

How COVID-19 related policies reshaped organic aerosol source contributions in central London

Gang Chen, Anja H Tremper, Max Priestman, Anna Font, David C Green

► To cite this version:

Gang Chen, Anja H Tremper, Max Priestman, Anna Font, David C Green. How COVID-19 related policies reshaped organic aerosol source contributions in central London. European Aerosol Conference, Aug 2024, Tampere (Finlande), Finland. hal-04700498

HAL Id: hal-04700498 https://hal.science/hal-04700498v1

Submitted on 17 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

How COVID-19 related policies reshaped organic aerosol source contributions in central London

Gang Chen^{1*}, Anja Tremper¹, Max Priestman¹, Anna Font², and David C. Green^{1,3}

¹MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, London, W12 OBZ, UK ²IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Education, Research and Innovation in Energy and Environment (CERI EE), 59000, Lille, France

> ³NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK Keywords: COVID-19, Source Apportionment, PMF, Cooking Organic Aerosol Associated conference topics: 2.9

Presenting author: gang.chen@imperial.ac.uk

Improving air quality can potentially save millions of lives, given that 97% of the urban population in Europe is exposed to a higher annual PM_{2.5} concentration than the World Health Organization guidelines (5 µg/m³) (WHO, 2021). As the largest city in Europe, London is on the front line to mitigate the health impacts of PM_{2.5}. Knowledge of pollution sources is crucial to design the most costeffective mitigation strategies. Positive matrix factorization (PMF) of Aerosol Mass Spectrometer (AMS) or Aerosol Chemical Speciation Monitor (ACSM) data is a powerful approach to quantitatively identify and apportion sources of organic aerosol (OA), which makes up over half of PM_{2.5}. Using the most advanced PMF techniques (i.e., rolling PMF, ME-2, and bootstrap, Canonaco et al., 2021) by following the standardized protocol (Chen et al., 2022) could provide high-quality source information of OA.

The year-long Quadrupole ACSM (Ng et al., 2011) data from the roadside supersite in London Marylebone Road (51.523 N, -0.155 E) collected from Aug 1st, 2019, to Oct 22nd, 2020, provides us with a unique opportunity to investigate how COVID-related policies impacted human activities and, therefore, OA sources. The period covered the first COVID-19 lockdown (Mar 26th, 2020 to Jun 23rd, 2020) and the Eat Out to Help Out (EOTHO) Scheme (Mon-Wed during Aug 3rd, 2020 to Aug 31st, 2020) (Table 1), which was a British government scheme to support the hospitality industry during the COVID-19 pandemic (https://www.gov.uk/guidance/get-a-discount-with-the-eat-out-to-help-out-scheme).

Table 1 Dates of the	e COVID-related	policies in London.
----------------------	-----------------	---------------------

COVID Policies Pre-Lockdown		Date Aug 1 st , 2019 – Mar 25 th , 2020	
	Priori scheme	Jun 24th, 2020 – Aug 2nd, 2020	
Post-Lockdown	EOTHO scheme	Aug 3rd, 2020 - Aug 31st, 2020	
	After scheme	Sep 1st, 2020 - Oct 22nd, 2020	

Five OA factors were identified including hydrocarbon-like OA (HOA, traffic-related, 10.5% to OA), cooking OA (COA, 19.5% to OA), biomass burning OA (BBOA, 11.5% to OA), more-oxidized oxygenated OA (MO-OOA, 37.7% to OA), and less-oxidized oxygenated OA (LO-OOA, 20.8% to OA). All factors showed distinct diurnal patterns before, during and after lockdown. It is worth noticing that the morning rush-hour peak for HOA and noon peak for COA both disappeared during the lockdown. Moreover, the EOTHO scheme elevated the COA mass concentration after the lockdown (Fig. 1) by 44.9 % but concentrations remained lower than those observed before lockdown. After the scheme ended, COA concentrations remained.

Figure 1 Diel cycles for cooking organic aerosol (COA) during different periods

This study demonstrated the power of rolling PMF in reflecting the influences of policies in human activities and therefore, OA sources. Special attention should be paid to cooking emissions (8.5% of total PM) in urban environment. Thus, it is important to continuously resolve OA sources to inform policymakers of the effectiveness of the policies.

This work is supported by the UK Natural Environment Research Council Grant OCSA NE/T001909/2.

References

Canonaco et al., Atmos Meas Tech, 14, https://doi.org/10.5194/amt-14-923-2021, 2021. Chen et al., Environ Int, 166, 107325, https://doi.org/10.1016/j.envint.2022.107325, 2022. Ng et al., Aerosol Science and Technology, 45, 780– 794, https://doi.org/10.1080/02786826.2011.560211, 2011.

World Health Organization (WHO), 2021.