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Abstract

Coronary artery disease, a prevalent condition often leading to heart
attacks, may cause abnormal wall shear stresses near stenosed regions
generating high frequent acoustic shear waves. In a previous study, a
viscoelastic agarose gel was used to model the human tissue and it was
shown that two material parameters of the gel could be estimated with a
high certainty using a classical inverse problem. Given the high computa-
tional cost of traditional methods, this paper explores machine learning
(ML) alternatives, particularly a Variational Autoencoder Inverse Mapper
(VAIM). VAIM, previously successful in nuclear physics, uses neural net-
works to approximate forward and backward mappings and learn posterior
parameter distributions. This paper validates previous research by gener-
ating data around ground truth values, demonstrating VAIM’s ability to
estimate two material parameters effectively. Further, it addresses realistic
applications by training and testing on noisy data and generalizing findings
across different intervals of signal damping.

1 Introduction

Coronary artery disease is an increasingly frequent medical condition and often
a cause of a patient experiencing a heart attack. To model the effect of a plaque
in a coronary artery, it is observed that the blood flow past the stenosed region
becomes turbulent and creates abnormal variations in wall shear stresses [7].
These shears drive low-amplitude acoustic shear waves through the soft tissue in
the thorax which appear at the chest wall and can be measured non-invasively
by placing sensors on the skin [1, 20, 21].

Early steps towards the development of a non-invasive diagnostic tool for
detecting a coronary artery stenosis have been explored in a previous project,
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where the human tissue is described by a viscoelastic material. The problem is
formulated as an inverse problem, i.e., in view of the application, by measuring
the signal at the chest wall, the goal is to detect the location and the size of the
stenosis. An experimental mock-up model, a cylinder filled with a viscoelastic
agarose gel modeling human tissue, was available [11]. The first step was to
estimate the material and damping parameters of the agarose gel [9, 10], which
could then be used in more advanced inverse problems to find the position of
the stenosis.

Parameter estimation is a fundamental task in various scientific and en-
gineering disciplines, such as geophysics, medical imaging, and engineering.
Traditionally, this task involves using statistical methods to estimate the pa-
rameters of a model that best fits the data. Typically, the process of an inverse
problem for parameter estimation of a PDE requires the following steps (see,
e.g., [4, 6]): 1. The formulation of the forward problem, used for solving the
PDE with given parameters to predict the output. 2. The definition of a
cost function. Common choices include the least squares difference or more
sophisticated statistical measures that account for measurement noise and model
uncertainties. 3. The optimization: The parameters are adjusted iteratively to
minimize the cost function. These could be gradient-based methods. Literature
about inverse problem approaches for parameter estimations for (visco-) elastic
materials comparable to our approach includes, for example, the articles [12, 13].
In the experiments in our previous works [9, 10], a weight was attached to
compress the gel in the cylinder, which was then removed abruptly and the
resulting damped oscillations were measured [9]. Since the oscillations appear
only in the vertical axis, the computational model was reduced to one dimension.
In this first study, the experimental data was only used to have a rough estimate
of the real material parameters, found manually, by trial and error. The inverse
problem was then run as a proof of concept on the generated data. It was found
that two of the parameters could be determined with high certainty, whereas
the model was less sensitive to two more parameters.

The most costly component in the inverse problem is the forward solver. It
has to be executed up to several hundreds of times in the optimization and
in the particular application, the wave length of the signal is very small. We
thus need a very accurate numerical method to capture well the signal in the
temporal as well as spatial domain. In [8], a numerical scheme based on a
discontinuous Galerkin method has been developed for solving the viscoelastic
wave equation efficiently in terms of accuracy and computation time. While
the strategy worked well in the above-described 1D case, it is, however, not
efficient enough even for a still simplified radial-symmetric 2D setup in which
oscillations were generated in the horizontal and vertical axes. Hence, a classical
inverse problem setup seemed infeasible, and alternative solution techniques
were necessary. One such alternative is to use machine learning (ML). To
give some examples of a vast literature of ML for parameter estimation, the
studies in [15, 19] use a convolutional neural network (CNN) [18] to estimate the
material parameters for poro- and viscoelastic partial differential equations for
ultrasound tomography. The CNN is applied to image samples, which show wave
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interaction with poroelastic material. In the following work, we are, however,
interested in ML models that are designed for inverse and ill-posed problems
and are capable of many input parameters. In prior work [2], we have developed
a Variational Autoincoder Inverse Mapper (VAIM) to address the ambiguity
issue in inverse problems, which have been successfully applied to infer tens of
input parameters in nuclear physics [3]. VAIM adopts an autoencoder-based
neural network architecture, where the encoder and decoder neural networks
approximate the forward and backward mapping, respectively, and a variational
latent layer is incorporated to learn the posterior parameter distributions with
respect to given observables. Here we propose VAIM as a solver to estimate
the material parameters of the stenosis model problem for a given output wave
signal.

In this paper, we apply the following steps to improve on the classical inverse
problem solution with ML techniques:

1. We first generate data (output signals) in intervals around the ground
truth values of [9] and show that VAIM is able to validate the previous
results. It well estimates two of the material parameters, but is rather
insensitive to two more parameters.

2. In the case of a realistic medical application, the wave signal will contain
noise in the measurements. As a second experiment, we will learn and test
on noisy data.

3. We train VAIM and infer on the interval [0, 0.1], in which we see the
principal oscillations and the dynamics of the problem. We show that the
parameters found here generalize well to the interval [0, 0.25], at which end
the wave is damped out.

The paper is organized as follows. Section 2 describes the model problem
followed by the VAIM overview and its tuning as a solver for the model problem.
Results are presented in Section 4 while Section 5 concludes.

2 The Model Problem

We consider the model problem for (x, t) ∈ Ω× I = [0, L]× [0, T ]

ρutt − σx = f

u(0, t) = 0

σ(L, t) = g(t) (1)

u(x, 0) = u0(x)

ut(x, 0) = w0(x) ,

where

σ(x, t) = E1uxt + E0

(
ux(x, t)−

∫ t

0

Ps(t− s)ux(x, s) ds

)
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and

P (t) = P0(t) +

NP∑
n=1

Pne
− t

τn

for P0 > 0, τn > 0, Pn ≥ 0, n = 1, .., NP and P (0) = 1. The integral in
this formulation can be computed by numerical quadrature. However, a more
convenient alternative is the internal variable formulation [7, 5]. It holds

Ps(t− s) =

NP∑
n=1

Pn

τn
e

−(t−s)
τn .

Define

ϵn(t) =

∫ t

0

Pn

τn
e

−(t−s)
τn u(s) ds.

Then

ϵnt (t) =
Pn

τn
u(t)− 1

τn

∫ t

0

Pn

τn
e

−(t−s)
τn u(s) ds.

To find ϵn, n = 1, . . . , NP we therefore have to solve the following ordinary
differential equations

τnϵ
n
t + ϵn = Pnu(t)

ϵn(0) = 0.

Using the definition of ϵn, it also follows

σ = E1uxt + E0

(
ux(t)−

NP∑
n=1

∂xϵ
n(t)

)
.

The quantities ϵn are called internal variables. Instead of solving the linear
system (1), we therefore solve

ρutt − E1uxt − E0uxx + E0

NP∑
n=1

ϵnxx = f

τnϵ
n
t (t) + ϵn(t) = Pnu(t)

u(0, t) = 0

σ(1, t) = g(t) (2)

u(x, 0) = u0(x)

ut(x, 0) = w0(x)

ϵn(0) = 0.
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We choose a material initially at rest and with reflecting boundary conditions
at x = 0, which requires no forcing term, so we choose f = 0. We furthermore
define the non-zero Neumann condition as an approximation to pulse traction.
For obtaining a higher order regularity of the solution, we use a compactly
supported input function, here a Van Bladel function. It is given by

g(t) =

{
A · exp

(
|ab|

t(t+a−b)

)
, if t ∈ (0, b− a)

0, otherwise.
(3)

The parameters are chosen as in [9]

A = 6 · 103, a = 6 · 10−3, b = 20 · 10−3, (4)

so that the amplitude of the wave signal corresponds to one of the early state
experiments. Furthermore, the baseline material parameters are given by

E0 = 2.2 · 105Pa, E1 = 40Pa · s, ρ = 1010kg/m3, L = 0.053

τ1 = 0.05s, τ2 = 10s, p1 = 0.3, p2 = 0.55. (5)

A graphical representation of the wave signal corresponding to these parameters
is given in Figure 1. Note that the amplitude of the signal is of order 10−4 and
that the signal is nearly damped out at about T = 0.25. The main dynamics are
visible earlier, however.
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Figure 1: Signal output at L = 0.053 with baseline parameters (5).

3 VAIM Overview and Solution

The Variational Autoencoder Inverse Mapper (VAIM) [2] is an autoencoder-based,
end-to-end neural network architecture for inverse problems. The architecture
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Figure 2: Architecture of VAIM for the model problem.

adopted for VAIM utilizes an autoencoder [16] consisting of two neural networks:
an encoder and a decoder. The encoder and decoder approximate the forward
and backward mappings, respectively. In VAIM, an inverse problem is framed
as a statistical inverse problem, with parameters treated as random variables.
Instead of generating deterministic parameter estimates for a given observable,
VAIM approximates a probability distribution of the parameters. The most
important component in VAIM is a variational latent layer, incorporated between
the encoder and the decoder, whose purpose is to learn the patterns of the
parameter distributions. This latent layer acts as part of the output for the
encoder and part of the input for the decoder. Unlike the hidden layers of the
encoder or decoder neural networks, the latent layer is constrained to follow
specific well-known distributions, such as Gaussian or uniform distributions,
for variational inference [14]. To solve a statistical inverse problem, sampling
from the latent distribution for a given observable yields the corresponding
parameter distributions. Specifically, a sensitive parameter will result in a narrow
distribution, whereas an insensitive parameter will produce a wide distribution.

Figure 2 illustrates the architecture of VAIM for the model problem. During
training, the forward mapper learns to map the parameters P = {E0, E1, τ1, τ2}
to the output signals Y = {y1, . . . , yn} and the latent space Z is used to capture
the information lost during forward mapping. Then, the backward mapper
reconstructs the parameter distributions P′ = {E′

0, E
′
1, τ

′
1, τ

′
2} from the output

signals and samples of the latent space Z. The training process is to minimize
the following loss function:

loss = ∥P−P′∥22 + ∥Y − Ŷ′∥22 +KL
(
p(Z | P,Y) || p(Z)

)
,

where ∥P−P′∥22 is the error of reconstructing the parameters, ∥Y− Ŷ′∥22 is the
prediction error of the output signals, and KL

(
p(Z | P,Y) || p(Z)

)
denotes the

Kullback–Leibler divergence of the posterior distribution p(Z | P,Y) and prior
distribution p(Z). Here, we select a multi-dimensional standard Gaussian as the
prior distribution, which is tractable while the samples are easy to generate.

3.1 Dataset Preparation

For the generation of data, we used a high-order temporal Discontinuous Galerkin
discretization as described in more detail in [8]. We chose the polynomial degree
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Name G1 G2 Min Max
E0 213000 220000 175000 267000
E1 42 40 34 64
τ1 0.05 0.05 0.01 0.55
τ2 10 10 6 36

Table 1: Ground-truth (columns G1 and G2) and boundary values (columns
Min and Max) for the distribution interval of the model parameters shown in
the column Name.

dt = 2 and M = 200 time steps on the time interval [0,0.1]. The spatial
discretization uses continuous finite elements with polynomial degree dx = 2 on
a mesh with 32 elements for the interval [0, 0.053]. We generated N = 50 000
data curves, i.e., output signals.
Thinking of the final application of the stenosis detection device, different people
exhibit different morphology, and thus material parameters. We address these
differences in twofold manner: (1) The training and testing data were generated
with (E0, E1, τ1, τ2) uniformly distributed in a sufficiently large interval around
the baseline set of values (denoted here G2), as provided in 5. (2) Another set
of baseline parameters, G1, was selected inside this interval to more specifically
simulate the parameter 4-tuple for another given person. Table 1 shows the
distribution interval boundaries and the vales of the G1 and G2 parameter sets,
which we call ground truths.

We denote the time series yj , j = 1, . . . , N as ideal output signal. It is
generated for i = 1 . . . ,M time steps as

yij = u(L, ti) , (6)

such that u is the numerical solution of the system (2) at L = 0.053 with
parameters (E0, E1, τ1, τ2)j drawn uniformly in the intervals given in Table 1.
We have noticed that the training loss is of order 10−4. Since the signal itself
is also of this amplitude, we observed that training on unscaled data leads to
meaningless results. We therefore normalize the parameters and output signals
into [0, 1].

We also investigate the case when the data is not exact, which models the effect
of noise such as measurement errors. We call these data points observational data.
Observational data ỹj is generated by adding a normally distributed additive
noise with mean 0 and different noise level l as a standard deviation to the ideal
output signal

ỹij = yij + lN (0, 1) (7)

at each time step i, i = 1, . . . ,M . We choose two different noise levels: with
l1 = 5% and l2 = 10% noise. We scale the noise by 10−4 to obtain noise of the
same magnitude as that of the signal, and thereby l1 = 5 ·10−6 and l2 = 10 ·10−6.
The observational data is then scaled in the same way as the data in the case of
the exact (ideal) output signal.
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Hyperparameter Value
Optimizer Adam

Loss function MAE
Batch Size 512
Epochs 5,000 – 10,000

Learning Rate 1e-4

Table 2: VAIM hyperparameters for which reference-implementation values were
chosen. “MAE” denotes mean absolute error.

3.2 Hyperparameter Selection

We have selected VAIM hyperparameters manually based on our knowledge of
data and its scaling (see Section 3.1) and the problem difficulty as investigated
using traditional numerical integration techniques and reported in our earlier
paper [8]. In addition to ubiquitous hyperparameters, such as learning rate,
the choice of optimizer, and loss metric type, we considered the specific VAIM
building blocks, the backward and forward mappers, and sampling layer hy-
perparameters, while aiming to make a minimum number of hyperparameter
changes so that the model remains sufficiently general, yet computationally
efficient. In particular, we have left the mappers “as is” vz. the number and
specification of layers except for the change of the activation function in the
last layer of the decoder (the backward mapper). This change for the Sigmoid
function was motivated by the MinMax dataset scaling which confined all the
data in the interval between zero and one, and therefore, corresponds to the
Sigmoid function output. Most of the other VAIM hyperparameters remained
the same from the reference VAIM implementation or were assigned reasonable
values that led to a good convergence (see Table 2 for their list and values).

4 Results

Experiments were performed on the Old Dominion University cluster Wahab
using on-demand environments for Jupyter notebooks (4 nodes 1 GPU each
node). The Wahab cluster consists of 158 compute nodes and 6320 computational
cores using the state-of-the-art Intel “Skylake” Xeon Gold 6148 processors (20
CPU cores per chip; 40 cores per node). Each compute node has 384 GB of
RAM. To accommodate the rising computing demand from machine learning and
artificial intelligence workloads, there are 18 accelerator compute nodes, each of
which is equipped with four NVIDIA V100 graphical processing units (GPU),
for a total of 72 GPUs. A 100Gbps EDR Infiniband high-speed interconnect
provides low-latency, high-bandwidth communication between nodes to support
massively parallel computing as well as data-intensive workloads. Wahab is
equipped with a dedicated high-performance Lustre scratch storage (350 TB
usable capacity) and is connected to the 1.9 PB university-wide home/long-term
research data networked filesystem. Wahab also has 45 TB of CEPH block
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storage that can be provisioned for user data in the virtual environment.
The total dataset was split into train (95%) and test (5%) subsets. Out of

the train set, 20% was randomly allocated for the validation set. These splitting
portions are common and lead to reliable predictions, assuming there is no
overfitting, due to a much smaller test-set size.

The prediction results of the four input parameters under consideration are
difficult to represent on a single conventional plot, which typically contains at
most 3 dimensions plus color gradation. This difficulty is exacerbated by the large
difference in the raw parameter magnitudes. Hence, we resort to representing
graphically the parameter scaled values in the so-called Parallel Coordinates,
originally proposed in [17] to “transform multivariate relations into 2-D patterns,
a property that is well suited for Visual Data Mining”. Parallel-Coordinate (PC)
plots are being extensively used in data-science papers as evidenced by more
than 400 citations of [17] dating as recent as 2024.

Recall that results are obtained in pursuit of three objectives: (1) Consider
an ideal case when measurements are exact and investigate corresponding inverse
problem input parameter interdependence. (2) Consider a real-life scenario in
which there is an error in measurements and possible uncertainty in the input
parameter values. (3) Consider how the measurements on shorter initial time
intervals generalize for longer periods in which fewer dynamics are observed,
however. Sections 4.1 to 4.3 describe results of the three objectives, respectively.

4.1 Exact Measurements of the Output Signal

We can investigate the relative effects of the input parameters by visually
representing them using PC plotting. In a PC plot, Fig. 3 visualizes the
predictions made for all the test data along with the ground-truth values
in the case of exact output signal measurements. Note that, in Fig. 3 and
all the subsequent PC plots, the input parameter ordering pi, i = 1, 2, 3, 4,
where p1 = E0, p2 = E1, p3 = τ1, p4 = τ2 corresponds to the natural
ordering ai, i = 1, 2, 3, 4 of the vertical PC plot axes, such that a line be-
tween a value on axis ai−1 and ai indicates that the corresponding parame-
ter values pi−1 and pi belong to the same 4-tuple of input parameters defin-
ing an output signal and there is a magnitude relationship between the two
parameters. The 4-tuple corresponding to ground truth is connected with
dashed lines: Red-colored for the set G1 of ground truth parameter values
E0 = 213000, E1 = 42, τ1 = 0.05, τ2 = 10 and yellow-colored for the set
G2 of ground truth parameter values E0 = 220000, E1 = 40, τ1 = 0.05, and
τ2 = 10. The predicted parameter value sets are G′

1 and G′
2 with 4-tuples

(212746.92, 42.05, 0.265, 24.80) and (219682.62, 40.07, 0.262, 24.97), respectively.
We observe in Fig. 3 that the ground truth for the two parameters E0 and E1

is well inside the cyan “cover” of all the prediction curves. Note that the almost
symmetrical shape of the “cover” is to be expected since all the parameters for
the datasets were generated using uniform distribution (see Section 3.1). Hence,
we consider these two parameters to be well-predicted as also demonstrated
by the PC plot shown in Fig. 4a in which a prediction only for a single tested
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Figure 3: PC plot of the predicted (cyan) and two sets (yellow and red) of the
ground-truth input parameter values. The output variable y is measured exactly
(without noise) and datasets are scaled.

4-tuple is shown out of the entire test dataset. The prediction (cyan curve) is
very close to the tested values for the E0 and E1 parameters while there is a
larger spread (as determined from the larger width of the shaded-cyan area) of
the actual and predicted values for the τ parameters. The shaded-cyan area
width shows the two standard deviations (std) of the average difference between
the predicted (from the latent space) and tested input parameters.Figure 4b
presents the plots of both the training and validation losses obtained in training
epochs, starting with the epoch 50 for plot scaling sake. The two curves exhibit
the same decreasing tendency and overlap. Hence overfitting of the model does
not occur.

On the other hand, in Fig. 3, the two sets of the ground truths τ1 and τ2
are outside of their predicted value set (shown on axes a3 and a4, respectively),
Moreover, the widths of their predicted-value “covers” are very narrow suggesting
that VAIM did not have enough train-data variability to search their values.
We hypothesize that for each τ parameter, either “one value fits all” or that
these parameter values are unimportant for the output signal y definition. To
verify this hypothesis, we used the predicted values of τ1 and τ2, which were far
from those in the ground truth, along with the well-predicted E0 and E1 for the
construction of the output signal y using Matlab, as shown in Fig. 5. Then, we
compared the obtained y signal output values with the actual y measurements.
For bothG1 andG2 sets of input parameter values, the two curves are practically
indistinguishable. The means, standard deviations, and standard errors of the
two ground truths are presented in Table 3.

4.2 Noisy Output Signal

For a real-life scenario in which there may be an error in output signal y
measurements, we use the observational data for y as generated using Eq. (7).
For the two noise levels, 5% and 10%, the PC plots of the entire test set are
provided in Fig. 6, respectively, with the same ground truths G1 and G2 as

10



(a) PC plot of a single predicted (cyan)
and test (red) input parameter value 4-
tuple. The shaded-cyan area corresponds
to the two-std’s of the average difference.
The output variable y is measured exactly
(without noise) and datasets are scaled.

(b) Training and validation losses corre-
sponding to the training of the model that
produced the prediction in Fig. 4a.

Figure 4: Analysis of the resulting VAIM ML model.

G′
1 G′

2

MAE 8.9125e-08 1.0178e-07
std 5.7237e-08 6.5028e-08
SE 4.0372e-09 4.5867e-09

Table 3: Mean absolute error (MAE), standard deviation (std), and standard
error (SE) for the difference between the predictions G′

1 and G′
2 and their

corresponding ground-truth output signals on the interval [0, 0.1].
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Figure 5: Output y signals corresponding to the predicted and two ground-truth
sets of parameters.

in Section 4.1. By comparing Fig. 6 and Fig. 3, we note that the area covered by
the predicted (cyan) curves is wider while almost symmetrical. This indicates
that there is a great deal of variability in data to make a prediction. On the
other hand, the ML model does not appear to overfit as seen in Fig. 7, which
plots the model training loss per epoch of training (blue) along with the obtained
validation loss (orange curve) in the given epoch for 5% and 10% noise levels.
The figures show that both curves exhibit the same general decreasing trend.
The two ground-truth sets of values predicted for the observational (noisy) data
are

G
(5)
1 = (214255.88, 40.64, 0.324, 24.40) G

(5)
2 = (221522.55, 37.78, 0.141, 31.41)

G
(10)
1 = (215087.39, 40.41, 0.383, 17.91) G

(10)
2 = (216846.45, 40.00, 0.306, 22.53)

for the 5% and 10% noise, respectively. Similar to Fig. 4a, the plot in Fig. 8
demonstrates the two-std width (shaded-cyan area) between the actual and
predicted test parameter values, but for the 10%-noise level in this case. For the
E0 and E1 parameters, the wider shaded-area band indicates more uncertainty
in these parameters with noise, while no qualitative effect is noticeable in the
predictions of the accuracy of the τ1 and τ2 predictions with noise.

Figure 9 compares the output signal y obtained with the baseline ground-
truth parameter values y to those obtained with predicted values from noisy
output signals. For both G1 and G2 sets of input parameter values, the signals
from predicted values still match the ideal signal well, which is reflected in Table 4
showing the mean, standard deviation, and standard errors.

4.3 Generalization: Extrapolation to Longer Time Spans

As shown in Fig. 1, the wave is damped out quickly, and the main dynamics
occur early on. We have also observed that the material parameters can be
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G
(5)
1 G

(5)
2 G

(10)
1 G

(10)
2

MAE 3.5502e-06 8.0698e-06 4.4056e-06 4.9998e-06
std 1.9491e-06 2.3782e-06 2.8909e-06 3.2332e-06
SE 1.3748e-07 1.6775e-07 2.0391e-07 2.2805e-07

Table 4: Mean absolute error (MAE), standard deviation (std), and standard
error (SE) for the difference between the predictions generated from the noisy
output signal with 5% and 10% noise levels and the corresponding ground truths
on the interval [0, 0.1].

(a) Noise 5%. (b) Noise 10%.

Figure 6: PC plot of the predicted (cyan) and two sets (red) of the ground-truth
input parameter values for the observed output variable y that include noise
levels: (a) 5% (b) 10%. Datasets are scaled.

(a) Noise 5%. (b) Noise 10%.

Figure 7: Training and validation losses corresponding to the training of the
model that produced the predictions in Fig. 6 for the observable data. The plots
display curves starting with the 50th epoch for the sake of visualization.
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(a) Noise 10%.

Figure 8: PC plot of a single predicted (cyan) and test (red) input parameter
value 4-tuple. The shaded-blue area corresponds to the two-std’s of the average
difference for the observed output variable y that includes a 10% noise level.
Datasets are scaled.
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Figure 9: Output signals for baseline parameters and their predictions with 5%
and 10% noise.
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Figure 10: Output signal y extrapolated to the interval [0, 0.25] corresponding
to the predicted and two ground-truth sets of parameters.

G′
1 G′

2 G
(10)
1 G

(10)
2

MAE 6.5735e-08 7.7070e-08 3.3165e-06 3.7970e-06
std 4.9783e-08 5.6500e-08 2.4924e-06 2.8033e-06
SE 2.2241e-09 2.5242e-09 1.1135e-07 1.2524e-07

Table 5: Mean absolute error (MAE), standard deviation (std), and standard
error (SE) for the difference between the predictions generated from the exact
and 10%-noise output signals and the corresponding ground truths extended to
the interval [0, 0.25].

accurately predicted within the interval [0, 0.1], even though the wave is only fully
damped out around t = 0.25. In our final experiment, we aim to determine if it
is possible to use the predicted values from the interval [0, 0.1] to still achieve a
good fit over the entire interval [0, 0.25]. The advantage of generalizing from the
smaller to the larger interval is the reduction in the number of grid points in the
time domain (here by a factor of 2.5). This translates into fewer computational
operations and lower energy consumption.

We first present the results for the ideal output signal, i.e., without noise. To
preserve the discretization accuracy, we keep the same interval size and use 500
points. As presented in Fig. 10, the curves corresponding to the ground truth
and their predicted parameters G′

1 and G′
2 extended to the interval [0, 0.25] are

almost indistinguishable. The mean, standard deviation, and standard errors are
given in Table 5, in which the same metrics are shown for the 10%-noise level

predictions G
(10)
1 and G

(10)
2 . The latter predicted input parameters generate

the output y on the interval [0, 0.25] as shown in Fig. 11.
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Figure 11: Output signals y extrapolated to the interval [0, 0.25] corresponding
to the predicted with 10% noise and two ground-truth sets of parameters.

5 Conclusions

In this paper, we have presented the VAIM deep learning model to predict
material parameters of an acoustic visco-elastic wave equation for a stenosis
detection model. The observations of the previous paper [9], in which a classical
inverse problem has been formulated for this parameter estimation, have been
confirmed. For ideal data, i.e. without noise, we were able to predict well two
material parameters. The model is, however, insensitive to two more parameters,
suggesting that the inclusion of a memory integral into the model is unnecessary.
For data with 5% and 10% noise, the higher variability in the data led to better
predictions for the memory integral parameters. While the signal is damped out
only after 0.25 seconds, we have shown that it is enough to learn and to infer
up to T = 0.1. The signal can then be extended to the larger interval without
adding a significant error, all this with the advantage of training on a smaller
dataset. In addition to [9], we were able to show that we may predict material
parameters on a large interval around the baseline values. From the application
point of view, this is necessary for a stenosis detection tool, as different specimens
will have different material properties.
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