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Abstract 

Introduction: Intravenous ganciclovir (GCV) and oral valganciclovir (VGCV) display significant variability in 

GCV pharmacokinetics, particularly in children. Therapeutic drug monitoring currently relies on the area under 

the concentration-time (AUC). Machine Learning (ML) algorithms represent an interesting alternative to 

Maximum-a-Posteriori Bayesian-estimators (MAP-BE) for AUC estimation. The goal of our study was to develop 

and validate a ML-based limited sampling strategy (LSS) approach to determine GCV AUC0–24 after 

administration of either intravenous GCV or oral VGCV in children.  

Methods: PK parameters from four published population pharmacokinetic models, in addition to the WHO growth 

curve for children, were used in the mrgsolve R package to simulate 10800 PK profiles of children. Different ML 

algorithms were trained to predict AUC0–24 based on different combinations of 2 or 3 samples. Performances were 

evaluated in a simulated test set and in an external dataset of real patients.  

Results: The best estimation performances in the test set were obtained with the Xgboost algorithm using a 2 and 

6 hours post dose LSS for oral VGCV (rMPE=0.4%, rRMSE=5.7%) and 0 and 2 hours post dose LSS for IV GCV 

(rMPE= 0.9%, rRMSE=12.4%). In the external dataset, the performance based on these 2 sample LSS were 

acceptable: rMPE=0.2%, rRMSE= 16.5%  for VGCV and rMPE=-9.7% , rRMSE=17.2% for GCV.  

Conclusion: The Xgboost algorithm developed resulted in a clinical relevant individual estimation using only 2 

blood samples. This will improve the implementation of AUC-targeted GCV TDM in children. 
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Introduction 

Cytomegalovirus (CMV) is associated with significant morbity in immunocompromised children, such as those 

having undergone stem cells or solid organ transplantation. CMV is highly prevalent with a seroprevalence 

estimated at 55% in pediatric donors or recipients (1). Despite preventive measures such as oral valganciclovir 

based primary prophylaxis or preemptive therapy including close monitoring of CMV replication, during a defined 

high-risk period after transplantation, CMV disease can result in significant morbidity and even mortality (2) . The 

most frequently employed drugs for prevention and treatment of CMV disease are intravenous ganciclovir (GCV) 

and its oral prodrug valganciclovir (VGCV). Common drug-related toxicities include neutropenia, anemia, 

thrombocytopenia, diarrhea and fever (3).  

GCV and VGCV display significant variability in pharmacokinetics, especially in children (4). Studies have 

identified that renal function, weight, age are predictors of ganciclovir clearance (5). A few pharmacokinetic 

studies were led in children, and the efficacy and safety targets determined for adults have been extrapolated for 

the preemptive strategy in children (AUC0-24= 40-60 mg.h/L). Pediatric GCV dosing recommendations are 5 

mg/kg IV once a day for prophylaxis and the VGCV dosing recommendation are based on an algorithm; 

7*BSA*CrCL once a day, where body surface area (BSA) is estimated using the Mosteller formula and creatinine 

clearance (CrCL) is estimated using the modified Schwartz formula. However, the probability of target attainment 

with GCV and VGCV is lower in children than in adults (5). Due to its large inter-individual variability, therapeutic 

drug monitoring (TDM) is recommended in children. As recently reviewed in Franck et al, the best exposure index 

for therapeutic drug monitoring is the area under the concentration-time (AUC) (5). However, AUC estimation 

requires multiple blood samples within a dose interval that can be invasive and distressing for children. 

Furthermore, repeated blood draws demand significant healthcare resources including personnel, laboratory 

availability and equipment. Numerous studies have been conducted to develop limited strategy samples (LSS) for 

ganciclovir using Bayesian estimators or multiple linear regression analyses. However, only a few have been 

proposed to predict ganciclovir AUC0–24 with heterogeneous populations (age, type of transplants) (6, 7).  

Training Machine Learning (ML) algorithms requires large datasets. To address this challenge, we have recently 

demonstrated that ML algorithms could be efficiently trained on simulated data obtained using a population 

pharmacokinetic (POPPK) model from the literature (8, 9).   

Therefore, the goal of our study was to develop and externally validate a ML-based limited sampling strategy 

(LSS) approach to determine GCV AUC0–24 after administration of either intravenous GCV or oral VGCV in 

children. 



Accepted manuscript

Material and Methods  

 

Simulation of ganciclovir pharmacokinetic profiles in children administered IV GCV or 
oral VGCV 
 
Creation of a covariate database  

Ten thousand eight hundred simulated patients with different covariates used in previously published POPPK 

models of GCV and VGCV were simulated (corresponding to 300 profiles by sex and by age from 1 to 18 years 

old). In brief, age between 1 to 18 years old was simulated using a uniform distribution, weight and height were 

simulated based on a truncated normal distribution according to the World Health Organization (WHO) growth 

standard according to age group (1 year per year) (10). Creatinemia was simulated based on a truncated normal 

distribution between 20 and 250 (micromole/L) independently of the other covariates (7). Body surface area (BSA) 

was  calculated with Mostellers formula (BSA = �𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡
3600

). Sex and type of transplant (solid organ or stem 

cells) were simulated using a uniform distributions. The creatinine clearance (CrCL) was then calculated based on 

the simulated age and creatininemia using the modified Schwarz formula (11).  

Monte Carlo Simulations 

We performed Monte Carlo simulations in the mrgsolve R package (12) using previously published POPPK 

models (2 for GCV (7, 13) and 3 for VGCV (7, 13, 14)), the simulated individual covariates and dose 

recommendations for a prophylaxis treatment (Doseguidelines (4, 15, 16); 5 mg/kg once a day for GCV and 

7*BSA*CrCL for VGCV, max 900mg). Individual predicted concentrations after IV GCV and VGCV 

administration at steady state (ss=1 option in mrgsolve) were simulated hourly. The additive error and proportional 

error were set close to 0 to only take into account the inter-individual variability and covariate effect as previously 

described (17). The steady state AUC0-24h,ref was calculated using trapezoidal rule (AUC0-24,ref). Filters were applied 

to remove AUC0–24–ref outliers (values outside the 1%-99% interval of simulated values) and AUC0–24–ref higher 

than 120 mg*h/L. All the values of covariates, the code used to simulate them and the supplemental data are 

available at https://github.com/ponthL/LSS_ganciclovir. Methods are resumed in the supplemental Figure 1.  

 

Machine learning analysis  
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All the pre-processing and machine learning analyses were performed using the tidymodels framework in R 

version 4.2.2 (18). Analyses were performed independently for GCV and VGCV. Data were split randomly into a 

training set (75%) and a test set (25%). Subsequently, the training set was further divided into an analysis set 

(80%) and an assessment set (20%). This latter split allowed us to compare ML algorithms efficiently and select 

only the one with the best performance while preserving the test set for the final validation. Our preprocessing 

steps involved normalization (centering and scaling) of numeric variables and one-hot encoding of categorical 

variables. We benchmarked different algorithms in the analysis set including Xgboost (eXtreme Gradient Boosting 

Training) (19), MARS (Multivariate Adaptive Regression Splines) (20), GLMNET (generalized linear model via 

penalized maximum likelihood) (21), Random Forests (22), SVM (support vector Machine) (23) for different LSS 

of 2 samples: 0/2 hours, 0/3 hours, 0/4 hours, 1/3 hours, 1/4 hours, 2/4 hours, 0/6 hours, 1/6 hours and 2/6 hours. 

We did not investigated combinations of concentrations 1 hour apart because we considered that this was too close 

and limited the last sampling point to six hours for clinical applicability. We also investigated combinations of 3 

samples among the same time points (results presented in the supplemental table).  

For each algorithm and LSS, hyperparameters were tuned using a ten-fold cross-validation in the analysis set based 

on RMSE and R². Then, optimized algorithms were evaluated in the assessment set and the one associated with 

the lowest mean predictive error (MPE) and the root mean square predictor error (RMSE) was selected. Finally, 

the algorithm selected was redeveloped by gathering the analysis and assesment sets and was evaluated in the test 

set. Variable importance plot were drawn using random permutations. The performances of the ML algorithm 

(MPE & RMSE) was compared to that of the Maximum a Posteriori Bayesian estimations using the same selected 

concentrations points and previously published POPPK models (2 for GCV (7, 13) and 3 for VGCV (7, 13, 14). 

MAP-BE were performed with the mapbayR R package (24).  

External evaluation 

The final ML algorithms based on 2 concentrations were also evaluated in an external set of 11 GCV AUC0-24 

sampled in 9 patients treated with VGCV and 22 GCV AUC0-24 sampled in 17 patients for intravenous GCV 

administration (with an infusion duration of 1 hour). As in the test set, the performances (MPE & RMSE) were 

compared ot that of the MAP-BE on the published population pharmacokinetic models. The external set were 

derived from the biological collection of the Sainte Justine Hospital. In brief, blood samples were routinely 

collected and 0; 0.5; 1; 1.5; 2; 4;5; 6; and 12 h for VGCV and at 0; 1; 2; 3; 4; 5; 6; and 12 h for GCV. Patients 

were at steady-state. Patients received a preremptive treatment: 10 mg/kg/every 12 h for VGCV or 5 mg/kg/every 
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12 h for GCV. Parental informed consent was obtained for all infants. The study protocol was approved by 

institutional ethics committee (N°2018-1830).  The authors confirmed that they have complied with the World 

Medical Association Declaration of Helsinki regarding ethical conduct of research involving human subjects.  

 

Results  
 

Patients  
 

Ten thousand eight hundred GCV PK profiles were simulated for GCV and VGCV, respectively and  10341 were 

included for VGCV and 10644 for GCV after removing of the 1-99th percentiles outliers. For VGCV, 7753 were 

randomly assigned to the training set and 2588 in the test set (Table 1). Among the training set for VGCV, 6202 

were randomly assigned in an analysis set and 1551 in assessment set. For GCV, 7980 were randomly assigned to 

the training set and 2664 in the test set (Table 2). Among the training set, 6384 were randomly assigned in an 

analysis set and 1596 in assessment set. No difference was observed for characteristics between the analysis, 

assessment sets, training test (analysis+ assessment sets) and the test set.  

 

Performances of the 2 samples algorithm 
 

Spaghetti plots representing ganciclovir concentration vs time in the simulation dataset for oral VGCV or 

intravenous GCV are available in supplemental Figure 2. Results of the comparison of the 2 samples LSS-

combinations with the 5 different ML algorithms (Glmnet, Xgboost, MARS, Random Forests, SVM) are shown 

in Table 3 for VGCV and Table 4 for GCV. The combinations of 2- and 6 hours for VGCV and 0- and 2 hours for 

GCV using the Xgboost showed the best performances in the assessment set.  

In the test, the combinations of 2- and 6 hours for VGCV and 0- and 2 hours for GCV using the Xgboost showed 

the best performances compared to MAP-BE based on published POPPK models (table 5A for VGCV and table 

6A for GCV). The scatter plot and Bland–Altman of the final Xgboost algorithm in the test set for predicted vs 

reference AUC is presented in Figure 1 for VGCV and in Figure 2 for GCV. Variable importance plot are presented 

in the Figure 3 for VGCV and 4 for GCV. 

The performances when split by age are shown in table 5A for VGCV and Table 6A for GCV. The scatter plot 

and Bland–Altman of the final Xgboost algorithm in the test set for predicted vs reference AUC split by age classes 

is presented in Figure 5 for VGCV and in Figure 6 for GCV.  The scatter plot and Bland–Altman of the MAP-BE 



Accepted manuscript

with the different POPPK models in the test set for predicted vs reference AUC are presented in Supplemental 

Figure 3 for VGCV and in Supplemental Figure 4 for GCV.  

Results for comparison of 3 samples LSS-combinations are available in supplemental table: 0-, 1- and 6 hours for 

VGCV and 0-, 2- and 6 hours for GCV showed best performances in the analysis and assessment set. Adding one 

more sample did not significantly improve the AUC predictability.  

 

Evaluation in external patients 

Characteristics of external real patients are detailed in Table 1 for VGCV and in Table 2 for GCV. For VGCV, the 

sampling times ranged between 1.8h and 2.3h for the 2h sample and between 5.9h and 6.3h for the 6h sample. For 

GCV, the sampling times in patient ranged between 1.9h and 2.4h for the 2h sample.  

In external patients, the combinations of 2- and 6 hours for VGCV and 0- and 2 hours for GCV using the Xgboost 

showed the best performances compared to MAP-BE (table 5B for VGCV and table 6B for GCV). Xgboost 

algorithm yielded RMSE  = 5.1 mg*h/L and MPE = -0.17 mg*h/L for VGCV and  RMSE  = 7.7 mg*h/L and MPE 

= 9.7 mg*h/L for GCV. The scatter plot of predicted AUC vs reference AUC for the Xgboost algorithm based on 

2 samples in the external set is presented in Figure 1 for VGCV and in Figure 2 for GCV.  

The performances when split by age are shown in table 5B for VGCV and Table 6B for GCV. The scatter plot and 

Bland–Altman of the Bayesian estimations with different POPPK models in external patients for predicted vs 

reference AUC are presented in Supplemental Figure 3 for VGCV and in Supplemental Figure 4 for GCV.  

 

Discussion  

The Xgboost algorithm developed here allowed a good AUC estimation for VGCV using concentrations sampled 

at 2 and 6 hours and for GCV using concentrations sampled at 0 and 2 hours. The same samples included in 

combinations of 3 sample LSS but did not result in clinically significant better estimations. These samples schedule 

are easy to draw in a routine practice. The aim of our study was to simplify the management of AUC estimation 

in these young patients, by limiting the number of samples and the hardship of repeated blood sampling.  

For VGCV, ML algorithms outperformed the MAP-BE based on published POPPK models, showing a decrease 

in bias and imprecision in both the test and external datasets. This suggests greater generalizability and robustness 

of the estimates provided by the ML algorithms compared to those from MAP-BE. For GCV, although the metrics 
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were the lowest in the test set, the bias observed in the external set is high (almost 10%). Nevertheless, the 

imprecision is low, and the bias value can be accounted for in the interpretation of the estimation. 

A MAP-BE based on a POPPK model developed for children with solid organ or stem cells transplants has already 

shown that a sample drawn at maximum concentration and 6 hours were important in the limited sampling strategy 

(25). Another recent study developed a multilinear regression to predict AUC0-24h with only 2 points 

(concentrations sampled at 1 and 8 hours ) for VGCV in renal transplants children (26). The authors observed 

good performances in the 2 validation datasets with RMSE = 7.45 and 6.38 mg*h/L  and MPE= 0.54 and 3.93 

mg*h/L . In our study, our 2-sample ML algorithm yielded RMSE  = 5.1 mg*h/L and MPE = -0.17 mg*h/L for 

VGCV in the external dataset. Another advantage of our ML algorithm is also that the 6 hour concentration (or 

less)  is easier to draw in routine care in comparison with an 8 hour concentration. In addition, 6 hour concentration 

versus 8 hour concentration did not improve the results in our dataset (data not shown). Another model developed 

with linear regression in adult renal transplants included the concentration at 0 hour and 4 hours (27). The model 

exhibited good performances in the validation dataset with rMAPE = 12.1 +/-9.5% and rMPE= 5.9+/-14.5%. In 

our study, the POPPK models used to simulate ganciclovir AUCs were built based on heterogeneous populations 

in terms of age, dose, height, weight and number of patient used to developed the models. This could be an 

explanation for the decreased performances in our external dataset in comparison to the isolated literature studies 

which evaluate their performance in a split or in a comparable validation population sampled from the same center. 

Nevertheless the performances are good, particularly for VGCV and would allow our algorithm to be usable in 

heterogeneous populations. 

Due to high variability of GCV PK in children, AUC-targeted TDM is important even if the therapeutic window 

have been extrapolated from adults and have to be confirmed in children (5). Inadequate exposure could potentially 

result in breakthrough viremia, particularly in high risk transplants recipients, or adverse events  (7). However in 

our study , we didn’t access the exposure/response relationship and it would have been interesting. Nethertheless, 

repetitive blood tests can be a source of stress, pain and anxiety in children, and we must strive to develop 

algorithms that accurately predict exposure with limited sampling strategies. 

In our study, we investigated 5 different ML algorithms: Glmnet which is a penalized regression, based on a linear 

relationship between predictors and AUC, the others being based on nonlinear relationships (Xgboost is an 

ensemble method that aggregate decision trees, MARS is a non-parametric derived regression that break a given 

distribution into small linear pieces, Random forrest use multiple decision trees and SVM finds a function that 
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predicts continuous target variables by maximizing the margin while minimizing the error between predicted and 

real values).   

Monte Carlo simulations were drawn from 2 published POPPK models for IV ganciclovir (7, 13) and 3 for 

valganciclovir (7, 13, 14) to simulate AUC with dosing recommendations. We selected only POPPK models that 

included covariates to enhance the number of predictors. That lead us to remove the Pescovitz et al model from 

our simulations (28). Concerning the covariates, we simulated each weight and height independently using the 

World Health Organization growth data and based on gender. In order to prevent unrepresentative combinations, 

we used a small granularity (one year per year) and we removed outliers’ values of AUC0-24. One of the advantages 

of using several published models for the simulation is that the population used to develop the ML algorithm is 

not linked to one or another POPPK model and should theoretically be more representative of the target population. 

In addition, the dose used in the simulations was the one from dosing recommendations.  

As expected, the two most important variables were the concentration of GCV, with only minor importance 

attributed to the remaining covariates. This is consistent with known findings in population pharmacokinetics 

However, there are some limits to this approach, (i) the simulations can be very different leading to very different 

profiles and not very accurate estimation in an external set (as for GCV in the present study with a large variability 

of CL between the model used in relation to covariates), that problem was highlighted by the poor performances 

in the test sets of some of the POPPK models and showed that the ML algorihtms were more generalisables ; (ii) 

dose recommendations for VGCV were overall higher in the simulations than the doses received by the patients 

in our external dataset, because we had fewer patients with impaired renal function and preemptive therapy were 

used for these patients leading to decrease the performances in the external dataset.  

In additions to these limitations, the data concerning the external set were retrospective. The food intake was also 

not studied for valganciclovir administration, that could have an impact on exposure (29). Secondly, for GCV, the 

sampling range was large for the theoretical concentration at 6 hours and could explain the worst performances in 

comparison to the test set. In other words, deviating from the theoretically optimal sampling time could degrade 

the model's predictive accuracy. Neverttheless, we have chosen to take a wide interval of tolerance for sampling 

times because this corresponds to the real clinical practice, even if the deviation from the theoretical times was not 

considered in our algorithm. In previous works, we included a variable taking into account the deviation from 

theoretical sampling time (either in true profiles or simulated profiles) and we showed that this variable only 

minimaly influenced the estimations (9, 30). Finally, some patients in the external base had reference AUC 

calculations using the trapezoidal rule based on a variable number of concentrations. Most of them had 8 
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concentrations but some had only 7 samples. The performances in the external population were poorer for GCV 

when compared to VGCV and when we looked at the performances according to the age class of the patient for 

GCV, the oldest children showed worse performance compared to younger children. On the contrary, the 

performances were similar according to the age classes for VGCV. The AUC showed large variability for the 

oldest group of patients receiving the same dosage (5 mg/kg). Franck et al showed for a similar dosing a high 

variation of GCV exposure and particularly for the oldest children (7).  

While this algorithm aims to improve target attainment, it's important to consider the relationship between target 

attainment and clinical effect (both desired efficacy and avoidance of adverse reactions). These targets are often 

established in adult studies (31). However, a recent literature review by Franck et al. highlights relationships 

between AUC and effect in children (5).  An additional benefit lies in its ability to estimate AUC with only two 

data points, compared to other methods. 

In order to make a demonstration and as a simple equation cannot be derived, we developed shiny.Apps : 

https://pharmacophd.shinyapps.io/ganciclovir_LSS_PO/ for VGCV and 

https://pharmacophd.shinyapps.io/Ganciclovir_LSS_IV/ for GCV. We illustrate the application of this algorithm 

with an example. In practice, as the GCV half life is very short (~3-4h ), the steady steate is reached after the first 

administration. Consider a girl who starts treatment with a dose of 50 mg for stem cell transplantation at T0 and 

T24h, weighs 13 kg, height 95 cm, is 3 years old, and has a creatinine level of 50 µmol/L. We measure the patient's 

drug concentration at two time points: at 26 and 30 hours after starting treatment (resulting in concentrations of 

7.9 mg/L and 2.3 mg/L, respectively). Using a Shiny app, we calculate the GCV AUC0-24 which in this case is 82 

mg*h/L. Based on this value, we propose a new dose of 31 mg for the next administration, following the formula: 

current dose * 50 / AUC (mg/L). 

In conclusion, the Xgboost algorithm developed yielded clinically relevant individual GCV AUC0-24 estimations 

with only 2 blood samples in pediatric transplants for both oral VGCV and intravenous GCV. Further prospective 

investigations are needed to confirm its clinical benefit in this population. 
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Table 1: Characteristics of the simulated profiles and real-world patients for VGCV algorithm development. 
 

 All simulated patients 
N = 10341 

 

Simulated patients in 
train set  
(Assessment+analysis) 
N= 7753 

Simulated patients in 
test set  
N=2588 

Real-world 
patients 
N=11 

Weight (Kg) 32.3 [19.0;51.8] 32.1 [19.0;51.8] 33.0 [19.1;51.6] 17.5[9.4;36.4] 
CrCL (mL/ 
min) 

140 [95.8;207] 140 [95.8;207] 137 [95.6;208] 82.9[69.9;118.8] 

Age (years) 9.00 [5.00;14.0] 9.00 [5.00;14.0] 9.00 [5.00;14.0] 5.8 [0.8;8.8] 
Height (cm) 139 [115;161] 138 [115;161] 139 [116;161] 106[77;144] 
Dose(mg) 900 [583;900] 900 [583;900] 900 [580;900] 250[110;393] 
Dose (mg/kg) 20.1 [14.6;34.7] 20.5 [15.2;34.7] 20.2 [14.5;34.0] 12.9 [10.1;13.8] 
Male Sex 5179 (50.1%) 3915 (50.5%) 1264 (48.8%) 10 (91%) 
Type of 
transplant 
Transplant 
stem cells  

5189 (50.2%) 3898 (50.3%) 1291 (49.9%) 1 (9%) 

Solid organ 5152 (49.8%) 3855 (49.7%) 1297 (50.1%) 10 (91%) 
AUC 0-

24,ref(mg*h/L) 
55.9 [37.2;75.0] 55.9 [37.2;75.0] 55.9 [37.2;75.0] 26.06[16.3;26.44] 

Concentration 
at 0 hour 
(mg/L) 

0.11 [0.03;0.24] 0.11 [0.03;0.24] 0.11 [0.03;0.25] 0.01[0.0;0.10] 

Concentration 
at 1 hour 
(mg/L) 

7.77 [5.12;10.3] 7.80 [5.13;10.3] 7.69 [5.02;10.2] 4.23[3.07;4.89] 

Concentration 
at 2 hours 
(mg/L) 

9.28 [6.58;12.0] 9.26 [6.58;12.0] 9.33 [6.58;12.0] 4.37[3.37;5.80] 

Concentration 
at 3 hours 
(mg/L) 

7.70 [5.38;10.4] 7.71 [5.40;10.4 7.70 [5.30;10.4] 3.21[2.5;5.23] 

Concentration 
at 4 hours 
(mg/L) 

6.09 [4.16;8.56] 6.09 [4.17;8.56] 6.07 [4.14;8.60] 2.21[1.57;2.97] 

Concentration 
at 6 hours 

3.75 [2.32;5.59] 3.75 [2.33;5.60] 3.76 [2.28;5.54] 0.665[0.37;0.795] 

 
Continuous variables are presented as median [IQR]. CrCL : creatinine Clearance (using modified Schwartz 
formula). AUC0-24,ref  : Area under the curve obtained using the trapezoidal rules ;  
  



Accepted manuscript

Table 2: Characteristics of the simulated profiles and external validation of actual patients for GCV algorithm 
development. 
 

 All simulated patients 
N = 10644 

 

Simulated patients in 
train set  
(Assessment+analysis) 
N= 7980 

Simulated 
patients in test 
set  
N=2664 

Real-world 
patients 
N=22 

Weight (Kg) 33.0 [19.4;51.8] 33.1 [19.1;51.8] 
 

33.1 [19.1;51.8] 21.2[11.25;32.5] 

CrCL (mL/ 
min) 

141 [96.8;209] 142 [97.0;209] 140 [95.7;211] 148[111;199] 

Age (years) 9.00 [5.00;14.0] 9.00 [5.00;14.0] 10.0 [5.00;14.0] 6.7 [1.5;10.2] 
Height (cm) 139 [116;161] 139 [116;161] 139 [116;161] 115[94;139] 
Dose(mg) 165 [96.9;259] 164 [97.6;259] 165 [95.5;259] 185[103;390] 
Dose (mg/kg)    5 [5;5]    5 [5;5]    5 [5;5] 5.1 [4.95;5.40] 
Male Sex 5311 (49.9%) 4000 (50.1%) 1311 (49.2%)  17 (77.3%) 
Type of 
transplant 
Transplant 
stem cells  

5335 (50.1%) 4025 (50.4%) 1310 (49.2%)  3 (13.6%) 

Solid organ 5309 (49.9%) 3955 (49.6%) 1354 (50.8%) 19 (86.4%) 
AUC 0-
24,ref(mg*h/L) 

34.0 [20.1;55.6] 34.0 [20.1;55.6] 34.0 [20.1;55.6] 32.5[24.1;63.7] 

Concentration 
at 0 hour 
(mg/L) 

0.03 [0.01;0.08] 0.03 [0.01;0.08]  0.03 [0.01;0.07] 0.24 [0.12;1.12] 

Concentration 
at 1 hour 
(mg/L) 

6.31 [3.75;10.5] 6.32 [3.76;10.5] 6.27 [3.72;10.5] 6.6[4.8;10.1] 

Concentration 
at 2 hours 
(mg/L) 

4.28 [2.52;7.30] 4.28 [2.52;7.30] 4.28 [2.52;7.34] 3.24 [2.1;4.3] 
 

Concentration 
at 3 hours 
(mg/L) 

3.02 [1.74;5.26] 3.01 [1.76;5.22]  3.02 [1.74;5.26] 1.6 [1.2;3.4] 

Concentration 
at 4 hours 
(mg/L) 

2.17 [1.21;3.87] 2.17 [1.21;3.87]  2.15 [1.22;3.88] 2.1 [1.7;3.8] 

Concentration 
at 6 hours 

1.15 [0.59;2.17] 1.15 [0.59;2.16]  1.15 [0.59;2.18] 0.94 [0.82;0.99] 

Continuous variables are presented as median [IQR] and categorical variables are presented as number (%). 
CrCL : creatinine Clearance (using modified Schwartz formula). AUC0-24,ref  : Area under the curve obtained 
using the trapezoidal rules ;  
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Table 3 : Results of the comparison of the 2 different samples combinations in the analysis et assessment set for 
VGCV (in bold is the model that exhibits the best performances) 

Models Relative MPE 
(%) 

Analysis set  

Relative RMSE 
(%) 

Analysis set 

Relative MPE 
(%) 

Assesment set  

Relative RMSE 
(%) 

Assesment set 

Valganciclovir concentration at 0,2 hours with GLMNET 
algorithm  

4.7 25.6 4.6 26.3 

Vaganciclovir concentration at 0, 2 hours with Xgboost 
algorithm  

1.9 14.4 4.6 25.3 

Valganciclovir concentration at 0, 2 hours with MARS algorithm 2.9 18.9 2.9 18.5 

Valganciclovir concentration at 0, 2 hours with Random Forrest 
algorithm 

2.3 14.6 2.1 14.9 

Valganciclovir concentration at 0, 2 hours with SVM algorithm 4.9 26.1 5.2 26.6 

Valganciclovir concentration at 0, 3 hours with GLMNET 
algorithm  

0.5 11.4 0.5 11.7 

Valganciclovir concentration at 0, 3 hours with Xgboost 
algorithm  

0.7 8.5 0.3 6.7 

Valganciclovir concentration at 0, 3 hours with MARS algorithm 0.9 9.9 0.9 10.6 

Valganciclovir concentration at 0, 3 hours with Random Forrest 
algorithm 

0.8 8.4 0.9 8.8 

Valganciclovir concentration at 0, 3 hours with SVM algorithm 0.3 11.8 0.5 12.6 

Valganciclovir concentration at 0, 4 hours with GLMNET 
algorithm  

0.7 8.5 0.8 8.8 

Valganciclovir concentration at 0, 4 hours with Xgboost 
algorithm  

0.8 8.7 0.3 4.9 

Valganciclovir concentration at 0, 4 hours with MARS algorithm 0.7 8.8 0.8 8.1 

Valganciclovir concentration at 0, 4 hours with Random Forrest 
algorithm 

0.9 8.9 1.1 8.9 

Valganciclovir concentration at 0, 4 hours with SVM algorithm 0.5 8.8 0.5 9.1 

Valganciclovir concentration at 1,3 hours with GLMNET 
algorithm  

3.1 17.1 3.0 16.7 

Valganciclovir concentration at 1,3 hours with Xgboost 
algorithm  

1.6 12.8 1.2 9.6 

Valganciclovir concentration at 1,3 hours with MARS algorithm 2.1 16.3 1.9 15.8 

Valganciclovir concentration at 1,3  hours with Random Forrest 
algorithm 

1.8 12.4 2.6 12.6 

Valganciclovir concentration at 1,3  hours with SVM algorithm 3.2 17.0 4.3 17.3 

Valganciclovir concentration at 2,4 hours with GLMNET 
algorithm  

2.2 13.6 2.4 13.8 

Valganciclovir concentration at 2,4 hours with Xgboost 
algorithm  

0.7 8.9 0.6 6.9 

Valganciclovir concentration at 2,4 hours with MARS algorithm 0.9 10.9 0.8 10.9 

Valganciclovir concentration at 2,4  hours with Random Forrest 
algorithm 

0.7 8.2 1.4 8.2 

Valganciclovir concentration at 2,4  hours with SVM algorithm 2.4 13.8 3.0 14.3 

Valganciclovir concentration at 1,4 hours with GLMNET 
algorithm  

2.1 12.7 2.2 12.9 

Valganciclovir concentration at 1,4 hours with Xgboost 
algorithm  

0.5 8.5 0.4 6.3 

Valganciclovir concentration at 1,4 hours with MARS algorithm 0.6 11.1 0.7 10.4 
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Valganciclovir concentration at 1,4  hours with Random Forrest 
algorithm 

0.9 8.3 1.3 8.1 

Valganciclovir concentration at 1,4  hours with SVM algorithm 1.9 12.9 2.6 13.2 

Valganciclovir concentration at 0,6 hours with GLMNET 
algorithm  

3.2 17.0 3.4 18.4 

Valganciclovir concentration at 0,6 hours with Xgboost 
algorithm  

1.9 14.9 1.8 13.6 

Valganciclovir concentration at 0,6 hours with MARS algorithm 1.9 15.6 2.0 16.2 

Valganciclovir concentration at 0,6  hours with Random Forrest 
algorithm 

2.2 15.0 2.4 15.2 

Valganciclovir concentration at 0,6   hours with SVM algorithm 2.9 16.9 2.7 17.8 

Valganciclovir concentration at 1,6 hours with GLMNET 
algorithm  

1.3 9.0 1.6 10.1 

Valganciclovir concentration at 1,6 hours with Xgboost 
algorithm  

0.4 6.3 0.2 4.1 

Valganciclovir concentration at 1,6 hours with MARS algorithm 0.6 7.3 0.7 7.6 

Valganciclovir concentration at 1,6  hours with Random Forrest 
algorithm 

0.5 6.3 0.7 6.6 

Valganciclovir concentration at 1,6   hours with SVM algorithm 1.4 9.2 1.5 9.9 

Valganciclovir concentration at 2,6 hours with GLMNET 
algorithm  

0.9 8.4 1.1 8.7 

Valganciclovir concentration at 2,6 hours with Xgboost 
algorithm  

0.4 5.7 0.2 3.7 

Valganciclovir concentration at 2,6 hours with MARS algorithm 0.6 7.5 0.4 7.2 

Valganciclovir concentration at 2,6  hours with Random Forrest 
algorithm 

0.4 5.4 0.8 5.8 

Valganciclovir concentration at 2,6   hours with SVM algorithm 0.8 8.6 1.1 8.8 

Valganciclovir concentration at 3,6 hours with GLMNET 
algorithm  

1.8 11.8 1.9 12.5 

Valganciclovir concentration at 3,6 hours with Xgboost 
algorithm  

0.7 7.4 0.4 5.0 

Valganciclovir concentration at 3,6 hours with MARS algorithm 0.7 8.6 0.7 8.7 

Valganciclovir concentration at 3,6  hours with Random Forrest 
algorithm 

0.7 7.2 1.2 7.4 

Valganciclovir concentration at 3,6   hours with SVM algorithm 1.8 11.7 2.1 12.4 

Valganciclovir concentration at 4,6 hours with GLMNET 
algorithm  

1.6 11.5 1.6 11.8 

Valganciclovir concentration at 4,6 hours with Xgboost 
algorithm  

0.9 9.1 0.6 6.2 

Valganciclovir concentration at 4,6 hours with MARS algorithm 1.3 10.6 1.2 10.2 

Valganciclovir concentration at 4,6  hours with Random Forrest 
algorithm 

0.8 8.7 1.5 8.9 

Valganciclovir concentration at 4,6   hours with SVM algorithm 1.7 12.1 1.9 12.4 
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Table 4 : Results of the comparison of the 2 different samples combinations in the analysis et assessment set for 
GCV (in bold is the model that exhibits the best performances) 
 

Models Relative MPE 
(%) 

Analysis set  

Relative RMSE 
(%) 

Analysis set 

Relative MPE 
(%) 

Assesment set  

Relative RMSE 
(%) 

Assesment set 

Ganciclovir concentration at 0,2 hours with GLMNET 
algorithm  

2.4 13.8 2.2 13.7 

Ganciclovir concentration at 0, 2 hours with Xgboost 
algorithm  

1.7 13.1 1.0 8.4 

Ganciclovir concentration at 0, 2 hours with MARS algorithm 1.9 13.2 1.5 13.0 

Ganciclovir concentration at 0, 2 hours with Random Forrest 
algorithm 

1.9 13.3 1.9 13.1 

Ganciclovir concentration at 0, 2 hours with SVM algorithm 2.1 13.9 2.1 13.6 

Ganciclovir concentration at 0, 3 hours with GLMNET algorithm  2.13 13.8 1.99 13.7 

Ganciclovir concentration at 0, 3 hours with Xgboost algorithm  1.8 13.8 0.9 8.4 

Ganciclovir concentration at 0, 3 hours with MARS algorithm 1.8 13.4 1.6 13.5 

Ganciclovir concentration at 0, 3 hours with Random Forrest 
algorithm 

1.8 13.8 1.4 13.6 

Ganciclovir concentration at 0, 3 hours with SVM algorithm 1.8 13.9 1.6 13.6 

Ganciclovir concentration at 0, 4 hours with GLMNET algorithm  2.5 15.6 2.3 15.5 

Ganciclovir concentration at 0, 4 hours with Xgboost algorithm  2.3 15.8 1.3 9.9 

Ganciclovir concentration at 0, 4 hours with MARS algorithm 2.5 15.3 2.3 15.1 

Ganciclovir concentration at 0, 4 hours with Random Forrest 
algorithm 

2.4 15.9 1.7 15.6 

Ganciclovir concentration at 0, 4 hours with SVM algorithm 2.1 15.6 1.5 15.4 

Ganciclovir concentration at 1,3 hours with GLMNET algorithm  2.2 14.4 2.2 14.2 

Ganciclovir concentration at 1,3 hours with Xgboost algorithm  1.3 11.8 0.9 9.1 

Ganciclovir concentration at 1,3 hours with MARS algorithm 1.9 13.9 1.9 14.2 

Ganciclovir concentration at 1,3  hours with Random Forrest 
algorithm 

1.7 11.6 1.6 14.5 

Ganciclovir concentration at 1,3  hours with SVM algorithm 1.9 14.1 1.7 14.2 

Ganciclovir concentration at 2,4 hours with GLMNET algorithm  2.2 14.0 2.2 14.2 

Ganciclovir concentration at 2,4 hours with Xgboost algorithm  1.2 11.6 0.9 8.9 

Ganciclovir concentration at 2,4 hours with MARS algorithm 1.9 13.2 1.5 13.6 

Ganciclovir concentration at 2,4  hours with Random Forrest 
algorithm 

1.6 11.2 1.5 11.2 

Ganciclovir concentration at 2,4  hours with SVM algorithm 2.2 14.0 2.0 14.1 

Ganciclovir concentration at 1,4 hours with GLMNET algorithm  2.1 13.7 2.1 13.9 

Ganciclovir concentration at 1,4 hours with Xgboost algorithm  1.1 11.3 0.8 8.7 
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Ganciclovir concentration at 1,4 hours with MARS algorithm 1.8 13.2 1.8 13.3 

Ganciclovir concentration at 1,4  hours with Random Forrest 
algorithm 

1.6 11.2 1.5 10.9 

Ganciclovir concentration at 1,4  hours with SVM algorithm 1.7 13.4 1.8 13.7 

Ganciclovir concentration at 0,6 hours with GLMNET algorithm  3.5 20.6 3.3 19.6 

Ganciclovir concentration at 0,6 hours with Xgboost algorithm  2.9 19.5 1.9 13.3 

Ganciclovir concentration at 0,6 hours with MARS algorithm 3.3 20.2 2.8 19.8 

Ganciclovir concentration at 0,6  hours with Random Forrest 
algorithm 

3.3 19.7 2.5 18.9 

Ganciclovir concentration at 0,6   hours with SVM algorithm 3.4 20.4 2.6 19.4 

Ganciclovir concentration at 1,6 hours with GLMNET algorithm  1.9 13.2 1.9 13.3 

Ganciclovir concentration at 1,6 hours with Xgboost 
algorithm  

1.1 10.9 0.8 8.4 

Ganciclovir concentration at 1,6 hours with MARS algorithm 1.6 12.6 1.7 12.7 

Ganciclovir concentration at 1,6  hours with Random Forrest 
algorithm 

1.5 10.5 1.3 10.7 

Ganciclovir concentration at 1,6   hours with SVM algorithm 2.1 13.7 1.9 13.7 

Ganciclovir concentration at 2,6 hours with GLMNET algorithm  2.1 13.1 2.0 13.8 

Ganciclovir concentration at 2,6 hours with Xgboost algorithm  1.1 11.1 0.8 8.7 

Ganciclovir concentration at 2,6 hours with MARS algorithm 1.6 12.7 1.6 12.8 

Ganciclovir concentration at 2,6  hours with Random Forrest 
algorithm 

1.6 10.7 1.3 10.7 

Ganciclovir concentration at 2,6   hours with SVM algorithm 1.7 13.9 1.5 14.0 

Ganciclovir concentration at 3,6 hours with GLMNET algorithm  2.2 14.2 2.1 14.3 

Ganciclovir concentration at 3,6 hours with Xgboost algorithm  1.3 12.2 0.9 9.0 

Ganciclovir concentration at 3,6 hours with MARS algorithm 1.6 13.1 1.8 13.4 

Ganciclovir concentration at 3,6  hours with Random Forrest 
algorithm 

1.5 11.9 1.4 11.8 

Ganciclovir concentration at 3,6   hours with SVM algorithm 2.2 14.8 1.8 14.8 

Ganciclovir concentration at 4,6 hours with GLMNET algorithm  1.9 13.7 1.2 19.2 

Ganciclovir concentration at 4,6 hours with Xgboost algorithm  0.9 10.4 1.2 8.6 

Ganciclovir concentration at 4,6 hours with MARS algorithm 1.7 13.5 2.35 14.9 

Ganciclovir concentration at 4,6  hours with Random Forrest 
algorithm 

2.0 13.6 1.7 13.1 

Ganciclovir concentration at 4,6   hours with SVM algorithm 2.3 14.1 2.0 14.1 
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Table 5 : Results of the comparison of different algorithms/models in the test set and external patients for VGCV 
 
 
 
 

Data 
Model 

Relative MPE 
(%) 

Relative RMSE 
(%) 

Out of the ± 20% 
interval 

number(%) 

Test set 

Xgboost algorithm 
based on 2 and 6 

hours 
0.4 5.7 20 (0.8%) 

Bayesian 
estimations based on 

2 and 6 hours 
With Franck model 

-1.9 46.6 1107 (43.9%) 

Bayesian 
estimations based on 

2 and 6 hours 
With Facchin model 

1.1 12.9 178 (7%) 

Bayesian 
estimations based on 

2 and 6 hours 
With Nguyen model 

28.9 97.7 917 (36.4%) 

Xgboost algorithm 
based on 2 and 6 

hours age < 5 years 
old 

0.4 5.8 6 (1.0%) 

Xgboost algorithm 
based on 2 and 6 

hours age between 5 
and 10 years old 

0.3 5.7 6 (0.8%) 

Xgboost algorithm 
based on 2 and 6 

hours age > 10 years 
old 

0.5 5.7 8 (0.6%) 

External patients 

Xgboost algorithm 
based on 2 and 6 

hours 
0.2 16.5 4 (36.3%) 

Bayesian 
estimations based on 

2 and 6 hours 
with Franck model 

37.3 56.4 8 (72.7%) 

Bayesian 
estimations based on 

2 and 6 hours 
with Facchin model 

-7.7 35.2 8 (72.7%) 

Bayesian 
estimations based on 

2 and 6 hours 
with Nguyen model 

108.0 123.0 10 (90.9%) 
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Table 6: Results of the comparison of different algorithms/models in the test set and external patients for GCV 

Data 
Model 

Relative MPE 
(%) 

Relative RMSE 
(%) 

Out of the ± 20% 
interval 

number(%) 

Test set 

Xgboost algorithm 
based on 0 and 2 

hours 
0.9 12.4 278 (10.4%) 

Bayesian 
estimations based on 

0 and 2 hours 
With Franck model 

-5.6 44.4 1634 (61.3%) 

Bayesian 
estimations based on 

0 and 2 hours 
With Nguyen model 

4.4 61.8 2016 (75.7%) 

Xgboost algorithm 
based on 0 and 2 

hours age < 5 years 
old 

1.1 12.5 64 (10.6%) 

Xgboost algorithm 
based on 0 and 2 

hours age between 5 
and 10 years old 

5.6 12.8 78 (10.7%) 

Xgboost algorithm 
based on 0 and 2 

hours age > 10 years 
old 

10.6 12.2 136 (10.2%) 

External patients 

Xgboost algorithm 
based on 0 and 2 

hours 
- 9.7 17.2 6 (28.6%) 

Bayesian 
estimations based on 

0 and 2 hours 
with Franck model 

4.1 56.4 21 (95.5%) 

Bayesian 
estimations based on 

0 and 2 hours 
with Nguyen model 

105.7 125.8 22 (100%) 
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Figures:  
 

Figure 1: Scatter plot of AUC0-24s estimated using the Xgboost algorithm based on 2 points at 2 and 6h vs 

reference trapezoidal AUC0-24 in the test set (A) and in the external data set (C) for VGCV, and corresponding 

Bland–Altman plots (B) and (D). Difference is the difference between the Reference and the Xgboost AUC0-

24s, and mean is the average of both.  

Figure 2: Scatter plot of AUC0-24s estimated using the Xgboost algorithm based on 2 points at 1 and 6 h vs 

reference trapezoidal AUC0-24 in the test set (A) and in the external data set (C) for GCV, and corresponding 

Bland–Altman plots (B) and (D). Difference is the difference between the Reference and the Xgboost AUC0-

24s, and mean is the average of both.  

Figure 3: Variable importance plot obtained by random permutation for VGCV. The score obtained quantifies 

the impact of each variable on the model’s predictions 

Figure 4: Variable importance plot obtained by random permutation for GCV. The score obtained quantifies the 

impact of each variable on the model’s predictions 

Figure 5: Scatter plot of AUC0-24s estimated using the Xgboost algorithm based on 2 points at 2 and 6 h vs 

reference trapezoidal AUC0-24 in the test set for VGCV, and corresponding Bland–Altman plots for different 

classes of age (<5, 5-10 and >10 years old). Difference is the difference between the Reference and the Xgboost 

AUC0-24s, and mean is the average of both.  

Figure 6: Scatter plot of AUC0-24s estimated using the Xgboost algorithm based on 2 points at 1 and 6 h vs 

reference trapezoidal AUC0-24 in the test set for GCV, and corresponding Bland–Altman plots for different 

classes of age (<5, 5-10 and >10 years old). Difference is the difference between the Reference and the Xgboost 

AUC0-24s, and mean is the average of both.  
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