillation: the electric potential
between electrodes in contact with the skin on the chest and limbs provides a signal with a sharp waveform. The ECG waveform
has three main components: the P wave (atrial depolarization), the QRS complex (ventricular depolarization), and the 𝑇 wave
(ventricular repolarization). The detection of RR time intervals from successive R-peaks is a standard and discrete method of
measuring the cardiac period from the ECG.

As a reference conventional method, for comparison with the wavelet-based continuous method developed in Section 5, we use
the jqrs algorithm from the PhysioNet Cardiovascular Signal Toolbox [91], which first computes the QRS intensity using a matched
filter (band-pass) and a sequence of signal processing operations. The intensity maxima in the resulting positive pulse train are then
detected by a thresholding procedure. To validate the detection method or to reject unreliable RR intervals, a signal quality index
can be calculated, for example from a comparison with another detector. Automatic error correction, which interpolates missing
beats and removes false beats based on physiological assumptions, can improve the estimation of the heart period (NN intervals
for ‘‘normal’’). Adjustment of sufficient detection parameters (such as thresholds) can give satisfactory results without the need for
expert modifications (which are less reproducible).

Appendix B. Linear representations: list of relations

The signal and spectrum representations, as related by the Fourier transform, are considered here as limit cases of time–frequency
representations, that are purely localized in one domain and delocalized in the other. We recall their definition here to clarify the
convention used, and we provide explicit relations between limit and intermediate cases (as defined in Eq. (14) and (7)) with finite
quality factor or timescale. The temporal and spectral interpretations of the quality factor is also described in more detail.

B.1. Signal and spectrum conventions
The Fourier transform and its inverse relate the signal to the spectrum, as follows:
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𝑥(𝑡) = ∫ �̂�(𝑓 )𝑒𝑖2𝜋𝑓𝑡d𝑓 ; �̂�(𝑓 ) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡d𝑡 . (B.1)

he wavelet transform 𝑋(𝑡, 𝑓 ;𝑄) as defined in Eq. (14) is a band-pass filtering, i.e. a spectral decomposition of the signal 𝑥(𝑡) (with
he same physical unit) into different bands (𝑓,𝑄). In contrast, the Gabor transform 𝐺𝑥(𝑡, 𝑓 ; 𝜏), Eq. (7), is a Fourier transform under a

sliding window, i.e. a temporal decomposition of the spectrum �̂�(𝑓 ) in different time periods (𝑡, 𝜏). These signal-like or spectrum-like
behaviours are best noticed by recovering the actual signal and spectrum in the limit cases:

𝑥(𝑡) = lim
𝑄→0

𝑋(𝑡, 𝑓 ;𝑄) +𝑋(𝑡,−𝑓 ;𝑄) = lim
𝜏→0

𝜏−1𝐺𝑥(𝑡, 𝑓 ; 𝜏)𝑒𝑖2𝜋𝑓𝑡 (B.2)

�̂�(𝑓 ) = lim
𝑄→+∞

𝑄|𝑓 |−1𝑋(𝑡, 𝑓 ;𝑄)𝑒−𝑖2𝜋𝑓𝑡 = lim
𝜏→+∞

𝐺𝑥(𝑡, 𝑓 ; 𝜏) . (B.3)

The Gabor transform can thus be converted into a spectral decomposition of the signal:

𝑋(𝑡, 𝑓 ; 𝜏) = 𝜏−1𝐺𝑥(𝑡, 𝑓 ; 𝜏)𝑒𝑖2𝜋𝑓𝑡 . (B.4)

Conversely, the wavelet transform becomes a temporal decomposition of the spectrum by reversing this equality with 𝜏 = 𝑄|𝑓 |−1.
The S-transform [35], which would be denoted here 𝑄|𝑓 |𝐺𝑥(𝑡, 𝑓 ;𝑄|𝑓 |−1), is a mixture of these two conventions with the phase of
the spectrum and the unit of the signal. Based on a Gabor-Morlet wavelet (a scaled normal window), the S-transform behaves as
𝑋(𝑡, 𝑓 ;𝑄)𝑒−𝑖2𝜋𝑓𝑡 in the log-normal wavelet framework.

B.2. Change of localization

The localization parameter of a time–frequency decomposition can be decreased or increased as follows:

𝑋(𝑡, 𝑓 ;𝑄−) =
𝑄+𝑄↓

𝑄− ∫ 𝑋(𝑡, 𝑓 ′;𝑄+)�̂�∗
𝑄↓

( 𝑓 ′

𝑓

) d𝑓 ′
|𝑓 ′| , 𝑄−2

↓ = 𝑄−2
− −𝑄−2

+ (B.5)

𝑋(𝑡, 𝑓 ;𝑄+) = ∫ 𝑋(𝑡′, 𝑓 ;𝑄−)𝜓∗
𝑄↑
(𝑓 (𝑡′ − 𝑡))|𝑓 |d𝑡′ , 𝑄2

↑ = 𝑄2
+ −𝑄2

− (B.6)

𝐺𝑥(𝑡, 𝑓 ; 𝜏−) = ∫ 𝐺𝑥(𝑡, 𝑓 ′; 𝜏+)𝑤 1
𝜏↓
(𝑓 ′ − 𝑓 )𝜏↓𝑒𝑖2𝜋(𝑓

′−𝑓 )𝑡d𝑓 ′ , 𝜏−2↓ = 𝜏−2− − 𝜏−2+ (B.7)

𝐺𝑥(𝑡, 𝑓 ; 𝜏+) =
𝜏+
𝜏−𝜏↑ ∫ 𝐺𝑥(𝑡′, 𝑓 ; 𝜏−)𝑤𝜏↑(𝑡

′ − 𝑡)d𝑡′ , 𝜏2↑ = 𝜏2+ − 𝜏2− . (B.8)

he signal and the spectrum are also recovered by integration over one domain:

𝑥(𝑡) = 𝑄∫ 𝑋(𝑡, 𝑓 ;𝑄) d𝑓
|𝑓 | = ∫ 𝐺𝑥(𝑡, 𝑓 ; 𝜏)𝑒𝑖2𝜋𝑓𝑡d𝑓 (B.9)

�̂�(𝑓 ) = ∫ 𝑋(𝑡, 𝑓 ;𝑄)𝑒−𝑖2𝜋𝑓𝑡d𝑡 = 1
𝜏 ∫ 𝐺𝑥(𝑡, 𝑓 ; 𝜏)d𝑡 . (B.10)

B.3. Case of the analytic version of the signal

Any signal 𝑥 can be expressed as the sum 𝑥(𝑡) = 𝑥+(𝑡) + 𝑥−(𝑡) of the analytic and anti-analytic versions of the signal. They are
complex helical signals defined from the part of the Fourier spectrum �̂�(𝑓 ) that is supported on positive (respectively negative)
frequencies:

𝑥±(𝑡) = ∫ 𝛩(±𝑓 )�̂�(𝑓 )𝑒𝑖2𝜋𝑓𝑡d𝑓 , (B.11)

where 𝛩 is the Heaviside step function restricting the integral to positive or negative frequencies.
The time–frequency decomposition of the signal based on the log-normal wavelet, 𝑋(𝑡, 𝑓 ;𝑄), can be understood for any 𝑓 as the

analytic version of the band-pass filtered signal around the frequency 𝑓 . A similar interpretation is sometimes possible for Eq. (B.4)
ased on Gabor’s normal filter, although it would not be strictly analytic because of its support on both positive and negative
requencies.

The analytic and anti-analytic versions of the signal 𝑥 can thus only be expressed as a limit and a marginal case of a wavelet
ransform, whose wavelet is analytic, such as the log-normal wavelet:

𝑥±(𝑡) = lim
𝑄→0

𝑋(𝑡,±|𝑓 |;𝑄) = 𝑄∫ 𝛩(±𝑓 )𝑋(𝑡, 𝑓 ;𝑄) d𝑓
|𝑓 | . (B.12)

When the signal 𝑥 is real, negative and positive frequencies are redundant, so that 𝑥− = (𝑥+)∗, and 𝑥 = 2ℜ{𝑥+}.

.4. Intertwined spectral and temporal interpretations of the quality factor

In the time domain, the quality factor 𝑄 is a dimensionless time resolution, |𝑓 |𝛥𝑡, interpreted as the effective number of
scillations in the analysing wavelet. Oscillations are also localized in the frequency domain, where 𝑄−1 is a log-frequency

𝛥𝑓 ). The quality factor 𝑄 in the log-normal wavelet �̂� (𝑓 ′∕𝑓 ) =
esolution 𝛥 log 𝑓 (alternative expression for the relative bandwidth
|𝑓 | 𝑄
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𝑒−𝜋(𝑄 log(𝑓 ′∕𝑓 ))2 is smaller than the one calculated from the definition in [92], by a factor of about
√

𝜋. The quantities |𝑓 |−1𝑄 and
𝑄−1 are in fact both very close to the full widths at half maximum of the wavelet [42], respectively in time and in log-frequency.

The specificity of the waveform of a regular rhythm can be distinguished from a purely circular (sine) oscillation in the frequency
domain by the presence of multiple harmonic modes with frequencies 𝑓𝑘 = 𝑘𝑓1 for positive integer orders 𝑘. In the wavelet
paradigm, the order 𝑘 + 1 can be distinguished from the order 𝑘 whenever 𝛥 log 𝑓 = 𝑄−1 < log 𝑘+1

𝑘 . Furthermore, wavelets with 𝑄
scillations can only analyse a full rhythmic period 𝛥𝑡 = 𝑓−1

1 up to the frequency 𝑄𝑓1. As a consequence of the following logarithmic
nequalities [93]:

1
𝑄 + 1

2

< log 𝑄 + 1
𝑄

< 1
𝑄
< log

𝑄 + 1
2

𝑄 − 1
2

, (B.13)

the spectral discrimination of 𝑄 > 1
2 partials requires a wavelet with at least 𝑄 oscillations. In other words, a quality factor 𝑄 allows

the distinction of up to 𝑄 harmonic orders. This inequality illustrates two intertwined and interchangeable interpretations of the
quality factor: in terms of either time or frequency resolution, expressed as number of oscillations or distinct harmonic orders. We
can visualize their relevance in Fig. 4, in the wavelet transforms of the ECG signal (A) with quality factor 𝑄 = 1 (B) or 3 (C).

These very practical and natural interpretations of the quality factor as the number of wavelet oscillations and the number of
distinguishable harmonic orders are silently orchestrated by the presence of the circle constant in the definition of the log-normal
wavelet Eq. (13). These realizations have motivated a rescaling of the quality factor, and hence a slight redefinition of the log-normal
wavelet, as compared to our previous definition in [42,54,94].

Appendix C. Quadratic representations in time and/or in frequency

The relationships between time, frequency and time–frequency representations for the kernel of a quadratic operator are detailed.
As an example, these different representations are provided in the case of the canonical spectrogram estimator. The marginal and
limit cases of the canonical spectrogram and scalogram are then discussed.

C.1. Wigner–ville representation as a time–frequency distribution

The Wigner–Ville distribution defined in Eq. (3) can be applied to the temporal or spectral kernel of a quadratic operator, to
obtain its time–frequency representation:

𝐾(𝑡, 𝑓 ) = ∫ �̌�
(

𝑡 + 𝜏
2 , 𝑡 −

𝜏
2

)

𝑒−𝑖2𝜋𝑓𝜏d𝜏 = ∫ �̂�
(

𝑓 + 𝜂
2 , 𝑓 − 𝜂

2

)

𝑒𝑖2𝜋𝜂𝑡d𝜂 . (C.1)

The temporal and the spectral representations (related by Fourier transforms) of the quadratic operator are obtained from the
time–frequency kernel as follows:

�̌�(𝑡1, 𝑡2) = ∫ 𝐾
( 𝑡1+𝑡2

2 , 𝑓
)

𝑒𝑖2𝜋𝑓 (𝑡1−𝑡2)d𝑓 ; �̂�(𝑓1, 𝑓2) = ∫ 𝐾
(

𝑡, 𝑓1+𝑓22

)

𝑒−𝑖2𝜋(𝑓1−𝑓2)𝑡d𝑡 . (C.2)

C.2. Kernel of the canonical spectrogram estimator

By denoting the Gaussian function 𝜙(𝑢) = 𝑒−𝜋𝑢2 which satisfies �̂� = 𝜙, we can obtain symmetric expressions for the operator 𝐾𝑤
represented in the time and frequency domains:

�̌�𝑤(𝑡1, 𝑡2; 𝑡, 𝑓 ) =
√

2
𝜏+

(

𝜙
( 𝑡1−𝑡2

𝜏−

)

𝜙
( 𝑡1+𝑡2−2𝑡

𝜏+

))
1
2 𝑒𝑖2𝜋𝑓 (𝑡1−𝑡2) (C.3)

�̂�𝑤(𝑓1, 𝑓2; 𝑡, 𝑓 ) =
√

2
𝜂+

(

𝜙
( 𝑓1−𝑓2

𝜂−

)

𝜙
( 𝑓1+𝑓2−2𝑓

𝜂+

))
1
2 𝑒−𝑖2𝜋(𝑓1−𝑓2)𝑡 , 𝜂± = 𝜏−1∓ . (C.4)

he time–frequency representation of this operator is tractable:

𝐾𝑤(𝑡′, 𝑓 ′; 𝑡, 𝑓 ) = 2
𝑛

(

𝜙( 𝑡
′−𝑡
𝜏+

)𝜙
( 𝑓 ′−𝑓

𝜂+

))2 , (C.5)

it covers 𝑛 = 𝜏+
𝜏−

= 𝜏+𝜂+ = 𝛥𝑡𝛥𝑓 atoms and its trace is Tr𝐾𝑤 = 1.

.3. Marginal and limit cases of the canonical time–frequency estimates

We detail here the relationships between the canonical time–frequency estimates 𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏+, 𝜏−) and 𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄+, 𝑄−)|𝑓 | and
impler temporal, spectral, fully global or local quadratic estimates.

aximal statistics: no resolution. The time–frequency integration of the spectrogram and the scalogram yields the same global energy:
∗𝑥 = ∬ 𝑆𝑥𝑥(𝑡, 𝑓 )d𝑡d𝑓 . For the scalogram, the integrator d𝑓

|𝑓 | cancels the factor |𝑓 |. Various average densities can be calculated by
ividing this energy by the bandwidth, the duration or the area of the time–frequency domain. The global variance of a centred
ignal 𝑥(𝑡) corresponds to the mean power 𝑃𝑥𝑥 = 𝑥∗𝑥

𝑇 .
The average over all time and frequency corresponds to the limits 𝜏+, 𝑄+ → ∞ and 𝜏−, 𝑄− → 0 (in fact, positive and negative

frequencies are still distinct for 𝑄− → 0 and should be summed). The resulting number of degrees of freedom available for the
statistical analysis is maximal, 𝑛 ≈ 1

2𝑓𝑠𝑇 for a real signal, and the joint assumption of stationarity and self-similarity is the strongest.

In this limit, time–frequency representations are not relevant: there are no degrees of freedom left to obtain localization information.
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Spectrally resolved statistics. A spectral marginal density can be obtained by averaging the spectrogram or the scalogram over time.
In the window paradigm, it is known as the power spectral density or the periodogram and can be written as 𝑆𝑥𝑥(𝑓 ; 𝜏). In the

avelet paradigm, the corresponding spectrum 𝑆𝑥𝑥(𝑓 ;𝑄)|𝑓 | can be interpreted as the power log-frequency density. These purely
spectral statistical estimators of 𝑆𝑥𝑥(𝑓 ) = E[�̂�(𝑓 )�̂�∗(𝑓 )]∕𝑇 correspond to the limits 𝜏+, 𝑄+ → ∞ and to the assumption of a stationary
signal. The spectral resolution 𝛥𝑓 is still given by either 𝜏−1− or 𝑄−1

− |𝑓 |, and the loss of temporal resolution increases the number of
statistical degrees of freedom, bounded by the duration of the signal 𝑇 : 𝑛 ≈ 𝑇 ∕𝜏− and 𝑛 ≈ 𝑇 |𝑓 |∕𝑄− respectively.

In practice, spectral marginal densities are directly computed from the squared time–frequency decomposition, by replacing the
ensemble average in Eqs. (8), (15) by the time average, or by smoothing �̂�(𝑓 )�̂�∗(𝑓 )∕𝑇 along the (linear or logarithmic) frequency
axis with a normal kernel.

Temporally resolved statistics. The converse temporal marginal density consists in averaging or integrating evolutionary spectra
over frequencies. Called the power of the signal 𝑃𝑥𝑥(𝑡; 𝜏) or 𝑃𝑥𝑥(𝑡;𝑄), the integral over all frequencies of 𝑆𝑥𝑥(𝑡, 𝑓 ) estimates
𝑃𝑥𝑥(𝑡) = E[𝑥(𝑡)𝑥∗(𝑡)], a time-dependent estimator of the variance for a centred stochastic process. The temporal marginal density
is associated with a self-similarity assumption, analogous to the stationarity assumption [95] for the spectral marginal density.
More precisely, the average over 𝑓 of the spectrogram estimates an intensity per s−1, assuming no correlation (white noise); the
average over log 𝑓 of the scalogram estimates the intensity per octave or decade (depending on the base of the logarithm), assuming
it constant (pink noise). Regardless of their interpretation, both averages are proportional to the same variance estimator 𝑃𝑥𝑥(𝑡).

This broadband case corresponds to the limits 𝜏−, 𝑄− → 0, except for the following subtlety. For the scalogram, the limit 𝑄− → 0
does not integrate positive and negative frequency components, but keeps them separate. The resulting powers are those of the
so-called analytic and anti-analytic signals 𝑥±(𝑡), which carry distinct information when 𝑥(𝑡) is complex-valued. Their sum is the
wavelet estimate of the power:

𝑃𝑥𝑥(𝑡;𝑄) = ∬ �̂�(𝑓1)�̂�∗(𝑓2)�̂�
1
2
𝑄
( 𝑓1
𝑓2

)

𝑒𝑖2𝜋(𝑓1−𝑓2)𝑡d𝑓1d𝑓2 , (C.6)

ith the log-normal kernel �̂�
1
2
𝑄 = �̂�𝑄∕

√

2 and a number of degrees of freedom 𝑛 ≈ 2𝑄 that is independent of numerical timescales
t first order! In contrast, the Gabor estimate 𝑃𝑥𝑥(𝑡; 𝜏) boils down to smoothing 𝑥(𝑡)𝑥∗(𝑡) with a normal window of duration 𝜏

√

2
,

yielding 𝑛 ≈ 1
2𝑓𝑠𝜏 degrees of freedom.

aximal resolution: no statistics. One could argue that the maximum time–frequency resolution is achieved with the ‘‘skeleton’’ of
quadratic representations, namely the Wigner–Ville distribution, Eqs. (4), (3). This extreme case with unspecified atomic uncertainty,
𝑛 = 0, leads to degenerate properties, such as a divergent variance or negative cross terms.

In the present framework, we consider that the highest resolution is achieved by the atomic time–frequency decomposition,
𝑛 = 1. Without recomposition, the corresponding quadratic representations are the non-averaged spectrogram 𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏, 𝜏) =
√

2
𝜏 𝐺𝑥(𝑡, 𝑓 ; 𝜏)𝐺

∗
𝑥(𝑡, 𝑓 ; 𝜏) and the non-averaged scalogram 𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄,𝑄) =

√

2𝑄𝑋(𝑡, 𝑓 ;𝑄)𝑋∗(𝑡, 𝑓 ;𝑄), for which 𝜏+ = 𝜏− and 𝑄+ = 𝑄−.
This is the common conception of the spectrogram and the scalogram, but these transforms of the stochastic trajectory 𝑥 cannot be
considered as statistical estimators (at best trivial ones).

Appendix D. Algorithmic considerations

A time–frequency decomposition 𝑋(𝑡, 𝑓 ) based on the Gabor or wavelet transform is expressed in terms of convolution integrals,
which can be computed numerically from a pair of fast Fourier transforms (FFT). In practice, the continuity of the time–frequency
representations is rendered by oversampling with respect to the time–frequency resolution 𝛥𝑡 and 𝛥𝑓 or 𝛥 log 𝑓 . In both paradigms,
we implement reflective boundary conditions by extending the time–frequency domain in order to reduce the often unrealistic effects
of periodic boundary conditions. Zero padding can sometimes be more realistic, especially in the spectral direction for band-limited
experimental recordings. Boundary effects often remain at a distance of 𝑘 = 1 to 3 times the resolution from the initial and final
times and spectral boundaries.

The Gabor transform is naturally represented as a matrix that linearly samples the time and frequency domains on a 2-dimensional
grid. The spectrogram 𝑆𝑥𝑥(𝑡, 𝑓 ; 𝜏+, 𝜏−) can thus be efficiently estimated, from Eq. (9) or Eq. (10), by a pair of FFT along one or the
other dimension.

Since 𝛥 log 𝑓 is constant for wavelets, frequencies are sampled geometrically (regularly on a log-scale). However, the resolution
𝛥𝑡 = 𝑄|𝑓 |−1 suggests a time sampling rate that increases with the frequency. For this reason, a single matrix (sometimes called
stationary wavelet transform) is not a parsimonious discrete representation. This problem can be mitigated at the cost of splitting
the grid into multiple matrices (e.g. one per octave by downsampling time by a factor of 2 when halving frequency). Details of this
sampling approach in the similar context of the S-transform can be found in [96].

From the wavelet decomposition, the canonical scalogram estimator is more easily obtained by a smoothing with respect to
log-frequencies, Eq. (16) (one pair of FFT), as compared to the double temporal convolution with a non-separable kernel, Eq. (19).
Therefore, the discretization on a single grid is convenient to compute this second step, although it relies on the non-parsimonious
matrix representation. Unfortunately, this leads to an unreasonable memory consumption when working on a large data set, such
as overnight polysomnographic signals.

In a previous paper [54], we have proposed an alternative scalogram estimator, whose numerical implementation is better suited

to long time series. The recomposition step performs a smoothing in the time domain rather than in the log-frequency domain, with
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a scaled normal window of duration 𝜏 = 𝑚𝑄|𝑓 |−1, see definition in Eq. (E.1). This scalogram estimator is compatible with a more
parsimonious discretization since it implements the horizontal composition of atoms schematized in Fig. 1(C, left). However, the
resulting estimator can only be considered as an approximation of the canonical scalogram estimator (𝑄+ ≈ 𝑚𝑄,𝑄− = 𝑄): the exact
expression for the number of atoms 𝑛 in terms of the quality factor of the wavelet and the scaling of the smoothing window is
intractable; an approximation 𝑛 ≈

(

1 + 𝑚2 exp 1
2𝜋𝑄2

)
1
2 is computed in Appendix E using Lagrange’s method.

For the canonical scalogram estimator, the smoothing step along log-frequency complicates the search for a more parsimonious
numerical implementation since it has to be repeated for each matrix with a sufficient overlap (several times the resolution
𝛥 log 𝑓 = 𝑄−1

− ). There is still much room left for improving parsimony and efficiency with an arbitrary degree of continuity in
the numerical implementation of the canonical scalogram (or time-scale representations in general). A discrete wavelet transform
(such as the one in [97]) on the dyadic lattice followed by a switch to a continuous (arbitrarily oversampled) wavelet basis, or an
analogous algorithm that produces local matrices (rather than coefficients) at each stage of the binary tree, may be potential ways
of achievement beyond the FFT algorithmic strategy.

Appendix E. Laplace’s method for an unsolvable number of atoms

Given the operator 𝐾 of a quadratic estimator 𝑥∗𝐾∗𝑥, the associated effective number of atoms (or eigenstates) 𝑛, as defined in
Eq. (2), is not always as easy to compute as for the estimator of the canonical spectrogram or scalogram: 𝑛 = 𝜏+

𝜏−
or 𝑄+

𝑄−
. The discussion

n Appendix D of an alternative scalogram estimator provides an example where the trace (integral) formula for 𝑛 is intractable. We
show in this case how to obtain, nevertheless, an accurate and analytical approximation of 𝑛 using Laplace’s method.

E.1. Definition of the practical time-smoothing scalogram estimator

The practical scalogram estimator 𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄,𝑚)|𝑓 |, introduced in [54], is based on a time-smoothing over 𝑚 times the wavelet
duration. It is defined from the product of the wavelet decomposition 𝑋𝑋∗ similarly to the canonical spectrogram estimator Eq. (9):

𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄,𝑚) =
2
𝑚 ∫ 𝑋(𝑡′, 𝑓 ;𝑄)𝑋∗(𝑡′, 𝑓 ;𝑄)𝑤2

𝜏(𝑓 )(𝑡
′ − 𝑡)d𝑡′ , 𝜏(𝑓 ) = 𝑚𝑄|𝑓 |−1 . (E.1)

This hybrid estimator is characterized by a kernel that includes both a log-normal wavelet of quality factor 𝑄 and a normal window of
duration 𝜏(𝑓 ) = 𝑚𝑄|𝑓 |−1. The kernel of the practical scalogram estimator 𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄,𝑚)|𝑓 | takes the following form in the frequency
domain:

�̂�(𝑓1, 𝑓2; 𝑓, 𝑡) =
√

2𝑄�̂�𝑄
( 𝑓1
𝑓

)

�̂�∗
𝑄
( 𝑓2
𝑓

)(

𝑤 1
𝜏(𝑓 )

(𝑓1 − 𝑓2)
)
1
2 𝑒−𝑖2𝜋(𝑓1−𝑓2)𝑡 . (E.2)

The corresponding number of atoms 𝑛, designed to be approximated by 𝑚, is defined in Eq. (2) from the ratio of the integral
expressions:

(

∫ �̂�(𝑣, 𝑣)d𝑣
)2

= 2
(

𝑄∫ |�̂�𝑄(𝑣)|
2d𝑣

)2
= 𝜆

1
2 , 𝜆 = 𝑒

1
2𝜋𝑄2 (E.3)

∬ |�̂�(𝑣, 𝑣′)|2d𝑣d𝑣′ = 2𝑄2
∬ 𝑒−2𝜋𝑄

2(log 𝑣)2−2𝜋𝑄2(log 𝑣′)2−𝜋(𝑚𝑄)2(𝑣−𝑣′)2𝛩(𝑣)𝛩(𝑣′)d𝑣d𝑣′ , (E.4)

here we have set 𝑣 = 𝑓1∕𝑓 , 𝑣′ = 𝑓2∕𝑓 and 𝑡 = 0 for clarity, and without loss of generality. Since the second double integration is
ntractable, we compute its Laplace approximation.

.2. Laplace’s approximation

Laplace’s method aims to approximate the integral of a positive complicated function by the integral of a Gaussian which has
he same global maximum up to the second order (same peak value and curvature). Provided that the integrated function is doubly
ifferentiable at a unique global maximum, the precision of the approximation depends on the existence of a sufficiently large
xponent 𝛼, which ensures that significant contributions to the integral come from the neighbourhood of the maximum value of the
ntegrated function. We apply the bivariate form of this approximation:

𝐺(𝛼) = ∬ 𝑒𝜋𝛼𝑔(𝑥,𝑦)d𝑥d𝑦 ≈ 2
𝛼

det
[

−𝜕𝑥𝜕𝑦𝑔(𝑥0, 𝑦0)
]− 1

2 𝑒𝜋𝛼𝑔(𝑥0 ,𝑦0) , (E.5)

where (𝑥0, 𝑦0) is the position of the global maximum of the function 𝑔(𝑥, 𝑦), 𝜕𝑥𝜕𝑦𝑔(𝑥0, 𝑦0) is its Hessian matrix evaluated at the
aximum, and det refers to its determinant.

Rewriting Eq. (E.4), we can identify the following quantities:

∬ 𝑒
1

4𝜋𝑄2
−2𝜋𝑄2

(

log 𝑣− 1
4𝜋𝑄2

)2
−2𝜋𝑄2

(

log 𝑣′− 1
4𝜋𝑄2

)2
−𝜋(𝑚𝑄)2

(

𝑒log 𝑣−𝑒log 𝑣′
)2

d log 𝑣d log 𝑣′ = 𝜆
1
2 𝛽2 ∬ 𝑒𝜋𝛼𝑔(𝑥,𝑦)d𝑥d𝑦

𝛼 = (𝑚𝑄)2𝜆 , 𝛽 = 𝑚
√

𝜆
2 , (𝑥, 𝑦) = 𝛽−1

(

log(𝑣, 𝑣′) − 1
4𝜋𝑄2

)

, 𝑔(𝑥, 𝑦; 𝛽) = −𝑥2 − 𝑦2 −
(

𝑒𝛽𝑥 − 𝑒𝛽𝑦
)2 .
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The maximum is 0 at (𝑥0, 𝑦0) = (0, 0) and the Hessian matrix at the maximum is:

−𝜕𝑥𝜕𝑦𝑔(𝑥0, 𝑦0; 𝛽) =
[

2 + 2𝛽2 −2𝛽2

−2𝛽2 2 + 2𝛽2

]

, (E.6)

with determinant 4 + 8𝛽2. Therefore, we obtain:

∬ |�̂�(𝑣, 𝑣′)|2d𝑣d𝑣′ ≈ 𝜆
1
2 𝛽2𝐺(𝛼; 𝛽) = 𝜆

1
2 (1 + 𝑚2𝜆)−

1
2 , (E.7)

so that Laplace’s approximation of the number of atoms in the time-smoothing scalogram estimator 𝑆𝑥𝑥(𝑡, 𝑓 ;𝑄,𝑚) is:

𝑛 ≈
(

1 + 𝑚2𝜆
)
1
2 , (E.8)

for a sufficiently large value of 𝛼 = (𝑚𝑄)2𝜆. Note the dependence of 𝑛 on the quality factor 𝑄 (through 𝜆).
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