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Abstract: The reconstruction of 3D geometries starting from reality-based data is challenging and time-
consuming due to the difficulties involved in modeling existing structures and the complex nature
of built heritage. This paper presents a methodological approach for the automated segmentation
and classification of surveying outputs to improve the interpretation and building information
modeling from laser scanning and photogrammetric data. The research focused on the surveying of
reticular, space grid structures of the late 19th–20th–21st centuries, as part of our architectural heritage,
which might require monitoring maintenance activities, and relied on artificial intelligence (machine
learning and deep learning) for: (i) the classification of 3D architectural components at multiple
levels of detail and (ii) automated masking in standard photogrammetric processing. Focusing on
the case study of the grid structure in steel named La Vela in Bologna, the work raises many critical
issues in space grid structures in terms of data accuracy, geometric and spatial complexity, semantic
classification, and component recognition.

Keywords: 3D surveying; digital heritage; artificial intelligence; machine learning; classification;
point cloud; reticular grid structures; La Vela; civil infrastructures; monitoring

1. Introduction

Surveying acquisitions, data interpretation, and 3D modeling are crucial for ensuring
facility management [1] and refined safety assessment [2], identifying potential collapse
mechanisms [3], and planning appropriate preventive interventions [4] for reticular, space
grid structures of the late 19th–20th–21st centuries (Figure 1). Upstream of deformation
analysis and structural simulation, there is, to date, a need for:

• The rationalization and speed up of prevention and maintenance operations as well as
structural health monitoring based on the observation and processing of surveying
data [5];

• The creation of rapid prototyping techniques and the use of specific representation
methods to support scholars and operators (architects, engineers, restorers, historians)
in returning faithful models and information to the broader public of users and public
administrations involved in the infrastructure management process [6].
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Figure 1. Examples of architectural structures based on space grid structures.

However, only a few references can be found today regarding the survey and geometric
modeling phases of recent spatial grid structures. Recent research [1,7,8] has proven several
complexities of the 3D data acquisition phase for this kind of structure in terms of spatial
distribution [9], accessibility, size [10], transparent double-sided coverage of components,
variation in detail, color and material [11,12], the presence of shadow areas generated by
nodes and uprights, and geometric similarities between elements [13].

Beyond the acquisition phase, many problems have been raised in terms of process-
ing the survey data (e.g., automating the identification and mapping) within raw point
clouds or meshes of the characteristics of buildings [14,15], structures [16,17], and infras-
tructure [3,18] such as the shape, size, and location. In this context, artificial intelligence
(AI)-derived techniques might become effective tools to assist in the detection of collapse
mechanisms [19] or anomalies in the data [20], the diagnosis of problems and failures [21,22],
and maintenance and recovery activities.

Research Aim

The aim of this work was to define a more objective approach for the interpretation of
space grid structures starting from surveying, prior to restoration and monitoring activi-
ties, that relies on AI-based techniques for the semi-automated classification of structural
components and for the connection of raw information, in terms of:

• The application of proper data acquisition techniques to ensure the required lev-
els of precision and reliability even in comparison to consolidated works on older
constructions;

• The characterization of geometric and spatial complexity for identifying structural ele-
ments, joints, and deteriorated components that require intervention or replacement;

• The 3D component reconstruction from the scan data in the BIM environment.

The approach, tested here with reference to the pilot case study of the steel reticular
structure La Vela in Bologna, was articulated in two ways:

• On one hand, considering laser scan data, a supervised ML method, the random forest
(RF) algorithm, was applied to assist in the classification (by type and by size) of the
3D architectural elements making up the structure, with a multi-level and multi-scale
classification approach;

• On the other hand, for the UAV-based photogrammetric processing, a DL model was
leveraged for automated masking of the input images to improve and expedite the
construction of a 3D dense cloud.

The classified 3D photogrammetric and laser scanning data of the structure were
integrated and considered for further reconstruction of each geometrical component in
3D solid elements through fitting algorithms that foster the scan-to-BIM reconstruction
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process. The results were evaluated from the level of detail and reliability point of view by
comparing the surveyed data with the reconstructed and project data.

2. State-of-the-Art: Supervised ML and CNN-Based Classification Methods

The use of ML and DL algorithms in the 3D surveying of built heritage is a rapidly grow-
ing field. Recent research in the domains of cultural heritage [14,23] and land surveying [24]
has demonstrated that AI algorithms can be applied to analyze and interpret data collected
from sensors and can process large amounts of 3D information in a more automated man-
ner as well as identify features, structural and architectural components [25,26], damage
mechanisms [16], or materials [27] that manual methods might miss.

A supervised ML algorithm, the random forest (RF) [28], generally used for image-
based classification, has recently been applied for the semantic segmentation of 3D data
to assist in different applications such as monitoring [29] and restoration [23], and even to
support the scan-to-BIM process. Since the first studies by Weinmann [30] and Hackel [31]
on geometry features that can be extracted from the point cloud, RF has been applied to
support activities such as degradation analysis [21], the detection of architectural compo-
nents and urban-scale objects [32], and the recognition of specific features of painting or
sculpture. Matrone et al. [33] proved that the RF outperformed state-of-the-art DL methods
for the point cloud classification task, allowing for better results in reduced times. This
ensemble learning algorithm takes a reduced portion of the 3D point cloud acquired by
a laser scanner or photogrammetry as input. In this sample dataset, each point in the
cloud is associated with a label (class of objects) plus a set of characteristics (features) that
distinguish one class from another. The latter can be geometric features such as curvatures,
covariance, or color features. Then, multiple decorrelated decision trees are combined to
make predictions on the class or label of each point of the 3D point cloud, and the final
predictions are made through a voting scheme. Concerning the state-of-the-art on the
topic, Teruggi et al. [34] extended this ML classification method by proposing a multi-scale
and multi-resolution approach, hierarchically classifying 3D data at different geometric
resolutions to ease the learning process and optimize the classification results. The cited
references always referred to either the case of land surveying or architectural ancient her-
itage. To the authors’ knowledge, research has yet to dwell on the application of traditional
supervised ML for the point cloud segmentation of diagrids and complex grid structures.
On the other hand, DL offers a more promising approach in image-based classification
because DL techniques, as a subset of ML, rely on a large amount of pre-annotated data
and require no human extraction of features to discriminate between classes. In these
terms, DL for image-based 3D reconstruction methods might provide high-quality texture
information valid for the investigation of the current state of structures (e.g., the location
of rust, cracks in metal structures, or color-related information). Convolutional neural
networks (CNNs) are a type of DL architecture commonly used for semantic segmentation
tasks [35,36] that can be trained on large datasets of labeled images to predict the class of
each pixel. ResNet [37] and U-Net [38] are the primarily used types of CNNs.

In the domain of complex grid structures, previous research by Knyaz et al. [12] on
the complex wire structure of the Shukhov Tower proposed a DL-based technique for the
automatic generation of image masks. Classification using deep CNNs such as U-Net [38]
and HRNetV2 [39] was developed to boost many steps of the image-based reconstruction
pipeline and to improve the accuracy of structure-from-motion (SfM) and multi-view stereo
(MVS) processing. Initially, the U-Net algorithm was created and trained but the quality
of the image segmentation had to be improved for correct point matching. The HRNetV2
segmentation results were much more correct, although the model could not distinguish
between thread-like structures in the foreground and background of the images. A new
model, called WireNet, was therefore developed to improve the segmentation of the front
and back parts of the tower. A preliminary image selection was carried out to eliminate
the blurred and low-quality images captured during the complex field acquisition. The
presented CNN architectures provide a starting point for the proposal of a DL method
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for image segmentation and masking prior to photogrammetric processing to support
image-based 3D reconstruction.

3. Materials
3.1. La Vela Spatial Grid Structure

The double-layered spatial grid roofing called ‘La Vela’ is part of the larger project of
the area of the UNIPOL Tower and its connected buildings, located in the northeastern part
of Bologna. The covering structure was built in 2012 using circular tubular profiles joined
by spherical nodes at the intrados and rectangular tubular profiles connected by rigid
joints at the extrados, with a hemispherical end provided with threaded holes to which the
diagonal rods are connected (Figure 2). The roofing system covers an area of 3600 m2, with
a span between the lateral supports of about 50 m. Each extrados mesh of the grid structure
is approximately 4 × 4 m and was initially enclosed by ETFE (ethylene-tetrafluoroethylene
copolymer) membrane pressure cushions connected directly to the roof’s extrados profiles.
The pattern orientation of each ETFE pneumatic module was designed to filter out direct
solar radiation while allowing natural light to pass through. Parametric modeling was
deployed to explore the variability of the system thus obtained, minimizing the solar factor
and otherwise maximizing indirect light transmission.
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The frame elements between the ETFE cushions were sized to form a system of
eave channels, which could convey stormwater to collection points. Open Project Office
developed the architectural structure, while Prof. Massimo Majowiecki and his Technical
Office were responsible for the architectural project; their work is documented in [40].
Later on, specific studies on the roof, carried out by an interdisciplinary team at the Delft
University of Technology, focused on the use of renewable energy and the optimization of
the performance-oriented parametric design of the cladding system to satisfy the thermal
comfort of the area underneath La Vela, dedicated to stores, and to provide under-roof
spaces with an adequate daylight factor [41].

In 2019, La Vela’s ETFE membrane cushions were almost destroyed after an extreme
weather event of heavy hail. Following the event, a survey of the structure was requested
in order to reconstruct the roof panels with different materials; the task was entrusted to
Errealcubo Studio. The 3D survey of La Vela provided in this context defined the baseline
data for this research, while the original project information (Figure 3) was used for the
reliability validation of surveying and reconstruction. The surveying activity, previously
documented in [42], is briefly summarized in Section 3.2.
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Figure 3. Original project panels of La Vela.

3.2. 3D Surveying and Data Acquisition

The steel space structure presented several bottlenecks related to roof accessibility,
intervisibility, and dimension for the survey campaign. The problem of top–down intervisi-
bility is a specific connotation of open spatial reticular structures that define a non-clear
distinction between intrados and extrados areas. The specific cover is up to 20 m from
the ground, making direct surveying almost impossible to plan to meet the strict design
deadlines. Additionally, the roof develops in space according to curved generators with
variable radii. Therefore, optimizing the point of view and reducing the shadow effect
given by the structural elements becomes unpredictable. Due to the complexity of dealing
with the different lighting conditions, the use of photogrammetry solely to survey the
intrados and extrados was ruled out a priori; in addition, the impossibility of placing
targets on the structure ruled out this approach. As a result, an integrated survey approach
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based on 3D laser scanning, mini-UAV photogrammetry, and topographic survey was
proposed to minimize all of these bottlenecks in acquiring the sides of both structures.

3.2.1. Topographic Framework

The first step was to define a general XYZ reference system to support the image and
range-based data orientation. All GCPs were located on the ground due to the inaccessibility
of the roof. The 3D reference system for the whole survey was defined by three vertices,
materialized on the wooden floor of the main terrace below the structure, and acquired by
a total station. Four fixed targets were placed in the scene (T1, T2, T3, T4), while 10 mobile
aluminum targets were located ad hoc to orient the images for each RPAS flight in the same
reference system. For each of the three stations (S1, S2, S3), fixed and mobile GCPs were
surveyed (Figure 4).
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graphic network, reference system, and GCP (right image).

3.2.2. Global Photogrammetric Survey

A photogrammetric survey of the entire structure was planned in order to provide a
graphical representation of the structure’s extrados. The RPAS used was a DJI Mavic mini
2, equipped with a camera set up at 4 mm of focal length, f/2.8, ISO 100, and 1/1000 s of
exposure time. We planned a flight distance of 50 m from the ground with a GSD of 1 cm.
The sub-centimeter precision required for the survey campaign and the use of ultralight
RPAS for safety reasons ruled out the RTK positioning system. The network vertices and the
four fixed GPCs were used to orient the block of 35 images in Agisoft Metashape software,
from which an ortho-image was extracted. For a detailed photogrammetric campaign, the
survey area was divided into nine quadrants of 5 × 5 to 6 × 6 square meshes.

3.2.3. Detailed Photogrammetric Survey

In this survey, the camera parameters were the same, while the flight altitude did not
exceed 6–7 m relative to the roof surface, obtaining a GSD of about 2 mm. Eight separate
flights were planned to preserve a longitudinal and lateral coverage of about 80%, reducing
the image processing step to a maximum of 250 images for each block (Figure 5). The roof
shape and the altitude variation led to the acquisition of both nadiral and oblique images,
guaranteeing complete coverage and high precision in the 3D survey of construction details.
In total, 1184 digital images were oriented, with the coordinates of each node determined
by collimating the point in at least three images. The presence of 10 oversized windows
hid the nodes of the underlying mesh, obliging the surveying of window corners and the
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corresponding points located in the structure intrados. Concerning the edge meshes, in two
borders of the structure, solar panels obscured the nodes in several images, limiting the
number of usable ones. As many nodes were detected in multiple flights, it was possible to
compare coordinates, validate the process, and discard the incorrect values. All coordinates
were collected in a coordinate list, with the extraction of the six distances (four sides and
two diagonals) that characterized each mesh. The four nodes did not belong to the same
plane, so the diagonals were skewed.
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3.2.4. Range-Based Survey

The instrument positions were carefully planned to reduce interference and stress the
relationship between the working distance, the dimensions of the individual components,
and the data accuracy, in accordance with good practice in range-based imaging. In
addition, a preliminary test of the optical instrument behavior on the metal structure was
planned to verify the noise that might have affected the data quality. The 3D laser scanner
survey process started evaluating a uniform distribution of the scans for each quadrant: one
high-resolution scan (3–10 m) to frame a primary alignment network and low-resolution
scans (6–10 m) to provide second-level information. This approach made it possible to
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reduce the shadow areas. The Focus S70 (Faro) was used to acquire 29 range maps (Figure 6).
The primary network was oriented with the GPCs, while the second network was aligned
using ICP and bundle adjustment techniques. Every range map was cleaned by filtering
the data over a working distance of 30 m as well as by manually eliminating spurious data
due to tangential noise. The clouds were merged and subsampled to a resolution of 5 mm
to regularize the point distribution and optimize the global point cloud management.
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3.2.5. Data Integration and Validation

The integration between the image-based and range-based data was carried out
using common GCPs (Figure 7). The point cloud obtained from the 3D laser scanning
defines a gold standard model helpful for inspecting the photogrammetric output locally
(node extraction) and globally (mesh comparison) by extracting information to support
the data modeling process. Concerning the local analysis, the extraction of 20 diameters
and barycenters of the cylindrical nodes from the range-based point cloud allowed for
a first comparison with the photogrammetric data, revealing a standard deviation of
3 mm. In addition, the six main distances for each mesh extracted from the image-based
and range-based data were compared, with an average between 1 mm and a standard
deviation of 2 cm. From the global point of view, metric verification took place within
the CloudCompare software, with a comparison of 3D range-based and image-based data
in the space (Figure 8). The deviation map showed that most of the distribution of the
overlapping values was below 2 cm. In addition, the photogrammetric cloud indicated
a homogeneous behavior, highlighting the accuracy of the photogrammetric cloud and
excluding errors in the construction of the 3D data. These analyses validated the data
reliability and the integrated model.
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4. Methods

Given the complexity of the object of study and the availability and multiplicity of
different types of information and representations derived from surveying, the research
was developed by pursuing in parallel (Figure 9), on one hand, the work on the laser
scanned point cloud (i) and, on the other hand, the work on UAV-acquired images and the
products of photogrammetric processing (ii).
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Figure 9. Research process pipeline highlighting the main development steps.

For the first point, the processing of the laser scanner survey involved the application
of supervised ML techniques, in particular, the RF algorithm, to classify architectural
components at different levels of detail on the unstructured point cloud. For the second
point, an automatic image masking procedure, based on the use of artificial neural networks,
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was studied to exclude unwanted objects from images and to improve the results of
photogrammetric processing. A third phase (iii) involved the evaluation of the results
obtained for the two parts: the data fusion, and the subsequent construction of BIM
components from classified point clouds. This latest part was tested on some significant
meshes of the structure. Finally, the reconstructed model was compared to the available
project data.

The software MATLAB, with its Statistics and Machine Learning Toolbox and Deep
Learning Toolbox, was considered to implement the AI algorithms presented. The method-
ology and related results in application to the La Vela structure are illustrated according to
the subdivision into phases (i), (ii), and (iii), respectively.

4.1. Supervised Machine Learning for the Classification of Laser Scan Data

A multi-level and multi-resolution (ML-MR) classification approach was run for the
range data processing (Figure 10). The La Vela structure was classified by creating a
hierarchy of classes between the elements that compose the grid, based on increasingly
more detailed characteristics: from the most general class (1st level), in which the elements
are distinguished by architectural type, to the most specific one (3rd level), in which the
elements are distinguished by their size. Different levels of resolution were identified to
subdivide the structure concerning the level of detail of the single elements making up the
space grid structure.
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The classification method was derived from the successful tests by [43–45] on the
application of the RF for the point cloud classification of heritage objects. The related
studies regarding geometric feature importance are discussed by [30,31]. The ML-MR
method, which relies on a hierarchical classification approach, follows the procedure
proposed by [34] for the case of heritage objects.
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The ML-MR workflow is articulated as follows:

• The original point cloud is subsampled to provide different levels of geometric resolution;
• Each time, at the various levels of detail, different component classes are identified on

a reduced portion of the dataset (training set), and appropriate geometric features are
extracted to describe the distribution of 3D points in the point cloud. Together, these
data allow for the training of a RF algorithm to return a classification prediction (class
of a 3D point) at the chosen level of resolution;

• Classification results at the lowest level of detail are back-interpolated onto the point
cloud at a higher resolution to restore a higher point density. The 3D points classified
as belonging to a given class constitute the basis for another classification at the highest
level of detail.

The process is iterative and continues until full resolution, at the most detailed seman-
tic segmentation level, is achieved. At each iteration, the performance of the classifier is
stressed in terms of accuracy, precision, recall, and F-measure. The choice of a ML-MR
method is motivated by the following reasons:

• Classifying the entire point cloud at maximum resolution in a single step is very
complex. It leads to overloaded computational efforts and long training times related
to a high number of geometric features and the size of the dataset.

• An excessive number of semantic classes should subdivide the point cloud. This would
lead to misclassification issues if classes of components share very similar features.

4.2. Deep Learning for Automated Masking of UAV Images Prior to Photogrammetric Processing

Regarding the photogrammetric processing part, eight blocks of images progressively
processed by RPAS on each flight mission (see Section 3.2.3) were considered as the starting
point. In total, 1184 digital images were used for the image-based reconstruction of La Vela’s
extrados, divided into eight sections, each corresponding to a photogrammetric block.

Figure 11 shows the point clouds obtained from the raw processing related to each
flight mission. The reconstruction of the background elements of the photo prevailed, as
opposed to the components of the space grid structure, which were perceived as noise.
This difficulty, related to the separation of foreground objects, leads to poor details for
the point cloud of the structure and incredible details for the background (objects of the
scene deemed unnecessary). The detection and identification of the areas of the image that
enclose the structure could become a critical issue in structure from motion processing for
other similar space grid constructions. In this situation, image masking techniques might
enable the exclusion of certain areas of each image that contain background elements.

As such, the creation of the point cloud might be carried out by considering only the
elements of the structure that are of interest. However, manual image masking has proven
to be time-consuming. To overcome this problem, the DeepLab v3+ architecture [46],
implemented on a pre-trained ResNet-18 network [37], was leveraged for the task of
background–foreground separation, starting from a reduced set of manually annotated
images (Figure 12). The minimum batch size of eight reduced memory usage during
training, and the maximum number of epochs was set at 30. The procedure included:

• Labeling. A set of ground-truth images was labeled by assigning a label to each pixel,
with this operation being conducted manually on a chosen set of images. This manual
masking process was performed via Agisoft Metashape software. The data were
then extracted to constitute a specific folder of labeled images associated with the
ground-truth images folder (Figure 13).

• Data augmentation. To improve the neural network’s ability to generalize over a
larger dataset, data augmentation techniques were envisioned during training. Such
techniques involve transformation operations such as translation, rotation, and reflec-
tion to generate new augmented samples from the original ones. Data augmentation
reduces overfitting by avoiding training on a limited set, preventing the network from
storing specific characteristics of the samples.
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• Image adjustment strategies. The difference in brightness and weather conditions
between one flight mission and another resulted in excessive color variability of
the images. For this, image filters and adjustments, studied for a single image and
automatically applied to several images of the same flight mission using Lightroom
software, were used to equalize the color of the images and consequently improve the
classification result on them.
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Training the network and subsequent application to the unlabeled images allowed
us to semi-automatically obtain the whole image masks. The obtained masks hid all
irrelevant elements on the source photos. Their application during the 3D reconstruction
process, and in the dense image matching phase, in particular, allowed for the obtaining
of a cleaner dense point cloud. The reconstruction of the dense cloud was performed via
Agisoft Metashape.

For the DL part, the datasets are, from time to time, divided into a training set, a
validation set, and a test set, so that:

χ = χtraining ∪ χvalidation ∪ χtest (1)

and χtr ∩ χv = χv ∩ χt= χt ∩ χtr = ∅ (2)

where χtr, χv, and χa are the subsets of the training, validation, and test, respectively.
To evaluate the performance of the DL model, the functions of “Accuracy” (ratio of

correct predictions to the total number of predictions) and “Loss” (difference between the
model’s predicted class probabilities and the true class probabilities) were evaluated for the
various attempts considered. The difference between the manual and automatic masking
timings is presented to discuss the acquired results. The comparison is given in terms of
person-days, considering an average of eight working hours per day.

4.3. Data Fusion and Construction of the BIM Model

In this latter phase, the two point clouds from laser scanning and photogrammetry
were aligned and merged to generate a single template model. The analysis of the deviation
between the TLS survey and photogrammetry was stressed. Subsequently, each class
identified by the ML-MR approach was isolated and used to reconstruct a faithful 3D
model of the structure based on geometric primitives using the best-fit algorithms. In detail,
the semantically segmented data of the structure were imported into Geomagic Design X
software, and a 3D geometry reconstruction via shape-fitting operations was carried out.
The random sample consensus (RANSAC) algorithm was considered for the detection of
basic shapes in the point cloud, following [47]. Finally, the level of reliability (LoR) of this
3D reconstruction was evaluated and implemented by comparison with the original point
cloud. The three classes of Table 1 were distinguished for the LoR based on the deviation
between the point cloud and reconstructed 3D mesh, calculated in millimeters. The possible
import into BIM environments is highlighted in the final step.
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Table 1. Classes of reliability identified to evaluate the 3D reconstruction process.

Level of Reliability Deviation

High ≤10 mm
Medium 10 mm < x ≤ 20 mm

Low >20 mm

Two meshes of the structure (Figure 14), considered significant, were selected to
validate this procedure: a first edge mesh located in the upper part, and a second mesh
located in the central part, where the structure reached its maximum curvature.
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The comparison allowed for the assessment of model accuracy in terms of LoR for
different geometric parts of the structure, thereby distinguishing parts that were better
detected by the laser scanner because of their position and geometry. Nevertheless, even
for these 3D parts, the scan resolution was influenced by the structure’s complexity and the
difficulties encountered in the data acquisition phase. The LoR of the reconstruction was
evaluated, on one hand, concerning the point cloud surveying, while on the other hand,
with respect to the design scheme, thanks to prior knowledge of the project data.

5. Results and Discussion

For each of the three phases identified as part of the proposed methodological ap-
proach, the results and related discussions are presented in this section, respectively,
following: (i) supervised ML for the classification of laser scan data; (ii) automated masking
of UAV images via DL for photogrammetric processing; (iii) data fusion and construction
of the BIM model.

5.1. Multi-Level Classification of Laser Scan Data

The ML-MR classification was conducted on the laser scan data. The point cloud was
iteratively subsampled using a decimation procedure to reduce its density while preserving
its overall structure and salient features. The decimation operation was performed at three
levels of detail—and, hence, definition—of the constituent elements of La Vela (Figure 10):

• At the first level of classification (lower point cloud resolution, with a relative distance
of 1 cm between points of the 3D point cloud), the different components of La Vela were
divided at a macro-architectonic scale by distinguishing tubular beams, rectangular-
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section beams, spherical and cylindrical knots, aluminum profiles, photovoltaic panels,
skylights and electrical enclosures, steel cables, gutter, roofing panels, and glazing;

• At the second level of classification (point cloud processed to a 0.5 cm resolution),
subparts of the electrical and lighting system were distinguished from structural
element, while nodes were classified according to their cross section (cylindrical
or spherical);

• At the third classification level (higher point cloud resolution of 0.2 cm), each mesh’s
most significant structural elements were distinguished based on their size and, in
particular, their diameter.

The feature extraction phase was conducted by considering different values of the local
neighborhood radius of each 3D point to run the classification. The covariance features
of verticality, planarity, linearity, omnivariance, anisotropy, and sphericity extracted from
the covariance matrix [30], in addition to the normal change rate and the height feature Z
were computed for this task. For each classification step, the features were calculated in
a specific range of variation of the local neighborhood, directly relating to the dimension
of the architectural elements and to the desired level of detail. As different covariance
features may imply different classification results, less relevant features were iteratively
removed [43] and the accuracy of the RF classifier was assessed at each classification step
by a comparison of the true and predicted results (confusion matrix).

A training set was identified each time for the three point clouds at different densities
by casting two choices: a corner and a central portion. The corner of the structure was
identified as representative of all the classes of components. Furthermore, in the central
portion, the elements had different curvature angles and a ground attachment portion that
were not present in the rest of the cloud. The training set chosen for the first classification
level is displayed in Figure 15. Many selected features are provided in Appendix A—
Figure A1, while the classification results on the overall structure of La Vela are illustrated
in Figure 16.
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At the second level of classification, the classes of tubular beams were isolated and
back-interpolated to the 0.5 cm resolution point cloud. For a higher level of detail, tubular
beams were distinguished between those that had a structural function and those that were
dedicated to installations, while knots were divided into cylindrical and spherical knots
based on their shape. The training set and related results on the overall point cloud are
displayed, for the two classes, in Figures 17 and 18, respectively.
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At the third level of classification, focusing on the structural components of the
roof, the tubular beams were back interpolated on the 0.2 cm-resolution point cloud
and these elements were later subdivided by their diameter. For the training set, the
diameter variation classes were, in turn, identified based on an average of the diameter
measurements, manually performed on CloudCompare, by taking the distance, in sections,
between opposing 3D points of the same tubular. The training set and its classification
results are illustrated in Figure 19.
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At the end of the ML-MR classification workflow, the three classification levels were
combined to obtain a fully classified point cloud at the highest level of detail.

A visual comparison of the classes obtained by ML-MR segmentation with the initial
design classes showed that the result was generally satisfactory for the tubular and lattice
structure classes. On the other hand, the classification of the node class was more difficult.
Because the nodes are the connection between beams oriented in different planes, they do
not describe an elementary geometric shape.

As the classification was run on terrestrial laser scan data (from the bottom upwards),
no complete description of the spherical or cylindrical geometry of the knot class could be
obtained (Figure 20). The confusion matrices for the three classification levels are illustrated
in Appendix A, Figure A2.

Table 2 provides an estimate of the time required for the ML-MR classification via
the RF for a single level of classification. In Figure 21, a comparison with the manual
classification times, assessed to 45 h, is provided.

Table 2. Estimate of the ML-MR classification time via RF for a single classification level (in bold the
total time required).

ML-MR Classification via Machine Learning Minutes

1. Creation of the training set 120
2. Feature extraction and selection 60

3. RF training 60
4. Back interpolation 30
Total time required 270 (4.5 h.)
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5.2. Classification of UAV Images and Improvement of the Photogrammetric Point Cloud

To process the photogrammetric data, the semi-automatic image masking procedure
was carried out in three successive trials, selecting from the eight image folders available
for each flight mission, in order:

(i) Images only from flight 4 (152 manual masks);
(ii) Images from flight 4 + additional images from other flights (277 manual masks);
(iii) The same set of training images as (ii), with the application of image adjustments for

color correction.

On the selected images, masks were manually created via the Agisoft Metashape
software using the selection and magic wand tools, and exported as black-and-white
(BW) images, in which white pixels corresponded to class 0-Sail. In contrast, black pixels
corresponded to class 1-Background. This operation allowed for the display of both the
color and the corresponding BW images with labeled pixels (Figure 13). In the first stage (i),
the images from flight 4 (fourth flight mission), with a total number of 152, were selected
and labeled. This set of images was used to train the classification on the images of the
other RPAS flight missions. Figure 22 illustrates some of the results obtained from the first
attempt through the comparison of the masks obtained and the corresponding ground-truth
images. It can be noted that solar panels, glass elements, and several particularly shaded
profiles were not correctly recognized as part of the structure of La Vela. This issue can
be related to the limited training images in which these specific elements are visible. To
overcome this issue, we proceeded with a second attempt (ii) by expanding the training set
by adding images related to other flight missions (flights from one to eight, for a total of
277 images). As per Figure 23, in this case, the solar panels and glass elements were still
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not recognized, while the profile contour recognition was improved and sharper than in
the first attempt.
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Figure 23. The most significant masks resulting from the second attempt compared to those from the
first attempt; images related to flight 8.

The performance of the classification network was validated each time based on the
accuracy and loss functions, as displayed in Figure 24.
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In the third and last attempt (iii), taking into consideration the 277 training images of
(ii), the brightness and contrast adjustments were applied on those photo chunks where
the shadows and hues were the most pronounced, eliminating possible misrecognition
errors due to changes in weather and lighting conditions. The image adjustment process
was performed through Lightroom software, which allows the same color correction
to be applied automatically to multiple images. As shown in Figure 25, there was an
improvement in the recognition of the construction profiles, solar panels, and glass elements,
which appeared to be sharper and more distinct than in the second attempt.
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Finally, it was possible to interpolate the results of the different steps to obtain im-
proved masks by combining the results of tests (ii) and (iii) by using a tool of the Agisoft
Metashape program (Figures 26 and 27). For some portions of images related to macro-
elements such as solar panels and glass modules, for which manual masking is trivial and
quick, manual rectification was finally performed.
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Images related to flight 3.
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photo annotation based on the authors’ experience. If this value is to be carried over to the 
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Figure 27. Masks resulting from the sum of the third attempt with those of the second attempt.

Once the final image masks had been established, a complete 3D dense cloud was cre-
ated for each of the eight photogrammetric blocks by importing the automatically-generated
masks in Agisoft Metashape to improve the dense-image matching phase (Figure 28). The
overall dense cloud, resulting from the union of resulting point clouds for each flight
mission, is displayed in Figure 29.
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The results obtained for the photogrammetric part were evaluated by comparing auto-
matic masking times using DL-based techniques and manual masking times
(Tables 3 and 4, Figure 30). An average of 35 min was estimated for manual masking
for individual photo annotation based on the authors’ experience. If this value is to be
carried over to the annotation of the entire image dataset, a total manual masking time of
100 working days should be assumed. On the other hand, the required time needed for auto-
mated masking via DL, broken down by the various stages of mask creation, image editing
on Lightroom, CNN training, and mask rectification, is given in Tables 3 and 4 in minutes
and was later converted to a total of 21 person-days. The comparative timescales show that
applying DL algorithms in the masking process significantly reduces the annotation and
data processing times (approximately five times less than manual masking).

Table 3. Time required for automated image masking activities (in bold the total time).

AI Masking Minutes Working Days *

1. Creation of the training set 9695 21
2. Editing in Lightroom 80 -

3. Deep learning network training 270 -
4. Mask rectification 135 -
Total time required 10,180 21

* The working day was estimated to be eight hours per day.

Table 4. Comparison of the annotation times between manual masking and AI masking.

Manual masking ≈100 working days
(Manual single image annotation ≈ 35 min)

AI masking ≈21 working days
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5.3. Data Fusion and Construction of the BIM Model

In the final stage, the processed range-based and image-based data were merged to
create a single, dense point cloud (Figure 31, Supplementary Materials).

In Figures 32 and 33, the comparison between the two point clouds showed that parts
with a high deviation (of the order of 80 cm) identified the extrados elements of the roof
that were not detected by terrestrial surveying such as the panels, the eave gutter running
around the edge of the structure, and many upper portions of the tubular beams. Indeed,
elements with high deviation were mainly shaded elements or components located at
higher elevations.
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The reconstruction by best-fit was studied on the two selected grids (chosen according
to the criteria explained in Section 4.3), relative, respectively, to a more and less described
portion of the point cloud: an edge mesh placed in the upper part and a mesh placed in the
central part where the structure reaches its maximum curvature. The first grid relates to
an upper part of the edge of the spatial grid structure, which, in addition to the node and
beam classes, also includes the gutter class.

The analysis of the deviation between the two point clouds of those two selected grids
is presented in Figure 34: higher values of deviation (between 0.10 and 0.20 cm) corre-
sponded to the extrados elements depicted by photogrammetric surveying, which were
not visible in TLS surveying. From the merged point clouds, a single mesh was generated
for both grids. With this basis, the individual classes of elements previously classified
using the ML-MR approach were individually exported in the .e57 format, then imported
into the Geomagic Design X software. In this environment, through successive fitting
operations, solids of primitive geometries such as cylinders, spheres, and parallelepipeds
are reconstructed. The operation was performed for the different classes of both meshes (as
illustrated in Appendix B, Figure A3). Combining the geometries obtained for each class
on the two meshes led to the results illustrated in Figures 35 and 36.
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With these results, the LoR analysis was carried out to evaluate the reliability classes
(see Section 4.3) of each of the reconstructed geometries. The LoR analysis was performed
by studying the deviation, expressed in mm, of the reconstructed model concerning the
raw input point cloud data (Figure 37). The results obtained were annotated in such a way
as to assign each type of element a reliability value (LoR class) based on the maximum
deviation of the reconstructed model concerning the starting survey data (Table 5). An
average error ranging from 0 to 8 mm was found for the first mesh, while an average error
ranging from 1 to 13 mm was found for the second.
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Table 5. The LoR evaluation for the first grid, based on deviation from the survey data.

Element Deviation from Survey Data (mm) Level of Reliability

Rectangular beams 10 High
Tubular beams 4 High
Spherical knots 13 Medium

Cylindrical knots 40 Low
Gutter 15 Medium

A further in-depth analysis was then performed to compare the original design of
La Vela with the surveying data. For the classes of tubular beams and spherical nodes,
thanks to prior knowledge of the executive design data, the measurement error of the
reconstructed model was compared to the project design in terms of dimensions (mm)
and percentage. The analysis is reported in Appendix B, Tables A1 and A2. The error was
contained under 1 cm, on an average percentage of 3% deviation concerning the project.
However, higher errors occurred on objects with smaller diameters.

Finally, the various constructed solids were reassembled and imported into the BIM
environment, on Autodesk Revit, for further information modeling (e.g., Figure 38). Infor-
mation about the average deviation between the reconstructed BIM model and the original
point cloud data can be inserted as a descriptor for each part.
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6. Conclusions

The paper explored the multifaceted topic of surveying and 3D modeling of complex
grid structures. The research illustrates the case study of the La Vela structure in Bologna,
Italy. The articulation of the topic is related to the presence of bottlenecks in the surveying
and modeling process of this particular type of architectural structure. Therefore, this paper
addressed the possibility of integrating AI procedures within the pipeline to significantly
reduce the data processing times.

In the survey phase, the artifact’s boundary conditions and geometric complexity
required the integration of TLS and drone photogrammetric techniques to optimize the
coverage of intrados and extrados data in the same reference system. The range-based
data presented good reliability in terms of material response. In contrast, the photogram-
metric data suffered from a strong contrast in the images between the structure and the
background, reducing the extraction of geometric features. Manual image masking was
introduced to exclude background effects. This activity highlighted the data improve-
ment but there was a significant person-hour effort, not compatible if scaled to the entire
structure. For that, segmentation methods based on CNN were applied for automatic
masking, demonstrating the possibility of implementing the result extracted from the
photogrammetric data with five times less time than the manual process.

Regarding the modeling phase, this structure requires an accurate preparation of the
acquired geometric data to optimize its management. Data classification is one of the
most critical steps. This process can be conducted manually on the point cloud, reporting
timelines that are incompatible if scaled for the whole structure. Applying a supervised ML
multi-scale approach to automatize the division of the various components has allowed
for the quick attainment of reliable results on range-based data. The classification of the
structural elements above-mentioned, from the range-based data, could follow the same
ML-MR subdivision approach and then be transferred and integrated (or validated) with
those obtained from ML.

In conclusion, the introduction of AI-based data processing techniques enables valid
results on complex industrial architectures such as grid structures, thanks to the geometrical
and visual repetition of the structural components (Supplementary Materials). The mas-
sive, optimized use of these tools would enable addressing these complex structures at a
territorial scale, supporting monitoring and maintenance processes. A further step in future
development involves extending the training over multiple structures and reapplying it
on different examples, verifying the response. In addition, the possibility of having the
design data available, as in the research presented, might allow for a comparison with
the surveyed data, assessing the results’ reliability and reporting it in the model. This
information could prevent future stability or safety problems by mapping the as-built
model and verifying that it meets the design requirements and construction standards over
time. The proposed workflow, by providing already classified point cloud data, also speeds
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up the component inspection and modeling phase in the BIM environment, although the
reconstruction of components is currently based on the recognition of simple geometries
such as those detected by RANSAC. Extending the methodology to more complex classes
of building components might require the implementation of more sophisticated shape
reconstruction techniques such as visual programming language algorithms.

Supplementary Materials: A video of the overall point cloud resulting from RPAS and laser scan data
fusion is available at https://www.youtube.com/watch?v=WufnE3NKKa0 (accessed on 6 April 2023).
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Table A1. Reconstruction error analysis of the tubular beams of the first mesh in terms of size (cm)
and percentages.

Tubular Beam Diameter Derived
from Surveying (cm)

Original Project
Diameter (cm) Error (cm) Error (%)

1 6.2 6.0 0.20 3%
2 6.6 6.0 0.60 10%
3 11.6 11.6 0.00 0%
4 8.0 8.8 0.80 9%
5 11.9 11.6 0.30 3%
6 11.5 7.6 0.10 1%
7 7.5 11.6 0.10 1%
8 11.6 11.6 0.00 0%
9 11.8 8.8 0.20 2%
10 8.8 8.8 0.00 0%
11 9.1 11.6 0.30 3%
12 11.6 11.6 0.00 0%
13 11.7 11.6 0.10 1%
14 11.5 11.6 0.10 1%
15 11.7 11.6 0.10 1%
16 11.8 11.6 0.20 2%
17 11.7 11.6 0.10 1%
18 9.2 8.8 0.40 5%
19 11.7 11.6 0.10 1%
20 11.6 11.6 0.00 0%
21 11.7 11.6 0.10 1%

Table A2. Reconstruction error analysis of the spherical knots of the first mesh in terms of size (cm)
and percentages.

Tubular Beam Diameter Derived
from Surveying (cm)

Original Project
Diameter (cm) Error (cm) Error (%)

1 20.0 20.0 0.0 0%
2 15.6 15.4 0.2 1%
3 21.3 22.0 0.7 3%
4 15.8 15.4 0.4 3%
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