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ABSTRACT 1 
The competition in the ride-hailing market can influence traffic congestion and deteriorate the quality of 2 
service. A customer can request to be matched with a ride-hailing vehicle from the preferred company, 3 
which might be different from the nearest vacant one. This can increase the customer’s matching and 4 
pick-up waiting time and the vehicle’s travel distance to the customer and contribute to traffic congestion. 5 
Recent studies focus on the long-term competition effect by considering network equilibrium. In this 6 
work, we target a shorter timeframe and investigate how the competition influences the passenger-driver 7 
matching process, the consequent vehicle travel to the customer, and, more globally, the system at the 8 
operational level. To this end, we propose a modeling and simulation framework based on the 9 
Macroscopic Fundamental Diagram (MFD). We apply the so-called M-model, a continuum 10 
approximation of the trip-based MFD. Compared to the accumulation-based approach, it explicitly 11 
monitors the remaining travel distance of all vehicles. We extend the mathematical M-model 12 
decomposition and focus on accurate dynamic estimation of trip lengths for the different vehicle states 13 
based on the immediate system state. For this, we suggest creating an additional proxy simulation 14 
framework replicating the demand requests and the service vehicle movements. We propose calibrating 15 
the matching function by sampling observations on a proxy grid network. Finally, we assess and compare 16 
different matching processes that define diverse competition scenarios: competition, cooperation, and 17 
competition with partial cooperation (coopetition). The cooperation scenario shows the best results in 18 
terms of service performance.  19 
Keywords: Ride-hailing, Macroscopic Fundamental Diagram, Simulation, Modeling, Urban traffic model  20 
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1 INTRODUCTION 1 
This work is part of a global objective to investigate the advantages and drawbacks of 2 

competition within and between different transport modes or services. This question has received little 3 
attention in scientific studies. Transportation companies often estimate the competition's impact on other 4 
services regarding their potential profit and losses. However, this approach is lacking an understanding of 5 
how competition influences urban, natural, and social environments. In this work, we focus on the 6 
competition between on-demand ride-hailing services. This choice is based on the behavior observation of 7 
ride-hailing companies in the US, where the recent emergence of the ride-hailing market negatively 8 
contributed to network performance and traffic congestion (1). Such services as Uber and Lyft increase 9 
their operating fleet to reduce customer waiting times (2), which creates extra congestion and 10 
consequently negatively influences CO2 emissions as many vehicles move idly. Other countries also 11 
experience harmful externalities from ride-hailing companies’ competition, e.g., in China, it led to urban 12 
congestion and high emissions (3). Thus, we suppose that ride-hailing services contribute to traffic 13 
congestion not only by inefficient space usage (when a vehicle carries only one passenger) but also by 14 
ride-hailing market fragmentation. This means that a customer, instead of being served by the closest 15 
vacant car, chooses a vehicle of the most preferred or the cheapest company. Consequently, we conjecture 16 
that the distance an empty vehicle runs to pick up a customer increases in the oligopoly market compared 17 
to the monopoly scenario.  18 

Most studies focus on the long-term effect of competition by considering network equilibrium (4-19 
6). It permits assessing the competition’s influence on fares, costs, demand rates, and other modeling 20 
parameters, some of which occasionally can be connected to our field of concern. Exploring competition 21 
includes a better understanding of the key factors that influence competition. Thus, some works are 22 
focused on governmental policies to regulate the competition of ride-hailing services with taxi (7) and 23 
public transport (8,9) alternatives. In this paper, we target a shorter timeframe and investigate how the 24 
competition influences the passenger-driver matching process, the consequent vehicle travel for picking 25 
up the customer, and, more globally, the system at the operational level. It includes evaluating the system 26 
dynamics, congestion level, and service in the short term. Thus, we formulate the following research 27 
questions: 28 

• How does competition during the matching phase influence service operations and network 29 
performances? 30 

• What is the impact of different request distribution scenarios on service operations? 31 
• How do the fleet size, number of companies, and market share influence the competition 32 

outcome? 33 
To respond to those questions, we propose a modeling and simulation framework. We decide to 34 

use the Macroscopic Fundamental Diagram (MFD) modeling framework due to its simplicity and 35 
suitability to represent traffic dynamics at a large scale. The MFD connects the vehicle's density with the 36 
mean network flow or speed. The related models are computationally efficient in predicting the 37 
aggregated traffic state dynamics (10). There are two main MFD types: accumulation-based and trip-38 
based. In the accumulation-based model, the trip length is taken as an average and equal for all travelers. 39 
For the trip-based model, on the contrary, the trip length is individual for each traveler and is formulated 40 
as an integral of the network speed during the traveling period (11). As we study the behavior of the on-41 
demand services where the travel distance can have a significant variation, especially when comparing 42 
steady and high-demand periods, the accumulation-based model is not the right choice due to the lack of 43 
detailed distance representation. On the opposite, the trip-based model represents the travel distance of 44 
each trip. However, it is often computationally expensive to use this model. In our work, we use an 45 
intermediate approach named the M-model, a continuum approximation of the trip-based MFD model 46 
(12). Compared to the accumulation-based approach, it explicitly monitors the remaining travel distance 47 
of all vehicles and thus does not result in the mean distance traveled approximation. We decompose the 48 
mobility service’s operations into several instances of the M-model. Each instance represents the different 49 
steps by conservation equations and depicts different vehicle states. Similar decomposition steps have 50 
been previously proposed by (12). In this work, we extend the mathematical model decomposition and 51 



Hryhoryeva and Leclercq  

4 
 

then focus on accurately estimating the trip lengths for the different steps. We assess and compare 1 
different matching processes that define diverse competition scenarios. 2 

We present three simulated scenarios to study the influence of competition on the services’ 3 
operations and system state. All scenarios have similar decision rules and cancellation policies described 4 
below. 5 

 6 
Competition between companies 7 
In this scenario, the companies operate in the system with no interaction except for sharing the 8 

same network speed for a given time. Each customer has a preferred company and cannot be served by 9 
another one. Each company defines a threshold of the idle distance a vehicle can travel to pick up a 10 
customer. For each passenger-vehicle match, the company looks for the idle distance to match this 11 
request. If the idle distance is less than the threshold – the customer is served by the assigned vehicle. 12 
Otherwise, the customer's request is put in the waiting queue, and the vehicle stays vacant. If there are not 13 
enough vacant vehicles to serve a request, it is also put in the waiting queue.  Demand requests are 14 
waiting in the queue for a pre-defined maximum time duration. If not matched in between, the request is 15 
canceled.  16 

 17 
Cooperation of companies  18 
We consider the cooperation scenario where any company can serve customers. In this case, the 19 

centralized system allocates a new demand request to the nearest vehicle if we assume that on-demand 20 
services have a similar pricing scheme. This assumption is reasonable at the market equilibrium as a 21 
company will lose customers to others if their fares are significantly different. The customer is served if 22 
the idle distance is less than a specific threshold. Otherwise, the request is put in the queue, and the 23 
vehicle remains vacant. Again, when there is a shortage of vacant vehicles, demand requests are put in the 24 
queue. If a demand request stays in the queue for more than the allowed time – it is canceled.  25 

Note that this scenario is similar to the monopoly market, as all the demand requests are put in the 26 
shared pool, and there is no distinction between different companies’ cars at the matching stage.  27 

 28 
Competition with partial cooperation (coopetition) 29 
In this scenario, each customer has a preferred company. All the processes are similar to the 30 

previous two scenarios, including the comparison of idle distance for each matching with a threshold and 31 
putting customers with no assigned vehicles in the waiting queue. However, after the waiting time of a 32 
customer in the queue exceeds the allowed limit, this demand request is suggested to the rival company to 33 
be served. Hence, the other company needs to decide based on the vehicle’s availability and the idle 34 
distance to this request. If there are no available vehicles or the idle distance to the request is bigger than 35 
the allowed threshold, then the rival company refuses to serve the transferred demand and it is canceled. 36 

As the demand request distribution is made differently in these scenarios, their comparison can 37 
help to see the influence of competition and cooperation on the service operations. 38 

The remaining of this paper is organized as follows. Section 2 presents the simulation modeling 39 
framework, including the state components and the calibration and integration of travel distance. Section 40 
3 contains the simulation results, including the case study description, sensitivity analysis, and system 41 
dynamics representation. In Section 4, the conclusion and future perspectives are presented.  42 

 43 
2 MODELING FRAMEWORK 44 
2.1 State components 45 

This section presents the simulation modeling framework based on the M-model. 46 
Firstly, we present the cycle of states through which passes each demand request and a vehicle in the 47 
system. Three main actors are integrated into the modeling: users (demand requests), ride-hailing and 48 
private vehicles. Their system states are represented in Figure 1a. The passengers have the following 49 
cycle. Firstly, a demand request appears in the system. It can be put in the waiting queue or matched with 50 
a vehicle (matching decision-making). Note that the “waiting in a queue to be matched” user state is 51 
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optional depending on the number of vacant vehicles and the idle distance to each demand. While waiting 1 
in the queue, a passenger can be matched with a new vacant vehicle (matching decision-making). After 2 
being matched, the passenger starts waiting for a vehicle to arrive. Then, the vehicle picks up the 3 
passenger, and they start to move together. The passenger onboard and an occupied ride-hailing vehicle 4 
are represented jointly in this state as their actions are identical. When the vehicle arrives at the 5 
destination, the cycle of the demand request is finished, and it is considered as served. The cycle of ride-6 
hailing vehicles starts when a vehicle is idle non-moving (vacant). If it is matched with a demand request, 7 
the idle vehicle starts moving to pick up a passenger. When it reaches the passenger, they start moving 8 
together till the demand destination is reached. After this, the vehicle becomes idle non-moving again. 9 
Private vehicle demand is served directly without waiting. The private vehicle moves with the passenger 10 
until the destination is reached and then disappears from the system. Thus, ride-hailing vehicles have 11 
three main states: idle non-moving (I), idle moving towards a passenger or simply idle moving (RHI), and 12 
occupied (RH). Private vehicles have only one state: a moving vehicle (PV).  13 

In practice, after a drop-off, a vehicle can either: (i) wait at the drop-off location, (ii) randomly 14 
drive (fishing), (iii) drive to a more attractive location (rebalancing), and (iv) drive to the new customer 15 
after a new match. In our setting, the vehicles only do (i) and then (iv), meaning that we consider the 16 
repositioning of the vehicles but only when they certainly know that they are matched with a customer. In 17 
this paper, we neglect the idle traveled distances from the random drive of vehicles before they receive a 18 
request. This cruising is not influenced by the level of competition (usually, a fraction of idle vehicles 19 
drives while waiting for a request). Considering such distance would certainly influence the traffic 20 
congestion as more vehicles driving reduces the speed. However, this will be driven by the total amount 21 
of ride-hailing vehicles and will not be changed based on how many companies are competing and their 22 
level of cooperation. As we focus on the influence of competition, we disregard this aspect. Note that 23 
smart rebalancing strategies using demand predictions or identifying more attractive areas would change 24 
this statement. However, this would require a complete description of the spatial dimension of the 25 
problem, which is not possible with the continuous description of the vehicle states we use. If we consider 26 
a perfect rebalancing, meaning that a vehicle can guess exactly where the next request will pop up, then, 27 
the travel distance is the same as the one we use, except that the trip will be made before the request 28 
appears. If the rebalancing is imperfect, extra distances are added but they are small compared to the 29 
overall relocation distance because otherwise the rebalancing is not effective. As the paper's central focus 30 
is the competition between mobility providers, we believe that not considering rebalancing will not have a 31 
major impact on the results and its further analysis is out of the scope of the paper.  32 

Private and ride-hailing vehicles interact by sharing a common network speed. In an oligopoly 33 
market, several ride-hailing services participate in the simulation and share the same network speed. 34 
 35 

  36 
      (a) 37 
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 1 
      (b) 2 

Figure 1. (a) Actors’ states and actions, and (b) actors’ states processes representation by either 3 
queuing theory or M-model 4 
 5 

When a vehicle or passenger enters the state marked in green in Figure 1b, they must wait before 6 
being served or matched. Such processes are well-known in queueing theory when conservation of mass 7 
is guaranteed. These stages are represented by conservation equations considering in- and outflows. The 8 
components corresponding to the driving phase (marked in pink in Figure 1b) are characterized by the 9 
M-model that defines the outflow depending on the remaining travel distances and the vehicle 10 
accumulation in the subsystems. Thus, the M-model reproduces the following vehicle states: private 11 
vehicles, idle moving ride-hailing vehicles, and occupied ride-hailing vehicles. M-model assures not only 12 
the conservation but also helps to explicitly track the travel distance. Instead of having a steady-state 13 
outflow approximation of each vehicle state at every time step, we introduce transition phases related to 14 
the trip-length dynamics. This approach helps to avoid the drawbacks of the travel distance representation 15 
in the accumulation-based MFD as it relaxes the steady state approximation that defines the outflow. 16 
Table 1 summarizes the modeling framework notation.  17 

 18 
TABLE 1 Notation 19 

𝑛!"#(𝑡) −	number of waiting passengers in a queue to be matched; 

𝑛$(𝑡) −	number of non-moving ride-hailing vehicles; 

𝑛%&$(𝑡) −	number of idle moving ride-hailing vehicles to pick up a customer; 

𝑛%&(𝑡) −	number of moving ride-hailing vehicles with a passenger on board; 

𝑛!'(𝑡) −	number of private vehicles; 

𝑀%&$(𝑡) − total remaining distance of idle moving ride-hailing vehicles; 

𝑀%&(𝑡) − total remaining distance of moving ride-hailing vehicles with a passenger on board; 

𝑀!'(𝑡) − total remaining distance of private vehicles; 

𝜆%&(𝑡) − ride-hailing demand request arrival rate; 

𝜆!'(𝑡) − private vehicles demand request arrival rate; 

𝐿%&$(𝑡) − average trip length of an idle moving ride-hailing vehicle; 

𝐿%&(𝑡) − average trip length of a moving ride-hailing vehicle with a passenger; 

𝐿!'(𝑡) − average trip length of a private vehicle; 
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𝜎%&$(𝑡) − standard deviation of 𝐿%&$; 

𝜎%&(𝑡) − standard deviation of 𝐿%&; 

𝜎!'(𝑡) − standard deviation of 𝐿!';  

𝐿%&$∗ (𝑡) − average remaining distance to be traveled by an idle moving ride-hailing vehicle in 

steady state; 

𝐿%&∗ (𝑡) − average remaining distance to be traveled by a moving ride-hailing vehicle with a 

passenger in steady state; 

𝐿!'∗ (𝑡) − average remaining distance to be traveled by a private vehicle in steady state; 

𝑣(𝑡) − average speed in the region; 

𝑂%&$(𝑡) − instantaneous trip completion rate for idle moving ride-hailing vehicles; 

𝑂%&(𝑡) − instantaneous trip completion rate for moving ride-hailing vehicles with a passenger on 

board; 

𝑂!'(𝑡) − instantaneous trip completion rate for private vehicles; 

𝑂!"#(𝑡) − matching rate of passengers with ride-hailing vehicles. 

 1 
Equations 1-2 use the queueing theory to represent the relationship between the passenger queue 2 

accumulation	𝑛!"#, the number of idle non-moving vehicles 𝑛$, and the matching rate 𝑂!"#. The set of 3 
Equations 1 is valid when the demand exceeds the supply, while Equations 2 are true when there are 4 
enough of vacant vehicles to serve the demand. Thus, Equations 1-2 represent the instances of the 5 
passenger waiting queue and idle non-moving vehicles. For the passenger queue, the inflow is the arriving 6 
demand, and the outflow is the matching result. The inflow of the idle non-moving vehicles instance are 7 
the vehicles that just finished delivering precedent passengers, and the outflow is the matching with a new 8 
demand. Hence, this component is driven by a simple conservation principle. 9 

⎩
⎪
⎨

⎪
⎧𝑛

!"#(𝑡 + ∆𝑡) = ∆𝑡4𝜆%&(𝑡 + ∆𝑡) − 𝑂%&(𝑡 + ∆𝑡)5 − 𝑛$(𝑡) + 𝑛!"#(𝑡)
𝑛$(𝑡 + ∆𝑡) = 0

			

𝑂!"#(𝑡 + ∆𝑡) = 𝑂%&(𝑡 + ∆𝑡) +
𝑛$(𝑡)
∆𝑡

𝑖𝑓	∆𝑡𝑂%&(𝑡 + ∆𝑡) + 𝑛$(𝑡) < ∆𝑡𝜆%&(𝑡 + ∆𝑡) + 𝑛!"#(𝑡)

																																																					(1) 10 

or 11 

⎩
⎪
⎨

⎪
⎧ 𝑛!"#(𝑡 + ∆𝑡) = 0
𝑛$(𝑡 + ∆𝑡) = ∆𝑡4𝑂%&(𝑡 + ∆𝑡) − 𝜆%&(𝑡 + ∆𝑡)5 − 𝑛!"#(𝑡) + 𝑛$(𝑡)

𝑂!"#(𝑡 + ∆𝑡) = 𝜆%&(𝑡 + ∆𝑡) +
𝑛!"#(𝑡)
∆𝑡

𝑖𝑓	∆𝑡𝑂%&(𝑡 + ∆𝑡) + 𝑛$(𝑡) ≥ ∆𝑡𝜆%&(𝑡 + ∆𝑡) + 𝑛!"#(𝑡)

																																																											(2) 12 

 13 
We group the equations according to the instance type (the state of vehicles) that they represent. 14 

Thus, Equations 3-5 represent the instance of idle moving vehicles 𝑅𝐻𝐼. Equation 3 represents the 15 
outflow calculated as the dynamic extension of the steady-state approximation. We remind that the 16 
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steady-state approximation of the outflow is the production divided by the mean length )
!"#*
+!"#

	. However, 1 
if the trip length is heterogeneous, then during the transitional states the steady-state approximation can 2 
significantly vary from the real values. Hence, it is crucial to account for the trip-length dynamics. If in 3 
Equation 3 the term 𝛼 = 0, then the equation transforms into a steady-state approximation. Therefore, 4 

the term 𝛼 B,
!"#(.)

+!"#
∗ (.)

− 𝑛%&$(𝑡)C of the Equation 3 helps to capture the changes and represent the 5 

dynamics of the current trip length based on the total remaining distance and the average remaining 6 
steady-state distance. 7 

We need to handle the situation when a vehicle state can become empty. This can occur if the 8 
outflow is higher than the inflow, leading to negative accumulation. To prevent this, we fix current 9 
accumulation in the corresponding vehicle state equal to zero  10 

𝑛0(𝑡 + ∆𝑡) = ∆𝑡 D𝑂1)0 (𝑡 + ∆𝑡) −	𝑂23.0 (𝑡 + ∆𝑡)E + 𝑛0(𝑡) = 0 11 
and obtain that 12 

𝑂23.0 (𝑡 + ∆𝑡) =
𝑛0(𝑡)
∆𝑡

+ 𝑂1)0 (𝑡 + ∆𝑡) 13 

where 𝐾 = {𝑅𝐻𝐼, 𝑅𝐻, 𝑃𝑉}, 𝑂23.0 − outflow of the corresponding instance, and 𝑂1)0 − inflow of the 14 
corresponding instance. Thus, when calculating the outflow at every time step, we need to take the 15 

minimum between the normal outflow value L𝑛0(𝑡) + 𝛼 B,
%(.)

+%
∗ (.)

− 𝑛0(𝑡)CM *(.)
+%	(.)

 and the value of the 16 

negative-accumulation case outflow		)
%(.)
∆.

+ 𝑂1)0 (𝑡 + ∆𝑡). 17 
Equation 4 calculates the vehicle’s accumulation in state 𝑅𝐻𝐼, where the inflow is the matching 18 

result, and the outflow are the vehicles that just picked up their passengers. Equation 5 represents the 19 
total remaining distance of 𝑅𝐻𝐼 vehicles. For each passenger-vehicle matching, the company looks for the 20 
idle distance 𝐿%&$ to match a specific request. The value of 𝐿%&$ is derived from the idle travel distance 21 
distribution considering the number of vehicles and the demand density. If the drawn idle distance is less 22 
than the pre-defined threshold – the customer is served by the assigned vehicle. Otherwise, the demand 23 
request is put in the queue. The same process of drawing the distance from the distribution is used for 24 
other vehicle states, as we need to know the trip length of all new vehicles entering a new state. This is 25 
necessary to calculate the corresponding total remaining travel distance based on the trip-length 26 
dynamics.  27 

𝑂%&$(𝑡 + ∆𝑡) = minQL𝑛%&$(𝑡) + 𝛼 B,
!"#(.)

+!"#
∗ (.)

− 𝑛%&$(𝑡)CM *(.)
+!"#	(.)

, )
!"#(.)
∆.

+ 𝑂!"#(𝑡 + ∆𝑡)R    (3) 28 

𝑛%&$(𝑡 + ∆𝑡) = ∆𝑡4𝑂!"#(𝑡 + ∆𝑡) − 𝑂%&$(𝑡 + ∆𝑡)5 + 𝑛%&$(𝑡)            (4) 29 

𝑀%&$(𝑡 + ∆𝑡) = 	∆𝑡4𝑂!"#(𝑡 + ∆𝑡) ∙ 𝐿%&$(𝑡 + ∆𝑡) − 𝑛%&$(𝑡 + ∆𝑡) ∙ 𝑣(𝑡 + ∆𝑡)5 + 𝑀%&$(𝑡)     (5) 30 

Equations 6-8 represent the occupied vehicles 𝑅𝐻. Equation 6 stands for the outflow of this 31 
instance, i.e., the vehicles that delivered their passengers. Equation 7 calculates the vehicle’s 32 
accumulation in state 𝑅𝐻 where the inflow is the vehicles that picked up passengers, and the outflow is 33 
the vehicles that delivered passengers. The total remaining distance of 𝑅𝐻 vehicles is calculated using 34 
Equation 8. 35 

𝑂%&(𝑡 + ∆𝑡) = min	 QL𝑛%&(𝑡) + 𝛼 B,
!"(.)

+!"
∗ (.)

− 𝑛%&(𝑡)CM *(.)
+!"	(.)

, )
!"(.)
∆.

+ 𝑂%&$(𝑡)R         (6) 36 
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𝑛%&(𝑡 + ∆𝑡) = ∆𝑡4𝑂%&$(𝑡 + ∆𝑡) − 𝑂%&(𝑡 + ∆𝑡)5 + 𝑛%&(𝑡)            (7) 1 

𝑀%&(𝑡 + ∆𝑡) = ∆𝑡4𝑂%&$(𝑡 + ∆𝑡) ∙ 𝐿%&(𝑡 + ∆𝑡) − 𝑛%&(𝑡 + ∆𝑡) ∙ 𝑣(𝑡 + ∆𝑡)5 + 𝑀%&(𝑡)           (8) 2 

Equations 9-10 represent the private vehicles 𝑃𝑉 instance. Equation 8 calculates the outflow of 3 
the instance, i.e., the vehicles that finished their trips. Equation 9 calculates the private vehicle’s 4 
accumulation where the inflow is the demand, and the outflow is the vehicles that finished travel. The 5 
total remaining distance of 𝑃𝑉 vehicles is calculated using the Equation 8. 6 

𝑂!'(𝑡 + ∆𝑡) = min	 QL𝑛!'(𝑡) + 𝛼 B,
&'(.)

+&'
∗ (.)

− 𝑛!'(𝑡)CM *(.)
+&'	(.)

, )
&'(.)
∆.

+ 𝜆!'(𝑡)R                 (9) 7 

𝑛!'(𝑡 + ∆𝑡) = ∆𝑡4𝜆!'(𝑡 + ∆𝑡) − 𝑂!'(𝑡 + ∆𝑡)5 + 𝑛!'(𝑡)          (10) 8 

𝑀!'(𝑡 + ∆𝑡) = ∆𝑡4	𝜆!'(𝑡 + ∆𝑡) ∙ 𝐿!'(𝑡 + ∆𝑡) − 𝑛!'(𝑡 + ∆𝑡) ∙ 𝑣(𝑡 + ∆𝑡)5 + 𝑀!'(𝑡)           (11) 9 

Equation 12 calculates the average remaining distance to be traveled in a steady state as a 10 
function of the average trip length and the standard deviation (4). 11 

𝐿0∗ (𝑡) =
(+%(.)(67%(.)()

8+%(.)
 , where 𝐾 = {𝑅𝐻𝐼, 𝑅𝐻, 𝑃𝑉}            (12) 12 

When several on-demand mobility services concurrently operate, it significantly affects the 13 
demand-supply matching process. Such a process is often represented by the Cobb-Douglas type meeting 14 
function (3,14,15). It was originally used in economics to model the relation between production output 15 
and inputs (16). For a set of 𝑛 inputs, the general form of the Cobb-Douglas function is 16 

𝑌 = 𝑓(𝑥9, 𝑥8, … , 𝑥)) = 𝛾X𝑥1
:)

)

1;9

 17 

where 𝑌 is output, 𝑥1 is input 𝑖, and 𝛾 with 𝑎1 are parameters that determine the production's general 18 
efficiency and the output's sensitivity to input quantities changes (16). In transportation, this function 19 
calculates the matching rate based on the supply and demand quantities represented by the number of 20 
vacant vehicles and waiting passengers. Matching includes the time and distance required for a vehicle to 21 
reach a customer. So, the output can be expressed indifferently in terms of matching rate, pick-up time, or 22 
idle travel distance to a customer. We would like to thoroughly explore the matching process between a 23 
passenger and a vehicle. In short, cooperation/competition between companies changes which vehicle can 24 
fit a travel request. The key factor is the distance between the customer and the matched vehicle. It 25 
depends on the demand density and its distribution among the companies and the company’s number of 26 
vacant vehicles.  27 

In the modeling framework, it is important to represent the trip length of the vehicles in different 28 
states. The macroscopic modeling framework needs to be fed with individual trip lengths and to study trip 29 
length we need to look at the local matching process. The model requires not only the current mean value 30 
for both idle and occupied vehicle trip lengths but also its standard deviation. The general Cobb-Douglas 31 
meeting function requires calibration. Thus, it is important to approximate the idle trip length at each time 32 
step based on the immediate system state instead of using an average value for each trip. To do so, we 33 
suggest creating a proxy modeling framework that replicates the demand requests and the service 34 
vehicle’s movements. We propose calibrating the needed values using the Cobb-Douglas expression by 35 
sampling observations on a proxy grid network. Thus, by sampling multiple configurations, we can get a 36 
full overview of the relation between trip lengths, demand levels, and vacant fleet sizes. We assume in the 37 
proxy that speeds are constant to keep computation time very low. This is crucial as we need to sample 38 
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many configurations. Such a solution is faster than performing more computationally expensive 1 
simulations. This assumption affects travel distance which is a primary focus.  2 

Note that different equations represent all driving states of vehicles, but they are all related to 3 
each other through the same network speed.  4 

 5 
2.2  Modeling and calibration of travel distance 6 

In the proxy simulation, as we focus on distance traveled, speed and travel times are not the 7 
primary factors, so we assume that all vehicles move at the same speed during the sampling of 8 
observations and the demand is uniform. 9 
The size of the grid network is chosen to be 7000x7000 meters. Thus, the network surface is equal to 49 10 
km2, which is close to Lyon area (47.87 km2). The initial number of vehicles in the system and the 11 
number of requests that appear within each proxy simulation run are different in each run. In total, 200 12 
proxy simulation runs are performed. This is done to diversify the possible system states that help identify 13 
the dependencies and factors that influence trip lengths. Note that we investigate idle trip length, i.e., the 14 
travel distance required to pick up a customer, and the service trip length, i.e., the travel distance with a 15 
customer on board. During each proxy run, the statistics about each trip are recorded to calculate the 16 
average values and standard deviation of different variables, e.g., the distance run to pick up a customer, 17 
the number of vacant vehicles, etc. In the chosen matching strategy, the passengers follow the FCFS 18 
principle (first come – first served), but each demand request is assigned to the nearest vacant vehicle. 19 
Firstly, we study the vehicle travel distance with a passenger on board (service trip length or service 20 
distance). We notice that the variation in the service trip length is small regardless of the system's 21 
saturation. Figure 2a shows the variation in the distance values experienced during the proxy simulation.  22 

 23 
     (a) 24 
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 1 
    (b) 2 

Figure 2. (a) Average service distance, and (b) dependence of service distance on vacant vehicle 3 
density and demand density. 4 

We want to investigate if system characteristics influence the service trip length. We test the 5 
influence of the density of appearing demand requests per time unit and the density of vacant vehicles. 6 
These two main parameters define the matching process according to the Cobb-Douglas meeting function. 7 
We use polynomial regression to show their influence on the service trip length. The regression shows no 8 
clear trend (coefficient of determination equal to 0.00514). The service trip length depends mostly on the 9 
demand pattern (OD pairs) and little on the service characteristics. OD pairs come from the same 10 
distribution, which does not depend on the number of vehicles, only on trips to perform that are, 11 
consequently, depend on the network size. Figure 2b illustrates the dependence of the service distance on 12 
the density of demand requests and vacant vehicles, where no obvious trend is visible.  13 

We will now investigate the idle trip length when the service is not saturated (no queueing of 14 
demand requests). Thus, the passengers still follow the principle FCFS and each demand request is 15 
assigned to the nearest vacant vehicle. Figure 3 shows the variation of the idle distance values 16 
experienced during the proxy simulation.  17 

 18 
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Figure 3 Average idle distance 1 
 2 

From Figure 3, we notice that the idle distance variation is significant as the relative variation of 3 
idle distance is higher than the relative variation of service distance (Figure 2). Besides the demand 4 
pattern, it depends on other factors. We would like to investigate which system characteristics influence 5 
idle distance. We use polynomial regression to show the influence of the immediate demand requests’ 6 
density and the density of vacant vehicles on idle distance. We obtain the coefficient of determination 7 
equal to 0.91. If we examine the dependence of idle distance on both parameters separately using 8 
polynomial regression, the obtained coefficient of determination is 0.88 for the vacant vehicle density and 9 
0.011 for the demand density. The dependence of idle distance on those parameters is visualized in 10 
Figure 4a-c. 11 

 12 

(a) 13 

 14 

(b) 15 
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Figure 4. (a) Dependence of idle distance on vacant vehicle density, (b) dependence of idle 3 
distance on demand density, and (c) dependence of idle distance on vacant vehicle density and 4 
demand density. 5 

We observe the strong dependence of idle distance on the vacant vehicle density (Figure 4a). 6 
However, it also depends on the demand density, even though the relationship is less obvious. The region 7 
marked in green in Figure 4b is always empty. The reason is that if the demand density is high, it is easy 8 
for a vacant vehicle to have a request nearby, reducing the vehicle's idle distance. The region marked in 9 
orange in Figure 4b is empty as the system does not reach the state where there are so many demand 10 
requests and vacant vehicles that the matched request and vehicle situate very close to each other. Figure 11 
4c illustrates the joint dependence of idle distance on vacant vehicle density and demand density. 12 

Thereby, the Cobb-Douglas function expression is not explicit. The vacant vehicle number and 13 
the demand rate influence the matching through the regression used to estimate the idle distance. Thus, it 14 
can be expressed as 𝐿%&$(𝑡) = 𝐹(𝜆%&(𝑡), 𝑛$(𝑡)), where 𝐹(𝑥) is the regression function. 15 

We now consider the idle trip length of saturated network, i.e., not enough vehicles are 16 
immediately available, and passengers have to wait before being matched.  17 

As long as there are not enough vehicles to serve all the demand requests, those requests enter a 18 
waiting queue. When a vacant vehicle appears, it serves the request with the longest waiting time in the 19 
queue. Thus, the passenger queue follows the FCFS principle. Previously, when the network was not 20 
saturated, each new request was assigned to the nearest vehicle. However now, while having the shortage 21 
of vehicles and passengers’ waiting queue, each newly available vehicle is matched with the longest 22 
waiting passenger in the queue. This process can lead to two situations: 1) a single vacant vehicle 23 
becomes available; 2) several vacant vehicles become available simultaneously.  24 

Figure 5a shows the results of the proxy simulation when a single vacant vehicle becomes 25 
available and serves the first request in the queue. The idle distance distribution depicted in Figure 5a is 26 
for a city with a square size of 7 km in width and length. From Figure 5a, we see that the idle trip length 27 
follows a beta distribution with the parameters 𝛼 = 2.42, 𝛽 = 4.68, standard deviation 𝜎 = 2323 meters, 28 
and the mean value 4710 meters. Thus, in the case of insufficient vehicle supply, the idle distance can be 29 
generated by knowing the parameters of the beta distribution. 30 
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   (b) 4 

Figure 5. (a) Idle distance distribution when single vacant vehicle becomes available and 5 
serves the first request in the queue, and (b) idle distance distribution when several vehicles become 6 
available simultaneously the next request in the queue is served by the nearest vehicle 7 

 8 
When several vehicles become available simultaneously, we need to determine which vehicle will 9 

serve the subsequent request in the queue. The strategy used is for the nearest available vehicle to serve 10 
this demand. However, this process is not random and requires a proxy simulation to estimate the idle 11 
distance values. Based on the results from the proxy, the average standard deviation within this strategy is 12 
386 meters, and the average idle distance is 2403 meters, with the distribution depicted in Figure 5b. 13 
Thus, these values are used in the non-empty queue case. 14 

 15 
2.3  Travel distance integration into the framework 16 
 To conclude, the distance is handled differently for each vehicle state. For the occupied vehicle 17 
state, the service trip length and its standard deviation are taken as an average from the proxy, as these 18 
values depend mainly on the network size. The same values are used for the private vehicles' travel 19 
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distance. In the situation of vacant vehicle shortage, when new requests are put in a waiting queue, the 1 
idle distance of a vehicle and the standard deviation are taken as an average from the proxy. For idle 2 
vehicles without vacant vehicle shortage, we show the dependency of the idle distance on the current 3 
demand rate and vacant vehicle density.  4 

It is essential to highlight the integration of the travel distance sampling into continuous 5 
equations. The proxy simulation provides us with the distribution, i.e., mean value and standard deviation, 6 
of trip length for all driving model components. Every time step when we either need to create new 7 
vehicles (PV case) or switch vehicles to a new state (ride-hailing case), we need to assign to these new 8 
vehicles a travel distance. This is done by sampling using the related distribution.  9 

For Equations 5, 8, and 11, every time we add a new travel distance of vehicles in their new 10 
state, we summarize all the sample distances of the related vehicles. Knowing that the inflow is a 11 
continuous variable when we have a fractional number of vehicles, we draw and multiply the summarized 12 
distance by the fraction of vehicles.  13 

Instead of tracking each vehicle individually (trip-based approach), we initialize the travel 14 
distance with the information obtained from proxy simulation and make it continuous. Thus, we make a 15 
trade-off between the trip- and accumulation-based approaches.  16 

Thus, we use the proxy simulation to estimate the trip length for different values of demand rate 17 
and vacant vehicle density, then run polynomial regression to get the mean distance value and the 18 
standard deviation, and afterwards, do sampling to feed the M-model.  19 
 20 
3  SIMULATION RESULTS  21 
3.1  Case study description 22 

For the sake of simplicity, we choose the network characteristics to be similar to the network of 23 
Lyon, France.  24 

The general simulation parameters are the following. For all study cases, the time horizon is 4 25 
hours (14400 seconds), with the 2 seconds time step of the system update. At each time step, the average 26 
speed 𝑣(𝑡) is calculated using speed functions of the Lyon Metropolis network from (17), where the 27 
variable is the number of all moving vehicles in the system (Figure 6). 28 

 29 

Figure 6 Network speed function 30 

The proportion of ride-hailing vehicles to the total number of vehicles should be consistent with 31 
the approximate percentage of Vehicle Miles Traveled (VMT) by ride-hailing vehicles. (18) states that 32 
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ride-hailing services in the US are responsible for 1%-14% of the total VMT. (1) claims that in San 1 
Francisco, ride-hailing trips constitute 15% of the overall number of vehicle trips. However, as the chosen 2 
network settings are based on the Lyon network characteristics, we decided to keep the number of ride-3 
hailing vehicles consistent with this city situation. The results of an additional study, where ride-hailing 4 
vehicles constitute 15-17% of all the vehicles in the system, are presented in Appendix A. 5 

The demand rate benchmark is taken from (19), where the total vehicle demand during peak 6 
hours is around 25-27 vehicles per second. Applying the ratio of ride-hailing vehicles/private vehicles to 7 
the demand, it is possible to calculate the demand rate for each mode.  8 

To test the system reaction based on the demand changes, for ride-hailing and private vehicles the 9 
demand value is set up to be uniform at each time step during a certain period, then it starts to increase, 10 
reaches its peak, and consequently decreases to the original value, and remains constant till the end of the 11 
simulation (Figure 7a,b).  12 

 13 
       (a) 14 

 15 
       (b) 16 

Figure 7. (a) Ride-hailing vehicles demand curve, and (b) private vehicles demand curve 17 

As mentioned before, the service travel distance depends mainly on the network size. Thus, using 18 
the proxy simulation, we obtain the average value of 4424 meters and its standard deviation of 60 meters 19 
for the given network size. We also assume these parameters are valid for private vehicle travels. Thus, 20 
for each vehicle-passenger pair and each private vehicle, we draw a service travel distance using the 21 
mentioned parameters and considering the normal distribution. 22 

Consider the allowed waiting time in the queue to be 3 minutes, and the allowed threshold of idle 23 
vehicle distance is 2000 meters.  24 

The simulation's initial values are the following. To investigate the system's behavior close to the 25 
saturation state, we set up the initial system speed to 4.75 m/s. The total initial number of vehicles in the 26 
system should be consistent with the network speed and can be calculated using the MFD curves (17). 27 
Thus, based on the corresponding calculations, we obtain the initial number of private vehicles equal to 28 
23559 and the total number of ride-hailing vehicles equal to 600. Knowing the demand, this ratio leads to 29 
the ride-hailing service being responsible for 2-3% of the total VMT. The initial value of the total 30 
remaining distance for each vehicle state is calculated assuming each vehicle has left to run half of the 31 
respective distance on average. The summary of parameters’ values and variables’ initial values is shown 32 
in Table 2. 33 
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TABLE 2 Values of parameters and initial values of variables 1 

Time horizon 4 h (14400 sec) 
System update time step 2 sec 
Mean service travel distance 4424 m 
Mean standard deviation of service travel distance 60 m 
Passenger maximum waiting time in the queue 3 min (180 sec) 
Initial network speed 4,75 m/s 
Total number of ride-hailing vehicles 600 
Initial number of private vehicles 23559 
Maximum allowed idle distance for matching 2000 m 
Mean idle distance in saturated system (non-empty passenger queue) 2403 m 
Mean standard deviation of idle distance in saturated system 386 m 

 2 
3.2  Sensitivity analysis 3 

To evaluate how the competition during the matching phase and different request distribution 4 
schemes influence service operations and network performance, we compare the metrics of cooperation, 5 
competition, and coopetition scenarios given the same initial parameters for each of them. To evaluate the 6 
output of different settings, we implement the following test cases: variation of the ride-hailing market 7 
fleet size, the number of companies in the system, the market share of ride-hailing and private vehicles, 8 
the variation of fleet size between the companies within the ride-hailing market, and the variation of 9 
demand share between the companies within the ride-hailing market. To see the outcome of different 10 
scenarios, we compare the percentage of canceled demand and the average passenger waiting time for 11 
being matched. We do not discuss the influence of the considered scenarios on the network speed, as in 12 
the considered settings that correspond to the state of Lyon city, the penetration rate of mobility services 13 
is low and does not have a strong influence on the system. Thus, the variation in speed is minimal (shown 14 
in Section 3.3). For the test case where the penetration rate of ride-hailing mobility services is higher (15-15 
17% of market share), the results are presented in Appendix, including the network speed analysis. From 16 
that analysis, we can see that with the increased number of ride-hailing vehicles in the system, the best 17 
network performance is observed for the cooperation scenario, closely followed by the coopetition. In the 18 
case of competition, the network speed deteriorates significantly compared to the other two scenarios.   19 

 20 
Ride-hailing market fleet size 21 

To see the impact of different fleet sizes, we vary the number of vehicles of each company and 22 
compare the metric values while keeping the same demand rate. Considering that the benchmark number 23 
of ride-hailing vehicles in the system is equal to 600 (270 for Company1 and 330 for Company2), we 24 
change this number in the following way: 660 vehicles (+10% of the benchmark number, 297 and 363 25 
respectively), 540 vehicles (-10% of the benchmark number, 243 and 297 respectively), and 480 vehicles 26 
(-20% of the benchmark number, 216 and 264 respectively). The results are shown in Figure 8a-c.  27 
 28 
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Figure 8. (a) Percentage of canceled demand, (b) average passenger waiting time for being matched, 3 
and (c) average passenger waiting time to be matched by the company. 4 
 5 

Figure 8a depicts the common decrease of canceled demand among all the test cases with the 6 
increase in fleet size. The competition case has a higher cancelation rate, followed by coopetition and 7 
cooperation.  8 

Figure 8b shows that the average passenger waiting time decreases with the fleet size increase 9 
for all the scenarios. Generally, the average waiting times of the competition scenario and the coopetition 10 
are close and follow the same curve (the waiting time of competition is slightly smaller). In the 11 
cooperation scenario, most of the time, the waiting time is shorter than in competition and coopetition 12 
scenarios for the cases of -20%, 0, and +10% fleet size changes. However, for the case of -10% fleet 13 
change, the waiting time of cooperation surpasses other scenarios. The reason is the following. In the 14 
competition scenario, the cancelation rate is higher than in cooperation; therefore, the vehicles need to 15 
serve fewer customers. Thus, the availability rate of vehicles is higher, so the waiting time of the 16 
passengers is less. On the contrary, the cooperation scenario reaches a stable state where a customer from 17 
the queue is served just before being potentially canceled. Thus, fewer requests are canceled, but the 18 
passenger waiting time is higher. At the same time, both in the coopetition and competition scenarios, the 19 
low average waiting time is guaranteed by the fact that Company1 (with fewer vehicles) has a stably big 20 
queue of requests while Company2 (with more vehicles) has a queue for a relatively short time which 21 
leads to a smaller average waiting time of customers in the system. This statement is supported by Figure 22 
8c. 23 

Figure 8c shows how different scenarios impact the quality of service operations of an individual 24 
company by comparing the average company’s passenger waiting time. For Company1, which has fewer 25 
vehicles than Company2, the average passenger waiting time does not differ significantly in competition 26 
and coopetition scenarios. For Company2, the competition scenario has a slightly shorter waiting time 27 
than the coopetition. The reason is that in coopetition Company2 serves rival’s customers. Thus, 28 
Company2 runs out of vacant vehicles faster than in the competition scenario leading to a longer waiting 29 
time for their own customers. There is no big difference between the waiting time of the competition and 30 
coopetition for both companies, as the customers that reach the waiting limit in the cooperation scenario 31 
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will be transferred to the rival company instead of being canceled, which results in the same waiting time 1 
for them.  2 
 3 
Number of companies 4 

To study the impact of an oligopoly market, we implement and compare test cases with two, 5 
three, and four companies (Figure 9a, b). The number of vehicles of each company in the test cases is the 6 
following. For the two-companies market, Company1 has 270 vehicles, and Company2 has 330 vehicles. 7 
For the three-companies market, Company1 has 200 vehicles, Company2 has 220 vehicles, and 8 
Company3 has 180 vehicles. For the four-companies market, Company1 has 175 vehicles, Company2 has 9 
165 vehicles, Company3 has 135 vehicles, and Company4 has 125 vehicles. The demand is equally 10 
distributed among all the companies. In the figures, we include the results of the cooperation scenario to 11 
compare them with oligopoly cases. The number of vehicles in the cooperation scenario is 600.  12 
 13 

 14 
     (a) 15 
 16 
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Figure 9. (a) Percentage of canceled demand, and (b) average passenger waiting time for being 3 
matched. 4 
 5 

Figure 9a shows that the average percentage of canceled demand of competition and coopetition 6 
scenarios slightly decreases for the three-companies market compared to the two-companies market, and 7 
then goes up for the four-companies market. The cancelation rate is the highest for the competition 8 
scenarios, less for coopetition, and the smallest for the cooperation system.  9 

Figure 9b depicts that the average passenger waiting time slightly decreases for the three-10 
companies market compared to the two-companies market, and then goes up for the four-companies 11 
market for the competition and coopetition scenarios. The highest passenger waiting time is experienced 12 
in the coopetition scenario because vacant vehicles of one company need to serve the customers of the 13 
rival company. This imposes a longer waiting time for the customers of the former company due to the 14 
higher occupancy of vehicles. The smallest waiting time is experienced in the cooperation scenario.  15 
 16 
Ride-hailing and private vehicles' market share 17 

In this section, we test different market shares, that is, when some demand for private vehicles 18 
moves to ride-hailing and the vehicles themselves. The demand is distributed equally between both 19 
companies. Thus, we increase the ride-hailing demand and fleet size by 30% and 50% while reducing 20 
those parameters for private vehicles. The benchmark number of ride-hailing vehicles in the system is 21 
600, and we increase it by 30% (780 vehicles) and 50% (900 vehicles). For the two-sided market, the 22 
benchmark number of vehicles equals 270 for Company1 and 330 for Company2. Those numbers 23 
increase respectively by 30% and 50%. The results are presented in Figure 10a-c. 24 
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Figure 10. (a) Percentage of canceled demand, (b) average passenger waiting time for being 3 
matched, and (c) average passenger waiting time to be matched by the company. 4 

Figure 10a shows that the percentage of canceled demand decreases for all scenarios for the 5 
+30% market share, and then increases for the competition and coopetition scenarios for the +50% market 6 
share. The highest cancelation rate is in the competition scenario, then in coopetition, and the smallest is 7 
in the cooperation scenario.  8 

Figure 10b shows that the average passenger waiting time decreases with the market share 9 
increase for all the scenarios. The highest waiting time is experienced in the coopetition scenario as, 10 
compared to the competition, some passengers that reach the waiting time limit are transferred and served 11 
by another company. This increases the overall occupancy rate of vehicles in the system and imposes a 12 
longer waiting time. A slightly lower waiting time is experienced in the competition scenario.  The least 13 
waiting time is in the cooperation scenario as it serves the passengers optimally. 14 

Figure 10c depicts how different scenarios impact the quality of service operations of an 15 
individual company. In Company1, which has fewer vehicles than Company2, the average passenger 16 
waiting time does not differ significantly in the competition and coopetition scenarios. For Company2, 17 
the coopetition scenario has a higher waiting time than the competition. Both curves of Company 2 are 18 
very close to the curve of the cooperation scenario. 19 

 20 
Fleet share between the companies within the ride-hailing market  21 

To see the impact of different fleet sizes of companies’ withing the ride-hailing market, we vary 22 
the number of vehicles of each company while keeping the same total number of ride-hailing vehicles in 23 
the system. We compare the metric values while keeping the usual demand rate. Considering that the total 24 
number of ride-hailing vehicles in the system is equal to 600, we vary the fleet share in the following 25 
way: 255 and 345 vehicles of correspondingly Company1 and Company2, 270 and 345 vehicles, 285 and 26 
315 vehicles, and 300 and 300 vehicles. The results are shown in Figure 11a-d.  27 
 28 
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Figure 11. (a) Percentage of canceled demand, (b) average passenger waiting time for being 3 
matched, and (c) average passenger waiting time to be matched by the company. 4 

Keeping in mind that the companies share equally the ride-hailing demand, Figure 11a shows 5 
that as the number of vehicles of both companies approaches equality, the number of canceled demand 6 
requests reduces correspondingly and reaches the same level. At the same time, as the number of vehicles 7 
approaches the equal division between the companies, the overall waiting time of passengers decreases 8 
(Figure 11b) as the system approaches the optimal redistribution of the supply according to the demand. 9 
It is also visible in Figure 11a that the most significant variation in demand cancelation occurs under the 10 
competition scenario compared to the coopetition scenario. 11 

Figure 11c depicts how the equilibration of the supply decreases the waiting time of the users of 12 
Company1 and subsequently increases the waiting time of the users of Company2, which leads to 13 
equality between the two companies.  14 

 15 
Demand share between the companies within the ride-hailing market 16 

In this section, we test different demand shares of companies within the ride-hailing market. We 17 
vary the demand rates of each company while keeping the same total number of ride-hailing demand in 18 
the system. Considering the demand rate shown in Figure 8a as the benchmark for both companies, we 19 
decrease the demand level for Company1 by 25% and 50% and correspondingly increase the demand 20 
level for Company2 by 25% and 50%. The results are presented in Figure 12a-c. 21 
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Figure 12. (a) Percentage of canceled demand, (b) average passenger waiting time for being 3 
matched, and (c) average passenger waiting time to be matched by the company. 4 

As could be seen from Figure 12c, the approximate fair demand share between the two 5 
companies would be an additional +12,5% to the demand of Company1 and -12,5% for Company2 6 
regarding the benchmark demand level. We can see that even though Company2 has a bigger fleet, the 7 
demand increase, which is out of the company’s serving capabilities, influences drastically its passengers’ 8 
waiting time (Figure 12c), which leads to increased demand cancelation (Figure 12a). This, in return, 9 
decreases the vehicle utilization rate of Company2 and lowers the quality of service. The changes in the 10 
average user waiting time shown in Figure 12b can be explained by more detailed Figure 12c. It is 11 
noteworthy that same as in the fleet share experiment, the changes in the demand share influence more 12 
drastically the outcome of the competition scenario than the coopetition.    13 

3.3 System dynamics for the reference scenario 14 
Figures 13-15 depict the simulation results for the competition between the two companies over 15 

the simulation time horizon represented by the X-axis. The fleet size of Company1 is 280 vehicles with 16 
the following initial distribution: 130 idle non-moving vehicles, 50 idle moving vehicles, and 100 17 
occupied vehicles. The fleet size of Company2 is 320 vehicles with the following initial distribution: 170 18 
idle non-moving vehicles, 50 idle moving vehicles, and 100 occupied vehicles. We assign more vehicles 19 
to one company than to the other. If we split the total number of ride-hailing vehicles between two 20 
companies equally, it is equivalent to the situation of pre-optimized fleet size based on demand. This 21 
perfectly balanced assignment of vehicles is barely realistic. In fact, companies cannot guarantee to have 22 
an optimal fleet to serve their demand. Thus, we try to reproduce the non-optimal allocation of vehicles, 23 
i.e., when one company has fewer and another has more vehicles to serve the same demand. This allows 24 
us to derive extra insights into the competition and cooperation. Both companies have the same demand 25 
rate. 26 
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       (d) 8 

Figure 13. Matching process characteristics: (a) Demand rate (the same for both companies), (b) 9 
accumulation of waiting passengers to be matched, (c) number of canceled requests, and (d) 10 
accumulation of vacant non-moving vehicles.  11 
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Figure 14. Idle moving vehicles characteristics: (a) Accumulation of idle moving vehicles, (b) mean 7 
trip length of idle moving vehicles, and (c) mean standard deviation of idle trip length. 8 

 9 
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       (d) 6 

Figure 15. Service vehicles and private vehicles characteristics: (a) Accumulation of service 7 
vehicles, (b) network speed, (c) accumulation of private vehicles, and (d) mean trip length of private 8 
vehicles. 9 
 10 

Figure 13 includes the matching process description plots. It contains the evolution graphs of 11 
arriving demand requests 𝜆%& , accumulation of queued non-matched passengers 𝑛!"#, number of 12 
canceled requests, and accumulation of idle non-moving vehicles 𝑛$ . Both companies have the same 13 
demand rate, and thus their demand curves overlap. Company1 runs out of vacant vehicles faster than 14 
Company2 and thus, starts accumulating waiting requests earlier. Because of the high accumulation of 15 
demand requests in the queue, Company1 starts canceling them after 3 minutes waiting time is over. 16 
Company2 runs out of vacant vehicles approximately 500 seconds (~8.3 minutes) later than Company1 17 
and starts accumulating waiting demand requests. However, none of the waiting requests of Company2 18 
reach 3 minutes waiting time limit, and hence, there are no cancelations for Company2. 19 
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Figure 14 shows the plots describing the evolution of idle moving vehicles component. It 1 
includes the accumulation of the idle moving vehicles 𝑛%&$ , their mean idle trip length 𝐿%&$ , and mean 2 
standard deviation 𝜎%&$. We see the dependence of the accumulation of idle moving vehicles on the mean 3 
trip length. We also observe significant changes in average trip length and its standard deviation when a 4 
company starts lacking or having vacant vehicles. Thus, as long as there are users in the queue, the mean 5 
idle distance will be 2403 m. The non-empty queue of customers explains the jumps in the idle distance. 6 
In this case, for each match, we draw an idle distance from the distribution and see if it is within the 7 
allowed limit. If the idle distance exceeds the maximum matching distance (2000 m) – the match does not 8 
occur. When the queue becomes empty – the idle distance drops to the normal state when it depends on 9 
the vacant vehicle density and demand density. It may seem that the standard deviation curve is a step 10 
function, but in reality, the standard deviation variation for the non-saturated state is very small (from 1 to 11 
15 meters) and thus not visible on the graph compared to the jump in standard deviation for the saturated 12 
state (386 m). 13 

Figure 15 depicts both the instance of the service ride-hailing vehicles and private vehicles with 14 
the following plots: accumulation of occupied moving vehicles 𝑛%& , network speed 𝑣, accumulation of 15 
private vehicles 𝑛!' , and the average trip length of private vehicles 𝐿!' (equal to the average trip length 16 
of service ride-hailing vehicles 𝐿%&).  17 

 18 
Figure 16. Network speed evolution under different scenarios 19 

To provide more insights into the evolution of the system-wide metrics according to different 20 
scenarios, we compare the evolution of the network speed over time in Figure 16. For the peak hours, 21 
when the demand rate is the biggest, all scenarios perform similarly in terms of speed. However, when the 22 
demand is constant, and the network is not saturated, it is the cooperation scenario that experiences the 23 
highest speed, even though it is slightly unstable.  24 

4  CONCLUSIONS 25 
In this work, we address the influence of the competition in the ride-hailing market on the system 26 

dynamics, congestion level, and service in the short-term perspective. In particular, we investigate how 27 
the competition influences the passenger-driver matching process, the consequent vehicle travel for 28 
picking up the customer, and, more globally, the system at the operational level. To this end, we propose 29 
a modeling and simulation framework based on the MFD. We apply the M-model that explicitly monitors 30 
the remaining travel distance of all vehicles. In this work, we extend the mathematical M-model 31 
decomposition and focus on accurate dynamic estimation of trip lengths for the different vehicle states 32 
based on the immediate system state. To do so, we suggest creating an additional proxy modeling 33 
framework replicating the demand requests and the service vehicle movements. We propose calibrating 34 
the matching function by sampling observations on a grid network of a proxy. By sampling multiple 35 
configurations, we study the relation between trip lengths, demand levels, and vacant fleet sizes and 36 
calibrate the matching function accordingly. Finally, we assess and compare matching processes that 37 
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define diverse competition scenarios. Three scenarios are implemented for different initial system 1 
settings: competition between companies, cooperation of companies, and competition with partial 2 
cooperation (coopetition).  3 

The results show the following tendencies. According to the reference scenario in Section 3.3, the 4 
highest speed is experienced for the cooperation during the off-peak hours, while during the rush hours, 5 
all scenarios perform similarly in terms of the network speed. Overall, the demand cancelation rate is the 6 
highest in the competition scenario, followed by coopetition and cooperation. Generally, the passenger 7 
matching waiting time is the longest in the coopetition scenario and decreases in competition and 8 
cooperation.  9 

One of the limitations of this paper is the lack of advanced rebalancing strategies. However, as 10 
mentioned before, this would require a complete description of the spatial dimension of the problem, 11 
which is not possible with the used continuous description of the vehicle states. Still, we would argue that 12 
more advanced rebalancing strategies could have a clear impact on waiting time (considering effective 13 
rebalancing) but little impact on travel distances.  14 

Note also that there are only two ways to improve the network speed: either because of less total 15 
travel distance or because of more trip cancelations. Many cancelations are caused by high matching 16 
distance and a shortage of vacant vehicles. We admit that with more advanced rebalancing schemes it 17 
would be easier to match the users as the vehicles are better located. However, during the congestion peak 18 
in our simulation setting, we observe a lack of supply and the presence of queuing passengers to be 19 
matched. The more companies we have, the more possibility of this situation to happen because the 20 
available vehicles are less likely to match a passenger's preferences in terms of company. So, there are not 21 
enough vehicles to serve the demand, and thus the distance to cover might be too high (shown by the 22 
proxy distribution). This means that there is still a chance that an available vehicle will not be close 23 
enough to the customer. In this case, the rebalancing would be redundant as we know exactly where the 24 
demand is (waiting passengers), and our matching process defines the required idle travel distance to 25 
drive. Thus, we believe that the rebalancing would not be a principal game changer in terms of 26 
competition. However, the confirmation is left for further studies. 27 

The possible perspective is to study how additional authority policies and restrictions or new 28 
cooperation scenarios might influence the system and service quality.  29 
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APPENDIX A 1 
In this appendix, we provide the simulation results of the competition scenario case where ride-hailing 2 
vehicles constitute 15-17% of all the vehicles in the system. The demand for private vehicles follows the 3 
curve shown in Figure 17.  4 

 5 
Figure 17. Demand curve of private vehicles 6 
The total number of ride-hailing vehicles is 3600, while the initial number of private vehicles is 20659. 7 
The fleet of Company1 has 1620 vehicles and Company2 has 1980 vehicles. The rest of the parameters’ 8 
values and initial values of variables are the same as in Section 3.2. The simulation results are presented 9 
in Figure 18a-j. 10 
 11 

 12 
      (a) 13 

 14 
      (b) 15 

 16 
      (c) 17 
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 1 
      (d) 2 

 3 
      (e) 4 

 5 
      (f) 6 

 7 
      (g) 8 

 9 
      (h) 10 
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 1 
      (i) 2 

 3 
      (j) 4 

Figure 18. Service vehicles and private vehicles characteristics: (a) Demand rate (the same for both 5 
companies), (b) accumulation of waiting passengers to be matched, (c) number of canceled requests, 6 
(d) accumulation of vacant non-moving vehicles, (e) accumulation of idle moving vehicles, (f) mean 7 
trip length of idle moving vehicles, (g) mean standard deviation of idle trip length, (h) accumulation 8 
of service vehicles, (i) network speed, and (j) accumulation of private vehicles. 9 

We compare the network speed evolution over time in Figure 19 for competition, cooperation, and 10 
coopetition strategies. The cooperation scenario experiences the highest speed, followed by the 11 
coopetition and competition scenarios. It is noteworthy that with the increased number of demand 12 
requests and ride-hailing vehicles, the idle distance decreases as there are more chances that a new 13 
demand request has a vacant vehicle nearby. Additionally, we can notice a clear advantage of cooperation 14 
and coopetition strategies over the competition, which gives incentives for future studies in cooperation 15 
policies.  16 

 17 
Figure 19. Network speed evolution under different strategies 18 


