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ARTICLE

Proxy evidence for state-dependence of climate
sensitivity in the Eocene greenhouse
E. Anagnostou 1,2✉, E. H. John3, T. L. Babila 2, P. F. Sexton4, A. Ridgwell 5, D. J. Lunt 6, P. N. Pearson 3,

T. B. Chalk 2, R. D. Pancost7 & G. L. Foster2

Despite recent advances, the link between the evolution of atmospheric CO2 and climate

during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest

that in order to achieve the global warmth that characterised the early Eocene, warmer

climates must be more sensitive to CO2 forcing than colder climates. Here, we test this

assertion in the geological record by combining a new high-resolution boron isotope-based

CO2 record with novel estimates of Global Mean Temperature. We find that Equili-

brium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the

Eocene, agreeing well with recent model simulations, and declined through the Eocene as

global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5

to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past,

and the state dependency of ECS may play an increasingly important role in determining the

state of future climate as the Earth continues to warm.
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The Eocene Epoch is the most recent greenhouse period in
Earth’s history. Atmospheric carbon dioxide (CO2) and
temperature peaked in the early Eocene, and both declined

towards the late Eocene, ultimately leading to an icehouse state at
the Eocene-Oligocene Transition (e.g. refs. 1–5). However, to
better constrain the potential mechanisms driving the early
Eocene warmth and the subsequent cooling, high-resolution
records of CO2 and temperature are required. While obtaining
continuous marine records of temperature through this interval
has been an ongoing effort (e.g. refs. 1,2), similar records for CO2,

as compiled in ref. 3, are fragmented and of low temporal reso-
lution with large uncertainties, and thus remain insufficient to
fully characterise the climate dynamics of the Eocene.

Of particular importance in this regard are several recent
modelling studies that have highlighted the possible existence of a
state-dependency of climate sensitivity. That is, the magnitude of
global mean temperature change following a doubling of atmo-
spheric CO2 is higher in warm climates than in cooler periods,
including the modern climate system (e.g. refs. 1,6–8). In the
Eocene, this is thought to result from non-linearities in the albedo
response related to cloud feedbacks rather than snow and ice
feedbacks6–8. These feedbacks are further modified by changing
palaeogeography, potentially linked to ocean area and deep water
formation8. Given the major implications such a state depen-
dency may have on the amount of warming by 2100 and beyond
under high-emission scenarios (e.g. RCP8.5), there is a pressing
need for improved constraints on the nature and evolution of
climate sensitivity in different climate states.

In order to achieve this, we generate a new CO2 record,
spanning the Eocene Epoch with an average sampling resolution
of 1 sample per 0.25 million years (Myr), using boron isotopes
(δ11B) in planktonic foraminifera from five pelagic sites located in
the Atlantic and Pacific: International Ocean Discovery Program
(IODP) Sites 1407 and 1409, Newfoundland margin; Ocean
Drilling Program (ODP) Sites 1258 and 1260, Demerara Rise, and
ODP Site 865, Allison Guyot, (Fig. 1). This record, coupled to
existing δ11B-CO2 reconstructions4,5,9–11 and novel Global Mean
Temperature (GMT) estimates, is used to provide proxy evidence
of the state dependency in climate sensitivity, with higher sensi-
tivity during the warm period of the early Eocene, and lower
towards the transition to the colder, late Eocene.

Results and discussion
Reconstructions of seawater pH. We followed established
methods to calculate seawater pH and CO2 from foraminiferal
δ11B measurements4,12–14 (“Methods”). We employ the δ11B
proxy on mixed-layer species of planktonic foraminifera in all

core sites to first reconstruct surface ocean pH. The majority of
Paleogene foraminiferal species selected for this study were pre-
viously identified to reflect surface mixed layer conditions4,10, and
are likely characterized by a reduction in the degree of pH
modification in the micro-environment surrounding the for-
aminifera by physiological processes compared to observations in
modern foraminifera4,14. When thermocline dwelling species
were used, or additional species not previously analysed, we
ensured that our new analyses of δ11B overlapped with previously
studied mixed-layer planktonic foraminiferal species (“Methods”
and Supplementary Data 1) in order to constrain site-specific
intra-species offsets and thus provide consistency and confidence
in the derived mixed-layer pH (as in ref. 4). Seawater tempera-
tures for the calculation of carbonate system parameters from
δ11B were estimated using foraminiferal Magnesium/Calcium
(Mg/Ca) ratios determined on an aliquot of the same solution
used for δ11B analyses, assuming Eocene seawater Mg/Ca of 2.2 ±
0.1 mol/mol2,4 and the seawater adjusted Mg/Ca thermometer15.

Reconstructions of atmospheric CO2. The derived surface sea-
water pH estimates from foraminiferal δ11B were combined with
the latitude-specific estimates of calcite saturation in surface
waters (from cGENIE4), which we assume remains within a range
of ±1, thereby accounting for uncertainty in both absolute value
and any short-term variability16. Full error propagation was
carried out using a Monte Carlo approach as described in ref. 4.
The CO2 record was then smoothed using varying span LOESS
curve with the degree of smoothing optimised using generalised
cross validation (Michael Friendly: https://tolstoy.newcastle.edu.
au/R/help/05/11/15899.html). The 95% confidence intervals were
then estimated from smoothing the residuals between the LOESS
curve and the CO2 data.

Eocene time-series of δ11B-derived pH and CO2. Our new
continuous and high-resolution record of δ11B-derived pH and
CO2 (Fig. 2, Supplementary Fig. 1) overlaps with existing low-
resolution δ11B -based records from Tanzania4,5, and records
from the Middle Eocene Climatic Optimum (MECO; ~40.1–40.5
Ma)11, Eocene Thermal Maximum 2 (ETM2; 54.1 Ma)9, and the
Paleocene-Eocene Thermal Maximum (PETM; ~56Ma)9,10 (all
re-calculated for consistency, see “Methods” and Supplementary
Data 3), and demonstrates the validity of our multi-species
treatment of δ11B in deriving mixed-layer pH and CO2 con-
centrations. This continuous view of the evolution of CO2 con-
firms that the highest CO2 levels, outside of the short-lived
increase in CO2 at the PETM9,10,17, occurred during the Early
Eocene Climatic Optimum (EECO; 49–53Ma18). Pre-PETM CO2
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Fig. 1 Paleo-location of sites used in this study. Base map generated from www.odsn.de for the early Eocene.
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was ca. 900 ± 100 ppm (±2 se, n= 14)9,10. For the EECO and the
PETM9,10, the average CO2, calculated using the average δ11B and
Mg/Ca-temperature estimates in each interval is 1470 (+360/
−300) ppm (2 s.d.) and 1790 (+560/−380) ppm respectively (or
1980 (+510/−440) ppm and 2470 (+690/−540) (2 s.d.) if the
Trilobatus sacculifer calibration of ref. 19 is used, as described in
the “Methods”). Atmospheric CO2 began to decline from a
maximum at ca. 49Ma, reaching a minimum immediately prior
to the MECO4,11 where it increased to an average of 1240 (+250/
−210) ppm (or 1490 (+290/−240) ppm using the T. sacculifer
calibration)18. Following the MECO, CO2 levels remain largely
stable at 900 ± 130 ppm (2 s.d.) until the Eocene-Oligocene
transition (EOT; 33.5–34Ma), when they eventually decline
below 700 ppm4,5.

Atmospheric CO2, volcanism and silicate weathering. The most
important modulators of the Earth’s carbon cycle, and hence its
climate, are thought to be the balance between volcanic CO2

output and CO2 drawdown through silicate weathering and
carbonate burial20. However, the relative importance of these
processes in determining the evolution of CO2 over the last 65
Myr, and hence their role in the evolution of Cenozoic climate,
remains uncertain. Our new continuous CO2 record allows a

re-evaluation of the broad relationship between records of silicate
weathering, volcanism and CO2 during this interval (Fig. 3).

There is abundant physical evidence for enhanced volcanism
during the EECO, potentially driving high levels of CO2 during
this time (Fig. 3). The central East Greenland volcanic rift margin
plutons associated with post-continental break-up were emplaced
from 56 to 54Ma and 50 to 47Ma21, following the flood basalt of
North Atlantic Igneous Province emplacement and volcanism
associated with the PETM22. In addition, in central British
Columbia there was extensive magmatism within the Chilcotin
Plateau (from 55 to 47Ma23) and the Challis-Kamloops
magmatic belt (from 53 to 47 Ma24,25). The India-Eurasia
collision resulted in the subduction of pelagic carbonates
deposited within the Neo-Tethys and of carbonate sediments
from the continental margin of the Greater Indian subcontinent,
which were most likely recycled as CO2 at arc volcanoes from ca.
52.5 to 49Ma26, also coinciding with the elevated CO2 during
the EECO.

The carbon imprint of silicate weathering on the Eocene
carbon cycle remains unconstrained (e.g. refs. 27,28) because the
available paleoproxies are currently ambiguous and reconstruc-
tions tend to be sparse for this time interval29–32 (Fig. 3). Only the
Li isotope record33 reveals a step change in the early Eocene at
ca.48 Ma, indicating that a shift toward higher silicate weathering
intensity was coincident with our post-EECO CO2 decline
(Fig. 3d). Such an increase in weathering could be due to the
second stage of collision of India with Asia34,35, and Patagonian
orogenesis36 that occurred at around 50-49Ma. Following the
EECO warmth and initial cooling, global cooling and reduced
weathering intensity, as implied from Os isotopes (Fig. 3b), may
have slowed down the weathering feedback27,37 contributing to
the nearly stable CO2 levels we reconstructed for this time.

Drivers of the ca. 51Ma decoupling between δ13C and CO2.
Although the timing of major weathering regime changes and
volcanic events coincide with large variations in our CO2 curve,
there is structure within our record that require the action of
additional processes. Previous work indicates that δ13C and δ18O
values are tightly coupled on short-term orbital scales and across
hyperthermals such as the PETM (e.g, ref. 38); however, they
decouple on longer timescales, including in the marked transition
from ca. 51 to 51.5 Ma, characterized by a 1–2 ‰ increase in
benthic foraminiferal δ13C records during the sustained warmth
of the EECO (Fig. 3)39,40. Our CO2 record demonstrates for the
first time that this increase in δ13C is not associated with a sys-
tematic change in CO2.

Large scale circulation changes could cause this δ13C-CO2

decoupling, but they preceded the EECO by ca. 6 My41, except the
short-lived changes in deep water formation during hyperthermal
events, such as the PETM42. Additionally, cessation of North
Pacific deep-water formation43, a more inter-basin thermohaline
circulation δ13C pattern44 (Fig. 3f), and establishment of a proto-
Antarctic Circumpolar circulation (proto-ACC) associated with
the gradual Drake Passage opening (ref. 45) and the Tasman
Seaway widening (refs. 46,47) followed the EECO CO2 and
temperature decline (post 47Ma). Therefore circulation changes
are unlikely to have been the main drivers of the δ13C and CO2

decoupling within the EECO.
Alternatively, this decoupling could arise from multiple

changes in carbon sources and sinks. Volcanic carbon emissions
could have been associated with a nearly neutral atmospheric
δ13C signal while still elevating CO2 concentrations, such as the
case of metamorphic degassing of carbonates, whereas the
positive δ13C excursion can be explained by enhanced burial of
δ13C depleted organic carbon48. Although the amount of organic
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Fig. 2 Compilation of δ11B and δ18O derived records for the Eocene.
a Seawater pH from the new δ11B data presented here (black squares) and
compiled from the literature (see panel for appropriate references), all
listed in Supplementary Data 1 and 3, b calculated atmospheric CO2 from
the data shown in a, the LOESS fit (green line) and 95% confidence (orange
shading) (see “Methods” for details), c δ18O from benthic foraminifera are
based on compilations (see Methods for individual references). Error bars
in a, b are 95% confidence. Intervals of time referred to in the text are
shown as blue bars in c, labelled with appropriate acronym.
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carbon burial across the early Eocene remains debated49,50, the
most striking evidence for organic carbon burial increase is the S
isotope record obtained from foraminifera calcite51 (Fig. 3e) and
sedimentary barite52,53, which reveals a sharp increase in δ34S of
seawater sulfate starting at ca. 52Ma and is potentially linked to a
change in the locus of organic carbon burial and an increase in
the burial of organo-sulfides51,52,54.

Global mean temperature and climate sensitivity. Regardless of
the causes of the evolution of CO2 through the early Cenozoic,
our new CO2 record clearly resembles long-term deep-sea and
surface seawater temperature (SST) records as compiled in
refs. 1,2,38–40,55, (see “Methods”, Fig. 4). To further explore the
relationship between CO2 and the global mean temperature
evolution during the Eocene, we first computed GMT (Methods).
However here, rather than using multi-site, non-continuous
foraminiferal δ18O records8, which have also been shown to be
impacted by diagenesis56,57, we use the continuous TEX86-SST

record from the equatorial Atlantic (ODP 959)1 and the model
simulations with the NCAR Community Earth System Model
version 1 (CESM 1) in ref. 1, which provide a transfer function
from SST at ODP 959 to a global mean in four specific time
windows (54–49, 48–46, 42–42, 38–35Ma; Supplementary Fig. 2).
The relative change in climate forcing (Wm−2) within the

Eocene attributable to CO2 change relative to preindustrial (PI)
CO2 (278 ppm) (ΔFCO2) is calculated using the formulation of
ref. 58. Earth System Sensitivity (ESS), defined as the mean
temperature response to all radiative perturbations59, can then be
computed from the change in global mean temperature relative to
preindustrial (ΔGMT), using the equation:

ESS ¼ΔGMT=ΔFCO2 ´ 3:87 ð1Þ
where the 3.87Wm−2 expresses the ESS as the temperature
change due to a CO2 doubling. However, to isolate the climate
change due purely to changes in CO2, we must first account for
the influence of paleogeography and solar constant on GMT. To
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do this we subtract a time variant correction following ref. 8

estimated to ~0.5 °C in the late Eocene and 1.5 °C in the early
Eocene (Supplementary Data 2). Finally, we provide an estimate
of Equilibrium Climate Sensitivity (ECS) by accounting for the
contribution to Eocene GMT of the changes in the land-ice sheets
(equivalent to 1.5 ± 0.5 °C, refs. 60,61), a slow-climate feedback not
considered in climate models (PALAEOSENS59). To calculate
ECS in this way we use Eq. (1), but we first subtract from GMT
the estimated temperature changes due to solar constant,
paleogeography, and ice sheets (Fig. 5a and Supplementary
Data 2). Note that we do not provide any corrections for other
greenhouse gasses. Finally, to examine the robustness of our
findings to our chosen record of GMT we use an independent
alternative approach for calculating GMT from ref. 8 using
foraminiferal δ18O (Fig. 5c).

Recently, a number of studies have focused on non-linearities of
the climate system during the Eocene, such as those related to
changes in paleobathymetry affecting ocean area and deep water
formation8, and short-wave cloud feedbacks linked to cloud
microphysics, amplifying surface warming through changes in
clouds6. Here we compare our GMT vs. ΔFCO2 relationship for
the Eocene to climate model derived relationships for different
boundary condition and processes (Fig. 5b). Largely independent

of the approach used for calculating GMT, the majority of our
reconstructions fall within the range of Paleogene simulations in
refs. 6,7. Our time-evolving record of ECS (and ESS) through the
Eocene, even when considering the large uncertainty it inherits
from the individual GMT and CO2 values used for its calculation,
shows that the highest ECS estimates occur consistently during the
warm intervals of the Eocene, such as the PETM, ETM2, EECO
and MECO, and progressively decline towards the EOT (Fig. 5a).

The declining ECS for the Eocene, and the overlap between our
early Eocene climate sensitivity estimates and the model output of
ref. 6 (Fig. 5b), provide a strong confirmation of state dependency
of ECS likely driven by changes in cloud-microphysics6. This
finding is robust to the uncertainties in final estimates of ECS as it
is present in all processing scenarios we consider which largely
influence our estimates of absolute ECS, not the pattern of its
evolution through time. The decrease in GMT that we observe
post 39Ma (Fig. 5b), however, is not sufficiently described by this
early Eocene model, implying that non-CO2 boundary conditions
may be playing a role in changing climate at this time, such as
changes in paleogeography and/or associated changes in ocean
circulation, and the presence of ice sheets8,47,62–65.

Our new compilation of δ11B-CO2 from planktonic foramini-
fera from multiple open ocean sites provides a comprehensive
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picture of the evolution of CO2 through the Eocene, greatly
improving on recent CO2 compilations (ref. 3 and Supplementary
Fig. 3) and allowing for the first direct comparison with high-
resolution records of climate variability. Our reconstructions,
while still underlining the importance of CO2 in driving the
evolution of Eocene climate, provide evidence of strong non-
linearities between climate and CO2 forcing, likely related to both
cloud feedbacks for the early-mid Eocene, and changing
paleogeography and ice sheets for the late Eocene. This reveals
climate-state dependent feedbacks and elevated ECS operated
during the warmest climates of the last 65 million years.

Methods
Site information and age models. Boron isotopes (δ11B) from mono-specific
samples of planktonic foraminifera were obtained from a number of deep-sea,
open-ocean Paleogene-age core locations (Fig. 1). Sites ODP 865 and ODP 1258
and 1260 were positioned in subtropical/tropical paleolatitude and Sites IODP
1407/1409 was likely within temperate latitudes (Fig. 1), and all sites were located
within deep-bathyal water depths throughout the Eocene above the calcite com-
pensation depth (CCD)44,66–68. Age models for IODP 1407/1409 and ODP 1258/60
were updated to ref. 39 timescale.

The age-depth model used for site 865B (Supplementary Table 1 and
Supplementary Fig. 4) in this study was based on that from ref. 69, with refinements
in this study including re-adjustment to the GTS201270 timescale. The model uses
a linear fit71, but it is solely based on planktonic foraminiferal events (excluding
nannofossils), because of suspected winnowing bottom water currents that may
have mobilized the fine fraction containing nannofosils, making them suspect. We
only used datums for which GTS2012 ages were available and in which we had
significant confidence (Supplementary Table 1), such as those without obvious
signs of reworking.

At Sites IODP 1407 and 1409 the planktonic foraminifera exhibit glassy test
textures and appear minimally influenced by post-depositional recrystallization68,
while at ODP 1258/1260 and ODP 865 the foraminifera specimens are frosty in
appearance57,72, indicative of partial or complete recrystallization, with the most
altered site being ODP 865, without hampering identification of individual species.
Nevertheless, it has been shown that at least at ca. 40.3 Ma, ODP 865 δ11B of
planktonic and benthic foraminifera are indistinguishable from that of glassy, well-
preserved foraminifera from the Tanzania Drilling Project (TDP)73.

Records of δ13C and δ18O displayed in Fig. 2 to Fig. 4 were generated from
ODP Sites 1258,

1262, 1263, 1265 and 1267 and 1209 in refs. 40,55,74–81, on the ref. 39 age model,
and from Deep Sea Drilling Project and ODP sites in ref. 38.

Sample preparation. Approximately 3 mg of 73 mono-specific planktonic for-
aminiferal carbonate samples of a narrow size fraction (Supplementary Data 1)
were separated from 2 to 10 cm of core material for tandem analyses of boron
isotopes and trace element composition. Identification of planktonic foraminifera
followed ref. 57, and samples were cleaned following established methods82–84.
Trace element to calcium ratios were determined as in ref. 84 and Al/Ca ratios were
typically <150 μmol/mol signifying efficient surficial clay removal during the for-
aminiferal cleaning procedure84. For all core sites used in this study, there was no
relationship between Al/Ca μmol/mol and foraminiferal δ11B measurements,
suggesting that any clay remnants did not bias the measured δ11B values10.

Mg/Ca analyses, temperature reconstructions. Trace element to calcium ana-
lyses were carried out using a Thermo Scientific Element XR sector-field
inductively-coupled-plasma mass spectrometer (SF-ICPMS) at the University of
Southampton. The long-term precision (2 s.d.) of an in-house carbonate standard
was 2% for Mg/Ca (mmol/mol) and Al/Ca (μmol/mol). Seawater temperature was
estimated from each sample using foraminiferal Mg/Ca ratio on an aliquot of
the same solution used for δ11B analyses, assuming Eocene seawater Mg/Ca of
2.2 ± 0.1 mol/mol2,4 and Mg/Ca-temperature calibration sensitivity was adjusted
based on the seawater Mg/Ca value15. The temperature uncertainty is set to a range
of ±2 °C and it is fully propagated into our carbonate system estimates (see below).

Relative δ11B offsets. Identification of planktonic foraminiferal depth habitats used
in this study are based on relationships between stable isotope foraminiferal geo-
chemistry and ecology in relationship to δ11B offsets (e.g., refs. 4,9,10, and references
therein). Additional foraminifera species used here (Morozovella aragonensis, Acar-
inina quetra, A. pentacamerata, M. crater, A. cuneicamerata, A. pseudosubsphaerica)
were cross-calibrated against previously known species (A. pseudotopilensis, A.
praetopilensis, A. soldadoensis, Guembelitrioides nuttalli, Pearsonites broedermanni)
for their δ11B behaviour collected from the same time interval and core site4,5,11,17

and site-specific species offsets in δ11B were not identified. In site ODP 865, the δ11B
composition of Turborotalia cerroazulensis, T. frontosa, and T. ampliapertura are
offset from the mixed layer species A. rohri, A. praetopilensis and A. topilensis by on
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Fig. 5 Evolving climate sensitivity for the Eocene. a Calculated ESS (red
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in ECS95, and the pink highlighted area the updated 20th century ECS with
the addition of state-of-the-art cloud physics96. Circles represent estimates
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for the Eocene. GMT is calculated using the BAYSPAR TEX86 record from
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TEX86. For comparison, the GMT estimates from ref. 8 are presented with
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average 1.02 ± 0.04 (2 s.e., n= 3) ‰, confirming previous estimates for T. amplia-
pertura4, but showing less of an offset for the species T. cerroazulensis compared to
TDP4, thus we used the site-specific offset here for this species, propagating the
uncertainty of this offset correction through the calculations. Sites 1407 and 1409 are
dominated by A. bullbrooki in the late Eocene which recorded variably lower δ11B
values than known shallow mixed layer species and so were excluded from the time
series compilation. For consistency, we have included previously published δ11B
records generated from planktonic foraminiferal species we have tested for relative
vital effects and interspecies offsets in our timeseries. Therefore, we excluded the
M. velascoensis record of the PETM17, since this species is randomly offset from our
tested species A. soldadoensis when comparing five samples from site 1209 and at
similar ages (Δδ11BM.velascoensis – A. soldadoensis= 0.8 ± 0.6‰ (2 s.d.)9. Also, both G. index
and G. kugleri records of the MECO11 are excluded, because the former showed
variable habitat depth and δ11B offsets in TDP4, and the latter is not sufficiently tested
for within site inter species offsets.

Boron isotope proxy and analyses. Boron isotopes in planktonic foraminifera
have been used extensively to reconstruct past ocean pH and thus CO2 con-
centrations e.g., refs. 4,10,84,85. Here we use the Thermo Scientific Neptune multi-
collector ICP-MS at the University of Southampton. External reproducibility of
δ11B analyses is calculated from the long-term precision of consistency standards,
and two relationships depending on the amplifiers used for the Faraday cups;

For 1012 amplifiers : 129600 � e �212*11B Voltsð Þð Þ þ 0:339 � e �1:544*11B Voltsð Þð Þ ð2Þ

For 1011 amplifiers : 2:251 � e �23:01*11B Voltsð Þð Þ þ 0:278 � e �0:639*11B Voltsð Þð Þ ð3Þ
The seawater boron isotopic composition (δ11Bsw) for the Eocene has been

estimated in ref. 4 based on two scenarios, one involving no vital-effect corrections
(38.2–38.7‰) and one using the modern surface dwelling Trilobatus sacculifer19

δ11B calibration (38.6–38.9‰).
For the targeted Eocene planktonic foraminiferal species, δ11B vital effects as

observed in modern (extant) species are likely not applicable4. If vital effects are
present in Eocene foraminiferal δ11B, these only played a minor role4,17, supported
by the demonstration that during periods of reduced δ11Bsw, vital effect corrections
on δ11B are also reduced14, especially for when targeting small size fraction
foraminifera as in this study (Supplementary Data 1). Nonetheless, we also apply
the modern T. sacculifer calibration19 (for the 300 to 355 μm size fraction),
adjusting the intercept of the calibration to Eocene-specific δ11Bsw as described in
ref. 14 (T. sacculifer δ11B-pH proxy intercept= 1.748 for average δ11Bsw=
38.75‰).

This provides an upper limit on potential δ11B vital effects in the Eocene
planktonic foraminifera selected here. Notably, our calculated pH and CO2 estimates
for both approaches are largely within uncertainty (Supplementary Data 1).

Second carbonate parameter. After computing seawater pH using Eocene δ11Bsw
and foraminiferal δ11B, an additional carbonate parameter is required to calculate
CO2 concentrations at any given seawater salinity and temperature. Here, the
second parameter we use is the surface oceanic saturation of calcite (surface
Ωcalc= [Ca]sw ∗ [CO3

2−]/Ksp), estimated at different paleolatitudes4. For IODP
1407/1409, Ωcalc is estimated at 4.5 ± 1, for ODP 865 and ODP 1258/1260 Ωcalc is
estimated at 6.5 ± 1, for the re-processing of the δ11B data of10 from DSDP 401 we
used Ωcalc= 5.5 ± 1, and for the data from ODP1209/1210 and ODP 1265 in ref. 9

we used Ωcalc= 6 and 4.5 (±1), respectively. In support of the narrow range of
potential Ωcalc, a variety of carbon cycle modelling studies of the early Cenozoic
oceans show that surface water Ωcalc remains, within ±1, essentially constant and
independent of model boundary conditions16,85,86.

Monte Carlo pH-CO2 estimates from planktonic foraminiferal δ11B. We fol-
lowed established methods to calculate seawater pH and CO2 from foraminiferal
δ11B12–14. Atmospheric CO2 was calculated using a Monte Carlo approach to solve
the relevant carbonate system equations with 1000 iterations, deriving mean, upper
and lower bounds of 95% of the simulations. We use the seawater Ca and Mg
concentrations and salinity constraints in ref. 4 and the equation in ref. 12,13 to
correct for ion pairing. For each CO2 estimate, the Mg/Ca derived temperature
from the same aliquot was used, with a ±2 °C uncertainty. All simulations were
iterative assuming Gaussian distribution of these parameters within the stated
2 sigma error envelope of the mean. Note that a Gaussian distribution is not
applicable to δ11Bsw because there is equal likelihood that it lay between the
minimum and maximum constraints; we therefore applied a uniform probability
δ11Bsw for the Monte Carlo simulations.

GMT calculations. We convert the ODP 959 TEX86 SST record of ref. 1 to GMT,
employing previously published model simulations with the NCAR CESM version
1 with CAM 41, which essentially provides a transfer function from SST at ODP
959 to a global mean in four specific time windows (54–49, 48–46, 42–42, 38–35
Ma; Supplementary Fig. 2). The regression is then:

GMT ¼ 0:91ð± 0:04Þ ´ SST ODP 959; TEX86ð Þ � 6:66 ð± 1:3Þ ð1s:d:Þ ð4Þ

Previous model simulations of ocean temperature are consistent with both proxy
estimations of SST and deep-sea temperatures at multiple locations1. It is impor-
tant to note that the calculation does not depend on the climate sensitivity of the
model, just the relationship between local and global temperature. The resulting
relationship between GMT and SST from ODP 959 is then interpolated for the
remaining part of the TEX86 record in ref. 1, resulting in a time-resolved GMT
record for the Eocene (Fig. 5c). A similar GMT record is generated when the same
approach is applied to the tropical SST compilation1,2,57,65,87–93 summarized in
ref. 1 and Fig. 4, albeit with greater noise possibly the result of inconsistencies in
tuning the transfer function for multiple sites and for different time intervals of the
curve (Supplementary Figs. 2 and 5). The agreement between GMT records esti-
mated from ODP 959 compared to the tropical-multi site compilation confirms
that this approach is not dependent on the regional temperature, as long as the tie
points are able to capture the major variations in each time series. The relevant
uncertainty for each estimate of GMT (Fig. 5 and Supplementary Data 2) is the
product of 1000 realization of TEX86-temperature reconstruction and analytical
uncertainty1, randomly sampled within its 95% CI uncertainty envelope, including
the standard errors of the regression (Supplementary Fig. 2).

Data availability
The authors declare that all data supporting the findings of this study are available within
the Supplementary Information and Supplementary Data files associated with this paper.
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